^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1) // SPDX-License-Identifier: GPL-2.0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3) * Copyright (c) 2014 - 2018, NVIDIA CORPORATION. All rights reserved.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5) * Author:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6) * Mikko Perttunen <mperttunen@nvidia.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 8) * This software is licensed under the terms of the GNU General Public
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 9) * License version 2, as published by the Free Software Foundation, and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 10) * may be copied, distributed, and modified under those terms.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 11) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 12) * This program is distributed in the hope that it will be useful,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 13) * but WITHOUT ANY WARRANTY; without even the implied warranty of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 14) * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 15) * GNU General Public License for more details.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 16) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 17) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 18)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 19) #include <linux/debugfs.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 20) #include <linux/bitops.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 21) #include <linux/clk.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 22) #include <linux/delay.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 23) #include <linux/err.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 24) #include <linux/interrupt.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 25) #include <linux/io.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 26) #include <linux/irq.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 27) #include <linux/irqdomain.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 28) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 29) #include <linux/of.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 30) #include <linux/platform_device.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 31) #include <linux/reset.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 32) #include <linux/thermal.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 33)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 34) #include <dt-bindings/thermal/tegra124-soctherm.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 35)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 36) #include "../thermal_core.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 37) #include "soctherm.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 38)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 39) #define SENSOR_CONFIG0 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 40) #define SENSOR_CONFIG0_STOP BIT(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 41) #define SENSOR_CONFIG0_CPTR_OVER BIT(2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 42) #define SENSOR_CONFIG0_OVER BIT(3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 43) #define SENSOR_CONFIG0_TCALC_OVER BIT(4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 44) #define SENSOR_CONFIG0_TALL_MASK (0xfffff << 8)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 45) #define SENSOR_CONFIG0_TALL_SHIFT 8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 46)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 47) #define SENSOR_CONFIG1 4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 48) #define SENSOR_CONFIG1_TSAMPLE_MASK 0x3ff
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 49) #define SENSOR_CONFIG1_TSAMPLE_SHIFT 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 50) #define SENSOR_CONFIG1_TIDDQ_EN_MASK (0x3f << 15)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 51) #define SENSOR_CONFIG1_TIDDQ_EN_SHIFT 15
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 52) #define SENSOR_CONFIG1_TEN_COUNT_MASK (0x3f << 24)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 53) #define SENSOR_CONFIG1_TEN_COUNT_SHIFT 24
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 54) #define SENSOR_CONFIG1_TEMP_ENABLE BIT(31)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 55)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 56) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 57) * SENSOR_CONFIG2 is defined in soctherm.h
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 58) * because, it will be used by tegra_soctherm_fuse.c
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 59) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 60)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 61) #define SENSOR_STATUS0 0xc
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 62) #define SENSOR_STATUS0_VALID_MASK BIT(31)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 63) #define SENSOR_STATUS0_CAPTURE_MASK 0xffff
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 64)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 65) #define SENSOR_STATUS1 0x10
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 66) #define SENSOR_STATUS1_TEMP_VALID_MASK BIT(31)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 67) #define SENSOR_STATUS1_TEMP_MASK 0xffff
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 68)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 69) #define READBACK_VALUE_MASK 0xff00
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 70) #define READBACK_VALUE_SHIFT 8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 71) #define READBACK_ADD_HALF BIT(7)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 72) #define READBACK_NEGATE BIT(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 73)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 74) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 75) * THERMCTL_LEVEL0_GROUP_CPU is defined in soctherm.h
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 76) * because it will be used by tegraxxx_soctherm.c
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 77) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 78) #define THERMCTL_LVL0_CPU0_EN_MASK BIT(8)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 79) #define THERMCTL_LVL0_CPU0_CPU_THROT_MASK (0x3 << 5)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 80) #define THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT 0x1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 81) #define THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY 0x2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 82) #define THERMCTL_LVL0_CPU0_GPU_THROT_MASK (0x3 << 3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 83) #define THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT 0x1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 84) #define THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY 0x2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 85) #define THERMCTL_LVL0_CPU0_MEM_THROT_MASK BIT(2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 86) #define THERMCTL_LVL0_CPU0_STATUS_MASK 0x3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 87)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 88) #define THERMCTL_LVL0_UP_STATS 0x10
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 89) #define THERMCTL_LVL0_DN_STATS 0x14
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 90)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 91) #define THERMCTL_INTR_STATUS 0x84
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 92)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 93) #define TH_INTR_MD0_MASK BIT(25)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 94) #define TH_INTR_MU0_MASK BIT(24)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 95) #define TH_INTR_GD0_MASK BIT(17)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 96) #define TH_INTR_GU0_MASK BIT(16)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 97) #define TH_INTR_CD0_MASK BIT(9)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 98) #define TH_INTR_CU0_MASK BIT(8)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 99) #define TH_INTR_PD0_MASK BIT(1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) #define TH_INTR_PU0_MASK BIT(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) #define TH_INTR_IGNORE_MASK 0xFCFCFCFC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) #define THERMCTL_STATS_CTL 0x94
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) #define STATS_CTL_CLR_DN 0x8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) #define STATS_CTL_EN_DN 0x4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) #define STATS_CTL_CLR_UP 0x2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) #define STATS_CTL_EN_UP 0x1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) #define OC1_CFG 0x310
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) #define OC1_CFG_LONG_LATENCY_MASK BIT(6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) #define OC1_CFG_HW_RESTORE_MASK BIT(5)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) #define OC1_CFG_PWR_GOOD_MASK_MASK BIT(4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) #define OC1_CFG_THROTTLE_MODE_MASK (0x3 << 2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) #define OC1_CFG_ALARM_POLARITY_MASK BIT(1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) #define OC1_CFG_EN_THROTTLE_MASK BIT(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) #define OC1_CNT_THRESHOLD 0x314
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) #define OC1_THROTTLE_PERIOD 0x318
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) #define OC1_ALARM_COUNT 0x31c
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) #define OC1_FILTER 0x320
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) #define OC1_STATS 0x3a8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) #define OC_INTR_STATUS 0x39c
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) #define OC_INTR_ENABLE 0x3a0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) #define OC_INTR_DISABLE 0x3a4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) #define OC_STATS_CTL 0x3c4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) #define OC_STATS_CTL_CLR_ALL 0x2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) #define OC_STATS_CTL_EN_ALL 0x1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) #define OC_INTR_OC1_MASK BIT(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) #define OC_INTR_OC2_MASK BIT(1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) #define OC_INTR_OC3_MASK BIT(2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) #define OC_INTR_OC4_MASK BIT(3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) #define OC_INTR_OC5_MASK BIT(4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) #define THROT_GLOBAL_CFG 0x400
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) #define THROT_GLOBAL_ENB_MASK BIT(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) #define CPU_PSKIP_STATUS 0x418
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) #define XPU_PSKIP_STATUS_M_MASK (0xff << 12)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) #define XPU_PSKIP_STATUS_N_MASK (0xff << 4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) #define XPU_PSKIP_STATUS_SW_OVERRIDE_MASK BIT(1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) #define XPU_PSKIP_STATUS_ENABLED_MASK BIT(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) #define THROT_PRIORITY_LOCK 0x424
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) #define THROT_PRIORITY_LOCK_PRIORITY_MASK 0xff
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) #define THROT_STATUS 0x428
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) #define THROT_STATUS_BREACH_MASK BIT(12)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) #define THROT_STATUS_STATE_MASK (0xff << 4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) #define THROT_STATUS_ENABLED_MASK BIT(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) #define THROT_PSKIP_CTRL_LITE_CPU 0x430
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) #define THROT_PSKIP_CTRL_ENABLE_MASK BIT(31)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) #define THROT_PSKIP_CTRL_DIVIDEND_MASK (0xff << 8)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) #define THROT_PSKIP_CTRL_DIVISOR_MASK 0xff
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) #define THROT_PSKIP_CTRL_VECT_GPU_MASK (0x7 << 16)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) #define THROT_PSKIP_CTRL_VECT_CPU_MASK (0x7 << 8)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) #define THROT_PSKIP_CTRL_VECT2_CPU_MASK 0x7
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) #define THROT_VECT_NONE 0x0 /* 3'b000 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) #define THROT_VECT_LOW 0x1 /* 3'b001 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) #define THROT_VECT_MED 0x3 /* 3'b011 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) #define THROT_VECT_HIGH 0x7 /* 3'b111 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) #define THROT_PSKIP_RAMP_LITE_CPU 0x434
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) #define THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK BIT(31)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) #define THROT_PSKIP_RAMP_DURATION_MASK (0xffff << 8)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) #define THROT_PSKIP_RAMP_STEP_MASK 0xff
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) #define THROT_PRIORITY_LITE 0x444
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) #define THROT_PRIORITY_LITE_PRIO_MASK 0xff
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) #define THROT_DELAY_LITE 0x448
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) #define THROT_DELAY_LITE_DELAY_MASK 0xff
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) /* car register offsets needed for enabling HW throttling */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) #define CAR_SUPER_CCLKG_DIVIDER 0x36c
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) #define CDIVG_USE_THERM_CONTROLS_MASK BIT(30)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) /* ccroc register offsets needed for enabling HW throttling for Tegra132 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) #define CCROC_SUPER_CCLKG_DIVIDER 0x024
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) #define CCROC_GLOBAL_CFG 0x148
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) #define CCROC_THROT_PSKIP_RAMP_CPU 0x150
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) #define CCROC_THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK BIT(31)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) #define CCROC_THROT_PSKIP_RAMP_DURATION_MASK (0xffff << 8)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) #define CCROC_THROT_PSKIP_RAMP_STEP_MASK 0xff
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) #define CCROC_THROT_PSKIP_CTRL_CPU 0x154
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) #define CCROC_THROT_PSKIP_CTRL_ENB_MASK BIT(31)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) #define CCROC_THROT_PSKIP_CTRL_DIVIDEND_MASK (0xff << 8)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) #define CCROC_THROT_PSKIP_CTRL_DIVISOR_MASK 0xff
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) /* get val from register(r) mask bits(m) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) #define REG_GET_MASK(r, m) (((r) & (m)) >> (ffs(m) - 1))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) /* set val(v) to mask bits(m) of register(r) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) #define REG_SET_MASK(r, m, v) (((r) & ~(m)) | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) (((v) & (m >> (ffs(m) - 1))) << (ffs(m) - 1)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) /* get dividend from the depth */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) #define THROT_DEPTH_DIVIDEND(depth) ((256 * (100 - (depth)) / 100) - 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) /* gk20a nv_therm interface N:3 Mapping. Levels defined in tegra124-soctherm.h
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) * level vector
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) * NONE 3'b000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) * LOW 3'b001
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) * MED 3'b011
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) * HIGH 3'b111
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) #define THROT_LEVEL_TO_DEPTH(level) ((0x1 << (level)) - 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) /* get THROT_PSKIP_xxx offset per LIGHT/HEAVY throt and CPU/GPU dev */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) #define THROT_OFFSET 0x30
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) #define THROT_PSKIP_CTRL(throt, dev) (THROT_PSKIP_CTRL_LITE_CPU + \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) (THROT_OFFSET * throt) + (8 * dev))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) #define THROT_PSKIP_RAMP(throt, dev) (THROT_PSKIP_RAMP_LITE_CPU + \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) (THROT_OFFSET * throt) + (8 * dev))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) /* get THROT_xxx_CTRL offset per LIGHT/HEAVY throt */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) #define THROT_PRIORITY_CTRL(throt) (THROT_PRIORITY_LITE + \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) (THROT_OFFSET * throt))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) #define THROT_DELAY_CTRL(throt) (THROT_DELAY_LITE + \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) (THROT_OFFSET * throt))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) #define ALARM_OFFSET 0x14
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) #define ALARM_CFG(throt) (OC1_CFG + \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) (ALARM_OFFSET * (throt - THROTTLE_OC1)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) #define ALARM_CNT_THRESHOLD(throt) (OC1_CNT_THRESHOLD + \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) (ALARM_OFFSET * (throt - THROTTLE_OC1)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) #define ALARM_THROTTLE_PERIOD(throt) (OC1_THROTTLE_PERIOD + \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) (ALARM_OFFSET * (throt - THROTTLE_OC1)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) #define ALARM_ALARM_COUNT(throt) (OC1_ALARM_COUNT + \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) (ALARM_OFFSET * (throt - THROTTLE_OC1)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) #define ALARM_FILTER(throt) (OC1_FILTER + \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) (ALARM_OFFSET * (throt - THROTTLE_OC1)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) #define ALARM_STATS(throt) (OC1_STATS + \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) (4 * (throt - THROTTLE_OC1)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) /* get CCROC_THROT_PSKIP_xxx offset per HIGH/MED/LOW vect*/
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) #define CCROC_THROT_OFFSET 0x0c
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) #define CCROC_THROT_PSKIP_CTRL_CPU_REG(vect) (CCROC_THROT_PSKIP_CTRL_CPU + \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) (CCROC_THROT_OFFSET * vect))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) #define CCROC_THROT_PSKIP_RAMP_CPU_REG(vect) (CCROC_THROT_PSKIP_RAMP_CPU + \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) (CCROC_THROT_OFFSET * vect))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) /* get THERMCTL_LEVELx offset per CPU/GPU/MEM/TSENSE rg and LEVEL0~3 lv */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) #define THERMCTL_LVL_REGS_SIZE 0x20
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) #define THERMCTL_LVL_REG(rg, lv) ((rg) + ((lv) * THERMCTL_LVL_REGS_SIZE))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) #define OC_THROTTLE_MODE_DISABLED 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) #define OC_THROTTLE_MODE_BRIEF 2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) static const int min_low_temp = -127000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) static const int max_high_temp = 127000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) enum soctherm_throttle_id {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) THROTTLE_LIGHT = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) THROTTLE_HEAVY,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) THROTTLE_OC1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) THROTTLE_OC2,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) THROTTLE_OC3,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) THROTTLE_OC4,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) THROTTLE_OC5, /* OC5 is reserved */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) THROTTLE_SIZE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) enum soctherm_oc_irq_id {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) TEGRA_SOC_OC_IRQ_1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) TEGRA_SOC_OC_IRQ_2,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) TEGRA_SOC_OC_IRQ_3,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) TEGRA_SOC_OC_IRQ_4,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) TEGRA_SOC_OC_IRQ_5,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) TEGRA_SOC_OC_IRQ_MAX,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) enum soctherm_throttle_dev_id {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) THROTTLE_DEV_CPU = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) THROTTLE_DEV_GPU,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) THROTTLE_DEV_SIZE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) static const char *const throt_names[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) [THROTTLE_LIGHT] = "light",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) [THROTTLE_HEAVY] = "heavy",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) [THROTTLE_OC1] = "oc1",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) [THROTTLE_OC2] = "oc2",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) [THROTTLE_OC3] = "oc3",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) [THROTTLE_OC4] = "oc4",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) [THROTTLE_OC5] = "oc5",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) struct tegra_soctherm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) struct tegra_thermctl_zone {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) void __iomem *reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) struct device *dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) struct tegra_soctherm *ts;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) struct thermal_zone_device *tz;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) const struct tegra_tsensor_group *sg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) struct soctherm_oc_cfg {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) u32 active_low;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) u32 throt_period;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) u32 alarm_cnt_thresh;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) u32 alarm_filter;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) u32 mode;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) bool intr_en;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) struct soctherm_throt_cfg {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) const char *name;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) unsigned int id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) u8 priority;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) u8 cpu_throt_level;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) u32 cpu_throt_depth;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) u32 gpu_throt_level;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) struct soctherm_oc_cfg oc_cfg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) struct thermal_cooling_device *cdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) bool init;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) struct tegra_soctherm {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) struct reset_control *reset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) struct clk *clock_tsensor;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) struct clk *clock_soctherm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) void __iomem *regs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) void __iomem *clk_regs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) void __iomem *ccroc_regs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) int thermal_irq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) int edp_irq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) u32 *calib;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) struct thermal_zone_device **thermctl_tzs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) struct tegra_soctherm_soc *soc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) struct soctherm_throt_cfg throt_cfgs[THROTTLE_SIZE];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) struct dentry *debugfs_dir;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) struct mutex thermctl_lock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) struct soctherm_oc_irq_chip_data {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) struct mutex irq_lock; /* serialize OC IRQs */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) struct irq_chip irq_chip;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) struct irq_domain *domain;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) int irq_enable;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358) static struct soctherm_oc_irq_chip_data soc_irq_cdata;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) * ccroc_writel() - writes a value to a CCROC register
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) * @ts: pointer to a struct tegra_soctherm
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) * @value: the value to write
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) * @reg: the register offset
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) * Writes @v to @reg. No return value.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) static inline void ccroc_writel(struct tegra_soctherm *ts, u32 value, u32 reg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) writel(value, (ts->ccroc_regs + reg));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374) * ccroc_readl() - reads specified register from CCROC IP block
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) * @ts: pointer to a struct tegra_soctherm
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376) * @reg: register address to be read
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378) * Return: the value of the register
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) static inline u32 ccroc_readl(struct tegra_soctherm *ts, u32 reg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382) return readl(ts->ccroc_regs + reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) static void enable_tsensor(struct tegra_soctherm *tegra, unsigned int i)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387) const struct tegra_tsensor *sensor = &tegra->soc->tsensors[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388) void __iomem *base = tegra->regs + sensor->base;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) unsigned int val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391) val = sensor->config->tall << SENSOR_CONFIG0_TALL_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392) writel(val, base + SENSOR_CONFIG0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394) val = (sensor->config->tsample - 1) << SENSOR_CONFIG1_TSAMPLE_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395) val |= sensor->config->tiddq_en << SENSOR_CONFIG1_TIDDQ_EN_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396) val |= sensor->config->ten_count << SENSOR_CONFIG1_TEN_COUNT_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397) val |= SENSOR_CONFIG1_TEMP_ENABLE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398) writel(val, base + SENSOR_CONFIG1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400) writel(tegra->calib[i], base + SENSOR_CONFIG2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404) * Translate from soctherm readback format to millicelsius.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405) * The soctherm readback format in bits is as follows:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406) * TTTTTTTT H______N
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407) * where T's contain the temperature in Celsius,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408) * H denotes an addition of 0.5 Celsius and N denotes negation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409) * of the final value.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411) static int translate_temp(u16 val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413) int t;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415) t = ((val & READBACK_VALUE_MASK) >> READBACK_VALUE_SHIFT) * 1000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416) if (val & READBACK_ADD_HALF)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417) t += 500;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418) if (val & READBACK_NEGATE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419) t *= -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421) return t;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424) static int tegra_thermctl_get_temp(void *data, int *out_temp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 426) struct tegra_thermctl_zone *zone = data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 427) u32 val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 428)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 429) val = readl(zone->reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 430) val = REG_GET_MASK(val, zone->sg->sensor_temp_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 431) *out_temp = translate_temp(val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 432)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 433) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 434) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 435)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 436) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 437) * enforce_temp_range() - check and enforce temperature range [min, max]
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 438) * @dev: struct device * of the SOC_THERM instance
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 439) * @trip_temp: the trip temperature to check
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 440) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 441) * Checks and enforces the permitted temperature range that SOC_THERM
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 442) * HW can support This is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 443) * done while taking care of precision.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 444) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 445) * Return: The precision adjusted capped temperature in millicelsius.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 446) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 447) static int enforce_temp_range(struct device *dev, int trip_temp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 448) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 449) int temp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 450)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 451) temp = clamp_val(trip_temp, min_low_temp, max_high_temp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 452) if (temp != trip_temp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 453) dev_info(dev, "soctherm: trip temperature %d forced to %d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 454) trip_temp, temp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 455) return temp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 456) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 457)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 458) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 459) * thermtrip_program() - Configures the hardware to shut down the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 460) * system if a given sensor group reaches a given temperature
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 461) * @dev: ptr to the struct device for the SOC_THERM IP block
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 462) * @sg: pointer to the sensor group to set the thermtrip temperature for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 463) * @trip_temp: the temperature in millicelsius to trigger the thermal trip at
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 464) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 465) * Sets the thermal trip threshold of the given sensor group to be the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 466) * @trip_temp. If this threshold is crossed, the hardware will shut
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 467) * down.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 468) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 469) * Note that, although @trip_temp is specified in millicelsius, the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 470) * hardware is programmed in degrees Celsius.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 471) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 472) * Return: 0 upon success, or %-EINVAL upon failure.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 473) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 474) static int thermtrip_program(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 475) const struct tegra_tsensor_group *sg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 476) int trip_temp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 477) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 478) struct tegra_soctherm *ts = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 479) int temp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 480) u32 r;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 481)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 482) if (!sg || !sg->thermtrip_threshold_mask)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 483) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 484)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 485) temp = enforce_temp_range(dev, trip_temp) / ts->soc->thresh_grain;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 486)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 487) r = readl(ts->regs + THERMCTL_THERMTRIP_CTL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 488) r = REG_SET_MASK(r, sg->thermtrip_threshold_mask, temp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 489) r = REG_SET_MASK(r, sg->thermtrip_enable_mask, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 490) r = REG_SET_MASK(r, sg->thermtrip_any_en_mask, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 491) writel(r, ts->regs + THERMCTL_THERMTRIP_CTL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 492)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 493) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 494) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 495)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 496) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 497) * throttrip_program() - Configures the hardware to throttle the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 498) * pulse if a given sensor group reaches a given temperature
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 499) * @dev: ptr to the struct device for the SOC_THERM IP block
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 500) * @sg: pointer to the sensor group to set the thermtrip temperature for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 501) * @stc: pointer to the throttle need to be triggered
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 502) * @trip_temp: the temperature in millicelsius to trigger the thermal trip at
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 503) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 504) * Sets the thermal trip threshold and throttle event of the given sensor
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 505) * group. If this threshold is crossed, the hardware will trigger the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 506) * throttle.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 507) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 508) * Note that, although @trip_temp is specified in millicelsius, the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 509) * hardware is programmed in degrees Celsius.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 510) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 511) * Return: 0 upon success, or %-EINVAL upon failure.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 512) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 513) static int throttrip_program(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 514) const struct tegra_tsensor_group *sg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 515) struct soctherm_throt_cfg *stc,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 516) int trip_temp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 517) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 518) struct tegra_soctherm *ts = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 519) int temp, cpu_throt, gpu_throt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 520) unsigned int throt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 521) u32 r, reg_off;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 522)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 523) if (!sg || !stc || !stc->init)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 524) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 525)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 526) temp = enforce_temp_range(dev, trip_temp) / ts->soc->thresh_grain;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 527)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 528) /* Hardcode LIGHT on LEVEL1 and HEAVY on LEVEL2 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 529) throt = stc->id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 530) reg_off = THERMCTL_LVL_REG(sg->thermctl_lvl0_offset, throt + 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 531)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 532) if (throt == THROTTLE_LIGHT) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 533) cpu_throt = THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 534) gpu_throt = THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 535) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 536) cpu_throt = THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 537) gpu_throt = THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 538) if (throt != THROTTLE_HEAVY)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 539) dev_warn(dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 540) "invalid throt id %d - assuming HEAVY",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 541) throt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 542) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 543)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 544) r = readl(ts->regs + reg_off);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 545) r = REG_SET_MASK(r, sg->thermctl_lvl0_up_thresh_mask, temp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 546) r = REG_SET_MASK(r, sg->thermctl_lvl0_dn_thresh_mask, temp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 547) r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_CPU_THROT_MASK, cpu_throt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 548) r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_GPU_THROT_MASK, gpu_throt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 549) r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_EN_MASK, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 550) writel(r, ts->regs + reg_off);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 551)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 552) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 553) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 554)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 555) static struct soctherm_throt_cfg *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 556) find_throttle_cfg_by_name(struct tegra_soctherm *ts, const char *name)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 557) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 558) unsigned int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 559)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 560) for (i = 0; ts->throt_cfgs[i].name; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 561) if (!strcmp(ts->throt_cfgs[i].name, name))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 562) return &ts->throt_cfgs[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 563)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 564) return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 565) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 566)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 567) static int tsensor_group_thermtrip_get(struct tegra_soctherm *ts, int id)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 568) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 569) int i, temp = min_low_temp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 570) struct tsensor_group_thermtrips *tt = ts->soc->thermtrips;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 571)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 572) if (id >= TEGRA124_SOCTHERM_SENSOR_NUM)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 573) return temp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 574)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 575) if (tt) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 576) for (i = 0; i < ts->soc->num_ttgs; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 577) if (tt[i].id == id)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 578) return tt[i].temp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 579) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 580) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 581)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 582) return temp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 583) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 584)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 585) static int tegra_thermctl_set_trip_temp(void *data, int trip, int temp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 586) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 587) struct tegra_thermctl_zone *zone = data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 588) struct thermal_zone_device *tz = zone->tz;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 589) struct tegra_soctherm *ts = zone->ts;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 590) const struct tegra_tsensor_group *sg = zone->sg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 591) struct device *dev = zone->dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 592) enum thermal_trip_type type;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 593) int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 594)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 595) if (!tz)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 596) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 597)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 598) ret = tz->ops->get_trip_type(tz, trip, &type);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 599) if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 600) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 601)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 602) if (type == THERMAL_TRIP_CRITICAL) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 603) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 604) * If thermtrips property is set in DT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 605) * doesn't need to program critical type trip to HW,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 606) * if not, program critical trip to HW.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 607) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 608) if (min_low_temp == tsensor_group_thermtrip_get(ts, sg->id))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 609) return thermtrip_program(dev, sg, temp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 610) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 611) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 612)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 613) } else if (type == THERMAL_TRIP_HOT) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 614) int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 615)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 616) for (i = 0; i < THROTTLE_SIZE; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 617) struct thermal_cooling_device *cdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 618) struct soctherm_throt_cfg *stc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 619)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 620) if (!ts->throt_cfgs[i].init)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 621) continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 622)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 623) cdev = ts->throt_cfgs[i].cdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 624) if (get_thermal_instance(tz, cdev, trip))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 625) stc = find_throttle_cfg_by_name(ts, cdev->type);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 626) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 627) continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 628)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 629) return throttrip_program(dev, sg, stc, temp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 630) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 631) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 632)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 633) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 634) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 635)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 636) static int tegra_thermctl_get_trend(void *data, int trip,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 637) enum thermal_trend *trend)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 638) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 639) struct tegra_thermctl_zone *zone = data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 640) struct thermal_zone_device *tz = zone->tz;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 641) int trip_temp, temp, last_temp, ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 642)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 643) if (!tz)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 644) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 645)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 646) ret = tz->ops->get_trip_temp(zone->tz, trip, &trip_temp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 647) if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 648) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 649)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 650) temp = READ_ONCE(tz->temperature);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 651) last_temp = READ_ONCE(tz->last_temperature);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 652)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 653) if (temp > trip_temp) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 654) if (temp >= last_temp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 655) *trend = THERMAL_TREND_RAISING;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 656) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 657) *trend = THERMAL_TREND_STABLE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 658) } else if (temp < trip_temp) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 659) *trend = THERMAL_TREND_DROPPING;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 660) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 661) *trend = THERMAL_TREND_STABLE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 662) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 663)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 664) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 665) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 666)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 667) static void thermal_irq_enable(struct tegra_thermctl_zone *zn)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 668) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 669) u32 r;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 670)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 671) /* multiple zones could be handling and setting trips at once */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 672) mutex_lock(&zn->ts->thermctl_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 673) r = readl(zn->ts->regs + THERMCTL_INTR_ENABLE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 674) r = REG_SET_MASK(r, zn->sg->thermctl_isr_mask, TH_INTR_UP_DN_EN);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 675) writel(r, zn->ts->regs + THERMCTL_INTR_ENABLE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 676) mutex_unlock(&zn->ts->thermctl_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 677) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 678)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 679) static void thermal_irq_disable(struct tegra_thermctl_zone *zn)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 680) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 681) u32 r;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 682)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 683) /* multiple zones could be handling and setting trips at once */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 684) mutex_lock(&zn->ts->thermctl_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 685) r = readl(zn->ts->regs + THERMCTL_INTR_DISABLE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 686) r = REG_SET_MASK(r, zn->sg->thermctl_isr_mask, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 687) writel(r, zn->ts->regs + THERMCTL_INTR_DISABLE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 688) mutex_unlock(&zn->ts->thermctl_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 689) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 690)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 691) static int tegra_thermctl_set_trips(void *data, int lo, int hi)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 692) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 693) struct tegra_thermctl_zone *zone = data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 694) u32 r;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 695)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 696) thermal_irq_disable(zone);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 697)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 698) r = readl(zone->ts->regs + zone->sg->thermctl_lvl0_offset);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 699) r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_EN_MASK, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 700) writel(r, zone->ts->regs + zone->sg->thermctl_lvl0_offset);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 701)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 702) lo = enforce_temp_range(zone->dev, lo) / zone->ts->soc->thresh_grain;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 703) hi = enforce_temp_range(zone->dev, hi) / zone->ts->soc->thresh_grain;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 704) dev_dbg(zone->dev, "%s hi:%d, lo:%d\n", __func__, hi, lo);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 705)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 706) r = REG_SET_MASK(r, zone->sg->thermctl_lvl0_up_thresh_mask, hi);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 707) r = REG_SET_MASK(r, zone->sg->thermctl_lvl0_dn_thresh_mask, lo);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 708) r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_EN_MASK, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 709) writel(r, zone->ts->regs + zone->sg->thermctl_lvl0_offset);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 710)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 711) thermal_irq_enable(zone);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 712)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 713) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 714) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 715)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 716) static const struct thermal_zone_of_device_ops tegra_of_thermal_ops = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 717) .get_temp = tegra_thermctl_get_temp,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 718) .set_trip_temp = tegra_thermctl_set_trip_temp,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 719) .get_trend = tegra_thermctl_get_trend,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 720) .set_trips = tegra_thermctl_set_trips,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 721) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 722)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 723) static int get_hot_temp(struct thermal_zone_device *tz, int *trip, int *temp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 724) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 725) int ntrips, i, ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 726) enum thermal_trip_type type;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 727)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 728) ntrips = of_thermal_get_ntrips(tz);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 729) if (ntrips <= 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 730) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 731)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 732) for (i = 0; i < ntrips; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 733) ret = tz->ops->get_trip_type(tz, i, &type);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 734) if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 735) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 736) if (type == THERMAL_TRIP_HOT) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 737) ret = tz->ops->get_trip_temp(tz, i, temp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 738) if (!ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 739) *trip = i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 740)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 741) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 742) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 743) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 744)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 745) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 746) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 747)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 748) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 749) * tegra_soctherm_set_hwtrips() - set HW trip point from DT data
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 750) * @dev: struct device * of the SOC_THERM instance
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 751) * @sg: pointer to the sensor group to set the thermtrip temperature for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 752) * @tz: struct thermal_zone_device *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 753) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 754) * Configure the SOC_THERM HW trip points, setting "THERMTRIP"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 755) * "THROTTLE" trip points , using "thermtrips", "critical" or "hot"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 756) * type trip_temp
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 757) * from thermal zone.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 758) * After they have been configured, THERMTRIP or THROTTLE will take
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 759) * action when the configured SoC thermal sensor group reaches a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 760) * certain temperature.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 761) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 762) * Return: 0 upon success, or a negative error code on failure.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 763) * "Success" does not mean that trips was enabled; it could also
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 764) * mean that no node was found in DT.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 765) * THERMTRIP has been enabled successfully when a message similar to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 766) * this one appears on the serial console:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 767) * "thermtrip: will shut down when sensor group XXX reaches YYYYYY mC"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 768) * THROTTLE has been enabled successfully when a message similar to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 769) * this one appears on the serial console:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 770) * ""throttrip: will throttle when sensor group XXX reaches YYYYYY mC"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 771) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 772) static int tegra_soctherm_set_hwtrips(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 773) const struct tegra_tsensor_group *sg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 774) struct thermal_zone_device *tz)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 775) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 776) struct tegra_soctherm *ts = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 777) struct soctherm_throt_cfg *stc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 778) int i, trip, temperature, ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 779)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 780) /* Get thermtrips. If missing, try to get critical trips. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 781) temperature = tsensor_group_thermtrip_get(ts, sg->id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 782) if (min_low_temp == temperature)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 783) if (tz->ops->get_crit_temp(tz, &temperature))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 784) temperature = max_high_temp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 785)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 786) ret = thermtrip_program(dev, sg, temperature);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 787) if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 788) dev_err(dev, "thermtrip: %s: error during enable\n", sg->name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 789) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 790) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 791)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 792) dev_info(dev, "thermtrip: will shut down when %s reaches %d mC\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 793) sg->name, temperature);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 794)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 795) ret = get_hot_temp(tz, &trip, &temperature);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 796) if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 797) dev_info(dev, "throttrip: %s: missing hot temperature\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 798) sg->name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 799) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 800) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 801)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 802) for (i = 0; i < THROTTLE_OC1; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 803) struct thermal_cooling_device *cdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 804)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 805) if (!ts->throt_cfgs[i].init)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 806) continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 807)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 808) cdev = ts->throt_cfgs[i].cdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 809) if (get_thermal_instance(tz, cdev, trip))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 810) stc = find_throttle_cfg_by_name(ts, cdev->type);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 811) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 812) continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 813)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 814) ret = throttrip_program(dev, sg, stc, temperature);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 815) if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 816) dev_err(dev, "throttrip: %s: error during enable\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 817) sg->name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 818) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 819) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 820)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 821) dev_info(dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 822) "throttrip: will throttle when %s reaches %d mC\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 823) sg->name, temperature);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 824) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 825) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 826)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 827) if (i == THROTTLE_SIZE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 828) dev_info(dev, "throttrip: %s: missing throttle cdev\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 829) sg->name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 830)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 831) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 832) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 833)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 834) static irqreturn_t soctherm_thermal_isr(int irq, void *dev_id)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 835) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 836) struct tegra_soctherm *ts = dev_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 837) u32 r;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 838)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 839) /* Case for no lock:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 840) * Although interrupts are enabled in set_trips, there is still no need
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 841) * to lock here because the interrupts are disabled before programming
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 842) * new trip points. Hence there cant be a interrupt on the same sensor.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 843) * An interrupt can however occur on a sensor while trips are being
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 844) * programmed on a different one. This beign a LEVEL interrupt won't
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 845) * cause a new interrupt but this is taken care of by the re-reading of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 846) * the STATUS register in the thread function.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 847) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 848) r = readl(ts->regs + THERMCTL_INTR_STATUS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 849) writel(r, ts->regs + THERMCTL_INTR_DISABLE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 850)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 851) return IRQ_WAKE_THREAD;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 852) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 853)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 854) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 855) * soctherm_thermal_isr_thread() - Handles a thermal interrupt request
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 856) * @irq: The interrupt number being requested; not used
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 857) * @dev_id: Opaque pointer to tegra_soctherm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 858) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 859) * Clears the interrupt status register if there are expected
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 860) * interrupt bits set.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 861) * The interrupt(s) are then handled by updating the corresponding
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 862) * thermal zones.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 863) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 864) * An error is logged if any unexpected interrupt bits are set.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 865) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 866) * Disabled interrupts are re-enabled.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 867) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 868) * Return: %IRQ_HANDLED. Interrupt was handled and no further processing
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 869) * is needed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 870) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 871) static irqreturn_t soctherm_thermal_isr_thread(int irq, void *dev_id)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 872) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 873) struct tegra_soctherm *ts = dev_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 874) struct thermal_zone_device *tz;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 875) u32 st, ex = 0, cp = 0, gp = 0, pl = 0, me = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 876)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 877) st = readl(ts->regs + THERMCTL_INTR_STATUS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 878)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 879) /* deliberately clear expected interrupts handled in SW */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 880) cp |= st & TH_INTR_CD0_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 881) cp |= st & TH_INTR_CU0_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 882)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 883) gp |= st & TH_INTR_GD0_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 884) gp |= st & TH_INTR_GU0_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 885)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 886) pl |= st & TH_INTR_PD0_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 887) pl |= st & TH_INTR_PU0_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 888)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 889) me |= st & TH_INTR_MD0_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 890) me |= st & TH_INTR_MU0_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 891)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 892) ex |= cp | gp | pl | me;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 893) if (ex) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 894) writel(ex, ts->regs + THERMCTL_INTR_STATUS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 895) st &= ~ex;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 896)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 897) if (cp) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 898) tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_CPU];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 899) thermal_zone_device_update(tz,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 900) THERMAL_EVENT_UNSPECIFIED);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 901) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 902)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 903) if (gp) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 904) tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_GPU];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 905) thermal_zone_device_update(tz,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 906) THERMAL_EVENT_UNSPECIFIED);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 907) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 908)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 909) if (pl) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 910) tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_PLLX];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 911) thermal_zone_device_update(tz,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 912) THERMAL_EVENT_UNSPECIFIED);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 913) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 914)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 915) if (me) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 916) tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_MEM];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 917) thermal_zone_device_update(tz,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 918) THERMAL_EVENT_UNSPECIFIED);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 919) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 920) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 921)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 922) /* deliberately ignore expected interrupts NOT handled in SW */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 923) ex |= TH_INTR_IGNORE_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 924) st &= ~ex;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 925)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 926) if (st) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 927) /* Whine about any other unexpected INTR bits still set */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 928) pr_err("soctherm: Ignored unexpected INTRs 0x%08x\n", st);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 929) writel(st, ts->regs + THERMCTL_INTR_STATUS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 930) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 931)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 932) return IRQ_HANDLED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 933) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 934)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 935) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 936) * soctherm_oc_intr_enable() - Enables the soctherm over-current interrupt
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 937) * @ts: pointer to a struct tegra_soctherm
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 938) * @alarm: The soctherm throttle id
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 939) * @enable: Flag indicating enable the soctherm over-current
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 940) * interrupt or disable it
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 941) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 942) * Enables a specific over-current pins @alarm to raise an interrupt if the flag
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 943) * is set and the alarm corresponds to OC1, OC2, OC3, or OC4.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 944) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 945) static void soctherm_oc_intr_enable(struct tegra_soctherm *ts,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 946) enum soctherm_throttle_id alarm,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 947) bool enable)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 948) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 949) u32 r;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 950)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 951) if (!enable)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 952) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 953)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 954) r = readl(ts->regs + OC_INTR_ENABLE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 955) switch (alarm) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 956) case THROTTLE_OC1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 957) r = REG_SET_MASK(r, OC_INTR_OC1_MASK, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 958) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 959) case THROTTLE_OC2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 960) r = REG_SET_MASK(r, OC_INTR_OC2_MASK, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 961) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 962) case THROTTLE_OC3:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 963) r = REG_SET_MASK(r, OC_INTR_OC3_MASK, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 964) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 965) case THROTTLE_OC4:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 966) r = REG_SET_MASK(r, OC_INTR_OC4_MASK, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 967) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 968) default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 969) r = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 970) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 971) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 972) writel(r, ts->regs + OC_INTR_ENABLE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 973) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 974)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 975) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 976) * soctherm_handle_alarm() - Handles soctherm alarms
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 977) * @alarm: The soctherm throttle id
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 978) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 979) * "Handles" over-current alarms (OC1, OC2, OC3, and OC4) by printing
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 980) * a warning or informative message.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 981) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 982) * Return: -EINVAL for @alarm = THROTTLE_OC3, otherwise 0 (success).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 983) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 984) static int soctherm_handle_alarm(enum soctherm_throttle_id alarm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 985) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 986) int rv = -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 987)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 988) switch (alarm) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 989) case THROTTLE_OC1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 990) pr_debug("soctherm: Successfully handled OC1 alarm\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 991) rv = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 992) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 993)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 994) case THROTTLE_OC2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 995) pr_debug("soctherm: Successfully handled OC2 alarm\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 996) rv = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 997) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 998)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 999) case THROTTLE_OC3:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1000) pr_debug("soctherm: Successfully handled OC3 alarm\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1001) rv = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1002) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1003)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1004) case THROTTLE_OC4:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1005) pr_debug("soctherm: Successfully handled OC4 alarm\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1006) rv = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1007) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1008)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1009) default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1010) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1011) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1012)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1013) if (rv)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1014) pr_err("soctherm: ERROR in handling %s alarm\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1015) throt_names[alarm]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1016)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1017) return rv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1018) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1019)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1020) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1021) * soctherm_edp_isr_thread() - log an over-current interrupt request
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1022) * @irq: OC irq number. Currently not being used. See description
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1023) * @arg: a void pointer for callback, currently not being used
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1024) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1025) * Over-current events are handled in hardware. This function is called to log
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1026) * and handle any OC events that happened. Additionally, it checks every
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1027) * over-current interrupt registers for registers are set but
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1028) * was not expected (i.e. any discrepancy in interrupt status) by the function,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1029) * the discrepancy will logged.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1030) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1031) * Return: %IRQ_HANDLED
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1032) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1033) static irqreturn_t soctherm_edp_isr_thread(int irq, void *arg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1034) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1035) struct tegra_soctherm *ts = arg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1036) u32 st, ex, oc1, oc2, oc3, oc4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1037)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1038) st = readl(ts->regs + OC_INTR_STATUS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1039)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1040) /* deliberately clear expected interrupts handled in SW */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1041) oc1 = st & OC_INTR_OC1_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1042) oc2 = st & OC_INTR_OC2_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1043) oc3 = st & OC_INTR_OC3_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1044) oc4 = st & OC_INTR_OC4_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1045) ex = oc1 | oc2 | oc3 | oc4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1046)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1047) pr_err("soctherm: OC ALARM 0x%08x\n", ex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1048) if (ex) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1049) writel(st, ts->regs + OC_INTR_STATUS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1050) st &= ~ex;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1051)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1052) if (oc1 && !soctherm_handle_alarm(THROTTLE_OC1))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1053) soctherm_oc_intr_enable(ts, THROTTLE_OC1, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1054)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1055) if (oc2 && !soctherm_handle_alarm(THROTTLE_OC2))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1056) soctherm_oc_intr_enable(ts, THROTTLE_OC2, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1057)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1058) if (oc3 && !soctherm_handle_alarm(THROTTLE_OC3))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1059) soctherm_oc_intr_enable(ts, THROTTLE_OC3, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1060)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1061) if (oc4 && !soctherm_handle_alarm(THROTTLE_OC4))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1062) soctherm_oc_intr_enable(ts, THROTTLE_OC4, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1063)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1064) if (oc1 && soc_irq_cdata.irq_enable & BIT(0))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1065) handle_nested_irq(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1066) irq_find_mapping(soc_irq_cdata.domain, 0));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1067)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1068) if (oc2 && soc_irq_cdata.irq_enable & BIT(1))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1069) handle_nested_irq(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1070) irq_find_mapping(soc_irq_cdata.domain, 1));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1071)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1072) if (oc3 && soc_irq_cdata.irq_enable & BIT(2))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1073) handle_nested_irq(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1074) irq_find_mapping(soc_irq_cdata.domain, 2));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1075)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1076) if (oc4 && soc_irq_cdata.irq_enable & BIT(3))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1077) handle_nested_irq(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1078) irq_find_mapping(soc_irq_cdata.domain, 3));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1079) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1080)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1081) if (st) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1082) pr_err("soctherm: Ignored unexpected OC ALARM 0x%08x\n", st);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1083) writel(st, ts->regs + OC_INTR_STATUS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1084) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1085)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1086) return IRQ_HANDLED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1087) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1088)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1089) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1090) * soctherm_edp_isr() - Disables any active interrupts
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1091) * @irq: The interrupt request number
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1092) * @arg: Opaque pointer to an argument
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1093) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1094) * Writes to the OC_INTR_DISABLE register the over current interrupt status,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1095) * masking any asserted interrupts. Doing this prevents the same interrupts
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1096) * from triggering this isr repeatedly. The thread woken by this isr will
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1097) * handle asserted interrupts and subsequently unmask/re-enable them.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1098) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1099) * The OC_INTR_DISABLE register indicates which OC interrupts
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1100) * have been disabled.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1101) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1102) * Return: %IRQ_WAKE_THREAD, handler requests to wake the handler thread
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1103) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1104) static irqreturn_t soctherm_edp_isr(int irq, void *arg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1105) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1106) struct tegra_soctherm *ts = arg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1107) u32 r;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1108)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1109) if (!ts)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1110) return IRQ_NONE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1111)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1112) r = readl(ts->regs + OC_INTR_STATUS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1113) writel(r, ts->regs + OC_INTR_DISABLE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1114)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1115) return IRQ_WAKE_THREAD;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1116) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1117)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1118) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1119) * soctherm_oc_irq_lock() - locks the over-current interrupt request
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1120) * @data: Interrupt request data
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1121) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1122) * Looks up the chip data from @data and locks the mutex associated with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1123) * a particular over-current interrupt request.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1124) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1125) static void soctherm_oc_irq_lock(struct irq_data *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1126) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1127) struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1128)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1129) mutex_lock(&d->irq_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1130) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1131)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1132) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1133) * soctherm_oc_irq_sync_unlock() - Unlocks the OC interrupt request
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1134) * @data: Interrupt request data
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1135) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1136) * Looks up the interrupt request data @data and unlocks the mutex associated
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1137) * with a particular over-current interrupt request.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1138) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1139) static void soctherm_oc_irq_sync_unlock(struct irq_data *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1140) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1141) struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1142)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1143) mutex_unlock(&d->irq_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1144) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1145)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1146) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1147) * soctherm_oc_irq_enable() - Enables the SOC_THERM over-current interrupt queue
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1148) * @data: irq_data structure of the chip
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1149) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1150) * Sets the irq_enable bit of SOC_THERM allowing SOC_THERM
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1151) * to respond to over-current interrupts.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1152) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1153) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1154) static void soctherm_oc_irq_enable(struct irq_data *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1155) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1156) struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1157)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1158) d->irq_enable |= BIT(data->hwirq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1159) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1160)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1161) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1162) * soctherm_oc_irq_disable() - Disables overcurrent interrupt requests
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1163) * @data: The interrupt request information
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1164) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1165) * Clears the interrupt request enable bit of the overcurrent
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1166) * interrupt request chip data.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1167) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1168) * Return: Nothing is returned (void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1169) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1170) static void soctherm_oc_irq_disable(struct irq_data *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1171) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1172) struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1173)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1174) d->irq_enable &= ~BIT(data->hwirq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1175) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1176)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1177) static int soctherm_oc_irq_set_type(struct irq_data *data, unsigned int type)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1178) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1179) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1180) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1181)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1182) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1183) * soctherm_oc_irq_map() - SOC_THERM interrupt request domain mapper
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1184) * @h: Interrupt request domain
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1185) * @virq: Virtual interrupt request number
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1186) * @hw: Hardware interrupt request number
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1187) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1188) * Mapping callback function for SOC_THERM's irq_domain. When a SOC_THERM
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1189) * interrupt request is called, the irq_domain takes the request's virtual
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1190) * request number (much like a virtual memory address) and maps it to a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1191) * physical hardware request number.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1192) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1193) * When a mapping doesn't already exist for a virtual request number, the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1194) * irq_domain calls this function to associate the virtual request number with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1195) * a hardware request number.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1196) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1197) * Return: 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1198) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1199) static int soctherm_oc_irq_map(struct irq_domain *h, unsigned int virq,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1200) irq_hw_number_t hw)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1201) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1202) struct soctherm_oc_irq_chip_data *data = h->host_data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1203)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1204) irq_set_chip_data(virq, data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1205) irq_set_chip(virq, &data->irq_chip);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1206) irq_set_nested_thread(virq, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1207) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1208) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1209)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1210) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1211) * soctherm_irq_domain_xlate_twocell() - xlate for soctherm interrupts
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1212) * @d: Interrupt request domain
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1213) * @ctrlr: Controller device tree node
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1214) * @intspec: Array of u32s from DTs "interrupt" property
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1215) * @intsize: Number of values inside the intspec array
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1216) * @out_hwirq: HW IRQ value associated with this interrupt
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1217) * @out_type: The IRQ SENSE type for this interrupt.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1218) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1219) * This Device Tree IRQ specifier translation function will translate a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1220) * specific "interrupt" as defined by 2 DT values where the cell values map
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1221) * the hwirq number + 1 and linux irq flags. Since the output is the hwirq
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1222) * number, this function will subtract 1 from the value listed in DT.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1223) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1224) * Return: 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1225) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1226) static int soctherm_irq_domain_xlate_twocell(struct irq_domain *d,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1227) struct device_node *ctrlr, const u32 *intspec, unsigned int intsize,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1228) irq_hw_number_t *out_hwirq, unsigned int *out_type)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1229) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1230) if (WARN_ON(intsize < 2))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1231) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1232)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1233) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1234) * The HW value is 1 index less than the DT IRQ values.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1235) * i.e. OC4 goes to HW index 3.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1236) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1237) *out_hwirq = intspec[0] - 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1238) *out_type = intspec[1] & IRQ_TYPE_SENSE_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1239) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1240) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1241)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1242) static const struct irq_domain_ops soctherm_oc_domain_ops = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1243) .map = soctherm_oc_irq_map,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1244) .xlate = soctherm_irq_domain_xlate_twocell,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1245) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1246)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1247) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1248) * soctherm_oc_int_init() - Initial enabling of the over
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1249) * current interrupts
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1250) * @np: The devicetree node for soctherm
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1251) * @num_irqs: The number of new interrupt requests
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1252) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1253) * Sets the over current interrupt request chip data
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1254) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1255) * Return: 0 on success or if overcurrent interrupts are not enabled,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1256) * -ENOMEM (out of memory), or irq_base if the function failed to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1257) * allocate the irqs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1258) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1259) static int soctherm_oc_int_init(struct device_node *np, int num_irqs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1260) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1261) if (!num_irqs) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1262) pr_info("%s(): OC interrupts are not enabled\n", __func__);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1263) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1264) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1265)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1266) mutex_init(&soc_irq_cdata.irq_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1267) soc_irq_cdata.irq_enable = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1268)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1269) soc_irq_cdata.irq_chip.name = "soc_therm_oc";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1270) soc_irq_cdata.irq_chip.irq_bus_lock = soctherm_oc_irq_lock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1271) soc_irq_cdata.irq_chip.irq_bus_sync_unlock =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1272) soctherm_oc_irq_sync_unlock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1273) soc_irq_cdata.irq_chip.irq_disable = soctherm_oc_irq_disable;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1274) soc_irq_cdata.irq_chip.irq_enable = soctherm_oc_irq_enable;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1275) soc_irq_cdata.irq_chip.irq_set_type = soctherm_oc_irq_set_type;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1276) soc_irq_cdata.irq_chip.irq_set_wake = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1277)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1278) soc_irq_cdata.domain = irq_domain_add_linear(np, num_irqs,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1279) &soctherm_oc_domain_ops,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1280) &soc_irq_cdata);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1281)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1282) if (!soc_irq_cdata.domain) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1283) pr_err("%s: Failed to create IRQ domain\n", __func__);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1284) return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1285) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1286)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1287) pr_debug("%s(): OC interrupts enabled successful\n", __func__);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1288) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1289) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1290)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1291) #ifdef CONFIG_DEBUG_FS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1292) static int regs_show(struct seq_file *s, void *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1293) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1294) struct platform_device *pdev = s->private;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1295) struct tegra_soctherm *ts = platform_get_drvdata(pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1296) const struct tegra_tsensor *tsensors = ts->soc->tsensors;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1297) const struct tegra_tsensor_group **ttgs = ts->soc->ttgs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1298) u32 r, state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1299) int i, level;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1300)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1301) seq_puts(s, "-----TSENSE (convert HW)-----\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1302)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1303) for (i = 0; i < ts->soc->num_tsensors; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1304) r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1305) state = REG_GET_MASK(r, SENSOR_CONFIG1_TEMP_ENABLE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1306)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1307) seq_printf(s, "%s: ", tsensors[i].name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1308) seq_printf(s, "En(%d) ", state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1309)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1310) if (!state) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1311) seq_puts(s, "\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1312) continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1313) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1314)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1315) state = REG_GET_MASK(r, SENSOR_CONFIG1_TIDDQ_EN_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1316) seq_printf(s, "tiddq(%d) ", state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1317) state = REG_GET_MASK(r, SENSOR_CONFIG1_TEN_COUNT_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1318) seq_printf(s, "ten_count(%d) ", state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1319) state = REG_GET_MASK(r, SENSOR_CONFIG1_TSAMPLE_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1320) seq_printf(s, "tsample(%d) ", state + 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1321)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1322) r = readl(ts->regs + tsensors[i].base + SENSOR_STATUS1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1323) state = REG_GET_MASK(r, SENSOR_STATUS1_TEMP_VALID_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1324) seq_printf(s, "Temp(%d/", state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1325) state = REG_GET_MASK(r, SENSOR_STATUS1_TEMP_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1326) seq_printf(s, "%d) ", translate_temp(state));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1327)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1328) r = readl(ts->regs + tsensors[i].base + SENSOR_STATUS0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1329) state = REG_GET_MASK(r, SENSOR_STATUS0_VALID_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1330) seq_printf(s, "Capture(%d/", state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1331) state = REG_GET_MASK(r, SENSOR_STATUS0_CAPTURE_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1332) seq_printf(s, "%d) ", state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1333)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1334) r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1335) state = REG_GET_MASK(r, SENSOR_CONFIG0_STOP);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1336) seq_printf(s, "Stop(%d) ", state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1337) state = REG_GET_MASK(r, SENSOR_CONFIG0_TALL_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1338) seq_printf(s, "Tall(%d) ", state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1339) state = REG_GET_MASK(r, SENSOR_CONFIG0_TCALC_OVER);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1340) seq_printf(s, "Over(%d/", state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1341) state = REG_GET_MASK(r, SENSOR_CONFIG0_OVER);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1342) seq_printf(s, "%d/", state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1343) state = REG_GET_MASK(r, SENSOR_CONFIG0_CPTR_OVER);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1344) seq_printf(s, "%d) ", state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1345)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1346) r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1347) state = REG_GET_MASK(r, SENSOR_CONFIG2_THERMA_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1348) seq_printf(s, "Therm_A/B(%d/", state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1349) state = REG_GET_MASK(r, SENSOR_CONFIG2_THERMB_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1350) seq_printf(s, "%d)\n", (s16)state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1351) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1352)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1353) r = readl(ts->regs + SENSOR_PDIV);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1354) seq_printf(s, "PDIV: 0x%x\n", r);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1355)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1356) r = readl(ts->regs + SENSOR_HOTSPOT_OFF);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1357) seq_printf(s, "HOTSPOT: 0x%x\n", r);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1358)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1359) seq_puts(s, "\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1360) seq_puts(s, "-----SOC_THERM-----\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1361)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1362) r = readl(ts->regs + SENSOR_TEMP1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1363) state = REG_GET_MASK(r, SENSOR_TEMP1_CPU_TEMP_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1364) seq_printf(s, "Temperatures: CPU(%d) ", translate_temp(state));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1365) state = REG_GET_MASK(r, SENSOR_TEMP1_GPU_TEMP_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1366) seq_printf(s, " GPU(%d) ", translate_temp(state));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1367) r = readl(ts->regs + SENSOR_TEMP2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1368) state = REG_GET_MASK(r, SENSOR_TEMP2_PLLX_TEMP_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1369) seq_printf(s, " PLLX(%d) ", translate_temp(state));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1370) state = REG_GET_MASK(r, SENSOR_TEMP2_MEM_TEMP_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1371) seq_printf(s, " MEM(%d)\n", translate_temp(state));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1372)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1373) for (i = 0; i < ts->soc->num_ttgs; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1374) seq_printf(s, "%s:\n", ttgs[i]->name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1375) for (level = 0; level < 4; level++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1376) s32 v;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1377) u32 mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1378) u16 off = ttgs[i]->thermctl_lvl0_offset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1379)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1380) r = readl(ts->regs + THERMCTL_LVL_REG(off, level));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1381)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1382) mask = ttgs[i]->thermctl_lvl0_up_thresh_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1383) state = REG_GET_MASK(r, mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1384) v = sign_extend32(state, ts->soc->bptt - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1385) v *= ts->soc->thresh_grain;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1386) seq_printf(s, " %d: Up/Dn(%d /", level, v);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1387)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1388) mask = ttgs[i]->thermctl_lvl0_dn_thresh_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1389) state = REG_GET_MASK(r, mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1390) v = sign_extend32(state, ts->soc->bptt - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1391) v *= ts->soc->thresh_grain;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1392) seq_printf(s, "%d ) ", v);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1393)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1394) mask = THERMCTL_LVL0_CPU0_EN_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1395) state = REG_GET_MASK(r, mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1396) seq_printf(s, "En(%d) ", state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1397)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1398) mask = THERMCTL_LVL0_CPU0_CPU_THROT_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1399) state = REG_GET_MASK(r, mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1400) seq_puts(s, "CPU Throt");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1401) if (!state)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1402) seq_printf(s, "(%s) ", "none");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1403) else if (state == THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1404) seq_printf(s, "(%s) ", "L");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1405) else if (state == THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1406) seq_printf(s, "(%s) ", "H");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1407) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1408) seq_printf(s, "(%s) ", "H+L");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1409)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1410) mask = THERMCTL_LVL0_CPU0_GPU_THROT_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1411) state = REG_GET_MASK(r, mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1412) seq_puts(s, "GPU Throt");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1413) if (!state)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1414) seq_printf(s, "(%s) ", "none");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1415) else if (state == THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1416) seq_printf(s, "(%s) ", "L");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1417) else if (state == THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1418) seq_printf(s, "(%s) ", "H");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1419) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1420) seq_printf(s, "(%s) ", "H+L");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1421)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1422) mask = THERMCTL_LVL0_CPU0_STATUS_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1423) state = REG_GET_MASK(r, mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1424) seq_printf(s, "Status(%s)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1425) state == 0 ? "LO" :
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1426) state == 1 ? "In" :
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1427) state == 2 ? "Res" : "HI");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1428) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1429) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1430)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1431) r = readl(ts->regs + THERMCTL_STATS_CTL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1432) seq_printf(s, "STATS: Up(%s) Dn(%s)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1433) r & STATS_CTL_EN_UP ? "En" : "--",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1434) r & STATS_CTL_EN_DN ? "En" : "--");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1435)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1436) for (level = 0; level < 4; level++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1437) u16 off;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1438)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1439) off = THERMCTL_LVL0_UP_STATS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1440) r = readl(ts->regs + THERMCTL_LVL_REG(off, level));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1441) seq_printf(s, " Level_%d Up(%d) ", level, r);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1442)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1443) off = THERMCTL_LVL0_DN_STATS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1444) r = readl(ts->regs + THERMCTL_LVL_REG(off, level));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1445) seq_printf(s, "Dn(%d)\n", r);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1446) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1447)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1448) r = readl(ts->regs + THERMCTL_THERMTRIP_CTL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1449) state = REG_GET_MASK(r, ttgs[0]->thermtrip_any_en_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1450) seq_printf(s, "Thermtrip Any En(%d)\n", state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1451) for (i = 0; i < ts->soc->num_ttgs; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1452) state = REG_GET_MASK(r, ttgs[i]->thermtrip_enable_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1453) seq_printf(s, " %s En(%d) ", ttgs[i]->name, state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1454) state = REG_GET_MASK(r, ttgs[i]->thermtrip_threshold_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1455) state *= ts->soc->thresh_grain;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1456) seq_printf(s, "Thresh(%d)\n", state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1457) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1458)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1459) r = readl(ts->regs + THROT_GLOBAL_CFG);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1460) seq_puts(s, "\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1461) seq_printf(s, "GLOBAL THROTTLE CONFIG: 0x%08x\n", r);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1462)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1463) seq_puts(s, "---------------------------------------------------\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1464) r = readl(ts->regs + THROT_STATUS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1465) state = REG_GET_MASK(r, THROT_STATUS_BREACH_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1466) seq_printf(s, "THROT STATUS: breach(%d) ", state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1467) state = REG_GET_MASK(r, THROT_STATUS_STATE_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1468) seq_printf(s, "state(%d) ", state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1469) state = REG_GET_MASK(r, THROT_STATUS_ENABLED_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1470) seq_printf(s, "enabled(%d)\n", state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1471)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1472) r = readl(ts->regs + CPU_PSKIP_STATUS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1473) if (ts->soc->use_ccroc) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1474) state = REG_GET_MASK(r, XPU_PSKIP_STATUS_ENABLED_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1475) seq_printf(s, "CPU PSKIP STATUS: enabled(%d)\n", state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1476) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1477) state = REG_GET_MASK(r, XPU_PSKIP_STATUS_M_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1478) seq_printf(s, "CPU PSKIP STATUS: M(%d) ", state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1479) state = REG_GET_MASK(r, XPU_PSKIP_STATUS_N_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1480) seq_printf(s, "N(%d) ", state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1481) state = REG_GET_MASK(r, XPU_PSKIP_STATUS_ENABLED_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1482) seq_printf(s, "enabled(%d)\n", state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1483) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1484)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1485) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1486) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1487)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1488) DEFINE_SHOW_ATTRIBUTE(regs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1489)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1490) static void soctherm_debug_init(struct platform_device *pdev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1491) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1492) struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1493) struct dentry *root;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1494)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1495) root = debugfs_create_dir("soctherm", NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1496)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1497) tegra->debugfs_dir = root;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1498)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1499) debugfs_create_file("reg_contents", 0644, root, pdev, ®s_fops);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1500) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1501) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1502) static inline void soctherm_debug_init(struct platform_device *pdev) {}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1503) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1504)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1505) static int soctherm_clk_enable(struct platform_device *pdev, bool enable)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1506) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1507) struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1508) int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1509)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1510) if (!tegra->clock_soctherm || !tegra->clock_tsensor)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1511) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1512)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1513) reset_control_assert(tegra->reset);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1514)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1515) if (enable) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1516) err = clk_prepare_enable(tegra->clock_soctherm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1517) if (err) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1518) reset_control_deassert(tegra->reset);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1519) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1520) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1521)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1522) err = clk_prepare_enable(tegra->clock_tsensor);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1523) if (err) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1524) clk_disable_unprepare(tegra->clock_soctherm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1525) reset_control_deassert(tegra->reset);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1526) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1527) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1528) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1529) clk_disable_unprepare(tegra->clock_tsensor);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1530) clk_disable_unprepare(tegra->clock_soctherm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1531) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1532)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1533) reset_control_deassert(tegra->reset);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1534)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1535) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1536) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1537)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1538) static int throt_get_cdev_max_state(struct thermal_cooling_device *cdev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1539) unsigned long *max_state)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1540) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1541) *max_state = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1542) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1543) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1544)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1545) static int throt_get_cdev_cur_state(struct thermal_cooling_device *cdev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1546) unsigned long *cur_state)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1547) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1548) struct tegra_soctherm *ts = cdev->devdata;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1549) u32 r;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1550)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1551) r = readl(ts->regs + THROT_STATUS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1552) if (REG_GET_MASK(r, THROT_STATUS_STATE_MASK))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1553) *cur_state = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1554) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1555) *cur_state = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1556)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1557) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1558) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1559)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1560) static int throt_set_cdev_state(struct thermal_cooling_device *cdev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1561) unsigned long cur_state)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1562) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1563) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1564) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1565)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1566) static const struct thermal_cooling_device_ops throt_cooling_ops = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1567) .get_max_state = throt_get_cdev_max_state,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1568) .get_cur_state = throt_get_cdev_cur_state,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1569) .set_cur_state = throt_set_cdev_state,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1570) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1571)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1572) static int soctherm_thermtrips_parse(struct platform_device *pdev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1573) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1574) struct device *dev = &pdev->dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1575) struct tegra_soctherm *ts = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1576) struct tsensor_group_thermtrips *tt = ts->soc->thermtrips;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1577) const int max_num_prop = ts->soc->num_ttgs * 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1578) u32 *tlb;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1579) int i, j, n, ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1580)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1581) if (!tt)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1582) return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1583)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1584) n = of_property_count_u32_elems(dev->of_node, "nvidia,thermtrips");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1585) if (n <= 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1586) dev_info(dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1587) "missing thermtrips, will use critical trips as shut down temp\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1588) return n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1589) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1590)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1591) n = min(max_num_prop, n);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1592)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1593) tlb = devm_kcalloc(&pdev->dev, max_num_prop, sizeof(u32), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1594) if (!tlb)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1595) return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1596) ret = of_property_read_u32_array(dev->of_node, "nvidia,thermtrips",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1597) tlb, n);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1598) if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1599) dev_err(dev, "invalid num ele: thermtrips:%d\n", ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1600) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1601) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1602)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1603) i = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1604) for (j = 0; j < n; j = j + 2) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1605) if (tlb[j] >= TEGRA124_SOCTHERM_SENSOR_NUM)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1606) continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1607)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1608) tt[i].id = tlb[j];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1609) tt[i].temp = tlb[j + 1];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1610) i++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1611) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1612)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1613) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1614) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1615)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1616) static void soctherm_oc_cfg_parse(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1617) struct device_node *np_oc,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1618) struct soctherm_throt_cfg *stc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1619) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1620) u32 val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1621)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1622) if (of_property_read_bool(np_oc, "nvidia,polarity-active-low"))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1623) stc->oc_cfg.active_low = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1624) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1625) stc->oc_cfg.active_low = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1626)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1627) if (!of_property_read_u32(np_oc, "nvidia,count-threshold", &val)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1628) stc->oc_cfg.intr_en = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1629) stc->oc_cfg.alarm_cnt_thresh = val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1630) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1631)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1632) if (!of_property_read_u32(np_oc, "nvidia,throttle-period-us", &val))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1633) stc->oc_cfg.throt_period = val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1634)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1635) if (!of_property_read_u32(np_oc, "nvidia,alarm-filter", &val))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1636) stc->oc_cfg.alarm_filter = val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1637)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1638) /* BRIEF throttling by default, do not support STICKY */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1639) stc->oc_cfg.mode = OC_THROTTLE_MODE_BRIEF;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1640) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1641)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1642) static int soctherm_throt_cfg_parse(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1643) struct device_node *np,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1644) struct soctherm_throt_cfg *stc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1645) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1646) struct tegra_soctherm *ts = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1647) int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1648) u32 val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1649)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1650) ret = of_property_read_u32(np, "nvidia,priority", &val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1651) if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1652) dev_err(dev, "throttle-cfg: %s: invalid priority\n", stc->name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1653) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1654) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1655) stc->priority = val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1656)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1657) ret = of_property_read_u32(np, ts->soc->use_ccroc ?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1658) "nvidia,cpu-throt-level" :
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1659) "nvidia,cpu-throt-percent", &val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1660) if (!ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1661) if (ts->soc->use_ccroc &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1662) val <= TEGRA_SOCTHERM_THROT_LEVEL_HIGH)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1663) stc->cpu_throt_level = val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1664) else if (!ts->soc->use_ccroc && val <= 100)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1665) stc->cpu_throt_depth = val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1666) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1667) goto err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1668) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1669) goto err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1670) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1671)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1672) ret = of_property_read_u32(np, "nvidia,gpu-throt-level", &val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1673) if (!ret && val <= TEGRA_SOCTHERM_THROT_LEVEL_HIGH)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1674) stc->gpu_throt_level = val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1675) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1676) goto err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1677)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1678) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1679)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1680) err:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1681) dev_err(dev, "throttle-cfg: %s: no throt prop or invalid prop\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1682) stc->name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1683) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1684) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1685)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1686) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1687) * soctherm_init_hw_throt_cdev() - Parse the HW throttle configurations
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1688) * and register them as cooling devices.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1689) * @pdev: Pointer to platform_device struct
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1690) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1691) static void soctherm_init_hw_throt_cdev(struct platform_device *pdev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1692) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1693) struct device *dev = &pdev->dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1694) struct tegra_soctherm *ts = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1695) struct device_node *np_stc, *np_stcc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1696) const char *name;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1697) int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1698)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1699) for (i = 0; i < THROTTLE_SIZE; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1700) ts->throt_cfgs[i].name = throt_names[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1701) ts->throt_cfgs[i].id = i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1702) ts->throt_cfgs[i].init = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1703) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1704)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1705) np_stc = of_get_child_by_name(dev->of_node, "throttle-cfgs");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1706) if (!np_stc) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1707) dev_info(dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1708) "throttle-cfg: no throttle-cfgs - not enabling\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1709) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1710) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1711)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1712) for_each_child_of_node(np_stc, np_stcc) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1713) struct soctherm_throt_cfg *stc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1714) struct thermal_cooling_device *tcd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1715) int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1716)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1717) name = np_stcc->name;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1718) stc = find_throttle_cfg_by_name(ts, name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1719) if (!stc) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1720) dev_err(dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1721) "throttle-cfg: could not find %s\n", name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1722) continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1723) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1724)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1725) if (stc->init) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1726) dev_err(dev, "throttle-cfg: %s: redefined!\n", name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1727) of_node_put(np_stcc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1728) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1729) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1730)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1731) err = soctherm_throt_cfg_parse(dev, np_stcc, stc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1732) if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1733) continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1734)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1735) if (stc->id >= THROTTLE_OC1) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1736) soctherm_oc_cfg_parse(dev, np_stcc, stc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1737) stc->init = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1738) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1739)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1740) tcd = thermal_of_cooling_device_register(np_stcc,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1741) (char *)name, ts,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1742) &throt_cooling_ops);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1743) if (IS_ERR_OR_NULL(tcd)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1744) dev_err(dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1745) "throttle-cfg: %s: failed to register cooling device\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1746) name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1747) continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1748) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1749) stc->cdev = tcd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1750) stc->init = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1751) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1752)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1753) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1754)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1755) of_node_put(np_stc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1756) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1757)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1758) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1759) * throttlectl_cpu_level_cfg() - programs CCROC NV_THERM level config
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1760) * @ts: pointer to a struct tegra_soctherm
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1761) * @level: describing the level LOW/MED/HIGH of throttling
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1762) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1763) * It's necessary to set up the CPU-local CCROC NV_THERM instance with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1764) * the M/N values desired for each level. This function does this.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1765) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1766) * This function pre-programs the CCROC NV_THERM levels in terms of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1767) * pre-configured "Low", "Medium" or "Heavy" throttle levels which are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1768) * mapped to THROT_LEVEL_LOW, THROT_LEVEL_MED and THROT_LEVEL_HVY.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1769) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1770) static void throttlectl_cpu_level_cfg(struct tegra_soctherm *ts, int level)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1771) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1772) u8 depth, dividend;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1773) u32 r;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1774)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1775) switch (level) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1776) case TEGRA_SOCTHERM_THROT_LEVEL_LOW:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1777) depth = 50;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1778) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1779) case TEGRA_SOCTHERM_THROT_LEVEL_MED:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1780) depth = 75;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1781) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1782) case TEGRA_SOCTHERM_THROT_LEVEL_HIGH:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1783) depth = 80;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1784) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1785) case TEGRA_SOCTHERM_THROT_LEVEL_NONE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1786) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1787) default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1788) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1789) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1790)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1791) dividend = THROT_DEPTH_DIVIDEND(depth);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1792)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1793) /* setup PSKIP in ccroc nv_therm registers */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1794) r = ccroc_readl(ts, CCROC_THROT_PSKIP_RAMP_CPU_REG(level));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1795) r = REG_SET_MASK(r, CCROC_THROT_PSKIP_RAMP_DURATION_MASK, 0xff);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1796) r = REG_SET_MASK(r, CCROC_THROT_PSKIP_RAMP_STEP_MASK, 0xf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1797) ccroc_writel(ts, r, CCROC_THROT_PSKIP_RAMP_CPU_REG(level));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1798)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1799) r = ccroc_readl(ts, CCROC_THROT_PSKIP_CTRL_CPU_REG(level));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1800) r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_ENB_MASK, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1801) r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_DIVIDEND_MASK, dividend);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1802) r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_DIVISOR_MASK, 0xff);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1803) ccroc_writel(ts, r, CCROC_THROT_PSKIP_CTRL_CPU_REG(level));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1804) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1805)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1806) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1807) * throttlectl_cpu_level_select() - program CPU pulse skipper config
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1808) * @ts: pointer to a struct tegra_soctherm
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1809) * @throt: the LIGHT/HEAVY of throttle event id
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1810) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1811) * Pulse skippers are used to throttle clock frequencies. This
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1812) * function programs the pulse skippers based on @throt and platform
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1813) * data. This function is used on SoCs which have CPU-local pulse
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1814) * skipper control, such as T13x. It programs soctherm's interface to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1815) * Denver:CCROC NV_THERM in terms of Low, Medium and HIGH throttling
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1816) * vectors. PSKIP_BYPASS mode is set as required per HW spec.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1817) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1818) static void throttlectl_cpu_level_select(struct tegra_soctherm *ts,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1819) enum soctherm_throttle_id throt)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1820) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1821) u32 r, throt_vect;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1822)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1823) /* Denver:CCROC NV_THERM interface N:3 Mapping */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1824) switch (ts->throt_cfgs[throt].cpu_throt_level) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1825) case TEGRA_SOCTHERM_THROT_LEVEL_LOW:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1826) throt_vect = THROT_VECT_LOW;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1827) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1828) case TEGRA_SOCTHERM_THROT_LEVEL_MED:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1829) throt_vect = THROT_VECT_MED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1830) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1831) case TEGRA_SOCTHERM_THROT_LEVEL_HIGH:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1832) throt_vect = THROT_VECT_HIGH;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1833) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1834) default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1835) throt_vect = THROT_VECT_NONE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1836) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1837) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1838)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1839) r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1840) r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1841) r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT_CPU_MASK, throt_vect);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1842) r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT2_CPU_MASK, throt_vect);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1843) writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1844)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1845) /* bypass sequencer in soc_therm as it is programmed in ccroc */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1846) r = REG_SET_MASK(0, THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1847) writel(r, ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1848) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1849)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1850) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1851) * throttlectl_cpu_mn() - program CPU pulse skipper configuration
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1852) * @ts: pointer to a struct tegra_soctherm
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1853) * @throt: the LIGHT/HEAVY of throttle event id
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1854) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1855) * Pulse skippers are used to throttle clock frequencies. This
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1856) * function programs the pulse skippers based on @throt and platform
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1857) * data. This function is used for CPUs that have "remote" pulse
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1858) * skipper control, e.g., the CPU pulse skipper is controlled by the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1859) * SOC_THERM IP block. (SOC_THERM is located outside the CPU
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1860) * complex.)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1861) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1862) static void throttlectl_cpu_mn(struct tegra_soctherm *ts,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1863) enum soctherm_throttle_id throt)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1864) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1865) u32 r;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1866) int depth;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1867) u8 dividend;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1868)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1869) depth = ts->throt_cfgs[throt].cpu_throt_depth;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1870) dividend = THROT_DEPTH_DIVIDEND(depth);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1871)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1872) r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1873) r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1874) r = REG_SET_MASK(r, THROT_PSKIP_CTRL_DIVIDEND_MASK, dividend);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1875) r = REG_SET_MASK(r, THROT_PSKIP_CTRL_DIVISOR_MASK, 0xff);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1876) writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1877)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1878) r = readl(ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1879) r = REG_SET_MASK(r, THROT_PSKIP_RAMP_DURATION_MASK, 0xff);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1880) r = REG_SET_MASK(r, THROT_PSKIP_RAMP_STEP_MASK, 0xf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1881) writel(r, ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1882) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1883)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1884) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1885) * throttlectl_gpu_level_select() - selects throttling level for GPU
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1886) * @ts: pointer to a struct tegra_soctherm
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1887) * @throt: the LIGHT/HEAVY of throttle event id
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1888) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1889) * This function programs soctherm's interface to GK20a NV_THERM to select
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1890) * pre-configured "Low", "Medium" or "Heavy" throttle levels.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1891) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1892) * Return: boolean true if HW was programmed
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1893) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1894) static void throttlectl_gpu_level_select(struct tegra_soctherm *ts,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1895) enum soctherm_throttle_id throt)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1896) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1897) u32 r, level, throt_vect;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1898)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1899) level = ts->throt_cfgs[throt].gpu_throt_level;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1900) throt_vect = THROT_LEVEL_TO_DEPTH(level);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1901) r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_GPU));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1902) r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1903) r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT_GPU_MASK, throt_vect);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1904) writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_GPU));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1905) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1906)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1907) static int soctherm_oc_cfg_program(struct tegra_soctherm *ts,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1908) enum soctherm_throttle_id throt)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1909) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1910) u32 r;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1911) struct soctherm_oc_cfg *oc = &ts->throt_cfgs[throt].oc_cfg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1912)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1913) if (oc->mode == OC_THROTTLE_MODE_DISABLED)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1914) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1915)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1916) r = REG_SET_MASK(0, OC1_CFG_HW_RESTORE_MASK, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1917) r = REG_SET_MASK(r, OC1_CFG_THROTTLE_MODE_MASK, oc->mode);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1918) r = REG_SET_MASK(r, OC1_CFG_ALARM_POLARITY_MASK, oc->active_low);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1919) r = REG_SET_MASK(r, OC1_CFG_EN_THROTTLE_MASK, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1920) writel(r, ts->regs + ALARM_CFG(throt));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1921) writel(oc->throt_period, ts->regs + ALARM_THROTTLE_PERIOD(throt));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1922) writel(oc->alarm_cnt_thresh, ts->regs + ALARM_CNT_THRESHOLD(throt));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1923) writel(oc->alarm_filter, ts->regs + ALARM_FILTER(throt));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1924) soctherm_oc_intr_enable(ts, throt, oc->intr_en);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1925)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1926) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1927) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1928)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1929) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1930) * soctherm_throttle_program() - programs pulse skippers' configuration
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1931) * @ts: pointer to a struct tegra_soctherm
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1932) * @throt: the LIGHT/HEAVY of the throttle event id.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1933) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1934) * Pulse skippers are used to throttle clock frequencies.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1935) * This function programs the pulse skippers.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1936) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1937) static void soctherm_throttle_program(struct tegra_soctherm *ts,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1938) enum soctherm_throttle_id throt)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1939) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1940) u32 r;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1941) struct soctherm_throt_cfg stc = ts->throt_cfgs[throt];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1942)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1943) if (!stc.init)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1944) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1945)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1946) if ((throt >= THROTTLE_OC1) && (soctherm_oc_cfg_program(ts, throt)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1947) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1948)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1949) /* Setup PSKIP parameters */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1950) if (ts->soc->use_ccroc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1951) throttlectl_cpu_level_select(ts, throt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1952) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1953) throttlectl_cpu_mn(ts, throt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1954)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1955) throttlectl_gpu_level_select(ts, throt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1956)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1957) r = REG_SET_MASK(0, THROT_PRIORITY_LITE_PRIO_MASK, stc.priority);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1958) writel(r, ts->regs + THROT_PRIORITY_CTRL(throt));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1959)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1960) r = REG_SET_MASK(0, THROT_DELAY_LITE_DELAY_MASK, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1961) writel(r, ts->regs + THROT_DELAY_CTRL(throt));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1962)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1963) r = readl(ts->regs + THROT_PRIORITY_LOCK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1964) r = REG_GET_MASK(r, THROT_PRIORITY_LOCK_PRIORITY_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1965) if (r >= stc.priority)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1966) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1967) r = REG_SET_MASK(0, THROT_PRIORITY_LOCK_PRIORITY_MASK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1968) stc.priority);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1969) writel(r, ts->regs + THROT_PRIORITY_LOCK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1970) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1971)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1972) static void tegra_soctherm_throttle(struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1973) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1974) struct tegra_soctherm *ts = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1975) u32 v;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1976) int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1977)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1978) /* configure LOW, MED and HIGH levels for CCROC NV_THERM */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1979) if (ts->soc->use_ccroc) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1980) throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_LOW);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1981) throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_MED);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1982) throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_HIGH);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1983) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1984)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1985) /* Thermal HW throttle programming */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1986) for (i = 0; i < THROTTLE_SIZE; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1987) soctherm_throttle_program(ts, i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1988)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1989) v = REG_SET_MASK(0, THROT_GLOBAL_ENB_MASK, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1990) if (ts->soc->use_ccroc) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1991) ccroc_writel(ts, v, CCROC_GLOBAL_CFG);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1992)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1993) v = ccroc_readl(ts, CCROC_SUPER_CCLKG_DIVIDER);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1994) v = REG_SET_MASK(v, CDIVG_USE_THERM_CONTROLS_MASK, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1995) ccroc_writel(ts, v, CCROC_SUPER_CCLKG_DIVIDER);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1996) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1997) writel(v, ts->regs + THROT_GLOBAL_CFG);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1998)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1999) v = readl(ts->clk_regs + CAR_SUPER_CCLKG_DIVIDER);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2000) v = REG_SET_MASK(v, CDIVG_USE_THERM_CONTROLS_MASK, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2001) writel(v, ts->clk_regs + CAR_SUPER_CCLKG_DIVIDER);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2002) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2003)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2004) /* initialize stats collection */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2005) v = STATS_CTL_CLR_DN | STATS_CTL_EN_DN |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2006) STATS_CTL_CLR_UP | STATS_CTL_EN_UP;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2007) writel(v, ts->regs + THERMCTL_STATS_CTL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2008) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2009)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2010) static int soctherm_interrupts_init(struct platform_device *pdev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2011) struct tegra_soctherm *tegra)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2012) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2013) struct device_node *np = pdev->dev.of_node;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2014) int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2015)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2016) ret = soctherm_oc_int_init(np, TEGRA_SOC_OC_IRQ_MAX);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2017) if (ret < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2018) dev_err(&pdev->dev, "soctherm_oc_int_init failed\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2019) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2020) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2021)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2022) tegra->thermal_irq = platform_get_irq(pdev, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2023) if (tegra->thermal_irq < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2024) dev_dbg(&pdev->dev, "get 'thermal_irq' failed.\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2025) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2026) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2027)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2028) tegra->edp_irq = platform_get_irq(pdev, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2029) if (tegra->edp_irq < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2030) dev_dbg(&pdev->dev, "get 'edp_irq' failed.\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2031) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2032) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2033)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2034) ret = devm_request_threaded_irq(&pdev->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2035) tegra->thermal_irq,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2036) soctherm_thermal_isr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2037) soctherm_thermal_isr_thread,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2038) IRQF_ONESHOT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2039) dev_name(&pdev->dev),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2040) tegra);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2041) if (ret < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2042) dev_err(&pdev->dev, "request_irq 'thermal_irq' failed.\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2043) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2044) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2045)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2046) ret = devm_request_threaded_irq(&pdev->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2047) tegra->edp_irq,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2048) soctherm_edp_isr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2049) soctherm_edp_isr_thread,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2050) IRQF_ONESHOT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2051) "soctherm_edp",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2052) tegra);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2053) if (ret < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2054) dev_err(&pdev->dev, "request_irq 'edp_irq' failed.\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2055) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2056) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2057)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2058) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2059) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2060)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2061) static void soctherm_init(struct platform_device *pdev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2062) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2063) struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2064) const struct tegra_tsensor_group **ttgs = tegra->soc->ttgs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2065) int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2066) u32 pdiv, hotspot;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2067)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2068) /* Initialize raw sensors */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2069) for (i = 0; i < tegra->soc->num_tsensors; ++i)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2070) enable_tsensor(tegra, i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2071)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2072) /* program pdiv and hotspot offsets per THERM */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2073) pdiv = readl(tegra->regs + SENSOR_PDIV);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2074) hotspot = readl(tegra->regs + SENSOR_HOTSPOT_OFF);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2075) for (i = 0; i < tegra->soc->num_ttgs; ++i) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2076) pdiv = REG_SET_MASK(pdiv, ttgs[i]->pdiv_mask,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2077) ttgs[i]->pdiv);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2078) /* hotspot offset from PLLX, doesn't need to configure PLLX */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2079) if (ttgs[i]->id == TEGRA124_SOCTHERM_SENSOR_PLLX)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2080) continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2081) hotspot = REG_SET_MASK(hotspot,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2082) ttgs[i]->pllx_hotspot_mask,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2083) ttgs[i]->pllx_hotspot_diff);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2084) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2085) writel(pdiv, tegra->regs + SENSOR_PDIV);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2086) writel(hotspot, tegra->regs + SENSOR_HOTSPOT_OFF);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2087)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2088) /* Configure hw throttle */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2089) tegra_soctherm_throttle(&pdev->dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2090) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2091)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2092) static const struct of_device_id tegra_soctherm_of_match[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2093) #ifdef CONFIG_ARCH_TEGRA_124_SOC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2094) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2095) .compatible = "nvidia,tegra124-soctherm",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2096) .data = &tegra124_soctherm,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2097) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2098) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2099) #ifdef CONFIG_ARCH_TEGRA_132_SOC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2100) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2101) .compatible = "nvidia,tegra132-soctherm",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2102) .data = &tegra132_soctherm,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2103) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2104) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2105) #ifdef CONFIG_ARCH_TEGRA_210_SOC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2106) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2107) .compatible = "nvidia,tegra210-soctherm",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2108) .data = &tegra210_soctherm,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2109) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2110) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2111) { },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2112) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2113) MODULE_DEVICE_TABLE(of, tegra_soctherm_of_match);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2114)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2115) static int tegra_soctherm_probe(struct platform_device *pdev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2116) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2117) const struct of_device_id *match;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2118) struct tegra_soctherm *tegra;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2119) struct thermal_zone_device *z;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2120) struct tsensor_shared_calib shared_calib;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2121) struct resource *res;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2122) struct tegra_soctherm_soc *soc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2123) unsigned int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2124) int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2125)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2126) match = of_match_node(tegra_soctherm_of_match, pdev->dev.of_node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2127) if (!match)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2128) return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2129)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2130) soc = (struct tegra_soctherm_soc *)match->data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2131) if (soc->num_ttgs > TEGRA124_SOCTHERM_SENSOR_NUM)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2132) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2133)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2134) tegra = devm_kzalloc(&pdev->dev, sizeof(*tegra), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2135) if (!tegra)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2136) return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2137)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2138) mutex_init(&tegra->thermctl_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2139) dev_set_drvdata(&pdev->dev, tegra);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2140)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2141) tegra->soc = soc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2142)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2143) res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2144) "soctherm-reg");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2145) tegra->regs = devm_ioremap_resource(&pdev->dev, res);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2146) if (IS_ERR(tegra->regs)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2147) dev_err(&pdev->dev, "can't get soctherm registers");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2148) return PTR_ERR(tegra->regs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2149) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2150)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2151) if (!tegra->soc->use_ccroc) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2152) res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2153) "car-reg");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2154) tegra->clk_regs = devm_ioremap_resource(&pdev->dev, res);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2155) if (IS_ERR(tegra->clk_regs)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2156) dev_err(&pdev->dev, "can't get car clk registers");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2157) return PTR_ERR(tegra->clk_regs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2158) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2159) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2160) res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2161) "ccroc-reg");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2162) tegra->ccroc_regs = devm_ioremap_resource(&pdev->dev, res);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2163) if (IS_ERR(tegra->ccroc_regs)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2164) dev_err(&pdev->dev, "can't get ccroc registers");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2165) return PTR_ERR(tegra->ccroc_regs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2166) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2167) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2168)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2169) tegra->reset = devm_reset_control_get(&pdev->dev, "soctherm");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2170) if (IS_ERR(tegra->reset)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2171) dev_err(&pdev->dev, "can't get soctherm reset\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2172) return PTR_ERR(tegra->reset);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2173) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2174)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2175) tegra->clock_tsensor = devm_clk_get(&pdev->dev, "tsensor");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2176) if (IS_ERR(tegra->clock_tsensor)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2177) dev_err(&pdev->dev, "can't get tsensor clock\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2178) return PTR_ERR(tegra->clock_tsensor);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2179) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2180)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2181) tegra->clock_soctherm = devm_clk_get(&pdev->dev, "soctherm");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2182) if (IS_ERR(tegra->clock_soctherm)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2183) dev_err(&pdev->dev, "can't get soctherm clock\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2184) return PTR_ERR(tegra->clock_soctherm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2185) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2186)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2187) tegra->calib = devm_kcalloc(&pdev->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2188) soc->num_tsensors, sizeof(u32),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2189) GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2190) if (!tegra->calib)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2191) return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2192)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2193) /* calculate shared calibration data */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2194) err = tegra_calc_shared_calib(soc->tfuse, &shared_calib);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2195) if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2196) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2197)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2198) /* calculate tsensor calibaration data */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2199) for (i = 0; i < soc->num_tsensors; ++i) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2200) err = tegra_calc_tsensor_calib(&soc->tsensors[i],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2201) &shared_calib,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2202) &tegra->calib[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2203) if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2204) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2205) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2206)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2207) tegra->thermctl_tzs = devm_kcalloc(&pdev->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2208) soc->num_ttgs, sizeof(z),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2209) GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2210) if (!tegra->thermctl_tzs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2211) return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2212)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2213) err = soctherm_clk_enable(pdev, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2214) if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2215) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2216)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2217) soctherm_thermtrips_parse(pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2218)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2219) soctherm_init_hw_throt_cdev(pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2220)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2221) soctherm_init(pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2222)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2223) for (i = 0; i < soc->num_ttgs; ++i) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2224) struct tegra_thermctl_zone *zone =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2225) devm_kzalloc(&pdev->dev, sizeof(*zone), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2226) if (!zone) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2227) err = -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2228) goto disable_clocks;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2229) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2230)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2231) zone->reg = tegra->regs + soc->ttgs[i]->sensor_temp_offset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2232) zone->dev = &pdev->dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2233) zone->sg = soc->ttgs[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2234) zone->ts = tegra;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2235)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2236) z = devm_thermal_zone_of_sensor_register(&pdev->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2237) soc->ttgs[i]->id, zone,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2238) &tegra_of_thermal_ops);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2239) if (IS_ERR(z)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2240) err = PTR_ERR(z);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2241) dev_err(&pdev->dev, "failed to register sensor: %d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2242) err);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2243) goto disable_clocks;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2244) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2245)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2246) zone->tz = z;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2247) tegra->thermctl_tzs[soc->ttgs[i]->id] = z;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2248)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2249) /* Configure hw trip points */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2250) err = tegra_soctherm_set_hwtrips(&pdev->dev, soc->ttgs[i], z);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2251) if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2252) goto disable_clocks;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2253) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2254)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2255) err = soctherm_interrupts_init(pdev, tegra);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2256)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2257) soctherm_debug_init(pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2258)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2259) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2260)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2261) disable_clocks:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2262) soctherm_clk_enable(pdev, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2263)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2264) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2265) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2266)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2267) static int tegra_soctherm_remove(struct platform_device *pdev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2268) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2269) struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2270)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2271) debugfs_remove_recursive(tegra->debugfs_dir);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2272)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2273) soctherm_clk_enable(pdev, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2274)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2275) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2276) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2277)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2278) static int __maybe_unused soctherm_suspend(struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2279) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2280) struct platform_device *pdev = to_platform_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2281)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2282) soctherm_clk_enable(pdev, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2283)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2284) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2285) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2286)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2287) static int __maybe_unused soctherm_resume(struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2288) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2289) struct platform_device *pdev = to_platform_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2290) struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2291) struct tegra_soctherm_soc *soc = tegra->soc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2292) int err, i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2293)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2294) err = soctherm_clk_enable(pdev, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2295) if (err) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2296) dev_err(&pdev->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2297) "Resume failed: enable clocks failed\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2298) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2299) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2300)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2301) soctherm_init(pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2302)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2303) for (i = 0; i < soc->num_ttgs; ++i) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2304) struct thermal_zone_device *tz;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2305)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2306) tz = tegra->thermctl_tzs[soc->ttgs[i]->id];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2307) err = tegra_soctherm_set_hwtrips(dev, soc->ttgs[i], tz);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2308) if (err) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2309) dev_err(&pdev->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2310) "Resume failed: set hwtrips failed\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2311) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2312) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2313) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2314)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2315) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2316) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2317)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2318) static SIMPLE_DEV_PM_OPS(tegra_soctherm_pm, soctherm_suspend, soctherm_resume);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2319)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2320) static struct platform_driver tegra_soctherm_driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2321) .probe = tegra_soctherm_probe,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2322) .remove = tegra_soctherm_remove,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2323) .driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2324) .name = "tegra_soctherm",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2325) .pm = &tegra_soctherm_pm,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2326) .of_match_table = tegra_soctherm_of_match,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2327) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2328) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2329) module_platform_driver(tegra_soctherm_driver);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2330)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2331) MODULE_AUTHOR("Mikko Perttunen <mperttunen@nvidia.com>");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2332) MODULE_DESCRIPTION("NVIDIA Tegra SOCTHERM thermal management driver");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2333) MODULE_LICENSE("GPL v2");