Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) // SPDX-License-Identifier: GPL-2.0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3)  * Copyright (C) STMicroelectronics 2018 - All Rights Reserved
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4)  * Author: David Hernandez Sanchez <david.hernandezsanchez@st.com> for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5)  * STMicroelectronics.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8) #include <linux/clk.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9) #include <linux/clk-provider.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10) #include <linux/delay.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11) #include <linux/err.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12) #include <linux/interrupt.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13) #include <linux/io.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14) #include <linux/iopoll.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16) #include <linux/of.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17) #include <linux/of_address.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18) #include <linux/of_device.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19) #include <linux/platform_device.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20) #include <linux/thermal.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22) #include "../thermal_core.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23) #include "../thermal_hwmon.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25) /* DTS register offsets */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26) #define DTS_CFGR1_OFFSET	0x0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27) #define DTS_T0VALR1_OFFSET	0x8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28) #define DTS_RAMPVALR_OFFSET	0X10
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29) #define DTS_ITR1_OFFSET		0x14
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30) #define DTS_DR_OFFSET		0x1C
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31) #define DTS_SR_OFFSET		0x20
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32) #define DTS_ITENR_OFFSET	0x24
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33) #define DTS_ICIFR_OFFSET	0x28
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35) /* DTS_CFGR1 register mask definitions */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36) #define HSREF_CLK_DIV_MASK	GENMASK(30, 24)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37) #define TS1_SMP_TIME_MASK	GENMASK(19, 16)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38) #define TS1_INTRIG_SEL_MASK	GENMASK(11, 8)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40) /* DTS_T0VALR1 register mask definitions */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41) #define TS1_T0_MASK		GENMASK(17, 16)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42) #define TS1_FMT0_MASK		GENMASK(15, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44) /* DTS_RAMPVALR register mask definitions */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45) #define TS1_RAMP_COEFF_MASK	GENMASK(15, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47) /* DTS_ITR1 register mask definitions */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48) #define TS1_HITTHD_MASK		GENMASK(31, 16)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49) #define TS1_LITTHD_MASK		GENMASK(15, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51) /* DTS_DR register mask definitions */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52) #define TS1_MFREQ_MASK		GENMASK(15, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54) /* DTS_ITENR register mask definitions */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55) #define ITENR_MASK		(GENMASK(2, 0) | GENMASK(6, 4))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57) /* DTS_ICIFR register mask definitions */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58) #define ICIFR_MASK		(GENMASK(2, 0) | GENMASK(6, 4))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60) /* Less significant bit position definitions */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61) #define TS1_T0_POS		16
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62) #define TS1_HITTHD_POS		16
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63) #define TS1_LITTHD_POS		0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64) #define HSREF_CLK_DIV_POS	24
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66) /* DTS_CFGR1 bit definitions */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67) #define TS1_EN			BIT(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68) #define TS1_START		BIT(4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69) #define REFCLK_SEL		BIT(20)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70) #define REFCLK_LSE		REFCLK_SEL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71) #define Q_MEAS_OPT		BIT(21)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72) #define CALIBRATION_CONTROL	Q_MEAS_OPT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74) /* DTS_SR bit definitions */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75) #define TS_RDY			BIT(15)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76) /* Bit definitions below are common for DTS_SR, DTS_ITENR and DTS_CIFR */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77) #define HIGH_THRESHOLD		BIT(2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78) #define LOW_THRESHOLD		BIT(1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80) /* Constants */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81) #define ADJUST			100
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82) #define ONE_MHZ			1000000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83) #define POLL_TIMEOUT		5000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84) #define STARTUP_TIME		40
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85) #define TS1_T0_VAL0		30000  /* 30 celsius */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86) #define TS1_T0_VAL1		130000 /* 130 celsius */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87) #define NO_HW_TRIG		0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88) #define SAMPLING_TIME		15
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90) struct stm_thermal_sensor {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91) 	struct device *dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92) 	struct thermal_zone_device *th_dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93) 	enum thermal_device_mode mode;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94) 	struct clk *clk;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95) 	unsigned int low_temp_enabled;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96) 	unsigned int high_temp_enabled;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97) 	int irq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98) 	void __iomem *base;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99) 	int t0, fmt0, ramp_coeff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) static int stm_enable_irq(struct stm_thermal_sensor *sensor)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) 	u32 value;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) 	dev_dbg(sensor->dev, "low:%d high:%d\n", sensor->low_temp_enabled,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) 		sensor->high_temp_enabled);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) 	/* Disable IT generation for low and high thresholds */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) 	value = readl_relaxed(sensor->base + DTS_ITENR_OFFSET);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) 	value &= ~(LOW_THRESHOLD | HIGH_THRESHOLD);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) 	if (sensor->low_temp_enabled)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) 		value |= HIGH_THRESHOLD;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) 	if (sensor->high_temp_enabled)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) 		value |= LOW_THRESHOLD;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) 	/* Enable interrupts */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) 	writel_relaxed(value, sensor->base + DTS_ITENR_OFFSET);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) static irqreturn_t stm_thermal_irq_handler(int irq, void *sdata)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) 	struct stm_thermal_sensor *sensor = sdata;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) 	dev_dbg(sensor->dev, "sr:%d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) 		readl_relaxed(sensor->base + DTS_SR_OFFSET));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) 	thermal_zone_device_update(sensor->th_dev, THERMAL_EVENT_UNSPECIFIED);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) 	stm_enable_irq(sensor);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) 	/* Acknoledge all DTS irqs */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) 	writel_relaxed(ICIFR_MASK, sensor->base + DTS_ICIFR_OFFSET);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) 	return IRQ_HANDLED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) static int stm_sensor_power_on(struct stm_thermal_sensor *sensor)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) 	u32 value;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) 	/* Enable sensor */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) 	value = readl_relaxed(sensor->base + DTS_CFGR1_OFFSET);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) 	value |= TS1_EN;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) 	writel_relaxed(value, sensor->base + DTS_CFGR1_OFFSET);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) 	 * The DTS block can be enabled by setting TSx_EN bit in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) 	 * DTS_CFGRx register. It requires a startup time of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) 	 * 40μs. Use 5 ms as arbitrary timeout.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) 	ret = readl_poll_timeout(sensor->base + DTS_SR_OFFSET,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) 				 value, (value & TS_RDY),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) 				 STARTUP_TIME, POLL_TIMEOUT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) 	/* Start continuous measuring */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) 	value = readl_relaxed(sensor->base +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) 			      DTS_CFGR1_OFFSET);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) 	value |= TS1_START;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) 	writel_relaxed(value, sensor->base +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) 		       DTS_CFGR1_OFFSET);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) 	sensor->mode = THERMAL_DEVICE_ENABLED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) static int stm_sensor_power_off(struct stm_thermal_sensor *sensor)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) 	u32 value;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) 	sensor->mode = THERMAL_DEVICE_DISABLED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) 	/* Stop measuring */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) 	value = readl_relaxed(sensor->base + DTS_CFGR1_OFFSET);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) 	value &= ~TS1_START;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) 	writel_relaxed(value, sensor->base + DTS_CFGR1_OFFSET);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) 	/* Ensure stop is taken into account */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) 	usleep_range(STARTUP_TIME, POLL_TIMEOUT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) 	/* Disable sensor */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) 	value = readl_relaxed(sensor->base + DTS_CFGR1_OFFSET);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) 	value &= ~TS1_EN;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) 	writel_relaxed(value, sensor->base + DTS_CFGR1_OFFSET);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) 	/* Ensure disable is taken into account */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) 	return readl_poll_timeout(sensor->base + DTS_SR_OFFSET, value,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) 				  !(value & TS_RDY),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) 				  STARTUP_TIME, POLL_TIMEOUT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) static int stm_thermal_calibration(struct stm_thermal_sensor *sensor)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) 	u32 value, clk_freq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) 	u32 prescaler;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) 	/* Figure out prescaler value for PCLK during calibration */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) 	clk_freq = clk_get_rate(sensor->clk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) 	if (!clk_freq)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) 	prescaler = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) 	clk_freq /= ONE_MHZ;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) 	if (clk_freq) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) 		while (prescaler <= clk_freq)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) 			prescaler++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) 	value = readl_relaxed(sensor->base + DTS_CFGR1_OFFSET);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) 	/* Clear prescaler */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) 	value &= ~HSREF_CLK_DIV_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) 	/* Set prescaler. pclk_freq/prescaler < 1MHz */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) 	value |= (prescaler << HSREF_CLK_DIV_POS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) 	/* Select PCLK as reference clock */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) 	value &= ~REFCLK_SEL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) 	/* Set maximal sampling time for better precision */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) 	value |= TS1_SMP_TIME_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) 	/* Measure with calibration */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) 	value &= ~CALIBRATION_CONTROL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) 	/* select trigger */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) 	value &= ~TS1_INTRIG_SEL_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) 	value |= NO_HW_TRIG;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) 	writel_relaxed(value, sensor->base + DTS_CFGR1_OFFSET);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) /* Fill in DTS structure with factory sensor values */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) static int stm_thermal_read_factory_settings(struct stm_thermal_sensor *sensor)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) 	/* Retrieve engineering calibration temperature */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) 	sensor->t0 = readl_relaxed(sensor->base + DTS_T0VALR1_OFFSET) &
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) 					TS1_T0_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) 	if (!sensor->t0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) 		sensor->t0 = TS1_T0_VAL0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) 		sensor->t0 = TS1_T0_VAL1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) 	/* Retrieve fmt0 and put it on Hz */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) 	sensor->fmt0 = ADJUST * (readl_relaxed(sensor->base +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) 				 DTS_T0VALR1_OFFSET) & TS1_FMT0_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) 	/* Retrieve ramp coefficient */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) 	sensor->ramp_coeff = readl_relaxed(sensor->base + DTS_RAMPVALR_OFFSET) &
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) 					   TS1_RAMP_COEFF_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) 	if (!sensor->fmt0 || !sensor->ramp_coeff) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) 		dev_err(sensor->dev, "%s: wrong setting\n", __func__);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) 	dev_dbg(sensor->dev, "%s: T0 = %doC, FMT0 = %dHz, RAMP_COEFF = %dHz/oC",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) 		__func__, sensor->t0, sensor->fmt0, sensor->ramp_coeff);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) static int stm_thermal_calculate_threshold(struct stm_thermal_sensor *sensor,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) 					   int temp, u32 *th)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) 	int freqM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) 	/* Figure out the CLK_PTAT frequency for a given temperature */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) 	freqM = ((temp - sensor->t0) * sensor->ramp_coeff) / 1000 +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) 		sensor->fmt0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) 	/* Figure out the threshold sample number */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) 	*th = clk_get_rate(sensor->clk) * SAMPLING_TIME / freqM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) 	if (!*th)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) 	dev_dbg(sensor->dev, "freqM=%d Hz, threshold=0x%x", freqM, *th);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) /* Disable temperature interrupt */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) static int stm_disable_irq(struct stm_thermal_sensor *sensor)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) 	u32 value;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) 	/* Disable IT generation */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) 	value = readl_relaxed(sensor->base + DTS_ITENR_OFFSET);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) 	value &= ~ITENR_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) 	writel_relaxed(value, sensor->base + DTS_ITENR_OFFSET);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) static int stm_thermal_set_trips(void *data, int low, int high)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) 	struct stm_thermal_sensor *sensor = data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) 	u32 itr1, th;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) 	dev_dbg(sensor->dev, "set trips %d <--> %d\n", low, high);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) 	/* Erase threshold content */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) 	itr1 = readl_relaxed(sensor->base + DTS_ITR1_OFFSET);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) 	itr1 &= ~(TS1_LITTHD_MASK | TS1_HITTHD_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) 	 * Disable low-temp if "low" is too small. As per thermal framework
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) 	 * API, we use -INT_MAX rather than INT_MIN.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) 	if (low > -INT_MAX) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) 		sensor->low_temp_enabled = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) 		/* add 0.5 of hysteresis due to measurement error */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) 		ret = stm_thermal_calculate_threshold(sensor, low - 500, &th);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) 		if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) 			return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) 		itr1 |= (TS1_HITTHD_MASK  & (th << TS1_HITTHD_POS));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) 		sensor->low_temp_enabled = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) 	/* Disable high-temp if "high" is too big. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) 	if (high < INT_MAX) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) 		sensor->high_temp_enabled = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) 		ret = stm_thermal_calculate_threshold(sensor, high, &th);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) 		if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) 			return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) 		itr1 |= (TS1_LITTHD_MASK  & (th << TS1_LITTHD_POS));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) 		sensor->high_temp_enabled = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) 	/* Write new threshod values*/
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) 	writel_relaxed(itr1, sensor->base + DTS_ITR1_OFFSET);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) /* Callback to get temperature from HW */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) static int stm_thermal_get_temp(void *data, int *temp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) 	struct stm_thermal_sensor *sensor = data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) 	u32 periods;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) 	int freqM, ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) 	if (sensor->mode != THERMAL_DEVICE_ENABLED)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) 		return -EAGAIN;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) 	/* Retrieve the number of periods sampled */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) 	ret = readl_relaxed_poll_timeout(sensor->base + DTS_DR_OFFSET, periods,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) 					 (periods & TS1_MFREQ_MASK),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) 					 STARTUP_TIME, POLL_TIMEOUT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) 	/* Figure out the CLK_PTAT frequency */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) 	freqM = (clk_get_rate(sensor->clk) * SAMPLING_TIME) / periods;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371) 	if (!freqM)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374) 	/* Figure out the temperature in mili celsius */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) 	*temp = (freqM - sensor->fmt0) * 1000 / sensor->ramp_coeff + sensor->t0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) /* Registers DTS irq to be visible by GIC */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381) static int stm_register_irq(struct stm_thermal_sensor *sensor)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383) 	struct device *dev = sensor->dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384) 	struct platform_device *pdev = to_platform_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387) 	sensor->irq = platform_get_irq(pdev, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388) 	if (sensor->irq < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) 		return sensor->irq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391) 	ret = devm_request_threaded_irq(dev, sensor->irq,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392) 					NULL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393) 					stm_thermal_irq_handler,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394) 					IRQF_ONESHOT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395) 					dev->driver->name, sensor);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396) 	if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397) 		dev_err(dev, "%s: Failed to register IRQ %d\n", __func__,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398) 			sensor->irq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402) 	dev_dbg(dev, "%s: thermal IRQ registered", __func__);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407) static int stm_thermal_sensor_off(struct stm_thermal_sensor *sensor)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411) 	stm_disable_irq(sensor);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413) 	ret = stm_sensor_power_off(sensor);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417) 	clk_disable_unprepare(sensor->clk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422) static int stm_thermal_prepare(struct stm_thermal_sensor *sensor)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 426) 	ret = clk_prepare_enable(sensor->clk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 427) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 428) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 429) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 430) 	ret = stm_thermal_read_factory_settings(sensor);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 431) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 432) 		goto thermal_unprepare;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 433) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 434) 	ret = stm_thermal_calibration(sensor);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 435) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 436) 		goto thermal_unprepare;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 437) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 438) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 439) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 440) thermal_unprepare:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 441) 	clk_disable_unprepare(sensor->clk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 442) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 443) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 444) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 445) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 446) #ifdef CONFIG_PM_SLEEP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 447) static int stm_thermal_suspend(struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 448) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 449) 	struct stm_thermal_sensor *sensor = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 450) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 451) 	return stm_thermal_sensor_off(sensor);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 452) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 453) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 454) static int stm_thermal_resume(struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 455) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 456) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 457) 	struct stm_thermal_sensor *sensor = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 458) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 459) 	ret = stm_thermal_prepare(sensor);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 460) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 461) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 462) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 463) 	ret = stm_sensor_power_on(sensor);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 464) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 465) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 466) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 467) 	thermal_zone_device_update(sensor->th_dev, THERMAL_EVENT_UNSPECIFIED);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 468) 	stm_enable_irq(sensor);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 469) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 470) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 471) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 472) #endif /* CONFIG_PM_SLEEP */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 473) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 474) static SIMPLE_DEV_PM_OPS(stm_thermal_pm_ops,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 475) 			 stm_thermal_suspend, stm_thermal_resume);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 476) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 477) static const struct thermal_zone_of_device_ops stm_tz_ops = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 478) 	.get_temp	= stm_thermal_get_temp,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 479) 	.set_trips	= stm_thermal_set_trips,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 480) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 481) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 482) static const struct of_device_id stm_thermal_of_match[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 483) 		{ .compatible = "st,stm32-thermal"},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 484) 	{ /* sentinel */ }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 485) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 486) MODULE_DEVICE_TABLE(of, stm_thermal_of_match);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 487) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 488) static int stm_thermal_probe(struct platform_device *pdev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 489) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 490) 	struct stm_thermal_sensor *sensor;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 491) 	struct resource *res;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 492) 	void __iomem *base;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 493) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 494) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 495) 	if (!pdev->dev.of_node) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 496) 		dev_err(&pdev->dev, "%s: device tree node not found\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 497) 			__func__);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 498) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 499) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 500) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 501) 	sensor = devm_kzalloc(&pdev->dev, sizeof(*sensor), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 502) 	if (!sensor)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 503) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 504) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 505) 	platform_set_drvdata(pdev, sensor);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 506) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 507) 	sensor->dev = &pdev->dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 508) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 509) 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 510) 	base = devm_ioremap_resource(&pdev->dev, res);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 511) 	if (IS_ERR(base))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 512) 		return PTR_ERR(base);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 513) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 514) 	/* Populate sensor */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 515) 	sensor->base = base;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 516) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 517) 	sensor->clk = devm_clk_get(&pdev->dev, "pclk");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 518) 	if (IS_ERR(sensor->clk)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 519) 		dev_err(&pdev->dev, "%s: failed to fetch PCLK clock\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 520) 			__func__);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 521) 		return PTR_ERR(sensor->clk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 522) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 523) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 524) 	stm_disable_irq(sensor);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 525) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 526) 	/* Clear irq flags */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 527) 	writel_relaxed(ICIFR_MASK, sensor->base + DTS_ICIFR_OFFSET);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 528) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 529) 	/* Configure and enable HW sensor */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 530) 	ret = stm_thermal_prepare(sensor);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 531) 	if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 532) 		dev_err(&pdev->dev, "Error prepare sensor: %d\n", ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 533) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 534) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 535) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 536) 	ret = stm_sensor_power_on(sensor);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 537) 	if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 538) 		dev_err(&pdev->dev, "Error power on sensor: %d\n", ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 539) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 540) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 541) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 542) 	sensor->th_dev = devm_thermal_zone_of_sensor_register(&pdev->dev, 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 543) 							      sensor,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 544) 							      &stm_tz_ops);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 545) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 546) 	if (IS_ERR(sensor->th_dev)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 547) 		dev_err(&pdev->dev, "%s: thermal zone sensor registering KO\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 548) 			__func__);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 549) 		ret = PTR_ERR(sensor->th_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 550) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 551) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 552) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 553) 	/* Register IRQ into GIC */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 554) 	ret = stm_register_irq(sensor);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 555) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 556) 		goto err_tz;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 557) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 558) 	stm_enable_irq(sensor);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 559) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 560) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 561) 	 * Thermal_zone doesn't enable hwmon as default,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 562) 	 * enable it here
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 563) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 564) 	sensor->th_dev->tzp->no_hwmon = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 565) 	ret = thermal_add_hwmon_sysfs(sensor->th_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 566) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 567) 		goto err_tz;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 568) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 569) 	dev_info(&pdev->dev, "%s: Driver initialized successfully\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 570) 		 __func__);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 571) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 572) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 573) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 574) err_tz:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 575) 	thermal_zone_of_sensor_unregister(&pdev->dev, sensor->th_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 576) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 577) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 578) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 579) static int stm_thermal_remove(struct platform_device *pdev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 580) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 581) 	struct stm_thermal_sensor *sensor = platform_get_drvdata(pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 582) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 583) 	stm_thermal_sensor_off(sensor);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 584) 	thermal_remove_hwmon_sysfs(sensor->th_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 585) 	thermal_zone_of_sensor_unregister(&pdev->dev, sensor->th_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 586) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 587) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 588) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 589) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 590) static struct platform_driver stm_thermal_driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 591) 	.driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 592) 		.name	= "stm_thermal",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 593) 		.pm     = &stm_thermal_pm_ops,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 594) 		.of_match_table = stm_thermal_of_match,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 595) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 596) 	.probe		= stm_thermal_probe,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 597) 	.remove		= stm_thermal_remove,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 598) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 599) module_platform_driver(stm_thermal_driver);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 600) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 601) MODULE_DESCRIPTION("STMicroelectronics STM32 Thermal Sensor Driver");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 602) MODULE_AUTHOR("David Hernandez Sanchez <david.hernandezsanchez@st.com>");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 603) MODULE_LICENSE("GPL v2");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 604) MODULE_ALIAS("platform:stm_thermal");