^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1) // SPDX-License-Identifier: GPL-2.0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3) * devfreq_cooling: Thermal cooling device implementation for devices using
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4) * devfreq
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6) * Copyright (C) 2014-2015 ARM Limited
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 8) * TODO:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 9) * - If OPPs are added or removed after devfreq cooling has
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 10) * registered, the devfreq cooling won't react to it.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 11) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 12)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 13) #include <linux/devfreq.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 14) #include <linux/devfreq_cooling.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 15) #include <linux/export.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 16) #include <linux/idr.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 17) #include <linux/slab.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 18) #include <linux/pm_opp.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 19) #include <linux/pm_qos.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 20) #include <linux/thermal.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 21)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 22) #include <trace/events/thermal.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 23)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 24) #define HZ_PER_KHZ 1000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 25) #define SCALE_ERROR_MITIGATION 100
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 26)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 27) static DEFINE_IDA(devfreq_ida);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 28)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 29) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 30) * struct devfreq_cooling_device - Devfreq cooling device
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 31) * @id: unique integer value corresponding to each
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 32) * devfreq_cooling_device registered.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 33) * @cdev: Pointer to associated thermal cooling device.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 34) * @devfreq: Pointer to associated devfreq device.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 35) * @cooling_state: Current cooling state.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 36) * @power_table: Pointer to table with maximum power draw for each
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 37) * cooling state. State is the index into the table, and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 38) * the power is in mW.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 39) * @freq_table: Pointer to a table with the frequencies sorted in descending
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 40) * order. You can index the table by cooling device state
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 41) * @freq_table_size: Size of the @freq_table and @power_table
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 42) * @power_ops: Pointer to devfreq_cooling_power, used to generate the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 43) * @power_table.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 44) * @res_util: Resource utilization scaling factor for the power.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 45) * It is multiplied by 100 to minimize the error. It is used
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 46) * for estimation of the power budget instead of using
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 47) * 'utilization' (which is 'busy_time / 'total_time').
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 48) * The 'res_util' range is from 100 to (power_table[state] * 100)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 49) * for the corresponding 'state'.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 50) * @capped_state: index to cooling state with in dynamic power budget
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 51) * @req_max_freq: PM QoS request for limiting the maximum frequency
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 52) * of the devfreq device.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 53) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 54) struct devfreq_cooling_device {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 55) int id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 56) struct thermal_cooling_device *cdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 57) struct devfreq *devfreq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 58) unsigned long cooling_state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 59) u32 *power_table;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 60) u32 *freq_table;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 61) size_t freq_table_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 62) struct devfreq_cooling_power *power_ops;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 63) u32 res_util;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 64) int capped_state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 65) struct dev_pm_qos_request req_max_freq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 66) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 67)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 68) static int devfreq_cooling_get_max_state(struct thermal_cooling_device *cdev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 69) unsigned long *state)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 70) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 71) struct devfreq_cooling_device *dfc = cdev->devdata;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 72)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 73) *state = dfc->freq_table_size - 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 74)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 75) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 76) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 77)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 78) static int devfreq_cooling_get_cur_state(struct thermal_cooling_device *cdev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 79) unsigned long *state)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 80) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 81) struct devfreq_cooling_device *dfc = cdev->devdata;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 82)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 83) *state = dfc->cooling_state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 84)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 85) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 86) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 87)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 88) static int devfreq_cooling_set_cur_state(struct thermal_cooling_device *cdev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 89) unsigned long state)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 90) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 91) struct devfreq_cooling_device *dfc = cdev->devdata;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 92) struct devfreq *df = dfc->devfreq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 93) struct device *dev = df->dev.parent;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 94) unsigned long freq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 95)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 96) if (state == dfc->cooling_state)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 97) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 98)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 99) dev_dbg(dev, "Setting cooling state %lu\n", state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) if (state >= dfc->freq_table_size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) freq = dfc->freq_table[state];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) dev_pm_qos_update_request(&dfc->req_max_freq,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) DIV_ROUND_UP(freq, HZ_PER_KHZ));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) dfc->cooling_state = state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) * freq_get_state() - get the cooling state corresponding to a frequency
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) * @dfc: Pointer to devfreq cooling device
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) * @freq: frequency in Hz
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) * Return: the cooling state associated with the @freq, or
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) * THERMAL_CSTATE_INVALID if it wasn't found.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) static unsigned long
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) freq_get_state(struct devfreq_cooling_device *dfc, unsigned long freq)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) for (i = 0; i < dfc->freq_table_size; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) if (dfc->freq_table[i] == freq)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) return i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) return THERMAL_CSTATE_INVALID;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) static unsigned long get_voltage(struct devfreq *df, unsigned long freq)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) struct device *dev = df->dev.parent;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) unsigned long voltage;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) struct dev_pm_opp *opp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) opp = dev_pm_opp_find_freq_exact(dev, freq, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) if (PTR_ERR(opp) == -ERANGE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) opp = dev_pm_opp_find_freq_exact(dev, freq, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) if (IS_ERR(opp)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) dev_err_ratelimited(dev, "Failed to find OPP for frequency %lu: %ld\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) freq, PTR_ERR(opp));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) voltage = dev_pm_opp_get_voltage(opp) / 1000; /* mV */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) dev_pm_opp_put(opp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) if (voltage == 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) dev_err_ratelimited(dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) "Failed to get voltage for frequency %lu\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) freq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) return voltage;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) * get_static_power() - calculate the static power
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) * @dfc: Pointer to devfreq cooling device
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) * @freq: Frequency in Hz
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) * Calculate the static power in milliwatts using the supplied
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) * get_static_power(). The current voltage is calculated using the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) * OPP library. If no get_static_power() was supplied, assume the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) * static power is negligible.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) static unsigned long
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) get_static_power(struct devfreq_cooling_device *dfc, unsigned long freq)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) struct devfreq *df = dfc->devfreq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) unsigned long voltage;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) if (!dfc->power_ops->get_static_power)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) voltage = get_voltage(df, freq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) if (voltage == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) return dfc->power_ops->get_static_power(df, voltage);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) * get_dynamic_power - calculate the dynamic power
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) * @dfc: Pointer to devfreq cooling device
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) * @freq: Frequency in Hz
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) * @voltage: Voltage in millivolts
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) * Calculate the dynamic power in milliwatts consumed by the device at
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) * frequency @freq and voltage @voltage. If the get_dynamic_power()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) * was supplied as part of the devfreq_cooling_power struct, then that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) * function is used. Otherwise, a simple power model (Pdyn = Coeff *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) * Voltage^2 * Frequency) is used.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) static unsigned long
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) get_dynamic_power(struct devfreq_cooling_device *dfc, unsigned long freq,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) unsigned long voltage)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) u64 power;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) u32 freq_mhz;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) struct devfreq_cooling_power *dfc_power = dfc->power_ops;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) if (dfc_power->get_dynamic_power)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) return dfc_power->get_dynamic_power(dfc->devfreq, freq,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) voltage);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) freq_mhz = freq / 1000000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) power = (u64)dfc_power->dyn_power_coeff * freq_mhz * voltage * voltage;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) do_div(power, 1000000000);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) return power;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) static inline unsigned long get_total_power(struct devfreq_cooling_device *dfc,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) unsigned long freq,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) unsigned long voltage)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) return get_static_power(dfc, freq) + get_dynamic_power(dfc, freq,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) voltage);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) static int devfreq_cooling_get_requested_power(struct thermal_cooling_device *cdev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) u32 *power)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) struct devfreq_cooling_device *dfc = cdev->devdata;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) struct devfreq *df = dfc->devfreq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) struct devfreq_dev_status *status = &df->last_status;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) unsigned long state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) unsigned long freq = status->current_frequency;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) unsigned long voltage;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) u32 dyn_power = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) u32 static_power = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) int res;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) state = freq_get_state(dfc, freq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) if (state == THERMAL_CSTATE_INVALID) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) res = -EAGAIN;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) goto fail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) if (dfc->power_ops->get_real_power) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) voltage = get_voltage(df, freq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) if (voltage == 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) res = -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) goto fail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) res = dfc->power_ops->get_real_power(df, power, freq, voltage);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) if (!res) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) state = dfc->capped_state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) dfc->res_util = dfc->power_table[state];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) dfc->res_util *= SCALE_ERROR_MITIGATION;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) if (*power > 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) dfc->res_util /= *power;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) goto fail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) dyn_power = dfc->power_table[state];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) /* Scale dynamic power for utilization */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) dyn_power *= status->busy_time;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) dyn_power /= status->total_time;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) /* Get static power */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) static_power = get_static_power(dfc, freq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) *power = dyn_power + static_power;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) trace_thermal_power_devfreq_get_power(cdev, status, freq, dyn_power,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) static_power, *power);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) fail:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) /* It is safe to set max in this case */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) dfc->res_util = SCALE_ERROR_MITIGATION;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) return res;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) static int devfreq_cooling_state2power(struct thermal_cooling_device *cdev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) unsigned long state,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) u32 *power)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) struct devfreq_cooling_device *dfc = cdev->devdata;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) unsigned long freq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) u32 static_power;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) if (state >= dfc->freq_table_size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) freq = dfc->freq_table[state];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) static_power = get_static_power(dfc, freq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) *power = dfc->power_table[state] + static_power;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) static int devfreq_cooling_power2state(struct thermal_cooling_device *cdev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) u32 power, unsigned long *state)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) struct devfreq_cooling_device *dfc = cdev->devdata;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) struct devfreq *df = dfc->devfreq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) struct devfreq_dev_status *status = &df->last_status;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) unsigned long freq = status->current_frequency;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) unsigned long busy_time;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) s32 dyn_power;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) u32 static_power;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) s32 est_power;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) if (dfc->power_ops->get_real_power) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) /* Scale for resource utilization */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) est_power = power * dfc->res_util;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) est_power /= SCALE_ERROR_MITIGATION;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) static_power = get_static_power(dfc, freq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) dyn_power = power - static_power;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) dyn_power = dyn_power > 0 ? dyn_power : 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) /* Scale dynamic power for utilization */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) busy_time = status->busy_time ?: 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) est_power = (dyn_power * status->total_time) / busy_time;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) * Find the first cooling state that is within the power
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) * budget for dynamic power.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) for (i = 0; i < dfc->freq_table_size - 1; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) if (est_power >= dfc->power_table[i])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) *state = i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) dfc->capped_state = i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) trace_thermal_power_devfreq_limit(cdev, freq, *state, power);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350) static struct thermal_cooling_device_ops devfreq_cooling_ops = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) .get_max_state = devfreq_cooling_get_max_state,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) .get_cur_state = devfreq_cooling_get_cur_state,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) .set_cur_state = devfreq_cooling_set_cur_state,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) * devfreq_cooling_gen_tables() - Generate power and freq tables.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358) * @dfc: Pointer to devfreq cooling device.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) * Generate power and frequency tables: the power table hold the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) * device's maximum power usage at each cooling state (OPP). The
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) * static and dynamic power using the appropriate voltage and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) * frequency for the state, is acquired from the struct
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) * devfreq_cooling_power, and summed to make the maximum power draw.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) * The frequency table holds the frequencies in descending order.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) * That way its indexed by cooling device state.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) * The tables are malloced, and pointers put in dfc. They must be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) * freed when unregistering the devfreq cooling device.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) * Return: 0 on success, negative error code on failure.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374) static int devfreq_cooling_gen_tables(struct devfreq_cooling_device *dfc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376) struct devfreq *df = dfc->devfreq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) struct device *dev = df->dev.parent;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378) int ret, num_opps;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379) unsigned long freq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) u32 *power_table = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381) u32 *freq_table;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382) int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384) num_opps = dev_pm_opp_get_opp_count(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) if (dfc->power_ops) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387) power_table = kcalloc(num_opps, sizeof(*power_table),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388) GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) if (!power_table)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390) return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393) freq_table = kcalloc(num_opps, sizeof(*freq_table),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394) GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395) if (!freq_table) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396) ret = -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397) goto free_power_table;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400) for (i = 0, freq = ULONG_MAX; i < num_opps; i++, freq--) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401) unsigned long power, voltage;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402) struct dev_pm_opp *opp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404) opp = dev_pm_opp_find_freq_floor(dev, &freq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405) if (IS_ERR(opp)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406) ret = PTR_ERR(opp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407) goto free_tables;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410) voltage = dev_pm_opp_get_voltage(opp) / 1000; /* mV */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411) dev_pm_opp_put(opp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413) if (dfc->power_ops) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414) if (dfc->power_ops->get_real_power)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415) power = get_total_power(dfc, freq, voltage);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417) power = get_dynamic_power(dfc, freq, voltage);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419) dev_dbg(dev, "Power table: %lu MHz @ %lu mV: %lu = %lu mW\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420) freq / 1000000, voltage, power, power);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422) power_table[i] = power;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425) freq_table[i] = freq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 426) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 427)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 428) if (dfc->power_ops)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 429) dfc->power_table = power_table;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 430)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 431) dfc->freq_table = freq_table;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 432) dfc->freq_table_size = num_opps;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 433)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 434) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 435)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 436) free_tables:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 437) kfree(freq_table);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 438) free_power_table:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 439) kfree(power_table);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 440)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 441) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 442) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 443)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 444) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 445) * of_devfreq_cooling_register_power() - Register devfreq cooling device,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 446) * with OF and power information.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 447) * @np: Pointer to OF device_node.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 448) * @df: Pointer to devfreq device.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 449) * @dfc_power: Pointer to devfreq_cooling_power.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 450) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 451) * Register a devfreq cooling device. The available OPPs must be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 452) * registered on the device.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 453) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 454) * If @dfc_power is provided, the cooling device is registered with the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 455) * power extensions. For the power extensions to work correctly,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 456) * devfreq should use the simple_ondemand governor, other governors
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 457) * are not currently supported.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 458) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 459) struct thermal_cooling_device *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 460) of_devfreq_cooling_register_power(struct device_node *np, struct devfreq *df,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 461) struct devfreq_cooling_power *dfc_power)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 462) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 463) struct thermal_cooling_device *cdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 464) struct devfreq_cooling_device *dfc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 465) char dev_name[THERMAL_NAME_LENGTH];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 466) int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 467)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 468) dfc = kzalloc(sizeof(*dfc), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 469) if (!dfc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 470) return ERR_PTR(-ENOMEM);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 471)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 472) dfc->devfreq = df;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 473)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 474) if (dfc_power) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 475) dfc->power_ops = dfc_power;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 476)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 477) devfreq_cooling_ops.get_requested_power =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 478) devfreq_cooling_get_requested_power;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 479) devfreq_cooling_ops.state2power = devfreq_cooling_state2power;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 480) devfreq_cooling_ops.power2state = devfreq_cooling_power2state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 481) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 482)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 483) err = devfreq_cooling_gen_tables(dfc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 484) if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 485) goto free_dfc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 486)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 487) err = dev_pm_qos_add_request(df->dev.parent, &dfc->req_max_freq,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 488) DEV_PM_QOS_MAX_FREQUENCY,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 489) PM_QOS_MAX_FREQUENCY_DEFAULT_VALUE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 490) if (err < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 491) goto free_tables;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 492)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 493) err = ida_simple_get(&devfreq_ida, 0, 0, GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 494) if (err < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 495) goto remove_qos_req;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 496) dfc->id = err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 497)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 498) snprintf(dev_name, sizeof(dev_name), "thermal-devfreq-%d", dfc->id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 499)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 500) cdev = thermal_of_cooling_device_register(np, dev_name, dfc,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 501) &devfreq_cooling_ops);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 502) if (IS_ERR(cdev)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 503) err = PTR_ERR(cdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 504) dev_err(df->dev.parent,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 505) "Failed to register devfreq cooling device (%d)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 506) err);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 507) goto release_ida;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 508) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 509)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 510) dfc->cdev = cdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 511)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 512) return cdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 513)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 514) release_ida:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 515) ida_simple_remove(&devfreq_ida, dfc->id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 516)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 517) remove_qos_req:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 518) dev_pm_qos_remove_request(&dfc->req_max_freq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 519)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 520) free_tables:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 521) kfree(dfc->power_table);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 522) kfree(dfc->freq_table);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 523) free_dfc:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 524) kfree(dfc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 525)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 526) return ERR_PTR(err);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 527) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 528) EXPORT_SYMBOL_GPL(of_devfreq_cooling_register_power);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 529)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 530) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 531) * of_devfreq_cooling_register() - Register devfreq cooling device,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 532) * with OF information.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 533) * @np: Pointer to OF device_node.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 534) * @df: Pointer to devfreq device.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 535) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 536) struct thermal_cooling_device *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 537) of_devfreq_cooling_register(struct device_node *np, struct devfreq *df)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 538) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 539) return of_devfreq_cooling_register_power(np, df, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 540) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 541) EXPORT_SYMBOL_GPL(of_devfreq_cooling_register);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 542)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 543) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 544) * devfreq_cooling_register() - Register devfreq cooling device.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 545) * @df: Pointer to devfreq device.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 546) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 547) struct thermal_cooling_device *devfreq_cooling_register(struct devfreq *df)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 548) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 549) return of_devfreq_cooling_register(NULL, df);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 550) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 551) EXPORT_SYMBOL_GPL(devfreq_cooling_register);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 552)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 553) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 554) * devfreq_cooling_unregister() - Unregister devfreq cooling device.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 555) * @cdev: Pointer to devfreq cooling device to unregister.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 556) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 557) void devfreq_cooling_unregister(struct thermal_cooling_device *cdev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 558) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 559) struct devfreq_cooling_device *dfc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 560)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 561) if (!cdev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 562) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 563)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 564) dfc = cdev->devdata;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 565)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 566) thermal_cooling_device_unregister(dfc->cdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 567) ida_simple_remove(&devfreq_ida, dfc->id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 568) dev_pm_qos_remove_request(&dfc->req_max_freq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 569) kfree(dfc->power_table);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 570) kfree(dfc->freq_table);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 571)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 572) kfree(dfc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 573) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 574) EXPORT_SYMBOL_GPL(devfreq_cooling_unregister);