Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags   |
// SPDX-License-Identifier: GPL-2.0
/*
* SuperH MSIOF SPI Controller Interface
*
* Copyright (c) 2009 Magnus Damm
* Copyright (C) 2014 Renesas Electronics Corporation
* Copyright (C) 2014-2017 Glider bvba
*/
#include <linux/bitmap.h>
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/sh_dma.h>
#include <linux/spi/sh_msiof.h>
#include <linux/spi/spi.h>
#include <asm/unaligned.h>
struct sh_msiof_chipdata {
<------>u32 bits_per_word_mask;
<------>u16 tx_fifo_size;
<------>u16 rx_fifo_size;
<------>u16 ctlr_flags;
<------>u16 min_div_pow;
};
struct sh_msiof_spi_priv {
<------>struct spi_controller *ctlr;
<------>void __iomem *mapbase;
<------>struct clk *clk;
<------>struct platform_device *pdev;
<------>struct sh_msiof_spi_info *info;
<------>struct completion done;
<------>struct completion done_txdma;
<------>unsigned int tx_fifo_size;
<------>unsigned int rx_fifo_size;
<------>unsigned int min_div_pow;
<------>void *tx_dma_page;
<------>void *rx_dma_page;
<------>dma_addr_t tx_dma_addr;
<------>dma_addr_t rx_dma_addr;
<------>bool native_cs_inited;
<------>bool native_cs_high;
<------>bool slave_aborted;
};
#define MAX_SS 3 /* Maximum number of native chip selects */
#define SITMDR1 0x00 /* Transmit Mode Register 1 */
#define SITMDR2 0x04 /* Transmit Mode Register 2 */
#define SITMDR3 0x08 /* Transmit Mode Register 3 */
#define SIRMDR1 0x10 /* Receive Mode Register 1 */
#define SIRMDR2 0x14 /* Receive Mode Register 2 */
#define SIRMDR3 0x18 /* Receive Mode Register 3 */
#define SITSCR 0x20 /* Transmit Clock Select Register */
#define SIRSCR 0x22 /* Receive Clock Select Register (SH, A1, APE6) */
#define SICTR 0x28 /* Control Register */
#define SIFCTR 0x30 /* FIFO Control Register */
#define SISTR 0x40 /* Status Register */
#define SIIER 0x44 /* Interrupt Enable Register */
#define SITDR1 0x48 /* Transmit Control Data Register 1 (SH, A1) */
#define SITDR2 0x4c /* Transmit Control Data Register 2 (SH, A1) */
#define SITFDR 0x50 /* Transmit FIFO Data Register */
#define SIRDR1 0x58 /* Receive Control Data Register 1 (SH, A1) */
#define SIRDR2 0x5c /* Receive Control Data Register 2 (SH, A1) */
#define SIRFDR 0x60 /* Receive FIFO Data Register */
/* SITMDR1 and SIRMDR1 */
#define SIMDR1_TRMD BIT(31) /* Transfer Mode (1 = Master mode) */
#define SIMDR1_SYNCMD_MASK GENMASK(29, 28) /* SYNC Mode */
#define SIMDR1_SYNCMD_SPI (2 << 28) /* Level mode/SPI */
#define SIMDR1_SYNCMD_LR (3 << 28) /* L/R mode */
#define SIMDR1_SYNCAC_SHIFT 25 /* Sync Polarity (1 = Active-low) */
#define SIMDR1_BITLSB_SHIFT 24 /* MSB/LSB First (1 = LSB first) */
#define SIMDR1_DTDL_SHIFT 20 /* Data Pin Bit Delay for MSIOF_SYNC */
#define SIMDR1_SYNCDL_SHIFT 16 /* Frame Sync Signal Timing Delay */
#define SIMDR1_FLD_MASK GENMASK(3, 2) /* Frame Sync Signal Interval (0-3) */
#define SIMDR1_FLD_SHIFT 2
#define SIMDR1_XXSTP BIT(0) /* Transmission/Reception Stop on FIFO */
/* SITMDR1 */
#define SITMDR1_PCON BIT(30) /* Transfer Signal Connection */
#define SITMDR1_SYNCCH_MASK GENMASK(27, 26) /* Sync Signal Channel Select */
#define SITMDR1_SYNCCH_SHIFT 26 /* 0=MSIOF_SYNC, 1=MSIOF_SS1, 2=MSIOF_SS2 */
/* SITMDR2 and SIRMDR2 */
#define SIMDR2_BITLEN1(i) (((i) - 1) << 24) /* Data Size (8-32 bits) */
#define SIMDR2_WDLEN1(i) (((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */
#define SIMDR2_GRPMASK1 BIT(0) /* Group Output Mask 1 (SH, A1) */
/* SITSCR and SIRSCR */
#define SISCR_BRPS_MASK GENMASK(12, 8) /* Prescaler Setting (1-32) */
#define SISCR_BRPS(i) (((i) - 1) << 8)
#define SISCR_BRDV_MASK GENMASK(2, 0) /* Baud Rate Generator's Division Ratio */
#define SISCR_BRDV_DIV_2 0
#define SISCR_BRDV_DIV_4 1
#define SISCR_BRDV_DIV_8 2
#define SISCR_BRDV_DIV_16 3
#define SISCR_BRDV_DIV_32 4
#define SISCR_BRDV_DIV_1 7
/* SICTR */
#define SICTR_TSCKIZ_MASK GENMASK(31, 30) /* Transmit Clock I/O Polarity Select */
#define SICTR_TSCKIZ_SCK BIT(31) /* Disable SCK when TX disabled */
#define SICTR_TSCKIZ_POL_SHIFT 30 /* Transmit Clock Polarity */
#define SICTR_RSCKIZ_MASK GENMASK(29, 28) /* Receive Clock Polarity Select */
#define SICTR_RSCKIZ_SCK BIT(29) /* Must match CTR_TSCKIZ_SCK */
#define SICTR_RSCKIZ_POL_SHIFT 28 /* Receive Clock Polarity */
#define SICTR_TEDG_SHIFT 27 /* Transmit Timing (1 = falling edge) */
#define SICTR_REDG_SHIFT 26 /* Receive Timing (1 = falling edge) */
#define SICTR_TXDIZ_MASK GENMASK(23, 22) /* Pin Output When TX is Disabled */
#define SICTR_TXDIZ_LOW (0 << 22) /* 0 */
#define SICTR_TXDIZ_HIGH (1 << 22) /* 1 */
#define SICTR_TXDIZ_HIZ (2 << 22) /* High-impedance */
#define SICTR_TSCKE BIT(15) /* Transmit Serial Clock Output Enable */
#define SICTR_TFSE BIT(14) /* Transmit Frame Sync Signal Output Enable */
#define SICTR_TXE BIT(9) /* Transmit Enable */
#define SICTR_RXE BIT(8) /* Receive Enable */
#define SICTR_TXRST BIT(1) /* Transmit Reset */
#define SICTR_RXRST BIT(0) /* Receive Reset */
/* SIFCTR */
#define SIFCTR_TFWM_MASK GENMASK(31, 29) /* Transmit FIFO Watermark */
#define SIFCTR_TFWM_64 (0 << 29) /* Transfer Request when 64 empty stages */
#define SIFCTR_TFWM_32 (1 << 29) /* Transfer Request when 32 empty stages */
#define SIFCTR_TFWM_24 (2 << 29) /* Transfer Request when 24 empty stages */
#define SIFCTR_TFWM_16 (3 << 29) /* Transfer Request when 16 empty stages */
#define SIFCTR_TFWM_12 (4 << 29) /* Transfer Request when 12 empty stages */
#define SIFCTR_TFWM_8 (5 << 29) /* Transfer Request when 8 empty stages */
#define SIFCTR_TFWM_4 (6 << 29) /* Transfer Request when 4 empty stages */
#define SIFCTR_TFWM_1 (7 << 29) /* Transfer Request when 1 empty stage */
#define SIFCTR_TFUA_MASK GENMASK(26, 20) /* Transmit FIFO Usable Area */
#define SIFCTR_TFUA_SHIFT 20
#define SIFCTR_TFUA(i) ((i) << SIFCTR_TFUA_SHIFT)
#define SIFCTR_RFWM_MASK GENMASK(15, 13) /* Receive FIFO Watermark */
#define SIFCTR_RFWM_1 (0 << 13) /* Transfer Request when 1 valid stages */
#define SIFCTR_RFWM_4 (1 << 13) /* Transfer Request when 4 valid stages */
#define SIFCTR_RFWM_8 (2 << 13) /* Transfer Request when 8 valid stages */
#define SIFCTR_RFWM_16 (3 << 13) /* Transfer Request when 16 valid stages */
#define SIFCTR_RFWM_32 (4 << 13) /* Transfer Request when 32 valid stages */
#define SIFCTR_RFWM_64 (5 << 13) /* Transfer Request when 64 valid stages */
#define SIFCTR_RFWM_128 (6 << 13) /* Transfer Request when 128 valid stages */
#define SIFCTR_RFWM_256 (7 << 13) /* Transfer Request when 256 valid stages */
#define SIFCTR_RFUA_MASK GENMASK(12, 4) /* Receive FIFO Usable Area (0x40 = full) */
#define SIFCTR_RFUA_SHIFT 4
#define SIFCTR_RFUA(i) ((i) << SIFCTR_RFUA_SHIFT)
/* SISTR */
#define SISTR_TFEMP BIT(29) /* Transmit FIFO Empty */
#define SISTR_TDREQ BIT(28) /* Transmit Data Transfer Request */
#define SISTR_TEOF BIT(23) /* Frame Transmission End */
#define SISTR_TFSERR BIT(21) /* Transmit Frame Synchronization Error */
#define SISTR_TFOVF BIT(20) /* Transmit FIFO Overflow */
#define SISTR_TFUDF BIT(19) /* Transmit FIFO Underflow */
#define SISTR_RFFUL BIT(13) /* Receive FIFO Full */
#define SISTR_RDREQ BIT(12) /* Receive Data Transfer Request */
#define SISTR_REOF BIT(7) /* Frame Reception End */
#define SISTR_RFSERR BIT(5) /* Receive Frame Synchronization Error */
#define SISTR_RFUDF BIT(4) /* Receive FIFO Underflow */
#define SISTR_RFOVF BIT(3) /* Receive FIFO Overflow */
/* SIIER */
#define SIIER_TDMAE BIT(31) /* Transmit Data DMA Transfer Req. Enable */
#define SIIER_TFEMPE BIT(29) /* Transmit FIFO Empty Enable */
#define SIIER_TDREQE BIT(28) /* Transmit Data Transfer Request Enable */
#define SIIER_TEOFE BIT(23) /* Frame Transmission End Enable */
#define SIIER_TFSERRE BIT(21) /* Transmit Frame Sync Error Enable */
#define SIIER_TFOVFE BIT(20) /* Transmit FIFO Overflow Enable */
#define SIIER_TFUDFE BIT(19) /* Transmit FIFO Underflow Enable */
#define SIIER_RDMAE BIT(15) /* Receive Data DMA Transfer Req. Enable */
#define SIIER_RFFULE BIT(13) /* Receive FIFO Full Enable */
#define SIIER_RDREQE BIT(12) /* Receive Data Transfer Request Enable */
#define SIIER_REOFE BIT(7) /* Frame Reception End Enable */
#define SIIER_RFSERRE BIT(5) /* Receive Frame Sync Error Enable */
#define SIIER_RFUDFE BIT(4) /* Receive FIFO Underflow Enable */
#define SIIER_RFOVFE BIT(3) /* Receive FIFO Overflow Enable */
static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs)
{
<------>switch (reg_offs) {
<------>case SITSCR:
<------>case SIRSCR:
<------><------>return ioread16(p->mapbase + reg_offs);
<------>default:
<------><------>return ioread32(p->mapbase + reg_offs);
<------>}
}
static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs,
<------><------><------> u32 value)
{
<------>switch (reg_offs) {
<------>case SITSCR:
<------>case SIRSCR:
<------><------>iowrite16(value, p->mapbase + reg_offs);
<------><------>break;
<------>default:
<------><------>iowrite32(value, p->mapbase + reg_offs);
<------><------>break;
<------>}
}
static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p,
<------><------><------><------> u32 clr, u32 set)
{
<------>u32 mask = clr | set;
<------>u32 data;
<------>data = sh_msiof_read(p, SICTR);
<------>data &= ~clr;
<------>data |= set;
<------>sh_msiof_write(p, SICTR, data);
<------>return readl_poll_timeout_atomic(p->mapbase + SICTR, data,
<------><------><------><------><------> (data & mask) == set, 1, 100);
}
static irqreturn_t sh_msiof_spi_irq(int irq, void *data)
{
<------>struct sh_msiof_spi_priv *p = data;
<------>/* just disable the interrupt and wake up */
<------>sh_msiof_write(p, SIIER, 0);
<------>complete(&p->done);
<------>return IRQ_HANDLED;
}
static void sh_msiof_spi_reset_regs(struct sh_msiof_spi_priv *p)
{
<------>u32 mask = SICTR_TXRST | SICTR_RXRST;
<------>u32 data;
<------>data = sh_msiof_read(p, SICTR);
<------>data |= mask;
<------>sh_msiof_write(p, SICTR, data);
<------>readl_poll_timeout_atomic(p->mapbase + SICTR, data, !(data & mask), 1,
<------><------><------><------> 100);
}
static const u32 sh_msiof_spi_div_array[] = {
<------>SISCR_BRDV_DIV_1, SISCR_BRDV_DIV_2, SISCR_BRDV_DIV_4,
<------>SISCR_BRDV_DIV_8, SISCR_BRDV_DIV_16, SISCR_BRDV_DIV_32,
};
static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
<------><------><------><------> unsigned long parent_rate, u32 spi_hz)
{
<------>unsigned long div;
<------>u32 brps, scr;
<------>unsigned int div_pow = p->min_div_pow;
<------>if (!spi_hz || !parent_rate) {
<------><------>WARN(1, "Invalid clock rate parameters %lu and %u\n",
<------><------> parent_rate, spi_hz);
<------><------>return;
<------>}
<------>div = DIV_ROUND_UP(parent_rate, spi_hz);
<------>if (div <= 1024) {
<------><------>/* SISCR_BRDV_DIV_1 is valid only if BRPS is x 1/1 or x 1/2 */
<------><------>if (!div_pow && div <= 32 && div > 2)
<------><------><------>div_pow = 1;
<------><------>if (div_pow)
<------><------><------>brps = (div + 1) >> div_pow;
<------><------>else
<------><------><------>brps = div;
<------><------>for (; brps > 32; div_pow++)
<------><------><------>brps = (brps + 1) >> 1;
<------>} else {
<------><------>/* Set transfer rate composite divisor to 2^5 * 32 = 1024 */
<------><------>dev_err(&p->pdev->dev,
<------><------><------>"Requested SPI transfer rate %d is too low\n", spi_hz);
<------><------>div_pow = 5;
<------><------>brps = 32;
<------>}
<------>scr = sh_msiof_spi_div_array[div_pow] | SISCR_BRPS(brps);
<------>sh_msiof_write(p, SITSCR, scr);
<------>if (!(p->ctlr->flags & SPI_CONTROLLER_MUST_TX))
<------><------>sh_msiof_write(p, SIRSCR, scr);
}
static u32 sh_msiof_get_delay_bit(u32 dtdl_or_syncdl)
{
<------>/*
<------> * DTDL/SYNCDL bit : p->info->dtdl or p->info->syncdl
<------> * b'000 : 0
<------> * b'001 : 100
<------> * b'010 : 200
<------> * b'011 (SYNCDL only) : 300
<------> * b'101 : 50
<------> * b'110 : 150
<------> */
<------>if (dtdl_or_syncdl % 100)
<------><------>return dtdl_or_syncdl / 100 + 5;
<------>else
<------><------>return dtdl_or_syncdl / 100;
}
static u32 sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv *p)
{
<------>u32 val;
<------>if (!p->info)
<------><------>return 0;
<------>/* check if DTDL and SYNCDL is allowed value */
<------>if (p->info->dtdl > 200 || p->info->syncdl > 300) {
<------><------>dev_warn(&p->pdev->dev, "DTDL or SYNCDL is too large\n");
<------><------>return 0;
<------>}
<------>/* check if the sum of DTDL and SYNCDL becomes an integer value */
<------>if ((p->info->dtdl + p->info->syncdl) % 100) {
<------><------>dev_warn(&p->pdev->dev, "the sum of DTDL/SYNCDL is not good\n");
<------><------>return 0;
<------>}
<------>val = sh_msiof_get_delay_bit(p->info->dtdl) << SIMDR1_DTDL_SHIFT;
<------>val |= sh_msiof_get_delay_bit(p->info->syncdl) << SIMDR1_SYNCDL_SHIFT;
<------>return val;
}
static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p, u32 ss,
<------><------><------><------> u32 cpol, u32 cpha,
<------><------><------><------> u32 tx_hi_z, u32 lsb_first, u32 cs_high)
{
<------>u32 tmp;
<------>int edge;
<------>/*
<------> * CPOL CPHA TSCKIZ RSCKIZ TEDG REDG
<------> * 0 0 10 10 1 1
<------> * 0 1 10 10 0 0
<------> * 1 0 11 11 0 0
<------> * 1 1 11 11 1 1
<------> */
<------>tmp = SIMDR1_SYNCMD_SPI | 1 << SIMDR1_FLD_SHIFT | SIMDR1_XXSTP;
<------>tmp |= !cs_high << SIMDR1_SYNCAC_SHIFT;
<------>tmp |= lsb_first << SIMDR1_BITLSB_SHIFT;
<------>tmp |= sh_msiof_spi_get_dtdl_and_syncdl(p);
<------>if (spi_controller_is_slave(p->ctlr)) {
<------><------>sh_msiof_write(p, SITMDR1, tmp | SITMDR1_PCON);
<------>} else {
<------><------>sh_msiof_write(p, SITMDR1,
<------><------><------> tmp | SIMDR1_TRMD | SITMDR1_PCON |
<------><------><------> (ss < MAX_SS ? ss : 0) << SITMDR1_SYNCCH_SHIFT);
<------>}
<------>if (p->ctlr->flags & SPI_CONTROLLER_MUST_TX) {
<------><------>/* These bits are reserved if RX needs TX */
<------><------>tmp &= ~0x0000ffff;
<------>}
<------>sh_msiof_write(p, SIRMDR1, tmp);
<------>tmp = 0;
<------>tmp |= SICTR_TSCKIZ_SCK | cpol << SICTR_TSCKIZ_POL_SHIFT;
<------>tmp |= SICTR_RSCKIZ_SCK | cpol << SICTR_RSCKIZ_POL_SHIFT;
<------>edge = cpol ^ !cpha;
<------>tmp |= edge << SICTR_TEDG_SHIFT;
<------>tmp |= edge << SICTR_REDG_SHIFT;
<------>tmp |= tx_hi_z ? SICTR_TXDIZ_HIZ : SICTR_TXDIZ_LOW;
<------>sh_msiof_write(p, SICTR, tmp);
}
static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p,
<------><------><------><------> const void *tx_buf, void *rx_buf,
<------><------><------><------> u32 bits, u32 words)
{
<------>u32 dr2 = SIMDR2_BITLEN1(bits) | SIMDR2_WDLEN1(words);
<------>if (tx_buf || (p->ctlr->flags & SPI_CONTROLLER_MUST_TX))
<------><------>sh_msiof_write(p, SITMDR2, dr2);
<------>else
<------><------>sh_msiof_write(p, SITMDR2, dr2 | SIMDR2_GRPMASK1);
<------>if (rx_buf)
<------><------>sh_msiof_write(p, SIRMDR2, dr2);
}
static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p)
{
<------>sh_msiof_write(p, SISTR,
<------><------> sh_msiof_read(p, SISTR) & ~(SISTR_TDREQ | SISTR_RDREQ));
}
static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p,
<------><------><------><------> const void *tx_buf, int words, int fs)
{
<------>const u8 *buf_8 = tx_buf;
<------>int k;
<------>for (k = 0; k < words; k++)
<------><------>sh_msiof_write(p, SITFDR, buf_8[k] << fs);
}
static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p,
<------><------><------><------> const void *tx_buf, int words, int fs)
{
<------>const u16 *buf_16 = tx_buf;
<------>int k;
<------>for (k = 0; k < words; k++)
<------><------>sh_msiof_write(p, SITFDR, buf_16[k] << fs);
}
static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p,
<------><------><------><------><------>const void *tx_buf, int words, int fs)
{
<------>const u16 *buf_16 = tx_buf;
<------>int k;
<------>for (k = 0; k < words; k++)
<------><------>sh_msiof_write(p, SITFDR, get_unaligned(&buf_16[k]) << fs);
}
static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p,
<------><------><------><------> const void *tx_buf, int words, int fs)
{
<------>const u32 *buf_32 = tx_buf;
<------>int k;
<------>for (k = 0; k < words; k++)
<------><------>sh_msiof_write(p, SITFDR, buf_32[k] << fs);
}
static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p,
<------><------><------><------><------>const void *tx_buf, int words, int fs)
{
<------>const u32 *buf_32 = tx_buf;
<------>int k;
<------>for (k = 0; k < words; k++)
<------><------>sh_msiof_write(p, SITFDR, get_unaligned(&buf_32[k]) << fs);
}
static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p,
<------><------><------><------><------>const void *tx_buf, int words, int fs)
{
<------>const u32 *buf_32 = tx_buf;
<------>int k;
<------>for (k = 0; k < words; k++)
<------><------>sh_msiof_write(p, SITFDR, swab32(buf_32[k] << fs));
}
static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p,
<------><------><------><------><------> const void *tx_buf, int words, int fs)
{
<------>const u32 *buf_32 = tx_buf;
<------>int k;
<------>for (k = 0; k < words; k++)
<------><------>sh_msiof_write(p, SITFDR, swab32(get_unaligned(&buf_32[k]) << fs));
}
static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p,
<------><------><------><------> void *rx_buf, int words, int fs)
{
<------>u8 *buf_8 = rx_buf;
<------>int k;
<------>for (k = 0; k < words; k++)
<------><------>buf_8[k] = sh_msiof_read(p, SIRFDR) >> fs;
}
static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p,
<------><------><------><------> void *rx_buf, int words, int fs)
{
<------>u16 *buf_16 = rx_buf;
<------>int k;
<------>for (k = 0; k < words; k++)
<------><------>buf_16[k] = sh_msiof_read(p, SIRFDR) >> fs;
}
static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p,
<------><------><------><------> void *rx_buf, int words, int fs)
{
<------>u16 *buf_16 = rx_buf;
<------>int k;
<------>for (k = 0; k < words; k++)
<------><------>put_unaligned(sh_msiof_read(p, SIRFDR) >> fs, &buf_16[k]);
}
static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p,
<------><------><------><------> void *rx_buf, int words, int fs)
{
<------>u32 *buf_32 = rx_buf;
<------>int k;
<------>for (k = 0; k < words; k++)
<------><------>buf_32[k] = sh_msiof_read(p, SIRFDR) >> fs;
}
static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p,
<------><------><------><------> void *rx_buf, int words, int fs)
{
<------>u32 *buf_32 = rx_buf;
<------>int k;
<------>for (k = 0; k < words; k++)
<------><------>put_unaligned(sh_msiof_read(p, SIRFDR) >> fs, &buf_32[k]);
}
static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p,
<------><------><------><------> void *rx_buf, int words, int fs)
{
<------>u32 *buf_32 = rx_buf;
<------>int k;
<------>for (k = 0; k < words; k++)
<------><------>buf_32[k] = swab32(sh_msiof_read(p, SIRFDR) >> fs);
}
static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p,
<------><------><------><------> void *rx_buf, int words, int fs)
{
<------>u32 *buf_32 = rx_buf;
<------>int k;
<------>for (k = 0; k < words; k++)
<------><------>put_unaligned(swab32(sh_msiof_read(p, SIRFDR) >> fs), &buf_32[k]);
}
static int sh_msiof_spi_setup(struct spi_device *spi)
{
<------>struct sh_msiof_spi_priv *p =
<------><------>spi_controller_get_devdata(spi->controller);
<------>u32 clr, set, tmp;
<------>if (spi->cs_gpiod || spi_controller_is_slave(p->ctlr))
<------><------>return 0;
<------>if (p->native_cs_inited &&
<------> (p->native_cs_high == !!(spi->mode & SPI_CS_HIGH)))
<------><------>return 0;
<------>/* Configure native chip select mode/polarity early */
<------>clr = SIMDR1_SYNCMD_MASK;
<------>set = SIMDR1_SYNCMD_SPI;
<------>if (spi->mode & SPI_CS_HIGH)
<------><------>clr |= BIT(SIMDR1_SYNCAC_SHIFT);
<------>else
<------><------>set |= BIT(SIMDR1_SYNCAC_SHIFT);
<------>pm_runtime_get_sync(&p->pdev->dev);
<------>tmp = sh_msiof_read(p, SITMDR1) & ~clr;
<------>sh_msiof_write(p, SITMDR1, tmp | set | SIMDR1_TRMD | SITMDR1_PCON);
<------>tmp = sh_msiof_read(p, SIRMDR1) & ~clr;
<------>sh_msiof_write(p, SIRMDR1, tmp | set);
<------>pm_runtime_put(&p->pdev->dev);
<------>p->native_cs_high = spi->mode & SPI_CS_HIGH;
<------>p->native_cs_inited = true;
<------>return 0;
}
static int sh_msiof_prepare_message(struct spi_controller *ctlr,
<------><------><------><------> struct spi_message *msg)
{
<------>struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr);
<------>const struct spi_device *spi = msg->spi;
<------>u32 ss, cs_high;
<------>/* Configure pins before asserting CS */
<------>if (spi->cs_gpiod) {
<------><------>ss = ctlr->unused_native_cs;
<------><------>cs_high = p->native_cs_high;
<------>} else {
<------><------>ss = spi->chip_select;
<------><------>cs_high = !!(spi->mode & SPI_CS_HIGH);
<------>}
<------>sh_msiof_spi_set_pin_regs(p, ss, !!(spi->mode & SPI_CPOL),
<------><------><------><------> !!(spi->mode & SPI_CPHA),
<------><------><------><------> !!(spi->mode & SPI_3WIRE),
<------><------><------><------> !!(spi->mode & SPI_LSB_FIRST), cs_high);
<------>return 0;
}
static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf)
{
<------>bool slave = spi_controller_is_slave(p->ctlr);
<------>int ret = 0;
<------>/* setup clock and rx/tx signals */
<------>if (!slave)
<------><------>ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_TSCKE);
<------>if (rx_buf && !ret)
<------><------>ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_RXE);
<------>if (!ret)
<------><------>ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_TXE);
<------>/* start by setting frame bit */
<------>if (!ret && !slave)
<------><------>ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_TFSE);
<------>return ret;
}
static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf)
{
<------>bool slave = spi_controller_is_slave(p->ctlr);
<------>int ret = 0;
<------>/* shut down frame, rx/tx and clock signals */
<------>if (!slave)
<------><------>ret = sh_msiof_modify_ctr_wait(p, SICTR_TFSE, 0);
<------>if (!ret)
<------><------>ret = sh_msiof_modify_ctr_wait(p, SICTR_TXE, 0);
<------>if (rx_buf && !ret)
<------><------>ret = sh_msiof_modify_ctr_wait(p, SICTR_RXE, 0);
<------>if (!ret && !slave)
<------><------>ret = sh_msiof_modify_ctr_wait(p, SICTR_TSCKE, 0);
<------>return ret;
}
static int sh_msiof_slave_abort(struct spi_controller *ctlr)
{
<------>struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr);
<------>p->slave_aborted = true;
<------>complete(&p->done);
<------>complete(&p->done_txdma);
<------>return 0;
}
static int sh_msiof_wait_for_completion(struct sh_msiof_spi_priv *p,
<------><------><------><------><------>struct completion *x)
{
<------>if (spi_controller_is_slave(p->ctlr)) {
<------><------>if (wait_for_completion_interruptible(x) ||
<------><------> p->slave_aborted) {
<------><------><------>dev_dbg(&p->pdev->dev, "interrupted\n");
<------><------><------>return -EINTR;
<------><------>}
<------>} else {
<------><------>if (!wait_for_completion_timeout(x, HZ)) {
<------><------><------>dev_err(&p->pdev->dev, "timeout\n");
<------><------><------>return -ETIMEDOUT;
<------><------>}
<------>}
<------>return 0;
}
static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p,
<------><------><------><------> void (*tx_fifo)(struct sh_msiof_spi_priv *,
<------><------><------><------><------><------> const void *, int, int),
<------><------><------><------> void (*rx_fifo)(struct sh_msiof_spi_priv *,
<------><------><------><------><------><------> void *, int, int),
<------><------><------><------> const void *tx_buf, void *rx_buf,
<------><------><------><------> int words, int bits)
{
<------>int fifo_shift;
<------>int ret;
<------>/* limit maximum word transfer to rx/tx fifo size */
<------>if (tx_buf)
<------><------>words = min_t(int, words, p->tx_fifo_size);
<------>if (rx_buf)
<------><------>words = min_t(int, words, p->rx_fifo_size);
<------>/* the fifo contents need shifting */
<------>fifo_shift = 32 - bits;
<------>/* default FIFO watermarks for PIO */
<------>sh_msiof_write(p, SIFCTR, 0);
<------>/* setup msiof transfer mode registers */
<------>sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words);
<------>sh_msiof_write(p, SIIER, SIIER_TEOFE | SIIER_REOFE);
<------>/* write tx fifo */
<------>if (tx_buf)
<------><------>tx_fifo(p, tx_buf, words, fifo_shift);
<------>reinit_completion(&p->done);
<------>p->slave_aborted = false;
<------>ret = sh_msiof_spi_start(p, rx_buf);
<------>if (ret) {
<------><------>dev_err(&p->pdev->dev, "failed to start hardware\n");
<------><------>goto stop_ier;
<------>}
<------>/* wait for tx fifo to be emptied / rx fifo to be filled */
<------>ret = sh_msiof_wait_for_completion(p, &p->done);
<------>if (ret)
<------><------>goto stop_reset;
<------>/* read rx fifo */
<------>if (rx_buf)
<------><------>rx_fifo(p, rx_buf, words, fifo_shift);
<------>/* clear status bits */
<------>sh_msiof_reset_str(p);
<------>ret = sh_msiof_spi_stop(p, rx_buf);
<------>if (ret) {
<------><------>dev_err(&p->pdev->dev, "failed to shut down hardware\n");
<------><------>return ret;
<------>}
<------>return words;
stop_reset:
<------>sh_msiof_reset_str(p);
<------>sh_msiof_spi_stop(p, rx_buf);
stop_ier:
<------>sh_msiof_write(p, SIIER, 0);
<------>return ret;
}
static void sh_msiof_dma_complete(void *arg)
{
<------>complete(arg);
}
static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx,
<------><------><------> void *rx, unsigned int len)
{
<------>u32 ier_bits = 0;
<------>struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
<------>dma_cookie_t cookie;
<------>int ret;
<------>/* First prepare and submit the DMA request(s), as this may fail */
<------>if (rx) {
<------><------>ier_bits |= SIIER_RDREQE | SIIER_RDMAE;
<------><------>desc_rx = dmaengine_prep_slave_single(p->ctlr->dma_rx,
<------><------><------><------><------>p->rx_dma_addr, len, DMA_DEV_TO_MEM,
<------><------><------><------><------>DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
<------><------>if (!desc_rx)
<------><------><------>return -EAGAIN;
<------><------>desc_rx->callback = sh_msiof_dma_complete;
<------><------>desc_rx->callback_param = &p->done;
<------><------>cookie = dmaengine_submit(desc_rx);
<------><------>if (dma_submit_error(cookie))
<------><------><------>return cookie;
<------>}
<------>if (tx) {
<------><------>ier_bits |= SIIER_TDREQE | SIIER_TDMAE;
<------><------>dma_sync_single_for_device(p->ctlr->dma_tx->device->dev,
<------><------><------><------><------> p->tx_dma_addr, len, DMA_TO_DEVICE);
<------><------>desc_tx = dmaengine_prep_slave_single(p->ctlr->dma_tx,
<------><------><------><------><------>p->tx_dma_addr, len, DMA_MEM_TO_DEV,
<------><------><------><------><------>DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
<------><------>if (!desc_tx) {
<------><------><------>ret = -EAGAIN;
<------><------><------>goto no_dma_tx;
<------><------>}
<------><------>desc_tx->callback = sh_msiof_dma_complete;
<------><------>desc_tx->callback_param = &p->done_txdma;
<------><------>cookie = dmaengine_submit(desc_tx);
<------><------>if (dma_submit_error(cookie)) {
<------><------><------>ret = cookie;
<------><------><------>goto no_dma_tx;
<------><------>}
<------>}
<------>/* 1 stage FIFO watermarks for DMA */
<------>sh_msiof_write(p, SIFCTR, SIFCTR_TFWM_1 | SIFCTR_RFWM_1);
<------>/* setup msiof transfer mode registers (32-bit words) */
<------>sh_msiof_spi_set_mode_regs(p, tx, rx, 32, len / 4);
<------>sh_msiof_write(p, SIIER, ier_bits);
<------>reinit_completion(&p->done);
<------>if (tx)
<------><------>reinit_completion(&p->done_txdma);
<------>p->slave_aborted = false;
<------>/* Now start DMA */
<------>if (rx)
<------><------>dma_async_issue_pending(p->ctlr->dma_rx);
<------>if (tx)
<------><------>dma_async_issue_pending(p->ctlr->dma_tx);
<------>ret = sh_msiof_spi_start(p, rx);
<------>if (ret) {
<------><------>dev_err(&p->pdev->dev, "failed to start hardware\n");
<------><------>goto stop_dma;
<------>}
<------>if (tx) {
<------><------>/* wait for tx DMA completion */
<------><------>ret = sh_msiof_wait_for_completion(p, &p->done_txdma);
<------><------>if (ret)
<------><------><------>goto stop_reset;
<------>}
<------>if (rx) {
<------><------>/* wait for rx DMA completion */
<------><------>ret = sh_msiof_wait_for_completion(p, &p->done);
<------><------>if (ret)
<------><------><------>goto stop_reset;
<------><------>sh_msiof_write(p, SIIER, 0);
<------>} else {
<------><------>/* wait for tx fifo to be emptied */
<------><------>sh_msiof_write(p, SIIER, SIIER_TEOFE);
<------><------>ret = sh_msiof_wait_for_completion(p, &p->done);
<------><------>if (ret)
<------><------><------>goto stop_reset;
<------>}
<------>/* clear status bits */
<------>sh_msiof_reset_str(p);
<------>ret = sh_msiof_spi_stop(p, rx);
<------>if (ret) {
<------><------>dev_err(&p->pdev->dev, "failed to shut down hardware\n");
<------><------>return ret;
<------>}
<------>if (rx)
<------><------>dma_sync_single_for_cpu(p->ctlr->dma_rx->device->dev,
<------><------><------><------><------>p->rx_dma_addr, len, DMA_FROM_DEVICE);
<------>return 0;
stop_reset:
<------>sh_msiof_reset_str(p);
<------>sh_msiof_spi_stop(p, rx);
stop_dma:
<------>if (tx)
<------><------>dmaengine_terminate_all(p->ctlr->dma_tx);
no_dma_tx:
<------>if (rx)
<------><------>dmaengine_terminate_all(p->ctlr->dma_rx);
<------>sh_msiof_write(p, SIIER, 0);
<------>return ret;
}
static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words)
{
<------>/* src or dst can be unaligned, but not both */
<------>if ((unsigned long)src & 3) {
<------><------>while (words--) {
<------><------><------>*dst++ = swab32(get_unaligned(src));
<------><------><------>src++;
<------><------>}
<------>} else if ((unsigned long)dst & 3) {
<------><------>while (words--) {
<------><------><------>put_unaligned(swab32(*src++), dst);
<------><------><------>dst++;
<------><------>}
<------>} else {
<------><------>while (words--)
<------><------><------>*dst++ = swab32(*src++);
<------>}
}
static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words)
{
<------>/* src or dst can be unaligned, but not both */
<------>if ((unsigned long)src & 3) {
<------><------>while (words--) {
<------><------><------>*dst++ = swahw32(get_unaligned(src));
<------><------><------>src++;
<------><------>}
<------>} else if ((unsigned long)dst & 3) {
<------><------>while (words--) {
<------><------><------>put_unaligned(swahw32(*src++), dst);
<------><------><------>dst++;
<------><------>}
<------>} else {
<------><------>while (words--)
<------><------><------>*dst++ = swahw32(*src++);
<------>}
}
static void copy_plain32(u32 *dst, const u32 *src, unsigned int words)
{
<------>memcpy(dst, src, words * 4);
}
static int sh_msiof_transfer_one(struct spi_controller *ctlr,
<------><------><------><------> struct spi_device *spi,
<------><------><------><------> struct spi_transfer *t)
{
<------>struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr);
<------>void (*copy32)(u32 *, const u32 *, unsigned int);
<------>void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int);
<------>void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int);
<------>const void *tx_buf = t->tx_buf;
<------>void *rx_buf = t->rx_buf;
<------>unsigned int len = t->len;
<------>unsigned int bits = t->bits_per_word;
<------>unsigned int bytes_per_word;
<------>unsigned int words;
<------>int n;
<------>bool swab;
<------>int ret;
<------>/* reset registers */
<------>sh_msiof_spi_reset_regs(p);
<------>/* setup clocks (clock already enabled in chipselect()) */
<------>if (!spi_controller_is_slave(p->ctlr))
<------><------>sh_msiof_spi_set_clk_regs(p, clk_get_rate(p->clk), t->speed_hz);
<------>while (ctlr->dma_tx && len > 15) {
<------><------>/*
<------><------> * DMA supports 32-bit words only, hence pack 8-bit and 16-bit
<------><------> * words, with byte resp. word swapping.
<------><------> */
<------><------>unsigned int l = 0;
<------><------>if (tx_buf)
<------><------><------>l = min(round_down(len, 4), p->tx_fifo_size * 4);
<------><------>if (rx_buf)
<------><------><------>l = min(round_down(len, 4), p->rx_fifo_size * 4);
<------><------>if (bits <= 8) {
<------><------><------>copy32 = copy_bswap32;
<------><------>} else if (bits <= 16) {
<------><------><------>copy32 = copy_wswap32;
<------><------>} else {
<------><------><------>copy32 = copy_plain32;
<------><------>}
<------><------>if (tx_buf)
<------><------><------>copy32(p->tx_dma_page, tx_buf, l / 4);
<------><------>ret = sh_msiof_dma_once(p, tx_buf, rx_buf, l);
<------><------>if (ret == -EAGAIN) {
<------><------><------>dev_warn_once(&p->pdev->dev,
<------><------><------><------>"DMA not available, falling back to PIO\n");
<------><------><------>break;
<------><------>}
<------><------>if (ret)
<------><------><------>return ret;
<------><------>if (rx_buf) {
<------><------><------>copy32(rx_buf, p->rx_dma_page, l / 4);
<------><------><------>rx_buf += l;
<------><------>}
<------><------>if (tx_buf)
<------><------><------>tx_buf += l;
<------><------>len -= l;
<------><------>if (!len)
<------><------><------>return 0;
<------>}
<------>if (bits <= 8 && len > 15) {
<------><------>bits = 32;
<------><------>swab = true;
<------>} else {
<------><------>swab = false;
<------>}
<------>/* setup bytes per word and fifo read/write functions */
<------>if (bits <= 8) {
<------><------>bytes_per_word = 1;
<------><------>tx_fifo = sh_msiof_spi_write_fifo_8;
<------><------>rx_fifo = sh_msiof_spi_read_fifo_8;
<------>} else if (bits <= 16) {
<------><------>bytes_per_word = 2;
<------><------>if ((unsigned long)tx_buf & 0x01)
<------><------><------>tx_fifo = sh_msiof_spi_write_fifo_16u;
<------><------>else
<------><------><------>tx_fifo = sh_msiof_spi_write_fifo_16;
<------><------>if ((unsigned long)rx_buf & 0x01)
<------><------><------>rx_fifo = sh_msiof_spi_read_fifo_16u;
<------><------>else
<------><------><------>rx_fifo = sh_msiof_spi_read_fifo_16;
<------>} else if (swab) {
<------><------>bytes_per_word = 4;
<------><------>if ((unsigned long)tx_buf & 0x03)
<------><------><------>tx_fifo = sh_msiof_spi_write_fifo_s32u;
<------><------>else
<------><------><------>tx_fifo = sh_msiof_spi_write_fifo_s32;
<------><------>if ((unsigned long)rx_buf & 0x03)
<------><------><------>rx_fifo = sh_msiof_spi_read_fifo_s32u;
<------><------>else
<------><------><------>rx_fifo = sh_msiof_spi_read_fifo_s32;
<------>} else {
<------><------>bytes_per_word = 4;
<------><------>if ((unsigned long)tx_buf & 0x03)
<------><------><------>tx_fifo = sh_msiof_spi_write_fifo_32u;
<------><------>else
<------><------><------>tx_fifo = sh_msiof_spi_write_fifo_32;
<------><------>if ((unsigned long)rx_buf & 0x03)
<------><------><------>rx_fifo = sh_msiof_spi_read_fifo_32u;
<------><------>else
<------><------><------>rx_fifo = sh_msiof_spi_read_fifo_32;
<------>}
<------>/* transfer in fifo sized chunks */
<------>words = len / bytes_per_word;
<------>while (words > 0) {
<------><------>n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf,
<------><------><------><------><------> words, bits);
<------><------>if (n < 0)
<------><------><------>return n;
<------><------>if (tx_buf)
<------><------><------>tx_buf += n * bytes_per_word;
<------><------>if (rx_buf)
<------><------><------>rx_buf += n * bytes_per_word;
<------><------>words -= n;
<------><------>if (words == 0 && (len % bytes_per_word)) {
<------><------><------>words = len % bytes_per_word;
<------><------><------>bits = t->bits_per_word;
<------><------><------>bytes_per_word = 1;
<------><------><------>tx_fifo = sh_msiof_spi_write_fifo_8;
<------><------><------>rx_fifo = sh_msiof_spi_read_fifo_8;
<------><------>}
<------>}
<------>return 0;
}
static const struct sh_msiof_chipdata sh_data = {
<------>.bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32),
<------>.tx_fifo_size = 64,
<------>.rx_fifo_size = 64,
<------>.ctlr_flags = 0,
<------>.min_div_pow = 0,
};
static const struct sh_msiof_chipdata rcar_gen2_data = {
<------>.bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16) |
<------><------><------> SPI_BPW_MASK(24) | SPI_BPW_MASK(32),
<------>.tx_fifo_size = 64,
<------>.rx_fifo_size = 64,
<------>.ctlr_flags = SPI_CONTROLLER_MUST_TX,
<------>.min_div_pow = 0,
};
static const struct sh_msiof_chipdata rcar_gen3_data = {
<------>.bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16) |
<------><------><------> SPI_BPW_MASK(24) | SPI_BPW_MASK(32),
<------>.tx_fifo_size = 64,
<------>.rx_fifo_size = 64,
<------>.ctlr_flags = SPI_CONTROLLER_MUST_TX,
<------>.min_div_pow = 1,
};
static const struct of_device_id sh_msiof_match[] = {
<------>{ .compatible = "renesas,sh-mobile-msiof", .data = &sh_data },
<------>{ .compatible = "renesas,msiof-r8a7743", .data = &rcar_gen2_data },
<------>{ .compatible = "renesas,msiof-r8a7745", .data = &rcar_gen2_data },
<------>{ .compatible = "renesas,msiof-r8a7790", .data = &rcar_gen2_data },
<------>{ .compatible = "renesas,msiof-r8a7791", .data = &rcar_gen2_data },
<------>{ .compatible = "renesas,msiof-r8a7792", .data = &rcar_gen2_data },
<------>{ .compatible = "renesas,msiof-r8a7793", .data = &rcar_gen2_data },
<------>{ .compatible = "renesas,msiof-r8a7794", .data = &rcar_gen2_data },
<------>{ .compatible = "renesas,rcar-gen2-msiof", .data = &rcar_gen2_data },
<------>{ .compatible = "renesas,msiof-r8a7796", .data = &rcar_gen3_data },
<------>{ .compatible = "renesas,rcar-gen3-msiof", .data = &rcar_gen3_data },
<------>{ .compatible = "renesas,sh-msiof", .data = &sh_data }, /* Deprecated */
<------>{},
};
MODULE_DEVICE_TABLE(of, sh_msiof_match);
#ifdef CONFIG_OF
static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
{
<------>struct sh_msiof_spi_info *info;
<------>struct device_node *np = dev->of_node;
<------>u32 num_cs = 1;
<------>info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL);
<------>if (!info)
<------><------>return NULL;
<------>info->mode = of_property_read_bool(np, "spi-slave") ? MSIOF_SPI_SLAVE
<------><------><------><------><------><------><------> : MSIOF_SPI_MASTER;
<------>/* Parse the MSIOF properties */
<------>if (info->mode == MSIOF_SPI_MASTER)
<------><------>of_property_read_u32(np, "num-cs", &num_cs);
<------>of_property_read_u32(np, "renesas,tx-fifo-size",
<------><------><------><------><------>&info->tx_fifo_override);
<------>of_property_read_u32(np, "renesas,rx-fifo-size",
<------><------><------><------><------>&info->rx_fifo_override);
<------>of_property_read_u32(np, "renesas,dtdl", &info->dtdl);
<------>of_property_read_u32(np, "renesas,syncdl", &info->syncdl);
<------>info->num_chipselect = num_cs;
<------>return info;
}
#else
static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
{
<------>return NULL;
}
#endif
static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev,
<------>enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr)
{
<------>dma_cap_mask_t mask;
<------>struct dma_chan *chan;
<------>struct dma_slave_config cfg;
<------>int ret;
<------>dma_cap_zero(mask);
<------>dma_cap_set(DMA_SLAVE, mask);
<------>chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
<------><------><------><------>(void *)(unsigned long)id, dev,
<------><------><------><------>dir == DMA_MEM_TO_DEV ? "tx" : "rx");
<------>if (!chan) {
<------><------>dev_warn(dev, "dma_request_slave_channel_compat failed\n");
<------><------>return NULL;
<------>}
<------>memset(&cfg, 0, sizeof(cfg));
<------>cfg.direction = dir;
<------>if (dir == DMA_MEM_TO_DEV) {
<------><------>cfg.dst_addr = port_addr;
<------><------>cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
<------>} else {
<------><------>cfg.src_addr = port_addr;
<------><------>cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
<------>}
<------>ret = dmaengine_slave_config(chan, &cfg);
<------>if (ret) {
<------><------>dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
<------><------>dma_release_channel(chan);
<------><------>return NULL;
<------>}
<------>return chan;
}
static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p)
{
<------>struct platform_device *pdev = p->pdev;
<------>struct device *dev = &pdev->dev;
<------>const struct sh_msiof_spi_info *info = p->info;
<------>unsigned int dma_tx_id, dma_rx_id;
<------>const struct resource *res;
<------>struct spi_controller *ctlr;
<------>struct device *tx_dev, *rx_dev;
<------>if (dev->of_node) {
<------><------>/* In the OF case we will get the slave IDs from the DT */
<------><------>dma_tx_id = 0;
<------><------>dma_rx_id = 0;
<------>} else if (info && info->dma_tx_id && info->dma_rx_id) {
<------><------>dma_tx_id = info->dma_tx_id;
<------><------>dma_rx_id = info->dma_rx_id;
<------>} else {
<------><------>/* The driver assumes no error */
<------><------>return 0;
<------>}
<------>/* The DMA engine uses the second register set, if present */
<------>res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
<------>if (!res)
<------><------>res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
<------>ctlr = p->ctlr;
<------>ctlr->dma_tx = sh_msiof_request_dma_chan(dev, DMA_MEM_TO_DEV,
<------><------><------><------><------><------> dma_tx_id, res->start + SITFDR);
<------>if (!ctlr->dma_tx)
<------><------>return -ENODEV;
<------>ctlr->dma_rx = sh_msiof_request_dma_chan(dev, DMA_DEV_TO_MEM,
<------><------><------><------><------><------> dma_rx_id, res->start + SIRFDR);
<------>if (!ctlr->dma_rx)
<------><------>goto free_tx_chan;
<------>p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
<------>if (!p->tx_dma_page)
<------><------>goto free_rx_chan;
<------>p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
<------>if (!p->rx_dma_page)
<------><------>goto free_tx_page;
<------>tx_dev = ctlr->dma_tx->device->dev;
<------>p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE,
<------><------><------><------><------>DMA_TO_DEVICE);
<------>if (dma_mapping_error(tx_dev, p->tx_dma_addr))
<------><------>goto free_rx_page;
<------>rx_dev = ctlr->dma_rx->device->dev;
<------>p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE,
<------><------><------><------><------>DMA_FROM_DEVICE);
<------>if (dma_mapping_error(rx_dev, p->rx_dma_addr))
<------><------>goto unmap_tx_page;
<------>dev_info(dev, "DMA available");
<------>return 0;
unmap_tx_page:
<------>dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE);
free_rx_page:
<------>free_page((unsigned long)p->rx_dma_page);
free_tx_page:
<------>free_page((unsigned long)p->tx_dma_page);
free_rx_chan:
<------>dma_release_channel(ctlr->dma_rx);
free_tx_chan:
<------>dma_release_channel(ctlr->dma_tx);
<------>ctlr->dma_tx = NULL;
<------>return -ENODEV;
}
static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p)
{
<------>struct spi_controller *ctlr = p->ctlr;
<------>if (!ctlr->dma_tx)
<------><------>return;
<------>dma_unmap_single(ctlr->dma_rx->device->dev, p->rx_dma_addr, PAGE_SIZE,
<------><------><------> DMA_FROM_DEVICE);
<------>dma_unmap_single(ctlr->dma_tx->device->dev, p->tx_dma_addr, PAGE_SIZE,
<------><------><------> DMA_TO_DEVICE);
<------>free_page((unsigned long)p->rx_dma_page);
<------>free_page((unsigned long)p->tx_dma_page);
<------>dma_release_channel(ctlr->dma_rx);
<------>dma_release_channel(ctlr->dma_tx);
}
static int sh_msiof_spi_probe(struct platform_device *pdev)
{
<------>struct spi_controller *ctlr;
<------>const struct sh_msiof_chipdata *chipdata;
<------>struct sh_msiof_spi_info *info;
<------>struct sh_msiof_spi_priv *p;
<------>int i;
<------>int ret;
<------>chipdata = of_device_get_match_data(&pdev->dev);
<------>if (chipdata) {
<------><------>info = sh_msiof_spi_parse_dt(&pdev->dev);
<------>} else {
<------><------>chipdata = (const void *)pdev->id_entry->driver_data;
<------><------>info = dev_get_platdata(&pdev->dev);
<------>}
<------>if (!info) {
<------><------>dev_err(&pdev->dev, "failed to obtain device info\n");
<------><------>return -ENXIO;
<------>}
<------>if (info->mode == MSIOF_SPI_SLAVE)
<------><------>ctlr = spi_alloc_slave(&pdev->dev,
<------><------><------><------> sizeof(struct sh_msiof_spi_priv));
<------>else
<------><------>ctlr = spi_alloc_master(&pdev->dev,
<------><------><------><------><------>sizeof(struct sh_msiof_spi_priv));
<------>if (ctlr == NULL)
<------><------>return -ENOMEM;
<------>p = spi_controller_get_devdata(ctlr);
<------>platform_set_drvdata(pdev, p);
<------>p->ctlr = ctlr;
<------>p->info = info;
<------>p->min_div_pow = chipdata->min_div_pow;
<------>init_completion(&p->done);
<------>init_completion(&p->done_txdma);
<------>p->clk = devm_clk_get(&pdev->dev, NULL);
<------>if (IS_ERR(p->clk)) {
<------><------>dev_err(&pdev->dev, "cannot get clock\n");
<------><------>ret = PTR_ERR(p->clk);
<------><------>goto err1;
<------>}
<------>i = platform_get_irq(pdev, 0);
<------>if (i < 0) {
<------><------>ret = i;
<------><------>goto err1;
<------>}
<------>p->mapbase = devm_platform_ioremap_resource(pdev, 0);
<------>if (IS_ERR(p->mapbase)) {
<------><------>ret = PTR_ERR(p->mapbase);
<------><------>goto err1;
<------>}
<------>ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0,
<------><------><------> dev_name(&pdev->dev), p);
<------>if (ret) {
<------><------>dev_err(&pdev->dev, "unable to request irq\n");
<------><------>goto err1;
<------>}
<------>p->pdev = pdev;
<------>pm_runtime_enable(&pdev->dev);
<------>/* Platform data may override FIFO sizes */
<------>p->tx_fifo_size = chipdata->tx_fifo_size;
<------>p->rx_fifo_size = chipdata->rx_fifo_size;
<------>if (p->info->tx_fifo_override)
<------><------>p->tx_fifo_size = p->info->tx_fifo_override;
<------>if (p->info->rx_fifo_override)
<------><------>p->rx_fifo_size = p->info->rx_fifo_override;
<------>/* init controller code */
<------>ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
<------>ctlr->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE;
<------>ctlr->flags = chipdata->ctlr_flags;
<------>ctlr->bus_num = pdev->id;
<------>ctlr->num_chipselect = p->info->num_chipselect;
<------>ctlr->dev.of_node = pdev->dev.of_node;
<------>ctlr->setup = sh_msiof_spi_setup;
<------>ctlr->prepare_message = sh_msiof_prepare_message;
<------>ctlr->slave_abort = sh_msiof_slave_abort;
<------>ctlr->bits_per_word_mask = chipdata->bits_per_word_mask;
<------>ctlr->auto_runtime_pm = true;
<------>ctlr->transfer_one = sh_msiof_transfer_one;
<------>ctlr->use_gpio_descriptors = true;
<------>ctlr->max_native_cs = MAX_SS;
<------>ret = sh_msiof_request_dma(p);
<------>if (ret < 0)
<------><------>dev_warn(&pdev->dev, "DMA not available, using PIO\n");
<------>ret = devm_spi_register_controller(&pdev->dev, ctlr);
<------>if (ret < 0) {
<------><------>dev_err(&pdev->dev, "devm_spi_register_controller error.\n");
<------><------>goto err2;
<------>}
<------>return 0;
err2:
<------>sh_msiof_release_dma(p);
<------>pm_runtime_disable(&pdev->dev);
err1:
<------>spi_controller_put(ctlr);
<------>return ret;
}
static int sh_msiof_spi_remove(struct platform_device *pdev)
{
<------>struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
<------>sh_msiof_release_dma(p);
<------>pm_runtime_disable(&pdev->dev);
<------>return 0;
}
static const struct platform_device_id spi_driver_ids[] = {
<------>{ "spi_sh_msiof", (kernel_ulong_t)&sh_data },
<------>{},
};
MODULE_DEVICE_TABLE(platform, spi_driver_ids);
#ifdef CONFIG_PM_SLEEP
static int sh_msiof_spi_suspend(struct device *dev)
{
<------>struct sh_msiof_spi_priv *p = dev_get_drvdata(dev);
<------>return spi_controller_suspend(p->ctlr);
}
static int sh_msiof_spi_resume(struct device *dev)
{
<------>struct sh_msiof_spi_priv *p = dev_get_drvdata(dev);
<------>return spi_controller_resume(p->ctlr);
}
static SIMPLE_DEV_PM_OPS(sh_msiof_spi_pm_ops, sh_msiof_spi_suspend,
<------><------><------> sh_msiof_spi_resume);
#define DEV_PM_OPS (&sh_msiof_spi_pm_ops)
#else
#define DEV_PM_OPS NULL
#endif /* CONFIG_PM_SLEEP */
static struct platform_driver sh_msiof_spi_drv = {
<------>.probe = sh_msiof_spi_probe,
<------>.remove = sh_msiof_spi_remove,
<------>.id_table = spi_driver_ids,
<------>.driver = {
<------><------>.name = "spi_sh_msiof",
<------><------>.pm = DEV_PM_OPS,
<------><------>.of_match_table = of_match_ptr(sh_msiof_match),
<------>},
};
module_platform_driver(sh_msiof_spi_drv);
MODULE_DESCRIPTION("SuperH MSIOF SPI Controller Interface Driver");
MODULE_AUTHOR("Magnus Damm");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:spi_sh_msiof");