Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    1) // SPDX-License-Identifier: GPL-2.0+
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    2) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    3) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    4)  * NXP FlexSPI(FSPI) controller driver.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    5)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    6)  * Copyright 2019-2020 NXP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    7)  * Copyright 2020 Puresoftware Ltd.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    8)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    9)  * FlexSPI is a flexsible SPI host controller which supports two SPI
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   10)  * channels and up to 4 external devices. Each channel supports
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   11)  * Single/Dual/Quad/Octal mode data transfer (1/2/4/8 bidirectional
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   12)  * data lines).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   13)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   14)  * FlexSPI controller is driven by the LUT(Look-up Table) registers
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   15)  * LUT registers are a look-up-table for sequences of instructions.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   16)  * A valid sequence consists of four LUT registers.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   17)  * Maximum 32 LUT sequences can be programmed simultaneously.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   18)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   19)  * LUTs are being created at run-time based on the commands passed
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   20)  * from the spi-mem framework, thus using single LUT index.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   21)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   22)  * Software triggered Flash read/write access by IP Bus.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   23)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   24)  * Memory mapped read access by AHB Bus.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   25)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   26)  * Based on SPI MEM interface and spi-fsl-qspi.c driver.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   27)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   28)  * Author:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   29)  *     Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   30)  *     Boris Brezillon <bbrezillon@kernel.org>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   31)  *     Frieder Schrempf <frieder.schrempf@kontron.de>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   32)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   33) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   34) #include <linux/acpi.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   35) #include <linux/bitops.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   36) #include <linux/clk.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   37) #include <linux/completion.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   38) #include <linux/delay.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   39) #include <linux/err.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   40) #include <linux/errno.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   41) #include <linux/interrupt.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   42) #include <linux/io.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   43) #include <linux/iopoll.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   44) #include <linux/jiffies.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   45) #include <linux/kernel.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   46) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   47) #include <linux/mutex.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   48) #include <linux/of.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   49) #include <linux/of_device.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   50) #include <linux/platform_device.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   51) #include <linux/pm_qos.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   52) #include <linux/sizes.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   53) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   54) #include <linux/spi/spi.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   55) #include <linux/spi/spi-mem.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   56) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   57) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   58)  * The driver only uses one single LUT entry, that is updated on
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   59)  * each call of exec_op(). Index 0 is preset at boot with a basic
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   60)  * read operation, so let's use the last entry (31).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   61)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   62) #define	SEQID_LUT			31
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   63) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   64) /* Registers used by the driver */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   65) #define FSPI_MCR0			0x00
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   66) #define FSPI_MCR0_AHB_TIMEOUT(x)	((x) << 24)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   67) #define FSPI_MCR0_IP_TIMEOUT(x)		((x) << 16)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   68) #define FSPI_MCR0_LEARN_EN		BIT(15)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   69) #define FSPI_MCR0_SCRFRUN_EN		BIT(14)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   70) #define FSPI_MCR0_OCTCOMB_EN		BIT(13)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   71) #define FSPI_MCR0_DOZE_EN		BIT(12)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   72) #define FSPI_MCR0_HSEN			BIT(11)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   73) #define FSPI_MCR0_SERCLKDIV		BIT(8)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   74) #define FSPI_MCR0_ATDF_EN		BIT(7)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   75) #define FSPI_MCR0_ARDF_EN		BIT(6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   76) #define FSPI_MCR0_RXCLKSRC(x)		((x) << 4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   77) #define FSPI_MCR0_END_CFG(x)		((x) << 2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   78) #define FSPI_MCR0_MDIS			BIT(1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   79) #define FSPI_MCR0_SWRST			BIT(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   80) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   81) #define FSPI_MCR1			0x04
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   82) #define FSPI_MCR1_SEQ_TIMEOUT(x)	((x) << 16)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   83) #define FSPI_MCR1_AHB_TIMEOUT(x)	(x)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   84) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   85) #define FSPI_MCR2			0x08
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   86) #define FSPI_MCR2_IDLE_WAIT(x)		((x) << 24)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   87) #define FSPI_MCR2_SAMEDEVICEEN		BIT(15)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   88) #define FSPI_MCR2_CLRLRPHS		BIT(14)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   89) #define FSPI_MCR2_ABRDATSZ		BIT(8)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   90) #define FSPI_MCR2_ABRLEARN		BIT(7)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   91) #define FSPI_MCR2_ABR_READ		BIT(6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   92) #define FSPI_MCR2_ABRWRITE		BIT(5)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   93) #define FSPI_MCR2_ABRDUMMY		BIT(4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   94) #define FSPI_MCR2_ABR_MODE		BIT(3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   95) #define FSPI_MCR2_ABRCADDR		BIT(2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   96) #define FSPI_MCR2_ABRRADDR		BIT(1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   97) #define FSPI_MCR2_ABR_CMD		BIT(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   98) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   99) #define FSPI_AHBCR			0x0c
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  100) #define FSPI_AHBCR_RDADDROPT		BIT(6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  101) #define FSPI_AHBCR_PREF_EN		BIT(5)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  102) #define FSPI_AHBCR_BUFF_EN		BIT(4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  103) #define FSPI_AHBCR_CACH_EN		BIT(3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  104) #define FSPI_AHBCR_CLRTXBUF		BIT(2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  105) #define FSPI_AHBCR_CLRRXBUF		BIT(1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  106) #define FSPI_AHBCR_PAR_EN		BIT(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  107) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  108) #define FSPI_INTEN			0x10
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  109) #define FSPI_INTEN_SCLKSBWR		BIT(9)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  110) #define FSPI_INTEN_SCLKSBRD		BIT(8)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  111) #define FSPI_INTEN_DATALRNFL		BIT(7)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  112) #define FSPI_INTEN_IPTXWE		BIT(6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  113) #define FSPI_INTEN_IPRXWA		BIT(5)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  114) #define FSPI_INTEN_AHBCMDERR		BIT(4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  115) #define FSPI_INTEN_IPCMDERR		BIT(3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  116) #define FSPI_INTEN_AHBCMDGE		BIT(2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  117) #define FSPI_INTEN_IPCMDGE		BIT(1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  118) #define FSPI_INTEN_IPCMDDONE		BIT(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  119) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  120) #define FSPI_INTR			0x14
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  121) #define FSPI_INTR_SCLKSBWR		BIT(9)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  122) #define FSPI_INTR_SCLKSBRD		BIT(8)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  123) #define FSPI_INTR_DATALRNFL		BIT(7)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  124) #define FSPI_INTR_IPTXWE		BIT(6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  125) #define FSPI_INTR_IPRXWA		BIT(5)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  126) #define FSPI_INTR_AHBCMDERR		BIT(4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  127) #define FSPI_INTR_IPCMDERR		BIT(3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  128) #define FSPI_INTR_AHBCMDGE		BIT(2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  129) #define FSPI_INTR_IPCMDGE		BIT(1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  130) #define FSPI_INTR_IPCMDDONE		BIT(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  131) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  132) #define FSPI_LUTKEY			0x18
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  133) #define FSPI_LUTKEY_VALUE		0x5AF05AF0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  134) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  135) #define FSPI_LCKCR			0x1C
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  136) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  137) #define FSPI_LCKER_LOCK			0x1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  138) #define FSPI_LCKER_UNLOCK		0x2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  139) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  140) #define FSPI_BUFXCR_INVALID_MSTRID	0xE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  141) #define FSPI_AHBRX_BUF0CR0		0x20
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  142) #define FSPI_AHBRX_BUF1CR0		0x24
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  143) #define FSPI_AHBRX_BUF2CR0		0x28
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  144) #define FSPI_AHBRX_BUF3CR0		0x2C
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  145) #define FSPI_AHBRX_BUF4CR0		0x30
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  146) #define FSPI_AHBRX_BUF5CR0		0x34
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  147) #define FSPI_AHBRX_BUF6CR0		0x38
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  148) #define FSPI_AHBRX_BUF7CR0		0x3C
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  149) #define FSPI_AHBRXBUF0CR7_PREF		BIT(31)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  150) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  151) #define FSPI_AHBRX_BUF0CR1		0x40
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  152) #define FSPI_AHBRX_BUF1CR1		0x44
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  153) #define FSPI_AHBRX_BUF2CR1		0x48
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  154) #define FSPI_AHBRX_BUF3CR1		0x4C
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  155) #define FSPI_AHBRX_BUF4CR1		0x50
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  156) #define FSPI_AHBRX_BUF5CR1		0x54
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  157) #define FSPI_AHBRX_BUF6CR1		0x58
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  158) #define FSPI_AHBRX_BUF7CR1		0x5C
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  159) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  160) #define FSPI_FLSHA1CR0			0x60
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  161) #define FSPI_FLSHA2CR0			0x64
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  162) #define FSPI_FLSHB1CR0			0x68
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  163) #define FSPI_FLSHB2CR0			0x6C
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  164) #define FSPI_FLSHXCR0_SZ_KB		10
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  165) #define FSPI_FLSHXCR0_SZ(x)		((x) >> FSPI_FLSHXCR0_SZ_KB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  166) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  167) #define FSPI_FLSHA1CR1			0x70
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  168) #define FSPI_FLSHA2CR1			0x74
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  169) #define FSPI_FLSHB1CR1			0x78
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  170) #define FSPI_FLSHB2CR1			0x7C
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  171) #define FSPI_FLSHXCR1_CSINTR(x)		((x) << 16)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  172) #define FSPI_FLSHXCR1_CAS(x)		((x) << 11)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  173) #define FSPI_FLSHXCR1_WA		BIT(10)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  174) #define FSPI_FLSHXCR1_TCSH(x)		((x) << 5)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  175) #define FSPI_FLSHXCR1_TCSS(x)		(x)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  176) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  177) #define FSPI_FLSHA1CR2			0x80
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  178) #define FSPI_FLSHA2CR2			0x84
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  179) #define FSPI_FLSHB1CR2			0x88
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  180) #define FSPI_FLSHB2CR2			0x8C
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  181) #define FSPI_FLSHXCR2_CLRINSP		BIT(24)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  182) #define FSPI_FLSHXCR2_AWRWAIT		BIT(16)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  183) #define FSPI_FLSHXCR2_AWRSEQN_SHIFT	13
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  184) #define FSPI_FLSHXCR2_AWRSEQI_SHIFT	8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  185) #define FSPI_FLSHXCR2_ARDSEQN_SHIFT	5
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  186) #define FSPI_FLSHXCR2_ARDSEQI_SHIFT	0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  187) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  188) #define FSPI_IPCR0			0xA0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  189) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  190) #define FSPI_IPCR1			0xA4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  191) #define FSPI_IPCR1_IPAREN		BIT(31)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  192) #define FSPI_IPCR1_SEQNUM_SHIFT		24
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  193) #define FSPI_IPCR1_SEQID_SHIFT		16
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  194) #define FSPI_IPCR1_IDATSZ(x)		(x)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  195) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  196) #define FSPI_IPCMD			0xB0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  197) #define FSPI_IPCMD_TRG			BIT(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  198) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  199) #define FSPI_DLPR			0xB4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  200) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  201) #define FSPI_IPRXFCR			0xB8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  202) #define FSPI_IPRXFCR_CLR		BIT(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  203) #define FSPI_IPRXFCR_DMA_EN		BIT(1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  204) #define FSPI_IPRXFCR_WMRK(x)		((x) << 2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  205) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  206) #define FSPI_IPTXFCR			0xBC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  207) #define FSPI_IPTXFCR_CLR		BIT(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  208) #define FSPI_IPTXFCR_DMA_EN		BIT(1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  209) #define FSPI_IPTXFCR_WMRK(x)		((x) << 2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  210) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  211) #define FSPI_DLLACR			0xC0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  212) #define FSPI_DLLACR_OVRDEN		BIT(8)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  213) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  214) #define FSPI_DLLBCR			0xC4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  215) #define FSPI_DLLBCR_OVRDEN		BIT(8)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  216) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  217) #define FSPI_STS0			0xE0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  218) #define FSPI_STS0_DLPHB(x)		((x) << 8)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  219) #define FSPI_STS0_DLPHA(x)		((x) << 4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  220) #define FSPI_STS0_CMD_SRC(x)		((x) << 2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  221) #define FSPI_STS0_ARB_IDLE		BIT(1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  222) #define FSPI_STS0_SEQ_IDLE		BIT(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  223) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  224) #define FSPI_STS1			0xE4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  225) #define FSPI_STS1_IP_ERRCD(x)		((x) << 24)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  226) #define FSPI_STS1_IP_ERRID(x)		((x) << 16)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  227) #define FSPI_STS1_AHB_ERRCD(x)		((x) << 8)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  228) #define FSPI_STS1_AHB_ERRID(x)		(x)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  229) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  230) #define FSPI_AHBSPNST			0xEC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  231) #define FSPI_AHBSPNST_DATLFT(x)		((x) << 16)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  232) #define FSPI_AHBSPNST_BUFID(x)		((x) << 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  233) #define FSPI_AHBSPNST_ACTIVE		BIT(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  234) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  235) #define FSPI_IPRXFSTS			0xF0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  236) #define FSPI_IPRXFSTS_RDCNTR(x)		((x) << 16)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  237) #define FSPI_IPRXFSTS_FILL(x)		(x)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  238) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  239) #define FSPI_IPTXFSTS			0xF4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  240) #define FSPI_IPTXFSTS_WRCNTR(x)		((x) << 16)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  241) #define FSPI_IPTXFSTS_FILL(x)		(x)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  242) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  243) #define FSPI_RFDR			0x100
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  244) #define FSPI_TFDR			0x180
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  245) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  246) #define FSPI_LUT_BASE			0x200
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  247) #define FSPI_LUT_OFFSET			(SEQID_LUT * 4 * 4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  248) #define FSPI_LUT_REG(idx) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  249) 	(FSPI_LUT_BASE + FSPI_LUT_OFFSET + (idx) * 4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  250) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  251) /* register map end */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  252) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  253) /* Instruction set for the LUT register. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  254) #define LUT_STOP			0x00
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  255) #define LUT_CMD				0x01
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  256) #define LUT_ADDR			0x02
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  257) #define LUT_CADDR_SDR			0x03
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  258) #define LUT_MODE			0x04
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  259) #define LUT_MODE2			0x05
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  260) #define LUT_MODE4			0x06
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  261) #define LUT_MODE8			0x07
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  262) #define LUT_NXP_WRITE			0x08
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  263) #define LUT_NXP_READ			0x09
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  264) #define LUT_LEARN_SDR			0x0A
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  265) #define LUT_DATSZ_SDR			0x0B
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  266) #define LUT_DUMMY			0x0C
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  267) #define LUT_DUMMY_RWDS_SDR		0x0D
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  268) #define LUT_JMP_ON_CS			0x1F
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  269) #define LUT_CMD_DDR			0x21
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  270) #define LUT_ADDR_DDR			0x22
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  271) #define LUT_CADDR_DDR			0x23
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  272) #define LUT_MODE_DDR			0x24
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  273) #define LUT_MODE2_DDR			0x25
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  274) #define LUT_MODE4_DDR			0x26
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  275) #define LUT_MODE8_DDR			0x27
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  276) #define LUT_WRITE_DDR			0x28
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  277) #define LUT_READ_DDR			0x29
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  278) #define LUT_LEARN_DDR			0x2A
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  279) #define LUT_DATSZ_DDR			0x2B
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  280) #define LUT_DUMMY_DDR			0x2C
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  281) #define LUT_DUMMY_RWDS_DDR		0x2D
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  282) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  283) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  284)  * Calculate number of required PAD bits for LUT register.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  285)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  286)  * The pad stands for the number of IO lines [0:7].
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  287)  * For example, the octal read needs eight IO lines,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  288)  * so you should use LUT_PAD(8). This macro
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  289)  * returns 3 i.e. use eight (2^3) IP lines for read.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  290)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  291) #define LUT_PAD(x) (fls(x) - 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  292) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  293) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  294)  * Macro for constructing the LUT entries with the following
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  295)  * register layout:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  296)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  297)  *  ---------------------------------------------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  298)  *  | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  299)  *  ---------------------------------------------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  300)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  301) #define PAD_SHIFT		8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  302) #define INSTR_SHIFT		10
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  303) #define OPRND_SHIFT		16
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  304) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  305) /* Macros for constructing the LUT register. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  306) #define LUT_DEF(idx, ins, pad, opr)			  \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  307) 	((((ins) << INSTR_SHIFT) | ((pad) << PAD_SHIFT) | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  308) 	(opr)) << (((idx) % 2) * OPRND_SHIFT))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  309) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  310) #define POLL_TOUT		5000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  311) #define NXP_FSPI_MAX_CHIPSELECT		4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  312) #define NXP_FSPI_MIN_IOMAP	SZ_4M
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  313) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  314) struct nxp_fspi_devtype_data {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  315) 	unsigned int rxfifo;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  316) 	unsigned int txfifo;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  317) 	unsigned int ahb_buf_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  318) 	unsigned int quirks;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  319) 	bool little_endian;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  320) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  321) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  322) static const struct nxp_fspi_devtype_data lx2160a_data = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  323) 	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  324) 	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  325) 	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  326) 	.quirks = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  327) 	.little_endian = true,  /* little-endian    */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  328) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  329) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  330) static const struct nxp_fspi_devtype_data imx8mm_data = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  331) 	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  332) 	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  333) 	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  334) 	.quirks = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  335) 	.little_endian = true,  /* little-endian    */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  336) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  337) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  338) static const struct nxp_fspi_devtype_data imx8qxp_data = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  339) 	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  340) 	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  341) 	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  342) 	.quirks = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  343) 	.little_endian = true,  /* little-endian    */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  344) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  345) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  346) struct nxp_fspi {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  347) 	void __iomem *iobase;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  348) 	void __iomem *ahb_addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  349) 	u32 memmap_phy;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  350) 	u32 memmap_phy_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  351) 	u32 memmap_start;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  352) 	u32 memmap_len;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  353) 	struct clk *clk, *clk_en;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  354) 	struct device *dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  355) 	struct completion c;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  356) 	const struct nxp_fspi_devtype_data *devtype_data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  357) 	struct mutex lock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  358) 	struct pm_qos_request pm_qos_req;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  359) 	int selected;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  360) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  361) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  362) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  363)  * R/W functions for big- or little-endian registers:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  364)  * The FSPI controller's endianness is independent of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  365)  * the CPU core's endianness. So far, although the CPU
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  366)  * core is little-endian the FSPI controller can use
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  367)  * big-endian or little-endian.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  368)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  369) static void fspi_writel(struct nxp_fspi *f, u32 val, void __iomem *addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  370) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  371) 	if (f->devtype_data->little_endian)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  372) 		iowrite32(val, addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  373) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  374) 		iowrite32be(val, addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  375) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  376) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  377) static u32 fspi_readl(struct nxp_fspi *f, void __iomem *addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  378) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  379) 	if (f->devtype_data->little_endian)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  380) 		return ioread32(addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  381) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  382) 		return ioread32be(addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  383) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  384) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  385) static irqreturn_t nxp_fspi_irq_handler(int irq, void *dev_id)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  386) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  387) 	struct nxp_fspi *f = dev_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  388) 	u32 reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  389) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  390) 	/* clear interrupt */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  391) 	reg = fspi_readl(f, f->iobase + FSPI_INTR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  392) 	fspi_writel(f, FSPI_INTR_IPCMDDONE, f->iobase + FSPI_INTR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  393) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  394) 	if (reg & FSPI_INTR_IPCMDDONE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  395) 		complete(&f->c);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  396) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  397) 	return IRQ_HANDLED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  398) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  399) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  400) static int nxp_fspi_check_buswidth(struct nxp_fspi *f, u8 width)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  401) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  402) 	switch (width) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  403) 	case 1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  404) 	case 2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  405) 	case 4:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  406) 	case 8:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  407) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  408) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  409) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  410) 	return -ENOTSUPP;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  411) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  412) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  413) static bool nxp_fspi_supports_op(struct spi_mem *mem,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  414) 				 const struct spi_mem_op *op)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  415) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  416) 	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  417) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  418) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  419) 	ret = nxp_fspi_check_buswidth(f, op->cmd.buswidth);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  420) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  421) 	if (op->addr.nbytes)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  422) 		ret |= nxp_fspi_check_buswidth(f, op->addr.buswidth);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  423) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  424) 	if (op->dummy.nbytes)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  425) 		ret |= nxp_fspi_check_buswidth(f, op->dummy.buswidth);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  426) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  427) 	if (op->data.nbytes)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  428) 		ret |= nxp_fspi_check_buswidth(f, op->data.buswidth);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  429) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  430) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  431) 		return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  432) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  433) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  434) 	 * The number of address bytes should be equal to or less than 4 bytes.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  435) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  436) 	if (op->addr.nbytes > 4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  437) 		return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  438) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  439) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  440) 	 * If requested address value is greater than controller assigned
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  441) 	 * memory mapped space, return error as it didn't fit in the range
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  442) 	 * of assigned address space.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  443) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  444) 	if (op->addr.val >= f->memmap_phy_size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  445) 		return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  446) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  447) 	/* Max 64 dummy clock cycles supported */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  448) 	if (op->dummy.buswidth &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  449) 	    (op->dummy.nbytes * 8 / op->dummy.buswidth > 64))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  450) 		return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  451) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  452) 	/* Max data length, check controller limits and alignment */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  453) 	if (op->data.dir == SPI_MEM_DATA_IN &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  454) 	    (op->data.nbytes > f->devtype_data->ahb_buf_size ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  455) 	     (op->data.nbytes > f->devtype_data->rxfifo - 4 &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  456) 	      !IS_ALIGNED(op->data.nbytes, 8))))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  457) 		return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  458) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  459) 	if (op->data.dir == SPI_MEM_DATA_OUT &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  460) 	    op->data.nbytes > f->devtype_data->txfifo)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  461) 		return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  462) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  463) 	return spi_mem_default_supports_op(mem, op);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  464) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  465) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  466) /* Instead of busy looping invoke readl_poll_timeout functionality. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  467) static int fspi_readl_poll_tout(struct nxp_fspi *f, void __iomem *base,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  468) 				u32 mask, u32 delay_us,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  469) 				u32 timeout_us, bool c)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  470) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  471) 	u32 reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  472) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  473) 	if (!f->devtype_data->little_endian)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  474) 		mask = (u32)cpu_to_be32(mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  475) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  476) 	if (c)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  477) 		return readl_poll_timeout(base, reg, (reg & mask),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  478) 					  delay_us, timeout_us);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  479) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  480) 		return readl_poll_timeout(base, reg, !(reg & mask),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  481) 					  delay_us, timeout_us);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  482) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  483) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  484) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  485)  * If the slave device content being changed by Write/Erase, need to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  486)  * invalidate the AHB buffer. This can be achieved by doing the reset
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  487)  * of controller after setting MCR0[SWRESET] bit.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  488)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  489) static inline void nxp_fspi_invalid(struct nxp_fspi *f)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  490) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  491) 	u32 reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  492) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  493) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  494) 	reg = fspi_readl(f, f->iobase + FSPI_MCR0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  495) 	fspi_writel(f, reg | FSPI_MCR0_SWRST, f->iobase + FSPI_MCR0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  496) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  497) 	/* w1c register, wait unit clear */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  498) 	ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  499) 				   FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  500) 	WARN_ON(ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  501) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  502) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  503) static void nxp_fspi_prepare_lut(struct nxp_fspi *f,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  504) 				 const struct spi_mem_op *op)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  505) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  506) 	void __iomem *base = f->iobase;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  507) 	u32 lutval[4] = {};
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  508) 	int lutidx = 1, i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  509) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  510) 	/* cmd */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  511) 	lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  512) 			     op->cmd.opcode);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  513) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  514) 	/* addr bytes */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  515) 	if (op->addr.nbytes) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  516) 		lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  517) 					      LUT_PAD(op->addr.buswidth),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  518) 					      op->addr.nbytes * 8);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  519) 		lutidx++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  520) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  521) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  522) 	/* dummy bytes, if needed */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  523) 	if (op->dummy.nbytes) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  524) 		lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  525) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  526) 		 * Due to FlexSPI controller limitation number of PAD for dummy
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  527) 		 * buswidth needs to be programmed as equal to data buswidth.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  528) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  529) 					      LUT_PAD(op->data.buswidth),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  530) 					      op->dummy.nbytes * 8 /
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  531) 					      op->dummy.buswidth);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  532) 		lutidx++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  533) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  534) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  535) 	/* read/write data bytes */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  536) 	if (op->data.nbytes) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  537) 		lutval[lutidx / 2] |= LUT_DEF(lutidx,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  538) 					      op->data.dir == SPI_MEM_DATA_IN ?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  539) 					      LUT_NXP_READ : LUT_NXP_WRITE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  540) 					      LUT_PAD(op->data.buswidth),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  541) 					      0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  542) 		lutidx++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  543) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  544) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  545) 	/* stop condition. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  546) 	lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  547) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  548) 	/* unlock LUT */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  549) 	fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  550) 	fspi_writel(f, FSPI_LCKER_UNLOCK, f->iobase + FSPI_LCKCR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  551) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  552) 	/* fill LUT */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  553) 	for (i = 0; i < ARRAY_SIZE(lutval); i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  554) 		fspi_writel(f, lutval[i], base + FSPI_LUT_REG(i));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  555) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  556) 	dev_dbg(f->dev, "CMD[%x] lutval[0:%x \t 1:%x \t 2:%x \t 3:%x]\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  557) 		op->cmd.opcode, lutval[0], lutval[1], lutval[2], lutval[3]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  558) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  559) 	/* lock LUT */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  560) 	fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  561) 	fspi_writel(f, FSPI_LCKER_LOCK, f->iobase + FSPI_LCKCR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  562) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  563) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  564) static int nxp_fspi_clk_prep_enable(struct nxp_fspi *f)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  565) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  566) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  567) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  568) 	if (is_acpi_node(f->dev->fwnode))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  569) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  570) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  571) 	ret = clk_prepare_enable(f->clk_en);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  572) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  573) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  574) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  575) 	ret = clk_prepare_enable(f->clk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  576) 	if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  577) 		clk_disable_unprepare(f->clk_en);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  578) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  579) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  580) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  581) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  582) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  583) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  584) static int nxp_fspi_clk_disable_unprep(struct nxp_fspi *f)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  585) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  586) 	if (is_acpi_node(f->dev->fwnode))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  587) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  588) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  589) 	clk_disable_unprepare(f->clk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  590) 	clk_disable_unprepare(f->clk_en);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  591) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  592) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  593) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  594) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  595) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  596)  * In FlexSPI controller, flash access is based on value of FSPI_FLSHXXCR0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  597)  * register and start base address of the slave device.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  598)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  599)  *							    (Higher address)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  600)  *				--------    <-- FLSHB2CR0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  601)  *				|  B2  |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  602)  *				|      |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  603)  *	B2 start address -->	--------    <-- FLSHB1CR0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  604)  *				|  B1  |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  605)  *				|      |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  606)  *	B1 start address -->	--------    <-- FLSHA2CR0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  607)  *				|  A2  |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  608)  *				|      |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  609)  *	A2 start address -->	--------    <-- FLSHA1CR0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  610)  *				|  A1  |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  611)  *				|      |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  612)  *	A1 start address -->	--------		    (Lower address)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  613)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  614)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  615)  * Start base address defines the starting address range for given CS and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  616)  * FSPI_FLSHXXCR0 defines the size of the slave device connected at given CS.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  617)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  618)  * But, different targets are having different combinations of number of CS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  619)  * some targets only have single CS or two CS covering controller's full
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  620)  * memory mapped space area.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  621)  * Thus, implementation is being done as independent of the size and number
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  622)  * of the connected slave device.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  623)  * Assign controller memory mapped space size as the size to the connected
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  624)  * slave device.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  625)  * Mark FLSHxxCR0 as zero initially and then assign value only to the selected
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  626)  * chip-select Flash configuration register.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  627)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  628)  * For e.g. to access CS2 (B1), FLSHB1CR0 register would be equal to the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  629)  * memory mapped size of the controller.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  630)  * Value for rest of the CS FLSHxxCR0 register would be zero.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  631)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  632)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  633) static void nxp_fspi_select_mem(struct nxp_fspi *f, struct spi_device *spi)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  634) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  635) 	unsigned long rate = spi->max_speed_hz;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  636) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  637) 	uint64_t size_kb;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  638) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  639) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  640) 	 * Return, if previously selected slave device is same as current
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  641) 	 * requested slave device.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  642) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  643) 	if (f->selected == spi->chip_select)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  644) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  645) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  646) 	/* Reset FLSHxxCR0 registers */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  647) 	fspi_writel(f, 0, f->iobase + FSPI_FLSHA1CR0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  648) 	fspi_writel(f, 0, f->iobase + FSPI_FLSHA2CR0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  649) 	fspi_writel(f, 0, f->iobase + FSPI_FLSHB1CR0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  650) 	fspi_writel(f, 0, f->iobase + FSPI_FLSHB2CR0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  651) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  652) 	/* Assign controller memory mapped space as size, KBytes, of flash. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  653) 	size_kb = FSPI_FLSHXCR0_SZ(f->memmap_phy_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  654) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  655) 	fspi_writel(f, size_kb, f->iobase + FSPI_FLSHA1CR0 +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  656) 		    4 * spi->chip_select);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  657) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  658) 	dev_dbg(f->dev, "Slave device [CS:%x] selected\n", spi->chip_select);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  659) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  660) 	nxp_fspi_clk_disable_unprep(f);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  661) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  662) 	ret = clk_set_rate(f->clk, rate);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  663) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  664) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  665) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  666) 	ret = nxp_fspi_clk_prep_enable(f);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  667) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  668) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  669) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  670) 	f->selected = spi->chip_select;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  671) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  672) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  673) static int nxp_fspi_read_ahb(struct nxp_fspi *f, const struct spi_mem_op *op)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  674) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  675) 	u32 start = op->addr.val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  676) 	u32 len = op->data.nbytes;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  677) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  678) 	/* if necessary, ioremap before AHB read */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  679) 	if ((!f->ahb_addr) || start < f->memmap_start ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  680) 	     start + len > f->memmap_start + f->memmap_len) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  681) 		if (f->ahb_addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  682) 			iounmap(f->ahb_addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  683) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  684) 		f->memmap_start = start;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  685) 		f->memmap_len = len > NXP_FSPI_MIN_IOMAP ?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  686) 				len : NXP_FSPI_MIN_IOMAP;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  687) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  688) 		f->ahb_addr = ioremap_wc(f->memmap_phy + f->memmap_start,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  689) 					 f->memmap_len);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  690) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  691) 		if (!f->ahb_addr) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  692) 			dev_err(f->dev, "failed to alloc memory\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  693) 			return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  694) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  695) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  696) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  697) 	/* Read out the data directly from the AHB buffer. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  698) 	memcpy_fromio(op->data.buf.in,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  699) 		      f->ahb_addr + start - f->memmap_start, len);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  700) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  701) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  702) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  703) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  704) static void nxp_fspi_fill_txfifo(struct nxp_fspi *f,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  705) 				 const struct spi_mem_op *op)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  706) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  707) 	void __iomem *base = f->iobase;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  708) 	int i, ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  709) 	u8 *buf = (u8 *) op->data.buf.out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  710) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  711) 	/* clear the TX FIFO. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  712) 	fspi_writel(f, FSPI_IPTXFCR_CLR, base + FSPI_IPTXFCR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  713) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  714) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  715) 	 * Default value of water mark level is 8 bytes, hence in single
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  716) 	 * write request controller can write max 8 bytes of data.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  717) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  718) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  719) 	for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 8); i += 8) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  720) 		/* Wait for TXFIFO empty */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  721) 		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  722) 					   FSPI_INTR_IPTXWE, 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  723) 					   POLL_TOUT, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  724) 		WARN_ON(ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  725) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  726) 		fspi_writel(f, *(u32 *) (buf + i), base + FSPI_TFDR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  727) 		fspi_writel(f, *(u32 *) (buf + i + 4), base + FSPI_TFDR + 4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  728) 		fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  729) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  730) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  731) 	if (i < op->data.nbytes) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  732) 		u32 data = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  733) 		int j;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  734) 		/* Wait for TXFIFO empty */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  735) 		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  736) 					   FSPI_INTR_IPTXWE, 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  737) 					   POLL_TOUT, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  738) 		WARN_ON(ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  739) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  740) 		for (j = 0; j < ALIGN(op->data.nbytes - i, 4); j += 4) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  741) 			memcpy(&data, buf + i + j, 4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  742) 			fspi_writel(f, data, base + FSPI_TFDR + j);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  743) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  744) 		fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  745) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  746) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  747) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  748) static void nxp_fspi_read_rxfifo(struct nxp_fspi *f,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  749) 			  const struct spi_mem_op *op)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  750) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  751) 	void __iomem *base = f->iobase;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  752) 	int i, ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  753) 	int len = op->data.nbytes;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  754) 	u8 *buf = (u8 *) op->data.buf.in;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  755) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  756) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  757) 	 * Default value of water mark level is 8 bytes, hence in single
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  758) 	 * read request controller can read max 8 bytes of data.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  759) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  760) 	for (i = 0; i < ALIGN_DOWN(len, 8); i += 8) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  761) 		/* Wait for RXFIFO available */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  762) 		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  763) 					   FSPI_INTR_IPRXWA, 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  764) 					   POLL_TOUT, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  765) 		WARN_ON(ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  766) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  767) 		*(u32 *)(buf + i) = fspi_readl(f, base + FSPI_RFDR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  768) 		*(u32 *)(buf + i + 4) = fspi_readl(f, base + FSPI_RFDR + 4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  769) 		/* move the FIFO pointer */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  770) 		fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  771) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  772) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  773) 	if (i < len) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  774) 		u32 tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  775) 		int size, j;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  776) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  777) 		buf = op->data.buf.in + i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  778) 		/* Wait for RXFIFO available */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  779) 		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  780) 					   FSPI_INTR_IPRXWA, 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  781) 					   POLL_TOUT, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  782) 		WARN_ON(ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  783) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  784) 		len = op->data.nbytes - i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  785) 		for (j = 0; j < op->data.nbytes - i; j += 4) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  786) 			tmp = fspi_readl(f, base + FSPI_RFDR + j);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  787) 			size = min(len, 4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  788) 			memcpy(buf + j, &tmp, size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  789) 			len -= size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  790) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  791) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  792) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  793) 	/* invalid the RXFIFO */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  794) 	fspi_writel(f, FSPI_IPRXFCR_CLR, base + FSPI_IPRXFCR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  795) 	/* move the FIFO pointer */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  796) 	fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  797) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  798) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  799) static int nxp_fspi_do_op(struct nxp_fspi *f, const struct spi_mem_op *op)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  800) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  801) 	void __iomem *base = f->iobase;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  802) 	int seqnum = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  803) 	int err = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  804) 	u32 reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  805) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  806) 	reg = fspi_readl(f, base + FSPI_IPRXFCR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  807) 	/* invalid RXFIFO first */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  808) 	reg &= ~FSPI_IPRXFCR_DMA_EN;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  809) 	reg = reg | FSPI_IPRXFCR_CLR;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  810) 	fspi_writel(f, reg, base + FSPI_IPRXFCR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  811) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  812) 	init_completion(&f->c);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  813) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  814) 	fspi_writel(f, op->addr.val, base + FSPI_IPCR0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  815) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  816) 	 * Always start the sequence at the same index since we update
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  817) 	 * the LUT at each exec_op() call. And also specify the DATA
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  818) 	 * length, since it's has not been specified in the LUT.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  819) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  820) 	fspi_writel(f, op->data.nbytes |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  821) 		 (SEQID_LUT << FSPI_IPCR1_SEQID_SHIFT) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  822) 		 (seqnum << FSPI_IPCR1_SEQNUM_SHIFT),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  823) 		 base + FSPI_IPCR1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  824) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  825) 	/* Trigger the LUT now. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  826) 	fspi_writel(f, FSPI_IPCMD_TRG, base + FSPI_IPCMD);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  827) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  828) 	/* Wait for the interrupt. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  829) 	if (!wait_for_completion_timeout(&f->c, msecs_to_jiffies(1000)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  830) 		err = -ETIMEDOUT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  831) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  832) 	/* Invoke IP data read, if request is of data read. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  833) 	if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  834) 		nxp_fspi_read_rxfifo(f, op);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  835) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  836) 	return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  837) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  838) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  839) static int nxp_fspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  840) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  841) 	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  842) 	int err = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  843) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  844) 	mutex_lock(&f->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  845) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  846) 	/* Wait for controller being ready. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  847) 	err = fspi_readl_poll_tout(f, f->iobase + FSPI_STS0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  848) 				   FSPI_STS0_ARB_IDLE, 1, POLL_TOUT, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  849) 	WARN_ON(err);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  850) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  851) 	nxp_fspi_select_mem(f, mem->spi);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  852) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  853) 	nxp_fspi_prepare_lut(f, op);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  854) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  855) 	 * If we have large chunks of data, we read them through the AHB bus
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  856) 	 * by accessing the mapped memory. In all other cases we use
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  857) 	 * IP commands to access the flash.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  858) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  859) 	if (op->data.nbytes > (f->devtype_data->rxfifo - 4) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  860) 	    op->data.dir == SPI_MEM_DATA_IN) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  861) 		err = nxp_fspi_read_ahb(f, op);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  862) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  863) 		if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  864) 			nxp_fspi_fill_txfifo(f, op);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  865) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  866) 		err = nxp_fspi_do_op(f, op);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  867) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  868) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  869) 	/* Invalidate the data in the AHB buffer. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  870) 	nxp_fspi_invalid(f);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  871) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  872) 	mutex_unlock(&f->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  873) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  874) 	return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  875) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  876) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  877) static int nxp_fspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  878) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  879) 	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  880) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  881) 	if (op->data.dir == SPI_MEM_DATA_OUT) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  882) 		if (op->data.nbytes > f->devtype_data->txfifo)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  883) 			op->data.nbytes = f->devtype_data->txfifo;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  884) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  885) 		if (op->data.nbytes > f->devtype_data->ahb_buf_size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  886) 			op->data.nbytes = f->devtype_data->ahb_buf_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  887) 		else if (op->data.nbytes > (f->devtype_data->rxfifo - 4))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  888) 			op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  889) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  890) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  891) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  892) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  893) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  894) static int nxp_fspi_default_setup(struct nxp_fspi *f)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  895) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  896) 	void __iomem *base = f->iobase;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  897) 	int ret, i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  898) 	u32 reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  899) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  900) 	/* disable and unprepare clock to avoid glitch pass to controller */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  901) 	nxp_fspi_clk_disable_unprep(f);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  902) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  903) 	/* the default frequency, we will change it later if necessary. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  904) 	ret = clk_set_rate(f->clk, 20000000);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  905) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  906) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  907) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  908) 	ret = nxp_fspi_clk_prep_enable(f);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  909) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  910) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  911) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  912) 	/* Reset the module */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  913) 	/* w1c register, wait unit clear */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  914) 	ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  915) 				   FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  916) 	WARN_ON(ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  917) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  918) 	/* Disable the module */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  919) 	fspi_writel(f, FSPI_MCR0_MDIS, base + FSPI_MCR0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  920) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  921) 	/* Reset the DLL register to default value */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  922) 	fspi_writel(f, FSPI_DLLACR_OVRDEN, base + FSPI_DLLACR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  923) 	fspi_writel(f, FSPI_DLLBCR_OVRDEN, base + FSPI_DLLBCR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  924) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  925) 	/* enable module */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  926) 	fspi_writel(f, FSPI_MCR0_AHB_TIMEOUT(0xFF) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  927) 		    FSPI_MCR0_IP_TIMEOUT(0xFF) | (u32) FSPI_MCR0_OCTCOMB_EN,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  928) 		    base + FSPI_MCR0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  929) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  930) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  931) 	 * Disable same device enable bit and configure all slave devices
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  932) 	 * independently.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  933) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  934) 	reg = fspi_readl(f, f->iobase + FSPI_MCR2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  935) 	reg = reg & ~(FSPI_MCR2_SAMEDEVICEEN);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  936) 	fspi_writel(f, reg, base + FSPI_MCR2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  937) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  938) 	/* AHB configuration for access buffer 0~7. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  939) 	for (i = 0; i < 7; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  940) 		fspi_writel(f, 0, base + FSPI_AHBRX_BUF0CR0 + 4 * i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  941) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  942) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  943) 	 * Set ADATSZ with the maximum AHB buffer size to improve the read
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  944) 	 * performance.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  945) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  946) 	fspi_writel(f, (f->devtype_data->ahb_buf_size / 8 |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  947) 		  FSPI_AHBRXBUF0CR7_PREF), base + FSPI_AHBRX_BUF7CR0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  948) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  949) 	/* prefetch and no start address alignment limitation */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  950) 	fspi_writel(f, FSPI_AHBCR_PREF_EN | FSPI_AHBCR_RDADDROPT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  951) 		 base + FSPI_AHBCR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  952) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  953) 	/* AHB Read - Set lut sequence ID for all CS. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  954) 	fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA1CR2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  955) 	fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA2CR2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  956) 	fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB1CR2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  957) 	fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB2CR2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  958) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  959) 	f->selected = -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  960) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  961) 	/* enable the interrupt */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  962) 	fspi_writel(f, FSPI_INTEN_IPCMDDONE, base + FSPI_INTEN);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  963) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  964) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  965) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  966) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  967) static const char *nxp_fspi_get_name(struct spi_mem *mem)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  968) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  969) 	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  970) 	struct device *dev = &mem->spi->dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  971) 	const char *name;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  972) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  973) 	// Set custom name derived from the platform_device of the controller.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  974) 	if (of_get_available_child_count(f->dev->of_node) == 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  975) 		return dev_name(f->dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  976) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  977) 	name = devm_kasprintf(dev, GFP_KERNEL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  978) 			      "%s-%d", dev_name(f->dev),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  979) 			      mem->spi->chip_select);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  980) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  981) 	if (!name) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  982) 		dev_err(dev, "failed to get memory for custom flash name\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  983) 		return ERR_PTR(-ENOMEM);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  984) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  985) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  986) 	return name;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  987) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  988) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  989) static const struct spi_controller_mem_ops nxp_fspi_mem_ops = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  990) 	.adjust_op_size = nxp_fspi_adjust_op_size,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  991) 	.supports_op = nxp_fspi_supports_op,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  992) 	.exec_op = nxp_fspi_exec_op,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  993) 	.get_name = nxp_fspi_get_name,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  994) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  995) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  996) static int nxp_fspi_probe(struct platform_device *pdev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  997) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  998) 	struct spi_controller *ctlr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  999) 	struct device *dev = &pdev->dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1000) 	struct device_node *np = dev->of_node;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1001) 	struct resource *res;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1002) 	struct nxp_fspi *f;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1003) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1004) 	u32 reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1005) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1006) 	ctlr = spi_alloc_master(&pdev->dev, sizeof(*f));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1007) 	if (!ctlr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1008) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1009) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1010) 	ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1011) 			  SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1012) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1013) 	f = spi_controller_get_devdata(ctlr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1014) 	f->dev = dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1015) 	f->devtype_data = device_get_match_data(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1016) 	if (!f->devtype_data) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1017) 		ret = -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1018) 		goto err_put_ctrl;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1019) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1020) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1021) 	platform_set_drvdata(pdev, f);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1022) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1023) 	/* find the resources - configuration register address space */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1024) 	if (is_acpi_node(f->dev->fwnode))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1025) 		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1026) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1027) 		res = platform_get_resource_byname(pdev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1028) 				IORESOURCE_MEM, "fspi_base");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1029) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1030) 	f->iobase = devm_ioremap_resource(dev, res);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1031) 	if (IS_ERR(f->iobase)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1032) 		ret = PTR_ERR(f->iobase);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1033) 		goto err_put_ctrl;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1034) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1035) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1036) 	/* find the resources - controller memory mapped space */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1037) 	if (is_acpi_node(f->dev->fwnode))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1038) 		res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1039) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1040) 		res = platform_get_resource_byname(pdev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1041) 				IORESOURCE_MEM, "fspi_mmap");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1042) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1043) 	if (!res) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1044) 		ret = -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1045) 		goto err_put_ctrl;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1046) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1047) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1048) 	/* assign memory mapped starting address and mapped size. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1049) 	f->memmap_phy = res->start;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1050) 	f->memmap_phy_size = resource_size(res);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1051) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1052) 	/* find the clocks */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1053) 	if (dev_of_node(&pdev->dev)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1054) 		f->clk_en = devm_clk_get(dev, "fspi_en");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1055) 		if (IS_ERR(f->clk_en)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1056) 			ret = PTR_ERR(f->clk_en);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1057) 			goto err_put_ctrl;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1058) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1059) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1060) 		f->clk = devm_clk_get(dev, "fspi");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1061) 		if (IS_ERR(f->clk)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1062) 			ret = PTR_ERR(f->clk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1063) 			goto err_put_ctrl;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1064) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1065) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1066) 		ret = nxp_fspi_clk_prep_enable(f);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1067) 		if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1068) 			dev_err(dev, "can not enable the clock\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1069) 			goto err_put_ctrl;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1070) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1071) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1072) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1073) 	/* Clear potential interrupts */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1074) 	reg = fspi_readl(f, f->iobase + FSPI_INTR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1075) 	if (reg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1076) 		fspi_writel(f, reg, f->iobase + FSPI_INTR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1077) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1078) 	/* find the irq */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1079) 	ret = platform_get_irq(pdev, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1080) 	if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1081) 		goto err_disable_clk;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1082) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1083) 	ret = devm_request_irq(dev, ret,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1084) 			nxp_fspi_irq_handler, 0, pdev->name, f);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1085) 	if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1086) 		dev_err(dev, "failed to request irq: %d\n", ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1087) 		goto err_disable_clk;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1088) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1089) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1090) 	mutex_init(&f->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1091) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1092) 	ctlr->bus_num = -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1093) 	ctlr->num_chipselect = NXP_FSPI_MAX_CHIPSELECT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1094) 	ctlr->mem_ops = &nxp_fspi_mem_ops;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1095) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1096) 	nxp_fspi_default_setup(f);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1097) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1098) 	ctlr->dev.of_node = np;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1099) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1100) 	ret = devm_spi_register_controller(&pdev->dev, ctlr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1101) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1102) 		goto err_destroy_mutex;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1103) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1104) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1105) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1106) err_destroy_mutex:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1107) 	mutex_destroy(&f->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1108) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1109) err_disable_clk:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1110) 	nxp_fspi_clk_disable_unprep(f);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1111) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1112) err_put_ctrl:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1113) 	spi_controller_put(ctlr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1114) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1115) 	dev_err(dev, "NXP FSPI probe failed\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1116) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1117) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1118) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1119) static int nxp_fspi_remove(struct platform_device *pdev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1120) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1121) 	struct nxp_fspi *f = platform_get_drvdata(pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1122) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1123) 	/* disable the hardware */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1124) 	fspi_writel(f, FSPI_MCR0_MDIS, f->iobase + FSPI_MCR0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1125) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1126) 	nxp_fspi_clk_disable_unprep(f);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1127) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1128) 	mutex_destroy(&f->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1129) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1130) 	if (f->ahb_addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1131) 		iounmap(f->ahb_addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1132) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1133) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1134) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1135) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1136) static int nxp_fspi_suspend(struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1137) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1138) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1139) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1140) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1141) static int nxp_fspi_resume(struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1142) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1143) 	struct nxp_fspi *f = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1144) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1145) 	nxp_fspi_default_setup(f);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1146) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1147) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1148) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1149) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1150) static const struct of_device_id nxp_fspi_dt_ids[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1151) 	{ .compatible = "nxp,lx2160a-fspi", .data = (void *)&lx2160a_data, },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1152) 	{ .compatible = "nxp,imx8mm-fspi", .data = (void *)&imx8mm_data, },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1153) 	{ .compatible = "nxp,imx8qxp-fspi", .data = (void *)&imx8qxp_data, },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1154) 	{ /* sentinel */ }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1155) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1156) MODULE_DEVICE_TABLE(of, nxp_fspi_dt_ids);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1157) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1158) #ifdef CONFIG_ACPI
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1159) static const struct acpi_device_id nxp_fspi_acpi_ids[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1160) 	{ "NXP0009", .driver_data = (kernel_ulong_t)&lx2160a_data, },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1161) 	{}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1162) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1163) MODULE_DEVICE_TABLE(acpi, nxp_fspi_acpi_ids);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1164) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1165) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1166) static const struct dev_pm_ops nxp_fspi_pm_ops = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1167) 	.suspend	= nxp_fspi_suspend,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1168) 	.resume		= nxp_fspi_resume,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1169) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1170) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1171) static struct platform_driver nxp_fspi_driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1172) 	.driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1173) 		.name	= "nxp-fspi",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1174) 		.of_match_table = nxp_fspi_dt_ids,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1175) 		.acpi_match_table = ACPI_PTR(nxp_fspi_acpi_ids),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1176) 		.pm =   &nxp_fspi_pm_ops,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1177) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1178) 	.probe          = nxp_fspi_probe,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1179) 	.remove		= nxp_fspi_remove,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1180) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1181) module_platform_driver(nxp_fspi_driver);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1182) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1183) MODULE_DESCRIPTION("NXP FSPI Controller Driver");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1184) MODULE_AUTHOR("NXP Semiconductor");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1185) MODULE_AUTHOR("Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1186) MODULE_AUTHOR("Boris Brezillon <bbrezillon@kernel.org>");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1187) MODULE_AUTHOR("Frieder Schrempf <frieder.schrempf@kontron.de>");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1188) MODULE_LICENSE("GPL v2");