Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags   |
// SPDX-License-Identifier: GPL-2.0-only
/*
* Special handling for DW DMA core
*
* Copyright (c) 2009, 2014 Intel Corporation.
*/
#include <linux/completion.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/irqreturn.h>
#include <linux/jiffies.h>
#include <linux/pci.h>
#include <linux/platform_data/dma-dw.h>
#include <linux/spi/spi.h>
#include <linux/types.h>
#include "spi-dw.h"
#define RX_BUSY 0
#define RX_BURST_LEVEL 16
#define TX_BUSY 1
#define TX_BURST_LEVEL 16
static bool dw_spi_dma_chan_filter(struct dma_chan *chan, void *param)
{
<------>struct dw_dma_slave *s = param;
<------>if (s->dma_dev != chan->device->dev)
<------><------>return false;
<------>chan->private = s;
<------>return true;
}
static void dw_spi_dma_maxburst_init(struct dw_spi *dws)
{
<------>struct dma_slave_caps caps;
<------>u32 max_burst, def_burst;
<------>int ret;
<------>def_burst = dws->fifo_len / 2;
<------>ret = dma_get_slave_caps(dws->rxchan, &caps);
<------>if (!ret && caps.max_burst)
<------><------>max_burst = caps.max_burst;
<------>else
<------><------>max_burst = RX_BURST_LEVEL;
<------>dws->rxburst = min(max_burst, def_burst);
<------>dw_writel(dws, DW_SPI_DMARDLR, dws->rxburst - 1);
<------>ret = dma_get_slave_caps(dws->txchan, &caps);
<------>if (!ret && caps.max_burst)
<------><------>max_burst = caps.max_burst;
<------>else
<------><------>max_burst = TX_BURST_LEVEL;
<------>/*
<------> * Having a Rx DMA channel serviced with higher priority than a Tx DMA
<------> * channel might not be enough to provide a well balanced DMA-based
<------> * SPI transfer interface. There might still be moments when the Tx DMA
<------> * channel is occasionally handled faster than the Rx DMA channel.
<------> * That in its turn will eventually cause the SPI Rx FIFO overflow if
<------> * SPI bus speed is high enough to fill the SPI Rx FIFO in before it's
<------> * cleared by the Rx DMA channel. In order to fix the problem the Tx
<------> * DMA activity is intentionally slowed down by limiting the SPI Tx
<------> * FIFO depth with a value twice bigger than the Tx burst length.
<------> */
<------>dws->txburst = min(max_burst, def_burst);
<------>dw_writel(dws, DW_SPI_DMATDLR, dws->txburst);
}
static void dw_spi_dma_sg_burst_init(struct dw_spi *dws)
{
<------>struct dma_slave_caps tx = {0}, rx = {0};
<------>dma_get_slave_caps(dws->txchan, &tx);
<------>dma_get_slave_caps(dws->rxchan, &rx);
<------>if (tx.max_sg_burst > 0 && rx.max_sg_burst > 0)
<------><------>dws->dma_sg_burst = min(tx.max_sg_burst, rx.max_sg_burst);
<------>else if (tx.max_sg_burst > 0)
<------><------>dws->dma_sg_burst = tx.max_sg_burst;
<------>else if (rx.max_sg_burst > 0)
<------><------>dws->dma_sg_burst = rx.max_sg_burst;
<------>else
<------><------>dws->dma_sg_burst = 0;
}
static int dw_spi_dma_init_mfld(struct device *dev, struct dw_spi *dws)
{
<------>struct dw_dma_slave dma_tx = { .dst_id = 1 }, *tx = &dma_tx;
<------>struct dw_dma_slave dma_rx = { .src_id = 0 }, *rx = &dma_rx;
<------>struct pci_dev *dma_dev;
<------>dma_cap_mask_t mask;
<------>/*
<------> * Get pci device for DMA controller, currently it could only
<------> * be the DMA controller of Medfield
<------> */
<------>dma_dev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x0827, NULL);
<------>if (!dma_dev)
<------><------>return -ENODEV;
<------>dma_cap_zero(mask);
<------>dma_cap_set(DMA_SLAVE, mask);
<------>/* 1. Init rx channel */
<------>rx->dma_dev = &dma_dev->dev;
<------>dws->rxchan = dma_request_channel(mask, dw_spi_dma_chan_filter, rx);
<------>if (!dws->rxchan)
<------><------>goto err_exit;
<------>/* 2. Init tx channel */
<------>tx->dma_dev = &dma_dev->dev;
<------>dws->txchan = dma_request_channel(mask, dw_spi_dma_chan_filter, tx);
<------>if (!dws->txchan)
<------><------>goto free_rxchan;
<------>dws->master->dma_rx = dws->rxchan;
<------>dws->master->dma_tx = dws->txchan;
<------>init_completion(&dws->dma_completion);
<------>dw_spi_dma_maxburst_init(dws);
<------>dw_spi_dma_sg_burst_init(dws);
<------>return 0;
free_rxchan:
<------>dma_release_channel(dws->rxchan);
<------>dws->rxchan = NULL;
err_exit:
<------>return -EBUSY;
}
static int dw_spi_dma_init_generic(struct device *dev, struct dw_spi *dws)
{
<------>dws->rxchan = dma_request_slave_channel(dev, "rx");
<------>if (!dws->rxchan)
<------><------>return -ENODEV;
<------>dws->txchan = dma_request_slave_channel(dev, "tx");
<------>if (!dws->txchan) {
<------><------>dma_release_channel(dws->rxchan);
<------><------>dws->rxchan = NULL;
<------><------>return -ENODEV;
<------>}
<------>dws->master->dma_rx = dws->rxchan;
<------>dws->master->dma_tx = dws->txchan;
<------>init_completion(&dws->dma_completion);
<------>dw_spi_dma_maxburst_init(dws);
<------>dw_spi_dma_sg_burst_init(dws);
<------>return 0;
}
static void dw_spi_dma_exit(struct dw_spi *dws)
{
<------>if (dws->txchan) {
<------><------>dmaengine_terminate_sync(dws->txchan);
<------><------>dma_release_channel(dws->txchan);
<------>}
<------>if (dws->rxchan) {
<------><------>dmaengine_terminate_sync(dws->rxchan);
<------><------>dma_release_channel(dws->rxchan);
<------>}
}
static irqreturn_t dw_spi_dma_transfer_handler(struct dw_spi *dws)
{
<------>dw_spi_check_status(dws, false);
<------>complete(&dws->dma_completion);
<------>return IRQ_HANDLED;
}
static bool dw_spi_can_dma(struct spi_controller *master,
<------><------><------> struct spi_device *spi, struct spi_transfer *xfer)
{
<------>struct dw_spi *dws = spi_controller_get_devdata(master);
<------>return xfer->len > dws->fifo_len;
}
static enum dma_slave_buswidth dw_spi_dma_convert_width(u8 n_bytes)
{
<------>if (n_bytes == 1)
<------><------>return DMA_SLAVE_BUSWIDTH_1_BYTE;
<------>else if (n_bytes == 2)
<------><------>return DMA_SLAVE_BUSWIDTH_2_BYTES;
<------>return DMA_SLAVE_BUSWIDTH_UNDEFINED;
}
static int dw_spi_dma_wait(struct dw_spi *dws, unsigned int len, u32 speed)
{
<------>unsigned long long ms;
<------>ms = len * MSEC_PER_SEC * BITS_PER_BYTE;
<------>do_div(ms, speed);
<------>ms += ms + 200;
<------>if (ms > UINT_MAX)
<------><------>ms = UINT_MAX;
<------>ms = wait_for_completion_timeout(&dws->dma_completion,
<------><------><------><------><------> msecs_to_jiffies(ms));
<------>if (ms == 0) {
<------><------>dev_err(&dws->master->cur_msg->spi->dev,
<------><------><------>"DMA transaction timed out\n");
<------><------>return -ETIMEDOUT;
<------>}
<------>return 0;
}
static inline bool dw_spi_dma_tx_busy(struct dw_spi *dws)
{
<------>return !(dw_readl(dws, DW_SPI_SR) & SR_TF_EMPT);
}
static int dw_spi_dma_wait_tx_done(struct dw_spi *dws,
<------><------><------><------> struct spi_transfer *xfer)
{
<------>int retry = SPI_WAIT_RETRIES;
<------>struct spi_delay delay;
<------>u32 nents;
<------>nents = dw_readl(dws, DW_SPI_TXFLR);
<------>delay.unit = SPI_DELAY_UNIT_SCK;
<------>delay.value = nents * dws->n_bytes * BITS_PER_BYTE;
<------>while (dw_spi_dma_tx_busy(dws) && retry--)
<------><------>spi_delay_exec(&delay, xfer);
<------>if (retry < 0) {
<------><------>dev_err(&dws->master->dev, "Tx hanged up\n");
<------><------>return -EIO;
<------>}
<------>return 0;
}
/*
* dws->dma_chan_busy is set before the dma transfer starts, callback for tx
* channel will clear a corresponding bit.
*/
static void dw_spi_dma_tx_done(void *arg)
{
<------>struct dw_spi *dws = arg;
<------>clear_bit(TX_BUSY, &dws->dma_chan_busy);
<------>if (test_bit(RX_BUSY, &dws->dma_chan_busy))
<------><------>return;
<------>complete(&dws->dma_completion);
}
static int dw_spi_dma_config_tx(struct dw_spi *dws)
{
<------>struct dma_slave_config txconf;
<------>memset(&txconf, 0, sizeof(txconf));
<------>txconf.direction = DMA_MEM_TO_DEV;
<------>txconf.dst_addr = dws->dma_addr;
<------>txconf.dst_maxburst = dws->txburst;
<------>txconf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
<------>txconf.dst_addr_width = dw_spi_dma_convert_width(dws->n_bytes);
<------>txconf.device_fc = false;
<------>return dmaengine_slave_config(dws->txchan, &txconf);
}
static int dw_spi_dma_submit_tx(struct dw_spi *dws, struct scatterlist *sgl,
<------><------><------><------>unsigned int nents)
{
<------>struct dma_async_tx_descriptor *txdesc;
<------>dma_cookie_t cookie;
<------>int ret;
<------>txdesc = dmaengine_prep_slave_sg(dws->txchan, sgl, nents,
<------><------><------><------><------> DMA_MEM_TO_DEV,
<------><------><------><------><------> DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
<------>if (!txdesc)
<------><------>return -ENOMEM;
<------>txdesc->callback = dw_spi_dma_tx_done;
<------>txdesc->callback_param = dws;
<------>cookie = dmaengine_submit(txdesc);
<------>ret = dma_submit_error(cookie);
<------>if (ret) {
<------><------>dmaengine_terminate_sync(dws->txchan);
<------><------>return ret;
<------>}
<------>set_bit(TX_BUSY, &dws->dma_chan_busy);
<------>return 0;
}
static inline bool dw_spi_dma_rx_busy(struct dw_spi *dws)
{
<------>return !!(dw_readl(dws, DW_SPI_SR) & SR_RF_NOT_EMPT);
}
static int dw_spi_dma_wait_rx_done(struct dw_spi *dws)
{
<------>int retry = SPI_WAIT_RETRIES;
<------>struct spi_delay delay;
<------>unsigned long ns, us;
<------>u32 nents;
<------>/*
<------> * It's unlikely that DMA engine is still doing the data fetching, but
<------> * if it's let's give it some reasonable time. The timeout calculation
<------> * is based on the synchronous APB/SSI reference clock rate, on a
<------> * number of data entries left in the Rx FIFO, times a number of clock
<------> * periods normally needed for a single APB read/write transaction
<------> * without PREADY signal utilized (which is true for the DW APB SSI
<------> * controller).
<------> */
<------>nents = dw_readl(dws, DW_SPI_RXFLR);
<------>ns = 4U * NSEC_PER_SEC / dws->max_freq * nents;
<------>if (ns <= NSEC_PER_USEC) {
<------><------>delay.unit = SPI_DELAY_UNIT_NSECS;
<------><------>delay.value = ns;
<------>} else {
<------><------>us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
<------><------>delay.unit = SPI_DELAY_UNIT_USECS;
<------><------>delay.value = clamp_val(us, 0, USHRT_MAX);
<------>}
<------>while (dw_spi_dma_rx_busy(dws) && retry--)
<------><------>spi_delay_exec(&delay, NULL);
<------>if (retry < 0) {
<------><------>dev_err(&dws->master->dev, "Rx hanged up\n");
<------><------>return -EIO;
<------>}
<------>return 0;
}
/*
* dws->dma_chan_busy is set before the dma transfer starts, callback for rx
* channel will clear a corresponding bit.
*/
static void dw_spi_dma_rx_done(void *arg)
{
<------>struct dw_spi *dws = arg;
<------>clear_bit(RX_BUSY, &dws->dma_chan_busy);
<------>if (test_bit(TX_BUSY, &dws->dma_chan_busy))
<------><------>return;
<------>complete(&dws->dma_completion);
}
static int dw_spi_dma_config_rx(struct dw_spi *dws)
{
<------>struct dma_slave_config rxconf;
<------>memset(&rxconf, 0, sizeof(rxconf));
<------>rxconf.direction = DMA_DEV_TO_MEM;
<------>rxconf.src_addr = dws->dma_addr;
<------>rxconf.src_maxburst = dws->rxburst;
<------>rxconf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
<------>rxconf.src_addr_width = dw_spi_dma_convert_width(dws->n_bytes);
<------>rxconf.device_fc = false;
<------>return dmaengine_slave_config(dws->rxchan, &rxconf);
}
static int dw_spi_dma_submit_rx(struct dw_spi *dws, struct scatterlist *sgl,
<------><------><------><------>unsigned int nents)
{
<------>struct dma_async_tx_descriptor *rxdesc;
<------>dma_cookie_t cookie;
<------>int ret;
<------>rxdesc = dmaengine_prep_slave_sg(dws->rxchan, sgl, nents,
<------><------><------><------><------> DMA_DEV_TO_MEM,
<------><------><------><------><------> DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
<------>if (!rxdesc)
<------><------>return -ENOMEM;
<------>rxdesc->callback = dw_spi_dma_rx_done;
<------>rxdesc->callback_param = dws;
<------>cookie = dmaengine_submit(rxdesc);
<------>ret = dma_submit_error(cookie);
<------>if (ret) {
<------><------>dmaengine_terminate_sync(dws->rxchan);
<------><------>return ret;
<------>}
<------>set_bit(RX_BUSY, &dws->dma_chan_busy);
<------>return 0;
}
static int dw_spi_dma_setup(struct dw_spi *dws, struct spi_transfer *xfer)
{
<------>u16 imr, dma_ctrl;
<------>int ret;
<------>if (!xfer->tx_buf)
<------><------>return -EINVAL;
<------>/* Setup DMA channels */
<------>ret = dw_spi_dma_config_tx(dws);
<------>if (ret)
<------><------>return ret;
<------>if (xfer->rx_buf) {
<------><------>ret = dw_spi_dma_config_rx(dws);
<------><------>if (ret)
<------><------><------>return ret;
<------>}
<------>/* Set the DMA handshaking interface */
<------>dma_ctrl = SPI_DMA_TDMAE;
<------>if (xfer->rx_buf)
<------><------>dma_ctrl |= SPI_DMA_RDMAE;
<------>dw_writel(dws, DW_SPI_DMACR, dma_ctrl);
<------>/* Set the interrupt mask */
<------>imr = SPI_INT_TXOI;
<------>if (xfer->rx_buf)
<------><------>imr |= SPI_INT_RXUI | SPI_INT_RXOI;
<------>spi_umask_intr(dws, imr);
<------>reinit_completion(&dws->dma_completion);
<------>dws->transfer_handler = dw_spi_dma_transfer_handler;
<------>return 0;
}
static int dw_spi_dma_transfer_all(struct dw_spi *dws,
<------><------><------><------> struct spi_transfer *xfer)
{
<------>int ret;
<------>/* Submit the DMA Tx transfer */
<------>ret = dw_spi_dma_submit_tx(dws, xfer->tx_sg.sgl, xfer->tx_sg.nents);
<------>if (ret)
<------><------>goto err_clear_dmac;
<------>/* Submit the DMA Rx transfer if required */
<------>if (xfer->rx_buf) {
<------><------>ret = dw_spi_dma_submit_rx(dws, xfer->rx_sg.sgl,
<------><------><------><------><------> xfer->rx_sg.nents);
<------><------>if (ret)
<------><------><------>goto err_clear_dmac;
<------><------>/* rx must be started before tx due to spi instinct */
<------><------>dma_async_issue_pending(dws->rxchan);
<------>}
<------>dma_async_issue_pending(dws->txchan);
<------>ret = dw_spi_dma_wait(dws, xfer->len, xfer->effective_speed_hz);
err_clear_dmac:
<------>dw_writel(dws, DW_SPI_DMACR, 0);
<------>return ret;
}
/*
* In case if at least one of the requested DMA channels doesn't support the
* hardware accelerated SG list entries traverse, the DMA driver will most
* likely work that around by performing the IRQ-based SG list entries
* resubmission. That might and will cause a problem if the DMA Tx channel is
* recharged and re-executed before the Rx DMA channel. Due to
* non-deterministic IRQ-handler execution latency the DMA Tx channel will
* start pushing data to the SPI bus before the Rx DMA channel is even
* reinitialized with the next inbound SG list entry. By doing so the DMA Tx
* channel will implicitly start filling the DW APB SSI Rx FIFO up, which while
* the DMA Rx channel being recharged and re-executed will eventually be
* overflown.
*
* In order to solve the problem we have to feed the DMA engine with SG list
* entries one-by-one. It shall keep the DW APB SSI Tx and Rx FIFOs
* synchronized and prevent the Rx FIFO overflow. Since in general the tx_sg
* and rx_sg lists may have different number of entries of different lengths
* (though total length should match) let's virtually split the SG-lists to the
* set of DMA transfers, which length is a minimum of the ordered SG-entries
* lengths. An ASCII-sketch of the implemented algo is following:
* xfer->len
* |___________|
* tx_sg list: |___|____|__|
* rx_sg list: |_|____|____|
* DMA transfers: |_|_|__|_|__|
*
* Note in order to have this workaround solving the denoted problem the DMA
* engine driver should properly initialize the max_sg_burst capability and set
* the DMA device max segment size parameter with maximum data block size the
* DMA engine supports.
*/
static int dw_spi_dma_transfer_one(struct dw_spi *dws,
<------><------><------><------> struct spi_transfer *xfer)
{
<------>struct scatterlist *tx_sg = NULL, *rx_sg = NULL, tx_tmp, rx_tmp;
<------>unsigned int tx_len = 0, rx_len = 0;
<------>unsigned int base, len;
<------>int ret;
<------>sg_init_table(&tx_tmp, 1);
<------>sg_init_table(&rx_tmp, 1);
<------>for (base = 0, len = 0; base < xfer->len; base += len) {
<------><------>/* Fetch next Tx DMA data chunk */
<------><------>if (!tx_len) {
<------><------><------>tx_sg = !tx_sg ? &xfer->tx_sg.sgl[0] : sg_next(tx_sg);
<------><------><------>sg_dma_address(&tx_tmp) = sg_dma_address(tx_sg);
<------><------><------>tx_len = sg_dma_len(tx_sg);
<------><------>}
<------><------>/* Fetch next Rx DMA data chunk */
<------><------>if (!rx_len) {
<------><------><------>rx_sg = !rx_sg ? &xfer->rx_sg.sgl[0] : sg_next(rx_sg);
<------><------><------>sg_dma_address(&rx_tmp) = sg_dma_address(rx_sg);
<------><------><------>rx_len = sg_dma_len(rx_sg);
<------><------>}
<------><------>len = min(tx_len, rx_len);
<------><------>sg_dma_len(&tx_tmp) = len;
<------><------>sg_dma_len(&rx_tmp) = len;
<------><------>/* Submit DMA Tx transfer */
<------><------>ret = dw_spi_dma_submit_tx(dws, &tx_tmp, 1);
<------><------>if (ret)
<------><------><------>break;
<------><------>/* Submit DMA Rx transfer */
<------><------>ret = dw_spi_dma_submit_rx(dws, &rx_tmp, 1);
<------><------>if (ret)
<------><------><------>break;
<------><------>/* Rx must be started before Tx due to SPI instinct */
<------><------>dma_async_issue_pending(dws->rxchan);
<------><------>dma_async_issue_pending(dws->txchan);
<------><------>/*
<------><------> * Here we only need to wait for the DMA transfer to be
<------><------> * finished since SPI controller is kept enabled during the
<------><------> * procedure this loop implements and there is no risk to lose
<------><------> * data left in the Tx/Rx FIFOs.
<------><------> */
<------><------>ret = dw_spi_dma_wait(dws, len, xfer->effective_speed_hz);
<------><------>if (ret)
<------><------><------>break;
<------><------>reinit_completion(&dws->dma_completion);
<------><------>sg_dma_address(&tx_tmp) += len;
<------><------>sg_dma_address(&rx_tmp) += len;
<------><------>tx_len -= len;
<------><------>rx_len -= len;
<------>}
<------>dw_writel(dws, DW_SPI_DMACR, 0);
<------>return ret;
}
static int dw_spi_dma_transfer(struct dw_spi *dws, struct spi_transfer *xfer)
{
<------>unsigned int nents;
<------>int ret;
<------>nents = max(xfer->tx_sg.nents, xfer->rx_sg.nents);
<------>/*
<------> * Execute normal DMA-based transfer (which submits the Rx and Tx SG
<------> * lists directly to the DMA engine at once) if either full hardware
<------> * accelerated SG list traverse is supported by both channels, or the
<------> * Tx-only SPI transfer is requested, or the DMA engine is capable to
<------> * handle both SG lists on hardware accelerated basis.
<------> */
<------>if (!dws->dma_sg_burst || !xfer->rx_buf || nents <= dws->dma_sg_burst)
<------><------>ret = dw_spi_dma_transfer_all(dws, xfer);
<------>else
<------><------>ret = dw_spi_dma_transfer_one(dws, xfer);
<------>if (ret)
<------><------>return ret;
<------>if (dws->master->cur_msg->status == -EINPROGRESS) {
<------><------>ret = dw_spi_dma_wait_tx_done(dws, xfer);
<------><------>if (ret)
<------><------><------>return ret;
<------>}
<------>if (xfer->rx_buf && dws->master->cur_msg->status == -EINPROGRESS)
<------><------>ret = dw_spi_dma_wait_rx_done(dws);
<------>return ret;
}
static void dw_spi_dma_stop(struct dw_spi *dws)
{
<------>if (test_bit(TX_BUSY, &dws->dma_chan_busy)) {
<------><------>dmaengine_terminate_sync(dws->txchan);
<------><------>clear_bit(TX_BUSY, &dws->dma_chan_busy);
<------>}
<------>if (test_bit(RX_BUSY, &dws->dma_chan_busy)) {
<------><------>dmaengine_terminate_sync(dws->rxchan);
<------><------>clear_bit(RX_BUSY, &dws->dma_chan_busy);
<------>}
}
static const struct dw_spi_dma_ops dw_spi_dma_mfld_ops = {
<------>.dma_init = dw_spi_dma_init_mfld,
<------>.dma_exit = dw_spi_dma_exit,
<------>.dma_setup = dw_spi_dma_setup,
<------>.can_dma = dw_spi_can_dma,
<------>.dma_transfer = dw_spi_dma_transfer,
<------>.dma_stop = dw_spi_dma_stop,
};
void dw_spi_dma_setup_mfld(struct dw_spi *dws)
{
<------>dws->dma_ops = &dw_spi_dma_mfld_ops;
}
EXPORT_SYMBOL_GPL(dw_spi_dma_setup_mfld);
static const struct dw_spi_dma_ops dw_spi_dma_generic_ops = {
<------>.dma_init = dw_spi_dma_init_generic,
<------>.dma_exit = dw_spi_dma_exit,
<------>.dma_setup = dw_spi_dma_setup,
<------>.can_dma = dw_spi_can_dma,
<------>.dma_transfer = dw_spi_dma_transfer,
<------>.dma_stop = dw_spi_dma_stop,
};
void dw_spi_dma_setup_generic(struct dw_spi *dws)
{
<------>dws->dma_ops = &dw_spi_dma_generic_ops;
}
EXPORT_SYMBOL_GPL(dw_spi_dma_setup_generic);