Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    1) // SPDX-License-Identifier: GPL-2.0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    3)  * Copyright (c) 2013-2015, The Linux Foundation. All rights reserved.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    4)  * Copyright (c) 2019, Linaro Limited
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    5)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    6) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    7) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    8) #include <linux/err.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    9) #include <linux/debugfs.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   10) #include <linux/string.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   11) #include <linux/kernel.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   12) #include <linux/list.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   13) #include <linux/init.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   14) #include <linux/io.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   15) #include <linux/bitops.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   16) #include <linux/slab.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   17) #include <linux/of.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   18) #include <linux/of_device.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   19) #include <linux/platform_device.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   20) #include <linux/pm_domain.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   21) #include <linux/pm_opp.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   22) #include <linux/interrupt.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   23) #include <linux/regmap.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   24) #include <linux/mfd/syscon.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   25) #include <linux/regulator/consumer.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   26) #include <linux/clk.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   27) #include <linux/nvmem-consumer.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   28) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   29) /* Register Offsets for RB-CPR and Bit Definitions */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   30) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   31) /* RBCPR Version Register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   32) #define REG_RBCPR_VERSION		0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   33) #define RBCPR_VER_2			0x02
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   34) #define FLAGS_IGNORE_1ST_IRQ_STATUS	BIT(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   35) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   36) /* RBCPR Gate Count and Target Registers */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   37) #define REG_RBCPR_GCNT_TARGET(n)	(0x60 + 4 * (n))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   38) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   39) #define RBCPR_GCNT_TARGET_TARGET_SHIFT	0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   40) #define RBCPR_GCNT_TARGET_TARGET_MASK	GENMASK(11, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   41) #define RBCPR_GCNT_TARGET_GCNT_SHIFT	12
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   42) #define RBCPR_GCNT_TARGET_GCNT_MASK	GENMASK(9, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   43) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   44) /* RBCPR Timer Control */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   45) #define REG_RBCPR_TIMER_INTERVAL	0x44
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   46) #define REG_RBIF_TIMER_ADJUST		0x4c
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   47) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   48) #define RBIF_TIMER_ADJ_CONS_UP_MASK	GENMASK(3, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   49) #define RBIF_TIMER_ADJ_CONS_UP_SHIFT	0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   50) #define RBIF_TIMER_ADJ_CONS_DOWN_MASK	GENMASK(3, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   51) #define RBIF_TIMER_ADJ_CONS_DOWN_SHIFT	4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   52) #define RBIF_TIMER_ADJ_CLAMP_INT_MASK	GENMASK(7, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   53) #define RBIF_TIMER_ADJ_CLAMP_INT_SHIFT	8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   54) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   55) /* RBCPR Config Register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   56) #define REG_RBIF_LIMIT			0x48
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   57) #define RBIF_LIMIT_CEILING_MASK		GENMASK(5, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   58) #define RBIF_LIMIT_CEILING_SHIFT	6
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   59) #define RBIF_LIMIT_FLOOR_BITS		6
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   60) #define RBIF_LIMIT_FLOOR_MASK		GENMASK(5, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   61) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   62) #define RBIF_LIMIT_CEILING_DEFAULT	RBIF_LIMIT_CEILING_MASK
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   63) #define RBIF_LIMIT_FLOOR_DEFAULT	0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   64) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   65) #define REG_RBIF_SW_VLEVEL		0x94
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   66) #define RBIF_SW_VLEVEL_DEFAULT		0x20
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   67) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   68) #define REG_RBCPR_STEP_QUOT		0x80
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   69) #define RBCPR_STEP_QUOT_STEPQUOT_MASK	GENMASK(7, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   70) #define RBCPR_STEP_QUOT_IDLE_CLK_MASK	GENMASK(3, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   71) #define RBCPR_STEP_QUOT_IDLE_CLK_SHIFT	8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   72) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   73) /* RBCPR Control Register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   74) #define REG_RBCPR_CTL			0x90
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   75) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   76) #define RBCPR_CTL_LOOP_EN			BIT(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   77) #define RBCPR_CTL_TIMER_EN			BIT(3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   78) #define RBCPR_CTL_SW_AUTO_CONT_ACK_EN		BIT(5)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   79) #define RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN	BIT(6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   80) #define RBCPR_CTL_COUNT_MODE			BIT(10)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   81) #define RBCPR_CTL_UP_THRESHOLD_MASK	GENMASK(3, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   82) #define RBCPR_CTL_UP_THRESHOLD_SHIFT	24
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   83) #define RBCPR_CTL_DN_THRESHOLD_MASK	GENMASK(3, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   84) #define RBCPR_CTL_DN_THRESHOLD_SHIFT	28
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   85) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   86) /* RBCPR Ack/Nack Response */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   87) #define REG_RBIF_CONT_ACK_CMD		0x98
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   88) #define REG_RBIF_CONT_NACK_CMD		0x9c
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   89) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   90) /* RBCPR Result status Register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   91) #define REG_RBCPR_RESULT_0		0xa0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   92) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   93) #define RBCPR_RESULT0_BUSY_SHIFT	19
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   94) #define RBCPR_RESULT0_BUSY_MASK		BIT(RBCPR_RESULT0_BUSY_SHIFT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   95) #define RBCPR_RESULT0_ERROR_LT0_SHIFT	18
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   96) #define RBCPR_RESULT0_ERROR_SHIFT	6
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   97) #define RBCPR_RESULT0_ERROR_MASK	GENMASK(11, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   98) #define RBCPR_RESULT0_ERROR_STEPS_SHIFT	2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   99) #define RBCPR_RESULT0_ERROR_STEPS_MASK	GENMASK(3, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  100) #define RBCPR_RESULT0_STEP_UP_SHIFT	1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  101) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  102) /* RBCPR Interrupt Control Register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  103) #define REG_RBIF_IRQ_EN(n)		(0x100 + 4 * (n))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  104) #define REG_RBIF_IRQ_CLEAR		0x110
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  105) #define REG_RBIF_IRQ_STATUS		0x114
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  106) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  107) #define CPR_INT_DONE		BIT(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  108) #define CPR_INT_MIN		BIT(1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  109) #define CPR_INT_DOWN		BIT(2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  110) #define CPR_INT_MID		BIT(3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  111) #define CPR_INT_UP		BIT(4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  112) #define CPR_INT_MAX		BIT(5)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  113) #define CPR_INT_CLAMP		BIT(6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  114) #define CPR_INT_ALL	(CPR_INT_DONE | CPR_INT_MIN | CPR_INT_DOWN | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  115) 			CPR_INT_MID | CPR_INT_UP | CPR_INT_MAX | CPR_INT_CLAMP)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  116) #define CPR_INT_DEFAULT	(CPR_INT_UP | CPR_INT_DOWN)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  117) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  118) #define CPR_NUM_RING_OSC	8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  119) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  120) /* CPR eFuse parameters */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  121) #define CPR_FUSE_TARGET_QUOT_BITS_MASK	GENMASK(11, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  122) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  123) #define CPR_FUSE_MIN_QUOT_DIFF		50
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  124) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  125) #define FUSE_REVISION_UNKNOWN		(-1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  126) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  127) enum voltage_change_dir {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  128) 	NO_CHANGE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  129) 	DOWN,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  130) 	UP,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  131) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  132) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  133) struct cpr_fuse {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  134) 	char *ring_osc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  135) 	char *init_voltage;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  136) 	char *quotient;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  137) 	char *quotient_offset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  138) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  139) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  140) struct fuse_corner_data {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  141) 	int ref_uV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  142) 	int max_uV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  143) 	int min_uV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  144) 	int max_volt_scale;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  145) 	int max_quot_scale;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  146) 	/* fuse quot */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  147) 	int quot_offset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  148) 	int quot_scale;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  149) 	int quot_adjust;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  150) 	/* fuse quot_offset */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  151) 	int quot_offset_scale;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  152) 	int quot_offset_adjust;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  153) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  154) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  155) struct cpr_fuses {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  156) 	int init_voltage_step;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  157) 	int init_voltage_width;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  158) 	struct fuse_corner_data *fuse_corner_data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  159) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  160) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  161) struct corner_data {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  162) 	unsigned int fuse_corner;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  163) 	unsigned long freq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  164) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  165) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  166) struct cpr_desc {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  167) 	unsigned int num_fuse_corners;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  168) 	int min_diff_quot;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  169) 	int *step_quot;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  170) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  171) 	unsigned int		timer_delay_us;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  172) 	unsigned int		timer_cons_up;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  173) 	unsigned int		timer_cons_down;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  174) 	unsigned int		up_threshold;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  175) 	unsigned int		down_threshold;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  176) 	unsigned int		idle_clocks;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  177) 	unsigned int		gcnt_us;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  178) 	unsigned int		vdd_apc_step_up_limit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  179) 	unsigned int		vdd_apc_step_down_limit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  180) 	unsigned int		clamp_timer_interval;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  181) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  182) 	struct cpr_fuses cpr_fuses;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  183) 	bool reduce_to_fuse_uV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  184) 	bool reduce_to_corner_uV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  185) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  186) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  187) struct acc_desc {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  188) 	unsigned int	enable_reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  189) 	u32		enable_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  190) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  191) 	struct reg_sequence	*config;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  192) 	struct reg_sequence	*settings;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  193) 	int			num_regs_per_fuse;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  194) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  195) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  196) struct cpr_acc_desc {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  197) 	const struct cpr_desc *cpr_desc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  198) 	const struct acc_desc *acc_desc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  199) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  200) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  201) struct fuse_corner {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  202) 	int min_uV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  203) 	int max_uV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  204) 	int uV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  205) 	int quot;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  206) 	int step_quot;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  207) 	const struct reg_sequence *accs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  208) 	int num_accs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  209) 	unsigned long max_freq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  210) 	u8 ring_osc_idx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  211) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  212) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  213) struct corner {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  214) 	int min_uV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  215) 	int max_uV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  216) 	int uV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  217) 	int last_uV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  218) 	int quot_adjust;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  219) 	u32 save_ctl;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  220) 	u32 save_irq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  221) 	unsigned long freq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  222) 	struct fuse_corner *fuse_corner;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  223) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  224) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  225) struct cpr_drv {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  226) 	unsigned int		num_corners;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  227) 	unsigned int		ref_clk_khz;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  228) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  229) 	struct generic_pm_domain pd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  230) 	struct device		*dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  231) 	struct device		*attached_cpu_dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  232) 	struct mutex		lock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  233) 	void __iomem		*base;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  234) 	struct corner		*corner;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  235) 	struct regulator	*vdd_apc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  236) 	struct clk		*cpu_clk;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  237) 	struct regmap		*tcsr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  238) 	bool			loop_disabled;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  239) 	u32			gcnt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  240) 	unsigned long		flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  241) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  242) 	struct fuse_corner	*fuse_corners;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  243) 	struct corner		*corners;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  244) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  245) 	const struct cpr_desc *desc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  246) 	const struct acc_desc *acc_desc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  247) 	const struct cpr_fuse *cpr_fuses;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  248) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  249) 	struct dentry *debugfs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  250) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  251) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  252) static bool cpr_is_allowed(struct cpr_drv *drv)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  253) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  254) 	return !drv->loop_disabled;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  255) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  256) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  257) static void cpr_write(struct cpr_drv *drv, u32 offset, u32 value)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  258) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  259) 	writel_relaxed(value, drv->base + offset);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  260) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  261) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  262) static u32 cpr_read(struct cpr_drv *drv, u32 offset)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  263) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  264) 	return readl_relaxed(drv->base + offset);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  265) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  266) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  267) static void
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  268) cpr_masked_write(struct cpr_drv *drv, u32 offset, u32 mask, u32 value)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  269) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  270) 	u32 val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  271) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  272) 	val = readl_relaxed(drv->base + offset);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  273) 	val &= ~mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  274) 	val |= value & mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  275) 	writel_relaxed(val, drv->base + offset);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  276) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  277) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  278) static void cpr_irq_clr(struct cpr_drv *drv)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  279) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  280) 	cpr_write(drv, REG_RBIF_IRQ_CLEAR, CPR_INT_ALL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  281) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  282) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  283) static void cpr_irq_clr_nack(struct cpr_drv *drv)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  284) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  285) 	cpr_irq_clr(drv);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  286) 	cpr_write(drv, REG_RBIF_CONT_NACK_CMD, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  287) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  288) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  289) static void cpr_irq_clr_ack(struct cpr_drv *drv)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  290) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  291) 	cpr_irq_clr(drv);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  292) 	cpr_write(drv, REG_RBIF_CONT_ACK_CMD, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  293) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  294) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  295) static void cpr_irq_set(struct cpr_drv *drv, u32 int_bits)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  296) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  297) 	cpr_write(drv, REG_RBIF_IRQ_EN(0), int_bits);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  298) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  299) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  300) static void cpr_ctl_modify(struct cpr_drv *drv, u32 mask, u32 value)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  301) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  302) 	cpr_masked_write(drv, REG_RBCPR_CTL, mask, value);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  303) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  304) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  305) static void cpr_ctl_enable(struct cpr_drv *drv, struct corner *corner)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  306) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  307) 	u32 val, mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  308) 	const struct cpr_desc *desc = drv->desc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  309) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  310) 	/* Program Consecutive Up & Down */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  311) 	val = desc->timer_cons_down << RBIF_TIMER_ADJ_CONS_DOWN_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  312) 	val |= desc->timer_cons_up << RBIF_TIMER_ADJ_CONS_UP_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  313) 	mask = RBIF_TIMER_ADJ_CONS_UP_MASK | RBIF_TIMER_ADJ_CONS_DOWN_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  314) 	cpr_masked_write(drv, REG_RBIF_TIMER_ADJUST, mask, val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  315) 	cpr_masked_write(drv, REG_RBCPR_CTL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  316) 			 RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  317) 			 RBCPR_CTL_SW_AUTO_CONT_ACK_EN,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  318) 			 corner->save_ctl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  319) 	cpr_irq_set(drv, corner->save_irq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  320) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  321) 	if (cpr_is_allowed(drv) && corner->max_uV > corner->min_uV)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  322) 		val = RBCPR_CTL_LOOP_EN;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  323) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  324) 		val = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  325) 	cpr_ctl_modify(drv, RBCPR_CTL_LOOP_EN, val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  326) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  327) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  328) static void cpr_ctl_disable(struct cpr_drv *drv)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  329) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  330) 	cpr_irq_set(drv, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  331) 	cpr_ctl_modify(drv, RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  332) 		       RBCPR_CTL_SW_AUTO_CONT_ACK_EN, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  333) 	cpr_masked_write(drv, REG_RBIF_TIMER_ADJUST,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  334) 			 RBIF_TIMER_ADJ_CONS_UP_MASK |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  335) 			 RBIF_TIMER_ADJ_CONS_DOWN_MASK, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  336) 	cpr_irq_clr(drv);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  337) 	cpr_write(drv, REG_RBIF_CONT_ACK_CMD, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  338) 	cpr_write(drv, REG_RBIF_CONT_NACK_CMD, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  339) 	cpr_ctl_modify(drv, RBCPR_CTL_LOOP_EN, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  340) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  341) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  342) static bool cpr_ctl_is_enabled(struct cpr_drv *drv)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  343) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  344) 	u32 reg_val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  345) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  346) 	reg_val = cpr_read(drv, REG_RBCPR_CTL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  347) 	return reg_val & RBCPR_CTL_LOOP_EN;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  348) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  349) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  350) static bool cpr_ctl_is_busy(struct cpr_drv *drv)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  351) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  352) 	u32 reg_val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  353) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  354) 	reg_val = cpr_read(drv, REG_RBCPR_RESULT_0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  355) 	return reg_val & RBCPR_RESULT0_BUSY_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  356) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  357) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  358) static void cpr_corner_save(struct cpr_drv *drv, struct corner *corner)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  359) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  360) 	corner->save_ctl = cpr_read(drv, REG_RBCPR_CTL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  361) 	corner->save_irq = cpr_read(drv, REG_RBIF_IRQ_EN(0));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  362) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  363) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  364) static void cpr_corner_restore(struct cpr_drv *drv, struct corner *corner)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  365) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  366) 	u32 gcnt, ctl, irq, ro_sel, step_quot;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  367) 	struct fuse_corner *fuse = corner->fuse_corner;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  368) 	const struct cpr_desc *desc = drv->desc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  369) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  370) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  371) 	ro_sel = fuse->ring_osc_idx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  372) 	gcnt = drv->gcnt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  373) 	gcnt |= fuse->quot - corner->quot_adjust;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  374) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  375) 	/* Program the step quotient and idle clocks */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  376) 	step_quot = desc->idle_clocks << RBCPR_STEP_QUOT_IDLE_CLK_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  377) 	step_quot |= fuse->step_quot & RBCPR_STEP_QUOT_STEPQUOT_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  378) 	cpr_write(drv, REG_RBCPR_STEP_QUOT, step_quot);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  379) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  380) 	/* Clear the target quotient value and gate count of all ROs */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  381) 	for (i = 0; i < CPR_NUM_RING_OSC; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  382) 		cpr_write(drv, REG_RBCPR_GCNT_TARGET(i), 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  383) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  384) 	cpr_write(drv, REG_RBCPR_GCNT_TARGET(ro_sel), gcnt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  385) 	ctl = corner->save_ctl;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  386) 	cpr_write(drv, REG_RBCPR_CTL, ctl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  387) 	irq = corner->save_irq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  388) 	cpr_irq_set(drv, irq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  389) 	dev_dbg(drv->dev, "gcnt = %#08x, ctl = %#08x, irq = %#08x\n", gcnt,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  390) 		ctl, irq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  391) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  392) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  393) static void cpr_set_acc(struct regmap *tcsr, struct fuse_corner *f,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  394) 			struct fuse_corner *end)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  395) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  396) 	if (f == end)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  397) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  398) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  399) 	if (f < end) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  400) 		for (f += 1; f <= end; f++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  401) 			regmap_multi_reg_write(tcsr, f->accs, f->num_accs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  402) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  403) 		for (f -= 1; f >= end; f--)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  404) 			regmap_multi_reg_write(tcsr, f->accs, f->num_accs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  405) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  406) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  407) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  408) static int cpr_pre_voltage(struct cpr_drv *drv,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  409) 			   struct fuse_corner *fuse_corner,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  410) 			   enum voltage_change_dir dir)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  411) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  412) 	struct fuse_corner *prev_fuse_corner = drv->corner->fuse_corner;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  413) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  414) 	if (drv->tcsr && dir == DOWN)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  415) 		cpr_set_acc(drv->tcsr, prev_fuse_corner, fuse_corner);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  416) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  417) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  418) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  419) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  420) static int cpr_post_voltage(struct cpr_drv *drv,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  421) 			    struct fuse_corner *fuse_corner,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  422) 			    enum voltage_change_dir dir)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  423) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  424) 	struct fuse_corner *prev_fuse_corner = drv->corner->fuse_corner;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  425) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  426) 	if (drv->tcsr && dir == UP)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  427) 		cpr_set_acc(drv->tcsr, prev_fuse_corner, fuse_corner);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  428) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  429) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  430) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  431) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  432) static int cpr_scale_voltage(struct cpr_drv *drv, struct corner *corner,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  433) 			     int new_uV, enum voltage_change_dir dir)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  434) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  435) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  436) 	struct fuse_corner *fuse_corner = corner->fuse_corner;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  437) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  438) 	ret = cpr_pre_voltage(drv, fuse_corner, dir);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  439) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  440) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  441) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  442) 	ret = regulator_set_voltage(drv->vdd_apc, new_uV, new_uV);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  443) 	if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  444) 		dev_err_ratelimited(drv->dev, "failed to set apc voltage %d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  445) 				    new_uV);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  446) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  447) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  448) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  449) 	ret = cpr_post_voltage(drv, fuse_corner, dir);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  450) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  451) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  452) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  453) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  454) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  455) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  456) static unsigned int cpr_get_cur_perf_state(struct cpr_drv *drv)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  457) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  458) 	return drv->corner ? drv->corner - drv->corners + 1 : 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  459) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  460) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  461) static int cpr_scale(struct cpr_drv *drv, enum voltage_change_dir dir)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  462) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  463) 	u32 val, error_steps, reg_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  464) 	int last_uV, new_uV, step_uV, ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  465) 	struct corner *corner;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  466) 	const struct cpr_desc *desc = drv->desc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  467) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  468) 	if (dir != UP && dir != DOWN)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  469) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  470) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  471) 	step_uV = regulator_get_linear_step(drv->vdd_apc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  472) 	if (!step_uV)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  473) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  474) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  475) 	corner = drv->corner;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  476) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  477) 	val = cpr_read(drv, REG_RBCPR_RESULT_0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  478) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  479) 	error_steps = val >> RBCPR_RESULT0_ERROR_STEPS_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  480) 	error_steps &= RBCPR_RESULT0_ERROR_STEPS_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  481) 	last_uV = corner->last_uV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  482) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  483) 	if (dir == UP) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  484) 		if (desc->clamp_timer_interval &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  485) 		    error_steps < desc->up_threshold) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  486) 			/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  487) 			 * Handle the case where another measurement started
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  488) 			 * after the interrupt was triggered due to a core
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  489) 			 * exiting from power collapse.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  490) 			 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  491) 			error_steps = max(desc->up_threshold,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  492) 					  desc->vdd_apc_step_up_limit);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  493) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  494) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  495) 		if (last_uV >= corner->max_uV) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  496) 			cpr_irq_clr_nack(drv);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  497) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  498) 			/* Maximize the UP threshold */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  499) 			reg_mask = RBCPR_CTL_UP_THRESHOLD_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  500) 			reg_mask <<= RBCPR_CTL_UP_THRESHOLD_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  501) 			val = reg_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  502) 			cpr_ctl_modify(drv, reg_mask, val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  503) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  504) 			/* Disable UP interrupt */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  505) 			cpr_irq_set(drv, CPR_INT_DEFAULT & ~CPR_INT_UP);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  506) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  507) 			return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  508) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  509) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  510) 		if (error_steps > desc->vdd_apc_step_up_limit)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  511) 			error_steps = desc->vdd_apc_step_up_limit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  512) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  513) 		/* Calculate new voltage */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  514) 		new_uV = last_uV + error_steps * step_uV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  515) 		new_uV = min(new_uV, corner->max_uV);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  516) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  517) 		dev_dbg(drv->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  518) 			"UP: -> new_uV: %d last_uV: %d perf state: %u\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  519) 			new_uV, last_uV, cpr_get_cur_perf_state(drv));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  520) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  521) 		if (desc->clamp_timer_interval &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  522) 		    error_steps < desc->down_threshold) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  523) 			/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  524) 			 * Handle the case where another measurement started
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  525) 			 * after the interrupt was triggered due to a core
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  526) 			 * exiting from power collapse.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  527) 			 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  528) 			error_steps = max(desc->down_threshold,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  529) 					  desc->vdd_apc_step_down_limit);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  530) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  531) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  532) 		if (last_uV <= corner->min_uV) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  533) 			cpr_irq_clr_nack(drv);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  534) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  535) 			/* Enable auto nack down */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  536) 			reg_mask = RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  537) 			val = RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  538) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  539) 			cpr_ctl_modify(drv, reg_mask, val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  540) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  541) 			/* Disable DOWN interrupt */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  542) 			cpr_irq_set(drv, CPR_INT_DEFAULT & ~CPR_INT_DOWN);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  543) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  544) 			return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  545) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  546) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  547) 		if (error_steps > desc->vdd_apc_step_down_limit)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  548) 			error_steps = desc->vdd_apc_step_down_limit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  549) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  550) 		/* Calculate new voltage */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  551) 		new_uV = last_uV - error_steps * step_uV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  552) 		new_uV = max(new_uV, corner->min_uV);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  553) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  554) 		dev_dbg(drv->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  555) 			"DOWN: -> new_uV: %d last_uV: %d perf state: %u\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  556) 			new_uV, last_uV, cpr_get_cur_perf_state(drv));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  557) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  558) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  559) 	ret = cpr_scale_voltage(drv, corner, new_uV, dir);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  560) 	if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  561) 		cpr_irq_clr_nack(drv);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  562) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  563) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  564) 	drv->corner->last_uV = new_uV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  565) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  566) 	if (dir == UP) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  567) 		/* Disable auto nack down */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  568) 		reg_mask = RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  569) 		val = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  570) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  571) 		/* Restore default threshold for UP */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  572) 		reg_mask = RBCPR_CTL_UP_THRESHOLD_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  573) 		reg_mask <<= RBCPR_CTL_UP_THRESHOLD_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  574) 		val = desc->up_threshold;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  575) 		val <<= RBCPR_CTL_UP_THRESHOLD_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  576) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  577) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  578) 	cpr_ctl_modify(drv, reg_mask, val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  579) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  580) 	/* Re-enable default interrupts */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  581) 	cpr_irq_set(drv, CPR_INT_DEFAULT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  582) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  583) 	/* Ack */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  584) 	cpr_irq_clr_ack(drv);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  585) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  586) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  587) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  588) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  589) static irqreturn_t cpr_irq_handler(int irq, void *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  590) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  591) 	struct cpr_drv *drv = dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  592) 	const struct cpr_desc *desc = drv->desc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  593) 	irqreturn_t ret = IRQ_HANDLED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  594) 	u32 val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  595) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  596) 	mutex_lock(&drv->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  597) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  598) 	val = cpr_read(drv, REG_RBIF_IRQ_STATUS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  599) 	if (drv->flags & FLAGS_IGNORE_1ST_IRQ_STATUS)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  600) 		val = cpr_read(drv, REG_RBIF_IRQ_STATUS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  601) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  602) 	dev_dbg(drv->dev, "IRQ_STATUS = %#02x\n", val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  603) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  604) 	if (!cpr_ctl_is_enabled(drv)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  605) 		dev_dbg(drv->dev, "CPR is disabled\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  606) 		ret = IRQ_NONE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  607) 	} else if (cpr_ctl_is_busy(drv) && !desc->clamp_timer_interval) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  608) 		dev_dbg(drv->dev, "CPR measurement is not ready\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  609) 	} else if (!cpr_is_allowed(drv)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  610) 		val = cpr_read(drv, REG_RBCPR_CTL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  611) 		dev_err_ratelimited(drv->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  612) 				    "Interrupt broken? RBCPR_CTL = %#02x\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  613) 				    val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  614) 		ret = IRQ_NONE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  615) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  616) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  617) 		 * Following sequence of handling is as per each IRQ's
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  618) 		 * priority
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  619) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  620) 		if (val & CPR_INT_UP) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  621) 			cpr_scale(drv, UP);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  622) 		} else if (val & CPR_INT_DOWN) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  623) 			cpr_scale(drv, DOWN);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  624) 		} else if (val & CPR_INT_MIN) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  625) 			cpr_irq_clr_nack(drv);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  626) 		} else if (val & CPR_INT_MAX) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  627) 			cpr_irq_clr_nack(drv);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  628) 		} else if (val & CPR_INT_MID) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  629) 			/* RBCPR_CTL_SW_AUTO_CONT_ACK_EN is enabled */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  630) 			dev_dbg(drv->dev, "IRQ occurred for Mid Flag\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  631) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  632) 			dev_dbg(drv->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  633) 				"IRQ occurred for unknown flag (%#08x)\n", val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  634) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  635) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  636) 		/* Save register values for the corner */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  637) 		cpr_corner_save(drv, drv->corner);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  638) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  639) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  640) 	mutex_unlock(&drv->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  641) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  642) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  643) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  644) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  645) static int cpr_enable(struct cpr_drv *drv)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  646) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  647) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  648) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  649) 	ret = regulator_enable(drv->vdd_apc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  650) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  651) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  652) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  653) 	mutex_lock(&drv->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  654) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  655) 	if (cpr_is_allowed(drv) && drv->corner) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  656) 		cpr_irq_clr(drv);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  657) 		cpr_corner_restore(drv, drv->corner);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  658) 		cpr_ctl_enable(drv, drv->corner);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  659) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  660) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  661) 	mutex_unlock(&drv->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  662) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  663) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  664) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  665) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  666) static int cpr_disable(struct cpr_drv *drv)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  667) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  668) 	mutex_lock(&drv->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  669) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  670) 	if (cpr_is_allowed(drv)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  671) 		cpr_ctl_disable(drv);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  672) 		cpr_irq_clr(drv);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  673) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  674) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  675) 	mutex_unlock(&drv->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  676) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  677) 	return regulator_disable(drv->vdd_apc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  678) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  679) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  680) static int cpr_config(struct cpr_drv *drv)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  681) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  682) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  683) 	u32 val, gcnt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  684) 	struct corner *corner;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  685) 	const struct cpr_desc *desc = drv->desc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  686) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  687) 	/* Disable interrupt and CPR */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  688) 	cpr_write(drv, REG_RBIF_IRQ_EN(0), 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  689) 	cpr_write(drv, REG_RBCPR_CTL, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  690) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  691) 	/* Program the default HW ceiling, floor and vlevel */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  692) 	val = (RBIF_LIMIT_CEILING_DEFAULT & RBIF_LIMIT_CEILING_MASK)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  693) 		<< RBIF_LIMIT_CEILING_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  694) 	val |= RBIF_LIMIT_FLOOR_DEFAULT & RBIF_LIMIT_FLOOR_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  695) 	cpr_write(drv, REG_RBIF_LIMIT, val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  696) 	cpr_write(drv, REG_RBIF_SW_VLEVEL, RBIF_SW_VLEVEL_DEFAULT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  697) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  698) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  699) 	 * Clear the target quotient value and gate count of all
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  700) 	 * ring oscillators
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  701) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  702) 	for (i = 0; i < CPR_NUM_RING_OSC; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  703) 		cpr_write(drv, REG_RBCPR_GCNT_TARGET(i), 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  704) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  705) 	/* Init and save gcnt */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  706) 	gcnt = (drv->ref_clk_khz * desc->gcnt_us) / 1000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  707) 	gcnt = gcnt & RBCPR_GCNT_TARGET_GCNT_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  708) 	gcnt <<= RBCPR_GCNT_TARGET_GCNT_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  709) 	drv->gcnt = gcnt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  710) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  711) 	/* Program the delay count for the timer */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  712) 	val = (drv->ref_clk_khz * desc->timer_delay_us) / 1000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  713) 	cpr_write(drv, REG_RBCPR_TIMER_INTERVAL, val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  714) 	dev_dbg(drv->dev, "Timer count: %#0x (for %d us)\n", val,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  715) 		desc->timer_delay_us);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  716) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  717) 	/* Program Consecutive Up & Down */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  718) 	val = desc->timer_cons_down << RBIF_TIMER_ADJ_CONS_DOWN_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  719) 	val |= desc->timer_cons_up << RBIF_TIMER_ADJ_CONS_UP_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  720) 	val |= desc->clamp_timer_interval << RBIF_TIMER_ADJ_CLAMP_INT_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  721) 	cpr_write(drv, REG_RBIF_TIMER_ADJUST, val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  722) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  723) 	/* Program the control register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  724) 	val = desc->up_threshold << RBCPR_CTL_UP_THRESHOLD_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  725) 	val |= desc->down_threshold << RBCPR_CTL_DN_THRESHOLD_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  726) 	val |= RBCPR_CTL_TIMER_EN | RBCPR_CTL_COUNT_MODE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  727) 	val |= RBCPR_CTL_SW_AUTO_CONT_ACK_EN;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  728) 	cpr_write(drv, REG_RBCPR_CTL, val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  729) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  730) 	for (i = 0; i < drv->num_corners; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  731) 		corner = &drv->corners[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  732) 		corner->save_ctl = val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  733) 		corner->save_irq = CPR_INT_DEFAULT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  734) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  735) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  736) 	cpr_irq_set(drv, CPR_INT_DEFAULT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  737) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  738) 	val = cpr_read(drv, REG_RBCPR_VERSION);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  739) 	if (val <= RBCPR_VER_2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  740) 		drv->flags |= FLAGS_IGNORE_1ST_IRQ_STATUS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  741) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  742) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  743) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  744) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  745) static int cpr_set_performance_state(struct generic_pm_domain *domain,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  746) 				     unsigned int state)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  747) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  748) 	struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  749) 	struct corner *corner, *end;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  750) 	enum voltage_change_dir dir;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  751) 	int ret = 0, new_uV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  752) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  753) 	mutex_lock(&drv->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  754) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  755) 	dev_dbg(drv->dev, "%s: setting perf state: %u (prev state: %u)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  756) 		__func__, state, cpr_get_cur_perf_state(drv));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  757) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  758) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  759) 	 * Determine new corner we're going to.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  760) 	 * Remove one since lowest performance state is 1.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  761) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  762) 	corner = drv->corners + state - 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  763) 	end = &drv->corners[drv->num_corners - 1];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  764) 	if (corner > end || corner < drv->corners) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  765) 		ret = -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  766) 		goto unlock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  767) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  768) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  769) 	/* Determine direction */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  770) 	if (drv->corner > corner)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  771) 		dir = DOWN;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  772) 	else if (drv->corner < corner)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  773) 		dir = UP;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  774) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  775) 		dir = NO_CHANGE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  776) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  777) 	if (cpr_is_allowed(drv))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  778) 		new_uV = corner->last_uV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  779) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  780) 		new_uV = corner->uV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  781) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  782) 	if (cpr_is_allowed(drv))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  783) 		cpr_ctl_disable(drv);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  784) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  785) 	ret = cpr_scale_voltage(drv, corner, new_uV, dir);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  786) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  787) 		goto unlock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  788) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  789) 	if (cpr_is_allowed(drv)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  790) 		cpr_irq_clr(drv);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  791) 		if (drv->corner != corner)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  792) 			cpr_corner_restore(drv, corner);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  793) 		cpr_ctl_enable(drv, corner);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  794) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  795) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  796) 	drv->corner = corner;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  797) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  798) unlock:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  799) 	mutex_unlock(&drv->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  800) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  801) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  802) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  803) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  804) static int cpr_read_efuse(struct device *dev, const char *cname, u32 *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  805) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  806) 	struct nvmem_cell *cell;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  807) 	ssize_t len;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  808) 	char *ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  809) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  810) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  811) 	*data = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  812) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  813) 	cell = nvmem_cell_get(dev, cname);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  814) 	if (IS_ERR(cell)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  815) 		if (PTR_ERR(cell) != -EPROBE_DEFER)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  816) 			dev_err(dev, "undefined cell %s\n", cname);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  817) 		return PTR_ERR(cell);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  818) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  819) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  820) 	ret = nvmem_cell_read(cell, &len);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  821) 	nvmem_cell_put(cell);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  822) 	if (IS_ERR(ret)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  823) 		dev_err(dev, "can't read cell %s\n", cname);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  824) 		return PTR_ERR(ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  825) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  826) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  827) 	for (i = 0; i < len; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  828) 		*data |= ret[i] << (8 * i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  829) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  830) 	kfree(ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  831) 	dev_dbg(dev, "efuse read(%s) = %x, bytes %zd\n", cname, *data, len);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  832) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  833) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  834) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  835) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  836) static int
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  837) cpr_populate_ring_osc_idx(struct cpr_drv *drv)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  838) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  839) 	struct fuse_corner *fuse = drv->fuse_corners;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  840) 	struct fuse_corner *end = fuse + drv->desc->num_fuse_corners;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  841) 	const struct cpr_fuse *fuses = drv->cpr_fuses;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  842) 	u32 data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  843) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  844) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  845) 	for (; fuse < end; fuse++, fuses++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  846) 		ret = cpr_read_efuse(drv->dev, fuses->ring_osc,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  847) 				     &data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  848) 		if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  849) 			return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  850) 		fuse->ring_osc_idx = data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  851) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  852) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  853) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  854) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  855) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  856) static int cpr_read_fuse_uV(const struct cpr_desc *desc,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  857) 			    const struct fuse_corner_data *fdata,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  858) 			    const char *init_v_efuse,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  859) 			    int step_volt,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  860) 			    struct cpr_drv *drv)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  861) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  862) 	int step_size_uV, steps, uV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  863) 	u32 bits = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  864) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  865) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  866) 	ret = cpr_read_efuse(drv->dev, init_v_efuse, &bits);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  867) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  868) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  869) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  870) 	steps = bits & ~BIT(desc->cpr_fuses.init_voltage_width - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  871) 	/* Not two's complement.. instead highest bit is sign bit */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  872) 	if (bits & BIT(desc->cpr_fuses.init_voltage_width - 1))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  873) 		steps = -steps;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  874) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  875) 	step_size_uV = desc->cpr_fuses.init_voltage_step;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  876) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  877) 	uV = fdata->ref_uV + steps * step_size_uV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  878) 	return DIV_ROUND_UP(uV, step_volt) * step_volt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  879) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  880) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  881) static int cpr_fuse_corner_init(struct cpr_drv *drv)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  882) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  883) 	const struct cpr_desc *desc = drv->desc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  884) 	const struct cpr_fuse *fuses = drv->cpr_fuses;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  885) 	const struct acc_desc *acc_desc = drv->acc_desc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  886) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  887) 	unsigned int step_volt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  888) 	struct fuse_corner_data *fdata;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  889) 	struct fuse_corner *fuse, *end;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  890) 	int uV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  891) 	const struct reg_sequence *accs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  892) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  893) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  894) 	accs = acc_desc->settings;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  895) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  896) 	step_volt = regulator_get_linear_step(drv->vdd_apc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  897) 	if (!step_volt)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  898) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  899) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  900) 	/* Populate fuse_corner members */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  901) 	fuse = drv->fuse_corners;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  902) 	end = &fuse[desc->num_fuse_corners - 1];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  903) 	fdata = desc->cpr_fuses.fuse_corner_data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  904) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  905) 	for (i = 0; fuse <= end; fuse++, fuses++, i++, fdata++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  906) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  907) 		 * Update SoC voltages: platforms might choose a different
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  908) 		 * regulators than the one used to characterize the algorithms
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  909) 		 * (ie, init_voltage_step).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  910) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  911) 		fdata->min_uV = roundup(fdata->min_uV, step_volt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  912) 		fdata->max_uV = roundup(fdata->max_uV, step_volt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  913) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  914) 		/* Populate uV */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  915) 		uV = cpr_read_fuse_uV(desc, fdata, fuses->init_voltage,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  916) 				      step_volt, drv);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  917) 		if (uV < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  918) 			return uV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  919) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  920) 		fuse->min_uV = fdata->min_uV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  921) 		fuse->max_uV = fdata->max_uV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  922) 		fuse->uV = clamp(uV, fuse->min_uV, fuse->max_uV);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  923) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  924) 		if (fuse == end) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  925) 			/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  926) 			 * Allow the highest fuse corner's PVS voltage to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  927) 			 * define the ceiling voltage for that corner in order
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  928) 			 * to support SoC's in which variable ceiling values
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  929) 			 * are required.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  930) 			 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  931) 			end->max_uV = max(end->max_uV, end->uV);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  932) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  933) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  934) 		/* Populate target quotient by scaling */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  935) 		ret = cpr_read_efuse(drv->dev, fuses->quotient, &fuse->quot);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  936) 		if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  937) 			return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  938) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  939) 		fuse->quot *= fdata->quot_scale;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  940) 		fuse->quot += fdata->quot_offset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  941) 		fuse->quot += fdata->quot_adjust;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  942) 		fuse->step_quot = desc->step_quot[fuse->ring_osc_idx];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  943) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  944) 		/* Populate acc settings */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  945) 		fuse->accs = accs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  946) 		fuse->num_accs = acc_desc->num_regs_per_fuse;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  947) 		accs += acc_desc->num_regs_per_fuse;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  948) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  949) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  950) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  951) 	 * Restrict all fuse corner PVS voltages based upon per corner
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  952) 	 * ceiling and floor voltages.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  953) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  954) 	for (fuse = drv->fuse_corners, i = 0; fuse <= end; fuse++, i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  955) 		if (fuse->uV > fuse->max_uV)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  956) 			fuse->uV = fuse->max_uV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  957) 		else if (fuse->uV < fuse->min_uV)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  958) 			fuse->uV = fuse->min_uV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  959) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  960) 		ret = regulator_is_supported_voltage(drv->vdd_apc,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  961) 						     fuse->min_uV,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  962) 						     fuse->min_uV);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  963) 		if (!ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  964) 			dev_err(drv->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  965) 				"min uV: %d (fuse corner: %d) not supported by regulator\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  966) 				fuse->min_uV, i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  967) 			return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  968) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  969) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  970) 		ret = regulator_is_supported_voltage(drv->vdd_apc,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  971) 						     fuse->max_uV,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  972) 						     fuse->max_uV);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  973) 		if (!ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  974) 			dev_err(drv->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  975) 				"max uV: %d (fuse corner: %d) not supported by regulator\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  976) 				fuse->max_uV, i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  977) 			return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  978) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  979) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  980) 		dev_dbg(drv->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  981) 			"fuse corner %d: [%d %d %d] RO%hhu quot %d squot %d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  982) 			i, fuse->min_uV, fuse->uV, fuse->max_uV,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  983) 			fuse->ring_osc_idx, fuse->quot, fuse->step_quot);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  984) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  985) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  986) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  987) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  988) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  989) static int cpr_calculate_scaling(const char *quot_offset,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  990) 				 struct cpr_drv *drv,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  991) 				 const struct fuse_corner_data *fdata,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  992) 				 const struct corner *corner)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  993) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  994) 	u32 quot_diff = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  995) 	unsigned long freq_diff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  996) 	int scaling;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  997) 	const struct fuse_corner *fuse, *prev_fuse;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  998) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  999) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1000) 	fuse = corner->fuse_corner;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1001) 	prev_fuse = fuse - 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1002) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1003) 	if (quot_offset) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1004) 		ret = cpr_read_efuse(drv->dev, quot_offset, &quot_diff);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1005) 		if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1006) 			return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1007) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1008) 		quot_diff *= fdata->quot_offset_scale;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1009) 		quot_diff += fdata->quot_offset_adjust;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1010) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1011) 		quot_diff = fuse->quot - prev_fuse->quot;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1012) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1013) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1014) 	freq_diff = fuse->max_freq - prev_fuse->max_freq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1015) 	freq_diff /= 1000000; /* Convert to MHz */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1016) 	scaling = 1000 * quot_diff / freq_diff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1017) 	return min(scaling, fdata->max_quot_scale);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1018) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1019) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1020) static int cpr_interpolate(const struct corner *corner, int step_volt,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1021) 			   const struct fuse_corner_data *fdata)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1022) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1023) 	unsigned long f_high, f_low, f_diff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1024) 	int uV_high, uV_low, uV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1025) 	u64 temp, temp_limit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1026) 	const struct fuse_corner *fuse, *prev_fuse;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1027) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1028) 	fuse = corner->fuse_corner;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1029) 	prev_fuse = fuse - 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1030) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1031) 	f_high = fuse->max_freq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1032) 	f_low = prev_fuse->max_freq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1033) 	uV_high = fuse->uV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1034) 	uV_low = prev_fuse->uV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1035) 	f_diff = fuse->max_freq - corner->freq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1036) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1037) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1038) 	 * Don't interpolate in the wrong direction. This could happen
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1039) 	 * if the adjusted fuse voltage overlaps with the previous fuse's
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1040) 	 * adjusted voltage.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1041) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1042) 	if (f_high <= f_low || uV_high <= uV_low || f_high <= corner->freq)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1043) 		return corner->uV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1044) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1045) 	temp = f_diff * (uV_high - uV_low);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1046) 	temp = div64_ul(temp, f_high - f_low);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1047) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1048) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1049) 	 * max_volt_scale has units of uV/MHz while freq values
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1050) 	 * have units of Hz.  Divide by 1000000 to convert to.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1051) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1052) 	temp_limit = f_diff * fdata->max_volt_scale;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1053) 	do_div(temp_limit, 1000000);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1054) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1055) 	uV = uV_high - min(temp, temp_limit);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1056) 	return roundup(uV, step_volt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1057) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1058) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1059) static unsigned int cpr_get_fuse_corner(struct dev_pm_opp *opp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1060) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1061) 	struct device_node *np;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1062) 	unsigned int fuse_corner = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1063) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1064) 	np = dev_pm_opp_get_of_node(opp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1065) 	if (of_property_read_u32(np, "qcom,opp-fuse-level", &fuse_corner))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1066) 		pr_err("%s: missing 'qcom,opp-fuse-level' property\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1067) 		       __func__);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1068) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1069) 	of_node_put(np);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1070) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1071) 	return fuse_corner;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1072) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1073) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1074) static unsigned long cpr_get_opp_hz_for_req(struct dev_pm_opp *ref,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1075) 					    struct device *cpu_dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1076) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1077) 	u64 rate = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1078) 	struct device_node *ref_np;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1079) 	struct device_node *desc_np;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1080) 	struct device_node *child_np = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1081) 	struct device_node *child_req_np = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1082) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1083) 	desc_np = dev_pm_opp_of_get_opp_desc_node(cpu_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1084) 	if (!desc_np)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1085) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1086) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1087) 	ref_np = dev_pm_opp_get_of_node(ref);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1088) 	if (!ref_np)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1089) 		goto out_ref;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1090) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1091) 	do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1092) 		of_node_put(child_req_np);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1093) 		child_np = of_get_next_available_child(desc_np, child_np);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1094) 		child_req_np = of_parse_phandle(child_np, "required-opps", 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1095) 	} while (child_np && child_req_np != ref_np);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1096) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1097) 	if (child_np && child_req_np == ref_np)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1098) 		of_property_read_u64(child_np, "opp-hz", &rate);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1099) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1100) 	of_node_put(child_req_np);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1101) 	of_node_put(child_np);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1102) 	of_node_put(ref_np);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1103) out_ref:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1104) 	of_node_put(desc_np);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1105) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1106) 	return (unsigned long) rate;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1107) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1108) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1109) static int cpr_corner_init(struct cpr_drv *drv)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1110) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1111) 	const struct cpr_desc *desc = drv->desc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1112) 	const struct cpr_fuse *fuses = drv->cpr_fuses;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1113) 	int i, level, scaling = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1114) 	unsigned int fnum, fc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1115) 	const char *quot_offset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1116) 	struct fuse_corner *fuse, *prev_fuse;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1117) 	struct corner *corner, *end;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1118) 	struct corner_data *cdata;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1119) 	const struct fuse_corner_data *fdata;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1120) 	bool apply_scaling;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1121) 	unsigned long freq_diff, freq_diff_mhz;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1122) 	unsigned long freq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1123) 	int step_volt = regulator_get_linear_step(drv->vdd_apc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1124) 	struct dev_pm_opp *opp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1125) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1126) 	if (!step_volt)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1127) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1128) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1129) 	corner = drv->corners;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1130) 	end = &corner[drv->num_corners - 1];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1131) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1132) 	cdata = devm_kcalloc(drv->dev, drv->num_corners,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1133) 			     sizeof(struct corner_data),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1134) 			     GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1135) 	if (!cdata)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1136) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1137) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1138) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1139) 	 * Store maximum frequency for each fuse corner based on the frequency
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1140) 	 * plan
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1141) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1142) 	for (level = 1; level <= drv->num_corners; level++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1143) 		opp = dev_pm_opp_find_level_exact(&drv->pd.dev, level);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1144) 		if (IS_ERR(opp))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1145) 			return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1146) 		fc = cpr_get_fuse_corner(opp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1147) 		if (!fc) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1148) 			dev_pm_opp_put(opp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1149) 			return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1150) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1151) 		fnum = fc - 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1152) 		freq = cpr_get_opp_hz_for_req(opp, drv->attached_cpu_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1153) 		if (!freq) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1154) 			dev_pm_opp_put(opp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1155) 			return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1156) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1157) 		cdata[level - 1].fuse_corner = fnum;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1158) 		cdata[level - 1].freq = freq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1159) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1160) 		fuse = &drv->fuse_corners[fnum];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1161) 		dev_dbg(drv->dev, "freq: %lu level: %u fuse level: %u\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1162) 			freq, dev_pm_opp_get_level(opp) - 1, fnum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1163) 		if (freq > fuse->max_freq)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1164) 			fuse->max_freq = freq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1165) 		dev_pm_opp_put(opp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1166) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1167) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1168) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1169) 	 * Get the quotient adjustment scaling factor, according to:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1170) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1171) 	 * scaling = min(1000 * (QUOT(corner_N) - QUOT(corner_N-1))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1172) 	 *		/ (freq(corner_N) - freq(corner_N-1)), max_factor)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1173) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1174) 	 * QUOT(corner_N):	quotient read from fuse for fuse corner N
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1175) 	 * QUOT(corner_N-1):	quotient read from fuse for fuse corner (N - 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1176) 	 * freq(corner_N):	max frequency in MHz supported by fuse corner N
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1177) 	 * freq(corner_N-1):	max frequency in MHz supported by fuse corner
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1178) 	 *			 (N - 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1179) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1180) 	 * Then walk through the corners mapped to each fuse corner
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1181) 	 * and calculate the quotient adjustment for each one using the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1182) 	 * following formula:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1183) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1184) 	 * quot_adjust = (freq_max - freq_corner) * scaling / 1000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1185) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1186) 	 * freq_max: max frequency in MHz supported by the fuse corner
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1187) 	 * freq_corner: frequency in MHz corresponding to the corner
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1188) 	 * scaling: calculated from above equation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1189) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1190) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1191) 	 *     +                           +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1192) 	 *     |                         v |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1193) 	 *   q |           f c           o |           f c
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1194) 	 *   u |         c               l |         c
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1195) 	 *   o |       f                 t |       f
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1196) 	 *   t |     c                   a |     c
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1197) 	 *     | c f                     g | c f
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1198) 	 *     |                         e |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1199) 	 *     +---------------            +----------------
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1200) 	 *       0 1 2 3 4 5 6               0 1 2 3 4 5 6
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1201) 	 *          corner                      corner
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1202) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1203) 	 *    c = corner
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1204) 	 *    f = fuse corner
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1205) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1206) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1207) 	for (apply_scaling = false, i = 0; corner <= end; corner++, i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1208) 		fnum = cdata[i].fuse_corner;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1209) 		fdata = &desc->cpr_fuses.fuse_corner_data[fnum];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1210) 		quot_offset = fuses[fnum].quotient_offset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1211) 		fuse = &drv->fuse_corners[fnum];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1212) 		if (fnum)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1213) 			prev_fuse = &drv->fuse_corners[fnum - 1];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1214) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1215) 			prev_fuse = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1216) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1217) 		corner->fuse_corner = fuse;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1218) 		corner->freq = cdata[i].freq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1219) 		corner->uV = fuse->uV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1220) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1221) 		if (prev_fuse && cdata[i - 1].freq == prev_fuse->max_freq) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1222) 			scaling = cpr_calculate_scaling(quot_offset, drv,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1223) 							fdata, corner);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1224) 			if (scaling < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1225) 				return scaling;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1226) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1227) 			apply_scaling = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1228) 		} else if (corner->freq == fuse->max_freq) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1229) 			/* This is a fuse corner; don't scale anything */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1230) 			apply_scaling = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1231) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1232) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1233) 		if (apply_scaling) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1234) 			freq_diff = fuse->max_freq - corner->freq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1235) 			freq_diff_mhz = freq_diff / 1000000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1236) 			corner->quot_adjust = scaling * freq_diff_mhz / 1000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1237) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1238) 			corner->uV = cpr_interpolate(corner, step_volt, fdata);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1239) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1240) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1241) 		corner->max_uV = fuse->max_uV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1242) 		corner->min_uV = fuse->min_uV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1243) 		corner->uV = clamp(corner->uV, corner->min_uV, corner->max_uV);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1244) 		corner->last_uV = corner->uV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1245) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1246) 		/* Reduce the ceiling voltage if needed */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1247) 		if (desc->reduce_to_corner_uV && corner->uV < corner->max_uV)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1248) 			corner->max_uV = corner->uV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1249) 		else if (desc->reduce_to_fuse_uV && fuse->uV < corner->max_uV)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1250) 			corner->max_uV = max(corner->min_uV, fuse->uV);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1251) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1252) 		dev_dbg(drv->dev, "corner %d: [%d %d %d] quot %d\n", i,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1253) 			corner->min_uV, corner->uV, corner->max_uV,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1254) 			fuse->quot - corner->quot_adjust);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1255) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1256) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1257) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1258) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1259) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1260) static const struct cpr_fuse *cpr_get_fuses(struct cpr_drv *drv)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1261) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1262) 	const struct cpr_desc *desc = drv->desc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1263) 	struct cpr_fuse *fuses;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1264) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1265) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1266) 	fuses = devm_kcalloc(drv->dev, desc->num_fuse_corners,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1267) 			     sizeof(struct cpr_fuse),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1268) 			     GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1269) 	if (!fuses)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1270) 		return ERR_PTR(-ENOMEM);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1271) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1272) 	for (i = 0; i < desc->num_fuse_corners; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1273) 		char tbuf[32];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1274) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1275) 		snprintf(tbuf, 32, "cpr_ring_osc%d", i + 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1276) 		fuses[i].ring_osc = devm_kstrdup(drv->dev, tbuf, GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1277) 		if (!fuses[i].ring_osc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1278) 			return ERR_PTR(-ENOMEM);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1279) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1280) 		snprintf(tbuf, 32, "cpr_init_voltage%d", i + 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1281) 		fuses[i].init_voltage = devm_kstrdup(drv->dev, tbuf,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1282) 						     GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1283) 		if (!fuses[i].init_voltage)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1284) 			return ERR_PTR(-ENOMEM);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1285) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1286) 		snprintf(tbuf, 32, "cpr_quotient%d", i + 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1287) 		fuses[i].quotient = devm_kstrdup(drv->dev, tbuf, GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1288) 		if (!fuses[i].quotient)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1289) 			return ERR_PTR(-ENOMEM);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1290) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1291) 		snprintf(tbuf, 32, "cpr_quotient_offset%d", i + 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1292) 		fuses[i].quotient_offset = devm_kstrdup(drv->dev, tbuf,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1293) 							GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1294) 		if (!fuses[i].quotient_offset)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1295) 			return ERR_PTR(-ENOMEM);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1296) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1297) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1298) 	return fuses;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1299) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1300) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1301) static void cpr_set_loop_allowed(struct cpr_drv *drv)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1302) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1303) 	drv->loop_disabled = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1304) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1305) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1306) static int cpr_init_parameters(struct cpr_drv *drv)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1307) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1308) 	const struct cpr_desc *desc = drv->desc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1309) 	struct clk *clk;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1310) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1311) 	clk = clk_get(drv->dev, "ref");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1312) 	if (IS_ERR(clk))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1313) 		return PTR_ERR(clk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1314) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1315) 	drv->ref_clk_khz = clk_get_rate(clk) / 1000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1316) 	clk_put(clk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1317) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1318) 	if (desc->timer_cons_up > RBIF_TIMER_ADJ_CONS_UP_MASK ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1319) 	    desc->timer_cons_down > RBIF_TIMER_ADJ_CONS_DOWN_MASK ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1320) 	    desc->up_threshold > RBCPR_CTL_UP_THRESHOLD_MASK ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1321) 	    desc->down_threshold > RBCPR_CTL_DN_THRESHOLD_MASK ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1322) 	    desc->idle_clocks > RBCPR_STEP_QUOT_IDLE_CLK_MASK ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1323) 	    desc->clamp_timer_interval > RBIF_TIMER_ADJ_CLAMP_INT_MASK)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1324) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1325) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1326) 	dev_dbg(drv->dev, "up threshold = %u, down threshold = %u\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1327) 		desc->up_threshold, desc->down_threshold);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1328) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1329) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1330) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1331) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1332) static int cpr_find_initial_corner(struct cpr_drv *drv)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1333) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1334) 	unsigned long rate;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1335) 	const struct corner *end;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1336) 	struct corner *iter;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1337) 	unsigned int i = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1338) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1339) 	if (!drv->cpu_clk) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1340) 		dev_err(drv->dev, "cannot get rate from NULL clk\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1341) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1342) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1343) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1344) 	end = &drv->corners[drv->num_corners - 1];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1345) 	rate = clk_get_rate(drv->cpu_clk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1346) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1347) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1348) 	 * Some bootloaders set a CPU clock frequency that is not defined
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1349) 	 * in the OPP table. When running at an unlisted frequency,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1350) 	 * cpufreq_online() will change to the OPP which has the lowest
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1351) 	 * frequency, at or above the unlisted frequency.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1352) 	 * Since cpufreq_online() always "rounds up" in the case of an
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1353) 	 * unlisted frequency, this function always "rounds down" in case
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1354) 	 * of an unlisted frequency. That way, when cpufreq_online()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1355) 	 * triggers the first ever call to cpr_set_performance_state(),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1356) 	 * it will correctly determine the direction as UP.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1357) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1358) 	for (iter = drv->corners; iter <= end; iter++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1359) 		if (iter->freq > rate)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1360) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1361) 		i++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1362) 		if (iter->freq == rate) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1363) 			drv->corner = iter;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1364) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1365) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1366) 		if (iter->freq < rate)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1367) 			drv->corner = iter;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1368) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1369) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1370) 	if (!drv->corner) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1371) 		dev_err(drv->dev, "boot up corner not found\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1372) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1373) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1374) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1375) 	dev_dbg(drv->dev, "boot up perf state: %u\n", i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1376) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1377) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1378) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1379) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1380) static const struct cpr_desc qcs404_cpr_desc = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1381) 	.num_fuse_corners = 3,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1382) 	.min_diff_quot = CPR_FUSE_MIN_QUOT_DIFF,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1383) 	.step_quot = (int []){ 25, 25, 25, },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1384) 	.timer_delay_us = 5000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1385) 	.timer_cons_up = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1386) 	.timer_cons_down = 2,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1387) 	.up_threshold = 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1388) 	.down_threshold = 3,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1389) 	.idle_clocks = 15,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1390) 	.gcnt_us = 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1391) 	.vdd_apc_step_up_limit = 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1392) 	.vdd_apc_step_down_limit = 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1393) 	.cpr_fuses = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1394) 		.init_voltage_step = 8000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1395) 		.init_voltage_width = 6,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1396) 		.fuse_corner_data = (struct fuse_corner_data[]){
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1397) 			/* fuse corner 0 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1398) 			{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1399) 				.ref_uV = 1224000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1400) 				.max_uV = 1224000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1401) 				.min_uV = 1048000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1402) 				.max_volt_scale = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1403) 				.max_quot_scale = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1404) 				.quot_offset = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1405) 				.quot_scale = 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1406) 				.quot_adjust = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1407) 				.quot_offset_scale = 5,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1408) 				.quot_offset_adjust = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1409) 			},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1410) 			/* fuse corner 1 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1411) 			{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1412) 				.ref_uV = 1288000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1413) 				.max_uV = 1288000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1414) 				.min_uV = 1048000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1415) 				.max_volt_scale = 2000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1416) 				.max_quot_scale = 1400,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1417) 				.quot_offset = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1418) 				.quot_scale = 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1419) 				.quot_adjust = -20,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1420) 				.quot_offset_scale = 5,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1421) 				.quot_offset_adjust = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1422) 			},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1423) 			/* fuse corner 2 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1424) 			{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1425) 				.ref_uV = 1352000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1426) 				.max_uV = 1384000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1427) 				.min_uV = 1088000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1428) 				.max_volt_scale = 2000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1429) 				.max_quot_scale = 1400,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1430) 				.quot_offset = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1431) 				.quot_scale = 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1432) 				.quot_adjust = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1433) 				.quot_offset_scale = 5,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1434) 				.quot_offset_adjust = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1435) 			},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1436) 		},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1437) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1438) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1439) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1440) static const struct acc_desc qcs404_acc_desc = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1441) 	.settings = (struct reg_sequence[]){
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1442) 		{ 0xb120, 0x1041040 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1443) 		{ 0xb124, 0x41 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1444) 		{ 0xb120, 0x0 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1445) 		{ 0xb124, 0x0 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1446) 		{ 0xb120, 0x0 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1447) 		{ 0xb124, 0x0 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1448) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1449) 	.config = (struct reg_sequence[]){
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1450) 		{ 0xb138, 0xff },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1451) 		{ 0xb130, 0x5555 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1452) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1453) 	.num_regs_per_fuse = 2,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1454) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1455) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1456) static const struct cpr_acc_desc qcs404_cpr_acc_desc = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1457) 	.cpr_desc = &qcs404_cpr_desc,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1458) 	.acc_desc = &qcs404_acc_desc,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1459) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1460) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1461) static unsigned int cpr_get_performance_state(struct generic_pm_domain *genpd,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1462) 					      struct dev_pm_opp *opp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1463) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1464) 	return dev_pm_opp_get_level(opp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1465) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1466) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1467) static int cpr_power_off(struct generic_pm_domain *domain)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1468) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1469) 	struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1470) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1471) 	return cpr_disable(drv);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1472) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1473) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1474) static int cpr_power_on(struct generic_pm_domain *domain)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1475) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1476) 	struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1477) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1478) 	return cpr_enable(drv);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1479) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1480) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1481) static int cpr_pd_attach_dev(struct generic_pm_domain *domain,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1482) 			     struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1483) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1484) 	struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1485) 	const struct acc_desc *acc_desc = drv->acc_desc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1486) 	int ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1487) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1488) 	mutex_lock(&drv->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1489) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1490) 	dev_dbg(drv->dev, "attach callback for: %s\n", dev_name(dev));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1491) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1492) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1493) 	 * This driver only supports scaling voltage for a CPU cluster
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1494) 	 * where all CPUs in the cluster share a single regulator.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1495) 	 * Therefore, save the struct device pointer only for the first
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1496) 	 * CPU device that gets attached. There is no need to do any
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1497) 	 * additional initialization when further CPUs get attached.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1498) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1499) 	if (drv->attached_cpu_dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1500) 		goto unlock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1501) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1502) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1503) 	 * cpr_scale_voltage() requires the direction (if we are changing
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1504) 	 * to a higher or lower OPP). The first time
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1505) 	 * cpr_set_performance_state() is called, there is no previous
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1506) 	 * performance state defined. Therefore, we call
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1507) 	 * cpr_find_initial_corner() that gets the CPU clock frequency
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1508) 	 * set by the bootloader, so that we can determine the direction
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1509) 	 * the first time cpr_set_performance_state() is called.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1510) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1511) 	drv->cpu_clk = devm_clk_get(dev, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1512) 	if (IS_ERR(drv->cpu_clk)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1513) 		ret = PTR_ERR(drv->cpu_clk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1514) 		if (ret != -EPROBE_DEFER)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1515) 			dev_err(drv->dev, "could not get cpu clk: %d\n", ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1516) 		goto unlock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1517) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1518) 	drv->attached_cpu_dev = dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1519) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1520) 	dev_dbg(drv->dev, "using cpu clk from: %s\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1521) 		dev_name(drv->attached_cpu_dev));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1522) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1523) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1524) 	 * Everything related to (virtual) corners has to be initialized
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1525) 	 * here, when attaching to the power domain, since we need to know
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1526) 	 * the maximum frequency for each fuse corner, and this is only
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1527) 	 * available after the cpufreq driver has attached to us.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1528) 	 * The reason for this is that we need to know the highest
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1529) 	 * frequency associated with each fuse corner.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1530) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1531) 	ret = dev_pm_opp_get_opp_count(&drv->pd.dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1532) 	if (ret < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1533) 		dev_err(drv->dev, "could not get OPP count\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1534) 		goto unlock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1535) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1536) 	drv->num_corners = ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1537) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1538) 	if (drv->num_corners < 2) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1539) 		dev_err(drv->dev, "need at least 2 OPPs to use CPR\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1540) 		ret = -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1541) 		goto unlock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1542) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1543) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1544) 	drv->corners = devm_kcalloc(drv->dev, drv->num_corners,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1545) 				    sizeof(*drv->corners),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1546) 				    GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1547) 	if (!drv->corners) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1548) 		ret = -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1549) 		goto unlock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1550) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1551) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1552) 	ret = cpr_corner_init(drv);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1553) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1554) 		goto unlock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1555) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1556) 	cpr_set_loop_allowed(drv);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1557) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1558) 	ret = cpr_init_parameters(drv);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1559) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1560) 		goto unlock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1561) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1562) 	/* Configure CPR HW but keep it disabled */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1563) 	ret = cpr_config(drv);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1564) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1565) 		goto unlock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1566) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1567) 	ret = cpr_find_initial_corner(drv);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1568) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1569) 		goto unlock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1570) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1571) 	if (acc_desc->config)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1572) 		regmap_multi_reg_write(drv->tcsr, acc_desc->config,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1573) 				       acc_desc->num_regs_per_fuse);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1574) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1575) 	/* Enable ACC if required */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1576) 	if (acc_desc->enable_mask)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1577) 		regmap_update_bits(drv->tcsr, acc_desc->enable_reg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1578) 				   acc_desc->enable_mask,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1579) 				   acc_desc->enable_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1580) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1581) 	dev_info(drv->dev, "driver initialized with %u OPPs\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1582) 		 drv->num_corners);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1583) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1584) unlock:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1585) 	mutex_unlock(&drv->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1586) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1587) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1588) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1589) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1590) static int cpr_debug_info_show(struct seq_file *s, void *unused)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1591) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1592) 	u32 gcnt, ro_sel, ctl, irq_status, reg, error_steps;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1593) 	u32 step_dn, step_up, error, error_lt0, busy;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1594) 	struct cpr_drv *drv = s->private;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1595) 	struct fuse_corner *fuse_corner;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1596) 	struct corner *corner;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1597) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1598) 	corner = drv->corner;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1599) 	fuse_corner = corner->fuse_corner;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1600) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1601) 	seq_printf(s, "corner, current_volt = %d uV\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1602) 		       corner->last_uV);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1603) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1604) 	ro_sel = fuse_corner->ring_osc_idx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1605) 	gcnt = cpr_read(drv, REG_RBCPR_GCNT_TARGET(ro_sel));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1606) 	seq_printf(s, "rbcpr_gcnt_target (%u) = %#02X\n", ro_sel, gcnt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1607) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1608) 	ctl = cpr_read(drv, REG_RBCPR_CTL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1609) 	seq_printf(s, "rbcpr_ctl = %#02X\n", ctl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1610) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1611) 	irq_status = cpr_read(drv, REG_RBIF_IRQ_STATUS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1612) 	seq_printf(s, "rbcpr_irq_status = %#02X\n", irq_status);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1613) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1614) 	reg = cpr_read(drv, REG_RBCPR_RESULT_0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1615) 	seq_printf(s, "rbcpr_result_0 = %#02X\n", reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1616) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1617) 	step_dn = reg & 0x01;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1618) 	step_up = (reg >> RBCPR_RESULT0_STEP_UP_SHIFT) & 0x01;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1619) 	seq_printf(s, "  [step_dn = %u", step_dn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1620) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1621) 	seq_printf(s, ", step_up = %u", step_up);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1622) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1623) 	error_steps = (reg >> RBCPR_RESULT0_ERROR_STEPS_SHIFT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1624) 				& RBCPR_RESULT0_ERROR_STEPS_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1625) 	seq_printf(s, ", error_steps = %u", error_steps);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1626) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1627) 	error = (reg >> RBCPR_RESULT0_ERROR_SHIFT) & RBCPR_RESULT0_ERROR_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1628) 	seq_printf(s, ", error = %u", error);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1629) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1630) 	error_lt0 = (reg >> RBCPR_RESULT0_ERROR_LT0_SHIFT) & 0x01;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1631) 	seq_printf(s, ", error_lt_0 = %u", error_lt0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1632) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1633) 	busy = (reg >> RBCPR_RESULT0_BUSY_SHIFT) & 0x01;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1634) 	seq_printf(s, ", busy = %u]\n", busy);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1635) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1636) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1637) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1638) DEFINE_SHOW_ATTRIBUTE(cpr_debug_info);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1639) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1640) static void cpr_debugfs_init(struct cpr_drv *drv)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1641) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1642) 	drv->debugfs = debugfs_create_dir("qcom_cpr", NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1643) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1644) 	debugfs_create_file("debug_info", 0444, drv->debugfs,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1645) 			    drv, &cpr_debug_info_fops);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1646) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1647) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1648) static int cpr_probe(struct platform_device *pdev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1649) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1650) 	struct resource *res;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1651) 	struct device *dev = &pdev->dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1652) 	struct cpr_drv *drv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1653) 	int irq, ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1654) 	const struct cpr_acc_desc *data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1655) 	struct device_node *np;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1656) 	u32 cpr_rev = FUSE_REVISION_UNKNOWN;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1657) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1658) 	data = of_device_get_match_data(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1659) 	if (!data || !data->cpr_desc || !data->acc_desc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1660) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1661) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1662) 	drv = devm_kzalloc(dev, sizeof(*drv), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1663) 	if (!drv)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1664) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1665) 	drv->dev = dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1666) 	drv->desc = data->cpr_desc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1667) 	drv->acc_desc = data->acc_desc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1668) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1669) 	drv->fuse_corners = devm_kcalloc(dev, drv->desc->num_fuse_corners,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1670) 					 sizeof(*drv->fuse_corners),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1671) 					 GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1672) 	if (!drv->fuse_corners)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1673) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1674) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1675) 	np = of_parse_phandle(dev->of_node, "acc-syscon", 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1676) 	if (!np)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1677) 		return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1678) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1679) 	drv->tcsr = syscon_node_to_regmap(np);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1680) 	of_node_put(np);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1681) 	if (IS_ERR(drv->tcsr))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1682) 		return PTR_ERR(drv->tcsr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1683) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1684) 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1685) 	drv->base = devm_ioremap_resource(dev, res);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1686) 	if (IS_ERR(drv->base))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1687) 		return PTR_ERR(drv->base);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1688) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1689) 	irq = platform_get_irq(pdev, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1690) 	if (irq < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1691) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1692) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1693) 	drv->vdd_apc = devm_regulator_get(dev, "vdd-apc");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1694) 	if (IS_ERR(drv->vdd_apc))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1695) 		return PTR_ERR(drv->vdd_apc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1696) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1697) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1698) 	 * Initialize fuse corners, since it simply depends
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1699) 	 * on data in efuses.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1700) 	 * Everything related to (virtual) corners has to be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1701) 	 * initialized after attaching to the power domain,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1702) 	 * since it depends on the CPU's OPP table.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1703) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1704) 	ret = cpr_read_efuse(dev, "cpr_fuse_revision", &cpr_rev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1705) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1706) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1707) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1708) 	drv->cpr_fuses = cpr_get_fuses(drv);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1709) 	if (IS_ERR(drv->cpr_fuses))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1710) 		return PTR_ERR(drv->cpr_fuses);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1711) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1712) 	ret = cpr_populate_ring_osc_idx(drv);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1713) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1714) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1715) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1716) 	ret = cpr_fuse_corner_init(drv);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1717) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1718) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1719) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1720) 	mutex_init(&drv->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1721) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1722) 	ret = devm_request_threaded_irq(dev, irq, NULL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1723) 					cpr_irq_handler,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1724) 					IRQF_ONESHOT | IRQF_TRIGGER_RISING,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1725) 					"cpr", drv);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1726) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1727) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1728) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1729) 	drv->pd.name = devm_kstrdup_const(dev, dev->of_node->full_name,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1730) 					  GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1731) 	if (!drv->pd.name)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1732) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1733) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1734) 	drv->pd.power_off = cpr_power_off;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1735) 	drv->pd.power_on = cpr_power_on;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1736) 	drv->pd.set_performance_state = cpr_set_performance_state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1737) 	drv->pd.opp_to_performance_state = cpr_get_performance_state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1738) 	drv->pd.attach_dev = cpr_pd_attach_dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1739) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1740) 	ret = pm_genpd_init(&drv->pd, NULL, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1741) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1742) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1743) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1744) 	ret = of_genpd_add_provider_simple(dev->of_node, &drv->pd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1745) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1746) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1747) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1748) 	platform_set_drvdata(pdev, drv);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1749) 	cpr_debugfs_init(drv);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1750) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1751) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1752) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1753) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1754) static int cpr_remove(struct platform_device *pdev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1755) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1756) 	struct cpr_drv *drv = platform_get_drvdata(pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1757) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1758) 	if (cpr_is_allowed(drv)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1759) 		cpr_ctl_disable(drv);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1760) 		cpr_irq_set(drv, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1761) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1762) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1763) 	of_genpd_del_provider(pdev->dev.of_node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1764) 	pm_genpd_remove(&drv->pd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1765) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1766) 	debugfs_remove_recursive(drv->debugfs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1767) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1768) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1769) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1770) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1771) static const struct of_device_id cpr_match_table[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1772) 	{ .compatible = "qcom,qcs404-cpr", .data = &qcs404_cpr_acc_desc },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1773) 	{ }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1774) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1775) MODULE_DEVICE_TABLE(of, cpr_match_table);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1776) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1777) static struct platform_driver cpr_driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1778) 	.probe		= cpr_probe,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1779) 	.remove		= cpr_remove,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1780) 	.driver		= {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1781) 		.name	= "qcom-cpr",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1782) 		.of_match_table = cpr_match_table,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1783) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1784) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1785) module_platform_driver(cpr_driver);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1786) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1787) MODULE_DESCRIPTION("Core Power Reduction (CPR) driver");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1788) MODULE_LICENSE("GPL v2");