Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) // SPDX-License-Identifier: GPL-2.0-or-later
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3)  * SiRFSoC Real Time Clock interface for Linux
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5)  * Copyright (c) 2013 Cambridge Silicon Radio Limited, a CSR plc group company.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9) #include <linux/err.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10) #include <linux/rtc.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11) #include <linux/platform_device.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12) #include <linux/slab.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13) #include <linux/io.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14) #include <linux/of.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15) #include <linux/regmap.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16) #include <linux/rtc/sirfsoc_rtciobrg.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19) #define RTC_CN			0x00
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20) #define RTC_ALARM0		0x04
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21) #define RTC_ALARM1		0x18
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22) #define RTC_STATUS		0x08
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23) #define RTC_SW_VALUE            0x40
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24) #define SIRFSOC_RTC_AL1E	(1<<6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25) #define SIRFSOC_RTC_AL1		(1<<4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26) #define SIRFSOC_RTC_HZE		(1<<3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27) #define SIRFSOC_RTC_AL0E	(1<<2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28) #define SIRFSOC_RTC_HZ		(1<<1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29) #define SIRFSOC_RTC_AL0		(1<<0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30) #define RTC_DIV			0x0c
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31) #define RTC_DEEP_CTRL		0x14
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32) #define RTC_CLOCK_SWITCH	0x1c
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33) #define SIRFSOC_RTC_CLK		0x03	/* others are reserved */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35) /* Refer to RTC DIV switch */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36) #define RTC_HZ			16
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38) /* This macro is also defined in arch/arm/plat-sirfsoc/cpu.c */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39) #define RTC_SHIFT		4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41) #define INTR_SYSRTC_CN		0x48
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43) struct sirfsoc_rtc_drv {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44) 	struct rtc_device	*rtc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45) 	u32			rtc_base;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46) 	u32			irq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47) 	unsigned		irq_wake;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48) 	/* Overflow for every 8 years extra time */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49) 	u32			overflow_rtc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50) 	spinlock_t		lock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51) 	struct regmap *regmap;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52) #ifdef CONFIG_PM
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53) 	u32		saved_counter;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54) 	u32		saved_overflow_rtc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58) static u32 sirfsoc_rtc_readl(struct sirfsoc_rtc_drv *rtcdrv, u32 offset)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60) 	u32 val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62) 	regmap_read(rtcdrv->regmap, rtcdrv->rtc_base + offset, &val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63) 	return val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66) static void sirfsoc_rtc_writel(struct sirfsoc_rtc_drv *rtcdrv,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67) 			       u32 offset, u32 val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69) 	regmap_write(rtcdrv->regmap, rtcdrv->rtc_base + offset, val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72) static int sirfsoc_rtc_read_alarm(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73) 		struct rtc_wkalrm *alrm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75) 	unsigned long rtc_alarm, rtc_count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76) 	struct sirfsoc_rtc_drv *rtcdrv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78) 	rtcdrv = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80) 	spin_lock_irq(&rtcdrv->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82) 	rtc_count = sirfsoc_rtc_readl(rtcdrv, RTC_CN);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84) 	rtc_alarm = sirfsoc_rtc_readl(rtcdrv, RTC_ALARM0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85) 	memset(alrm, 0, sizeof(struct rtc_wkalrm));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88) 	 * assume alarm interval not beyond one round counter overflow_rtc:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89) 	 * 0->0xffffffff
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91) 	/* if alarm is in next overflow cycle */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92) 	if (rtc_count > rtc_alarm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93) 		rtc_time64_to_tm((rtcdrv->overflow_rtc + 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94) 				 << (BITS_PER_LONG - RTC_SHIFT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95) 				 | rtc_alarm >> RTC_SHIFT, &alrm->time);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97) 		rtc_time64_to_tm(rtcdrv->overflow_rtc
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98) 				 << (BITS_PER_LONG - RTC_SHIFT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99) 				 | rtc_alarm >> RTC_SHIFT, &alrm->time);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) 	if (sirfsoc_rtc_readl(rtcdrv, RTC_STATUS) & SIRFSOC_RTC_AL0E)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) 		alrm->enabled = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) 	spin_unlock_irq(&rtcdrv->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) static int sirfsoc_rtc_set_alarm(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) 		struct rtc_wkalrm *alrm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) 	unsigned long rtc_status_reg, rtc_alarm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) 	struct sirfsoc_rtc_drv *rtcdrv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) 	rtcdrv = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) 	if (alrm->enabled) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) 		rtc_alarm = rtc_tm_to_time64(&alrm->time);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) 		spin_lock_irq(&rtcdrv->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) 		rtc_status_reg = sirfsoc_rtc_readl(rtcdrv, RTC_STATUS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) 		if (rtc_status_reg & SIRFSOC_RTC_AL0E) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) 			/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) 			 * An ongoing alarm in progress - ingore it and not
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) 			 * to return EBUSY
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) 			 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) 			dev_info(dev, "An old alarm was set, will be replaced by a new one\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) 		sirfsoc_rtc_writel(rtcdrv, RTC_ALARM0, rtc_alarm << RTC_SHIFT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) 		rtc_status_reg &= ~0x07; /* mask out the lower status bits */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) 		 * This bit RTC_AL sets it as a wake-up source for Sleep Mode
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) 		 * Writing 1 into this bit will clear it
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) 		rtc_status_reg |= SIRFSOC_RTC_AL0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) 		/* enable the RTC alarm interrupt */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) 		rtc_status_reg |= SIRFSOC_RTC_AL0E;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) 		sirfsoc_rtc_writel(rtcdrv, RTC_STATUS, rtc_status_reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) 		spin_unlock_irq(&rtcdrv->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) 		 * if this function was called with enabled=0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) 		 * then it could mean that the application is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) 		 * trying to cancel an ongoing alarm
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) 		spin_lock_irq(&rtcdrv->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) 		rtc_status_reg = sirfsoc_rtc_readl(rtcdrv, RTC_STATUS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) 		if (rtc_status_reg & SIRFSOC_RTC_AL0E) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) 			/* clear the RTC status register's alarm bit */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) 			rtc_status_reg &= ~0x07;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) 			/* write 1 into SIRFSOC_RTC_AL0 to force a clear */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) 			rtc_status_reg |= (SIRFSOC_RTC_AL0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) 			/* Clear the Alarm enable bit */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) 			rtc_status_reg &= ~(SIRFSOC_RTC_AL0E);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) 			sirfsoc_rtc_writel(rtcdrv, RTC_STATUS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) 					   rtc_status_reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) 		spin_unlock_irq(&rtcdrv->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) static int sirfsoc_rtc_read_time(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) 		struct rtc_time *tm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) 	unsigned long tmp_rtc = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) 	struct sirfsoc_rtc_drv *rtcdrv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) 	rtcdrv = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) 	 * This patch is taken from WinCE - Need to validate this for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) 	 * correctness. To work around sirfsoc RTC counter double sync logic
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) 	 * fail, read several times to make sure get stable value.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) 	do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) 		tmp_rtc = sirfsoc_rtc_readl(rtcdrv, RTC_CN);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) 		cpu_relax();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) 	} while (tmp_rtc != sirfsoc_rtc_readl(rtcdrv, RTC_CN));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) 	rtc_time64_to_tm(rtcdrv->overflow_rtc << (BITS_PER_LONG - RTC_SHIFT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) 			 | tmp_rtc >> RTC_SHIFT, tm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) static int sirfsoc_rtc_set_time(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) 		struct rtc_time *tm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) 	unsigned long rtc_time;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) 	struct sirfsoc_rtc_drv *rtcdrv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) 	rtcdrv = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) 	rtc_time = rtc_tm_to_time64(tm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) 	rtcdrv->overflow_rtc = rtc_time >> (BITS_PER_LONG - RTC_SHIFT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) 	sirfsoc_rtc_writel(rtcdrv, RTC_SW_VALUE, rtcdrv->overflow_rtc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) 	sirfsoc_rtc_writel(rtcdrv, RTC_CN, rtc_time << RTC_SHIFT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) static int sirfsoc_rtc_alarm_irq_enable(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) 		unsigned int enabled)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) 	unsigned long rtc_status_reg = 0x0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) 	struct sirfsoc_rtc_drv *rtcdrv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) 	rtcdrv = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) 	spin_lock_irq(&rtcdrv->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) 	rtc_status_reg = sirfsoc_rtc_readl(rtcdrv, RTC_STATUS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) 	if (enabled)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) 		rtc_status_reg |= SIRFSOC_RTC_AL0E;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) 		rtc_status_reg &= ~SIRFSOC_RTC_AL0E;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) 	sirfsoc_rtc_writel(rtcdrv, RTC_STATUS, rtc_status_reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) 	spin_unlock_irq(&rtcdrv->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) static const struct rtc_class_ops sirfsoc_rtc_ops = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) 	.read_time = sirfsoc_rtc_read_time,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) 	.set_time = sirfsoc_rtc_set_time,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) 	.read_alarm = sirfsoc_rtc_read_alarm,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) 	.set_alarm = sirfsoc_rtc_set_alarm,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) 	.alarm_irq_enable = sirfsoc_rtc_alarm_irq_enable
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) static irqreturn_t sirfsoc_rtc_irq_handler(int irq, void *pdata)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) 	struct sirfsoc_rtc_drv *rtcdrv = pdata;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) 	unsigned long rtc_status_reg = 0x0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) 	unsigned long events = 0x0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) 	spin_lock(&rtcdrv->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) 	rtc_status_reg = sirfsoc_rtc_readl(rtcdrv, RTC_STATUS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) 	/* this bit will be set ONLY if an alarm was active
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) 	 * and it expired NOW
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) 	 * So this is being used as an ASSERT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) 	if (rtc_status_reg & SIRFSOC_RTC_AL0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) 		 * clear the RTC status register's alarm bit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) 		 * mask out the lower status bits
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) 		rtc_status_reg &= ~0x07;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) 		/* write 1 into SIRFSOC_RTC_AL0 to ACK the alarm interrupt */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) 		rtc_status_reg |= (SIRFSOC_RTC_AL0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) 		/* Clear the Alarm enable bit */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) 		rtc_status_reg &= ~(SIRFSOC_RTC_AL0E);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) 	sirfsoc_rtc_writel(rtcdrv, RTC_STATUS, rtc_status_reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) 	spin_unlock(&rtcdrv->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) 	/* this should wake up any apps polling/waiting on the read
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) 	 * after setting the alarm
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) 	events |= RTC_IRQF | RTC_AF;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) 	rtc_update_irq(rtcdrv->rtc, 1, events);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) 	return IRQ_HANDLED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) static const struct of_device_id sirfsoc_rtc_of_match[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) 	{ .compatible = "sirf,prima2-sysrtc"},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) 	{},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) static const struct regmap_config sysrtc_regmap_config = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) 	.reg_bits = 32,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) 	.val_bits = 32,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) 	.fast_io = true,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) MODULE_DEVICE_TABLE(of, sirfsoc_rtc_of_match);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) static int sirfsoc_rtc_probe(struct platform_device *pdev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) 	int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) 	unsigned long rtc_div;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) 	struct sirfsoc_rtc_drv *rtcdrv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) 	struct device_node *np = pdev->dev.of_node;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) 	rtcdrv = devm_kzalloc(&pdev->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) 		sizeof(struct sirfsoc_rtc_drv), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) 	if (rtcdrv == NULL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) 	spin_lock_init(&rtcdrv->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) 	err = of_property_read_u32(np, "reg", &rtcdrv->rtc_base);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) 	if (err) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) 		dev_err(&pdev->dev, "unable to find base address of rtc node in dtb\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) 		return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) 	platform_set_drvdata(pdev, rtcdrv);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) 	/* Register rtc alarm as a wakeup source */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) 	device_init_wakeup(&pdev->dev, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) 	rtcdrv->regmap = devm_regmap_init_iobg(&pdev->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) 			&sysrtc_regmap_config);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) 	if (IS_ERR(rtcdrv->regmap)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) 		err = PTR_ERR(rtcdrv->regmap);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) 		dev_err(&pdev->dev, "Failed to allocate register map: %d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) 			err);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) 		return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) 	 * Set SYS_RTC counter in RTC_HZ HZ Units
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) 	 * We are using 32K RTC crystal (32768 / RTC_HZ / 2) -1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) 	 * If 16HZ, therefore RTC_DIV = 1023;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) 	rtc_div = ((32768 / RTC_HZ) / 2) - 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) 	sirfsoc_rtc_writel(rtcdrv, RTC_DIV, rtc_div);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) 	/* 0x3 -> RTC_CLK */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) 	sirfsoc_rtc_writel(rtcdrv, RTC_CLOCK_SWITCH, SIRFSOC_RTC_CLK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) 	/* reset SYS RTC ALARM0 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) 	sirfsoc_rtc_writel(rtcdrv, RTC_ALARM0, 0x0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) 	/* reset SYS RTC ALARM1 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) 	sirfsoc_rtc_writel(rtcdrv, RTC_ALARM1, 0x0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) 	/* Restore RTC Overflow From Register After Command Reboot */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) 	rtcdrv->overflow_rtc =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) 		sirfsoc_rtc_readl(rtcdrv, RTC_SW_VALUE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) 	rtcdrv->rtc = devm_rtc_allocate_device(&pdev->dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) 	if (IS_ERR(rtcdrv->rtc))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) 		return PTR_ERR(rtcdrv->rtc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) 	rtcdrv->rtc->ops = &sirfsoc_rtc_ops;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) 	rtcdrv->rtc->range_max = (1ULL << 60) - 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) 	rtcdrv->irq = platform_get_irq(pdev, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) 	err = devm_request_irq(&pdev->dev, rtcdrv->irq, sirfsoc_rtc_irq_handler,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) 			       IRQF_SHARED, pdev->name, rtcdrv);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) 	if (err) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) 		dev_err(&pdev->dev, "Unable to register for the SiRF SOC RTC IRQ\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) 		return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) 	return rtc_register_device(rtcdrv->rtc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) #ifdef CONFIG_PM_SLEEP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) static int sirfsoc_rtc_suspend(struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) 	struct sirfsoc_rtc_drv *rtcdrv = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) 	rtcdrv->overflow_rtc =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) 		sirfsoc_rtc_readl(rtcdrv, RTC_SW_VALUE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) 	rtcdrv->saved_counter =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) 		sirfsoc_rtc_readl(rtcdrv, RTC_CN);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371) 	rtcdrv->saved_overflow_rtc = rtcdrv->overflow_rtc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) 	if (device_may_wakeup(dev) && !enable_irq_wake(rtcdrv->irq))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373) 		rtcdrv->irq_wake = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378) static int sirfsoc_rtc_resume(struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) 	u32 tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381) 	struct sirfsoc_rtc_drv *rtcdrv = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384) 	 * if resume from snapshot and the rtc power is lost,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) 	 * restroe the rtc settings
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387) 	if (SIRFSOC_RTC_CLK != sirfsoc_rtc_readl(rtcdrv, RTC_CLOCK_SWITCH)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388) 		u32 rtc_div;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) 		/* 0x3 -> RTC_CLK */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390) 		sirfsoc_rtc_writel(rtcdrv, RTC_CLOCK_SWITCH, SIRFSOC_RTC_CLK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392) 		 * Set SYS_RTC counter in RTC_HZ HZ Units
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393) 		 * We are using 32K RTC crystal (32768 / RTC_HZ / 2) -1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394) 		 * If 16HZ, therefore RTC_DIV = 1023;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396) 		rtc_div = ((32768 / RTC_HZ) / 2) - 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398) 		sirfsoc_rtc_writel(rtcdrv, RTC_DIV, rtc_div);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400) 		/* reset SYS RTC ALARM0 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401) 		sirfsoc_rtc_writel(rtcdrv, RTC_ALARM0, 0x0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403) 		/* reset SYS RTC ALARM1 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404) 		sirfsoc_rtc_writel(rtcdrv, RTC_ALARM1, 0x0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406) 	rtcdrv->overflow_rtc = rtcdrv->saved_overflow_rtc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409) 	 * if current counter is small than previous,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410) 	 * it means overflow in sleep
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412) 	tmp = sirfsoc_rtc_readl(rtcdrv, RTC_CN);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413) 	if (tmp <= rtcdrv->saved_counter)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414) 		rtcdrv->overflow_rtc++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416) 	 *PWRC Value Be Changed When Suspend, Restore Overflow
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417) 	 * In Memory To Register
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419) 	sirfsoc_rtc_writel(rtcdrv, RTC_SW_VALUE, rtcdrv->overflow_rtc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421) 	if (device_may_wakeup(dev) && rtcdrv->irq_wake) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422) 		disable_irq_wake(rtcdrv->irq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423) 		rtcdrv->irq_wake = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 426) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 427) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 428) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 429) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 430) static SIMPLE_DEV_PM_OPS(sirfsoc_rtc_pm_ops,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 431) 		sirfsoc_rtc_suspend, sirfsoc_rtc_resume);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 432) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 433) static struct platform_driver sirfsoc_rtc_driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 434) 	.driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 435) 		.name = "sirfsoc-rtc",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 436) 		.pm = &sirfsoc_rtc_pm_ops,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 437) 		.of_match_table = sirfsoc_rtc_of_match,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 438) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 439) 	.probe = sirfsoc_rtc_probe,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 440) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 441) module_platform_driver(sirfsoc_rtc_driver);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 442) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 443) MODULE_DESCRIPTION("SiRF SoC rtc driver");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 444) MODULE_AUTHOR("Xianglong Du <Xianglong.Du@csr.com>");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 445) MODULE_LICENSE("GPL v2");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 446) MODULE_ALIAS("platform:sirfsoc-rtc");