Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) // SPDX-License-Identifier: GPL-2.0-only
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3)  * Driver for the Epson RTC module RX-6110 SA
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5)  * Copyright(C) 2015 Pengutronix, Steffen Trumtrar <kernel@pengutronix.de>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6)  * Copyright(C) SEIKO EPSON CORPORATION 2013. All rights reserved.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9) #include <linux/bcd.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10) #include <linux/init.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11) #include <linux/kernel.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13) #include <linux/of_gpio.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14) #include <linux/regmap.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15) #include <linux/rtc.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16) #include <linux/of.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17) #include <linux/of_device.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18) #include <linux/spi/spi.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20) /* RX-6110 Register definitions */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21) #define RX6110_REG_SEC		0x10
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22) #define RX6110_REG_MIN		0x11
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23) #define RX6110_REG_HOUR		0x12
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24) #define RX6110_REG_WDAY		0x13
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25) #define RX6110_REG_MDAY		0x14
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26) #define RX6110_REG_MONTH	0x15
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27) #define RX6110_REG_YEAR		0x16
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28) #define RX6110_REG_RES1		0x17
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29) #define RX6110_REG_ALMIN	0x18
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30) #define RX6110_REG_ALHOUR	0x19
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31) #define RX6110_REG_ALWDAY	0x1A
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32) #define RX6110_REG_TCOUNT0	0x1B
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33) #define RX6110_REG_TCOUNT1	0x1C
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34) #define RX6110_REG_EXT		0x1D
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35) #define RX6110_REG_FLAG		0x1E
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36) #define RX6110_REG_CTRL		0x1F
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37) #define RX6110_REG_USER0	0x20
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38) #define RX6110_REG_USER1	0x21
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39) #define RX6110_REG_USER2	0x22
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40) #define RX6110_REG_USER3	0x23
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41) #define RX6110_REG_USER4	0x24
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42) #define RX6110_REG_USER5	0x25
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43) #define RX6110_REG_USER6	0x26
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44) #define RX6110_REG_USER7	0x27
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45) #define RX6110_REG_USER8	0x28
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46) #define RX6110_REG_USER9	0x29
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47) #define RX6110_REG_USERA	0x2A
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48) #define RX6110_REG_USERB	0x2B
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49) #define RX6110_REG_USERC	0x2C
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50) #define RX6110_REG_USERD	0x2D
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51) #define RX6110_REG_USERE	0x2E
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52) #define RX6110_REG_USERF	0x2F
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53) #define RX6110_REG_RES2		0x30
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54) #define RX6110_REG_RES3		0x31
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55) #define RX6110_REG_IRQ		0x32
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57) #define RX6110_BIT_ALARM_EN		BIT(7)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59) /* Extension Register (1Dh) bit positions */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60) #define RX6110_BIT_EXT_TSEL0		BIT(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61) #define RX6110_BIT_EXT_TSEL1		BIT(1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62) #define RX6110_BIT_EXT_TSEL2		BIT(2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63) #define RX6110_BIT_EXT_WADA		BIT(3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64) #define RX6110_BIT_EXT_TE		BIT(4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65) #define RX6110_BIT_EXT_USEL		BIT(5)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66) #define RX6110_BIT_EXT_FSEL0		BIT(6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67) #define RX6110_BIT_EXT_FSEL1		BIT(7)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69) /* Flag Register (1Eh) bit positions */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70) #define RX6110_BIT_FLAG_VLF		BIT(1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71) #define RX6110_BIT_FLAG_AF		BIT(3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72) #define RX6110_BIT_FLAG_TF		BIT(4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73) #define RX6110_BIT_FLAG_UF		BIT(5)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75) /* Control Register (1Fh) bit positions */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76) #define RX6110_BIT_CTRL_TBKE		BIT(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77) #define RX6110_BIT_CTRL_TBKON		BIT(1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78) #define RX6110_BIT_CTRL_TSTP		BIT(2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79) #define RX6110_BIT_CTRL_AIE		BIT(3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80) #define RX6110_BIT_CTRL_TIE		BIT(4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81) #define RX6110_BIT_CTRL_UIE		BIT(5)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82) #define RX6110_BIT_CTRL_STOP		BIT(6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83) #define RX6110_BIT_CTRL_TEST		BIT(7)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85) enum {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86) 	RTC_SEC = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87) 	RTC_MIN,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88) 	RTC_HOUR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89) 	RTC_WDAY,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90) 	RTC_MDAY,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91) 	RTC_MONTH,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92) 	RTC_YEAR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93) 	RTC_NR_TIME
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96) #define RX6110_DRIVER_NAME		"rx6110"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98) struct rx6110_data {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99) 	struct rtc_device *rtc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) 	struct regmap *regmap;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104)  * rx6110_rtc_tm_to_data - convert rtc_time to native time encoding
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106)  * @tm: holds date and time
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107)  * @data: holds the encoding in rx6110 native form
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) static int rx6110_rtc_tm_to_data(struct rtc_time *tm, u8 *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) 	pr_debug("%s: date %ptRr\n", __func__, tm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) 	 * The year in the RTC is a value between 0 and 99.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) 	 * Assume that this represents the current century
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) 	 * and disregard all other values.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) 	if (tm->tm_year < 100 || tm->tm_year >= 200)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) 	data[RTC_SEC] = bin2bcd(tm->tm_sec);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) 	data[RTC_MIN] = bin2bcd(tm->tm_min);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) 	data[RTC_HOUR] = bin2bcd(tm->tm_hour);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) 	data[RTC_WDAY] = BIT(bin2bcd(tm->tm_wday));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) 	data[RTC_MDAY] = bin2bcd(tm->tm_mday);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) 	data[RTC_MONTH] = bin2bcd(tm->tm_mon + 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) 	data[RTC_YEAR] = bin2bcd(tm->tm_year % 100);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133)  * rx6110_data_to_rtc_tm - convert native time encoding to rtc_time
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135)  * @data: holds the encoding in rx6110 native form
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136)  * @tm: holds date and time
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) static int rx6110_data_to_rtc_tm(u8 *data, struct rtc_time *tm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) 	tm->tm_sec = bcd2bin(data[RTC_SEC] & 0x7f);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) 	tm->tm_min = bcd2bin(data[RTC_MIN] & 0x7f);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) 	/* only 24-hour clock */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) 	tm->tm_hour = bcd2bin(data[RTC_HOUR] & 0x3f);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) 	tm->tm_wday = ffs(data[RTC_WDAY] & 0x7f);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) 	tm->tm_mday = bcd2bin(data[RTC_MDAY] & 0x3f);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) 	tm->tm_mon = bcd2bin(data[RTC_MONTH] & 0x1f) - 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) 	tm->tm_year = bcd2bin(data[RTC_YEAR]) + 100;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) 	pr_debug("%s: date %ptRr\n", __func__, tm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) 	 * The year in the RTC is a value between 0 and 99.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) 	 * Assume that this represents the current century
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) 	 * and disregard all other values.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) 	if (tm->tm_year < 100 || tm->tm_year >= 200)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163)  * rx6110_set_time - set the current time in the rx6110 registers
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165)  * @dev: the rtc device in use
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166)  * @tm: holds date and time
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168)  * BUG: The HW assumes every year that is a multiple of 4 to be a leap
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169)  * year. Next time this is wrong is 2100, which will not be a leap year
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171)  * Note: If STOP is not set/cleared, the clock will start when the seconds
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172)  *       register is written
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) static int rx6110_set_time(struct device *dev, struct rtc_time *tm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) 	struct rx6110_data *rx6110 = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) 	u8 data[RTC_NR_TIME];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) 	ret = rx6110_rtc_tm_to_data(tm, data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) 	if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) 	/* set STOP bit before changing clock/calendar */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) 	ret = regmap_update_bits(rx6110->regmap, RX6110_REG_CTRL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) 				 RX6110_BIT_CTRL_STOP, RX6110_BIT_CTRL_STOP);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) 	ret = regmap_bulk_write(rx6110->regmap, RX6110_REG_SEC, data,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) 				RTC_NR_TIME);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) 	/* The time in the RTC is valid. Be sure to have VLF cleared. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) 	ret = regmap_update_bits(rx6110->regmap, RX6110_REG_FLAG,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) 				 RX6110_BIT_FLAG_VLF, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) 	/* clear STOP bit after changing clock/calendar */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) 	ret = regmap_update_bits(rx6110->regmap, RX6110_REG_CTRL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) 				 RX6110_BIT_CTRL_STOP, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210)  * rx6110_get_time - get the current time from the rx6110 registers
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211)  * @dev: the rtc device in use
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212)  * @tm: holds date and time
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) static int rx6110_get_time(struct device *dev, struct rtc_time *tm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) 	struct rx6110_data *rx6110 = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) 	u8 data[RTC_NR_TIME];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) 	int flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) 	ret = regmap_read(rx6110->regmap, RX6110_REG_FLAG, &flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) 	/* check for VLF Flag (set at power-on) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) 	if ((flags & RX6110_BIT_FLAG_VLF)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) 		dev_warn(dev, "Voltage low, data is invalid.\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) 	/* read registers to date */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) 	ret = regmap_bulk_read(rx6110->regmap, RX6110_REG_SEC, data,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) 			       RTC_NR_TIME);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) 	ret = rx6110_data_to_rtc_tm(data, tm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) 	dev_dbg(dev, "%s: date %ptRr\n", __func__, tm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) static const struct reg_sequence rx6110_default_regs[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) 	{ RX6110_REG_RES1,   0xB8 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) 	{ RX6110_REG_RES2,   0x00 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) 	{ RX6110_REG_RES3,   0x10 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) 	{ RX6110_REG_IRQ,    0x00 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) 	{ RX6110_REG_ALMIN,  0x00 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) 	{ RX6110_REG_ALHOUR, 0x00 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) 	{ RX6110_REG_ALWDAY, 0x00 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257)  * rx6110_init - initialize the rx6110 registers
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259)  * @rx6110: pointer to the rx6110 struct in use
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) static int rx6110_init(struct rx6110_data *rx6110)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) 	struct rtc_device *rtc = rx6110->rtc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) 	int flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) 	ret = regmap_update_bits(rx6110->regmap, RX6110_REG_EXT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) 				 RX6110_BIT_EXT_TE, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) 	ret = regmap_register_patch(rx6110->regmap, rx6110_default_regs,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) 				    ARRAY_SIZE(rx6110_default_regs));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) 	ret = regmap_read(rx6110->regmap, RX6110_REG_FLAG, &flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) 	/* check for VLF Flag (set at power-on) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) 	if ((flags & RX6110_BIT_FLAG_VLF))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) 		dev_warn(&rtc->dev, "Voltage low, data loss detected.\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) 	/* check for Alarm Flag */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) 	if (flags & RX6110_BIT_FLAG_AF)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) 		dev_warn(&rtc->dev, "An alarm may have been missed.\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) 	/* check for Periodic Timer Flag */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) 	if (flags & RX6110_BIT_FLAG_TF)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) 		dev_warn(&rtc->dev, "Periodic timer was detected\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) 	/* check for Update Timer Flag */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) 	if (flags & RX6110_BIT_FLAG_UF)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) 		dev_warn(&rtc->dev, "Update timer was detected\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) 	/* clear all flags BUT VLF */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) 	ret = regmap_update_bits(rx6110->regmap, RX6110_REG_FLAG,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) 				 RX6110_BIT_FLAG_AF |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) 				 RX6110_BIT_FLAG_UF |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) 				 RX6110_BIT_FLAG_TF,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) 				 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) static const struct rtc_class_ops rx6110_rtc_ops = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) 	.read_time = rx6110_get_time,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) 	.set_time = rx6110_set_time,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) static struct regmap_config regmap_spi_config = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) 	.reg_bits = 8,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) 	.val_bits = 8,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) 	.max_register = RX6110_REG_IRQ,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) 	.read_flag_mask = 0x80,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321)  * rx6110_probe - initialize rtc driver
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322)  * @spi: pointer to spi device
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) static int rx6110_probe(struct spi_device *spi)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) 	struct rx6110_data *rx6110;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) 	int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) 	if ((spi->bits_per_word && spi->bits_per_word != 8) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) 	    (spi->max_speed_hz > 2000000) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) 	    (spi->mode != (SPI_CS_HIGH | SPI_CPOL | SPI_CPHA))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) 		dev_warn(&spi->dev, "SPI settings: bits_per_word: %d, max_speed_hz: %d, mode: %xh\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) 			 spi->bits_per_word, spi->max_speed_hz, spi->mode);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) 		dev_warn(&spi->dev, "driving device in an unsupported mode");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) 	rx6110 = devm_kzalloc(&spi->dev, sizeof(*rx6110), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) 	if (!rx6110)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) 	rx6110->regmap = devm_regmap_init_spi(spi, &regmap_spi_config);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) 	if (IS_ERR(rx6110->regmap)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) 		dev_err(&spi->dev, "regmap init failed for rtc rx6110\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) 		return PTR_ERR(rx6110->regmap);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) 	spi_set_drvdata(spi, rx6110);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) 	rx6110->rtc = devm_rtc_device_register(&spi->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350) 					       RX6110_DRIVER_NAME,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) 					       &rx6110_rtc_ops, THIS_MODULE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) 	if (IS_ERR(rx6110->rtc))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) 		return PTR_ERR(rx6110->rtc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) 	err = rx6110_init(rx6110);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) 	if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358) 		return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) 	rx6110->rtc->max_user_freq = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) static const struct spi_device_id rx6110_id[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) 	{ "rx6110", 0 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) 	{ }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) MODULE_DEVICE_TABLE(spi, rx6110_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371) static const struct of_device_id rx6110_spi_of_match[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) 	{ .compatible = "epson,rx6110" },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373) 	{ },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) MODULE_DEVICE_TABLE(of, rx6110_spi_of_match);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) static struct spi_driver rx6110_driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378) 	.driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379) 		.name = RX6110_DRIVER_NAME,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) 		.of_match_table = of_match_ptr(rx6110_spi_of_match),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382) 	.probe		= rx6110_probe,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383) 	.id_table	= rx6110_id,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) module_spi_driver(rx6110_driver);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388) MODULE_AUTHOR("Val Krutov <val.krutov@erd.epson.com>");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) MODULE_DESCRIPTION("RX-6110 SA RTC driver");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390) MODULE_LICENSE("GPL");