Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) // SPDX-License-Identifier: GPL-2.0-or-later
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3)  * drivers/rtc/rtc-pl031.c
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5)  * Real Time Clock interface for ARM AMBA PrimeCell 031 RTC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7)  * Author: Deepak Saxena <dsaxena@plexity.net>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9)  * Copyright 2006 (c) MontaVista Software, Inc.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11)  * Author: Mian Yousaf Kaukab <mian.yousaf.kaukab@stericsson.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12)  * Copyright 2010 (c) ST-Ericsson AB
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15) #include <linux/rtc.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16) #include <linux/init.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17) #include <linux/interrupt.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18) #include <linux/amba/bus.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19) #include <linux/io.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20) #include <linux/bcd.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21) #include <linux/delay.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22) #include <linux/pm_wakeirq.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23) #include <linux/slab.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26)  * Register definitions
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28) #define	RTC_DR		0x00	/* Data read register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29) #define	RTC_MR		0x04	/* Match register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30) #define	RTC_LR		0x08	/* Data load register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31) #define	RTC_CR		0x0c	/* Control register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32) #define	RTC_IMSC	0x10	/* Interrupt mask and set register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33) #define	RTC_RIS		0x14	/* Raw interrupt status register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34) #define	RTC_MIS		0x18	/* Masked interrupt status register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35) #define	RTC_ICR		0x1c	/* Interrupt clear register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36) /* ST variants have additional timer functionality */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37) #define RTC_TDR		0x20	/* Timer data read register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38) #define RTC_TLR		0x24	/* Timer data load register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39) #define RTC_TCR		0x28	/* Timer control register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40) #define RTC_YDR		0x30	/* Year data read register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41) #define RTC_YMR		0x34	/* Year match register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42) #define RTC_YLR		0x38	/* Year data load register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44) #define RTC_CR_EN	(1 << 0)	/* counter enable bit */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45) #define RTC_CR_CWEN	(1 << 26)	/* Clockwatch enable bit */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47) #define RTC_TCR_EN	(1 << 1) /* Periodic timer enable bit */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49) /* Common bit definitions for Interrupt status and control registers */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50) #define RTC_BIT_AI	(1 << 0) /* Alarm interrupt bit */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51) #define RTC_BIT_PI	(1 << 1) /* Periodic interrupt bit. ST variants only. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53) /* Common bit definations for ST v2 for reading/writing time */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54) #define RTC_SEC_SHIFT 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55) #define RTC_SEC_MASK (0x3F << RTC_SEC_SHIFT) /* Second [0-59] */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56) #define RTC_MIN_SHIFT 6
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57) #define RTC_MIN_MASK (0x3F << RTC_MIN_SHIFT) /* Minute [0-59] */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58) #define RTC_HOUR_SHIFT 12
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59) #define RTC_HOUR_MASK (0x1F << RTC_HOUR_SHIFT) /* Hour [0-23] */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60) #define RTC_WDAY_SHIFT 17
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61) #define RTC_WDAY_MASK (0x7 << RTC_WDAY_SHIFT) /* Day of Week [1-7] 1=Sunday */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62) #define RTC_MDAY_SHIFT 20
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63) #define RTC_MDAY_MASK (0x1F << RTC_MDAY_SHIFT) /* Day of Month [1-31] */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64) #define RTC_MON_SHIFT 25
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65) #define RTC_MON_MASK (0xF << RTC_MON_SHIFT) /* Month [1-12] 1=January */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67) #define RTC_TIMER_FREQ 32768
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70)  * struct pl031_vendor_data - per-vendor variations
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71)  * @ops: the vendor-specific operations used on this silicon version
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72)  * @clockwatch: if this is an ST Microelectronics silicon version with a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73)  *	clockwatch function
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74)  * @st_weekday: if this is an ST Microelectronics silicon version that need
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75)  *	the weekday fix
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76)  * @irqflags: special IRQ flags per variant
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78) struct pl031_vendor_data {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79) 	struct rtc_class_ops ops;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80) 	bool clockwatch;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81) 	bool st_weekday;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82) 	unsigned long irqflags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83) 	time64_t range_min;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84) 	timeu64_t range_max;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87) struct pl031_local {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88) 	struct pl031_vendor_data *vendor;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89) 	struct rtc_device *rtc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90) 	void __iomem *base;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93) static int pl031_alarm_irq_enable(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94) 	unsigned int enabled)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96) 	struct pl031_local *ldata = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97) 	unsigned long imsc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99) 	/* Clear any pending alarm interrupts. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) 	writel(RTC_BIT_AI, ldata->base + RTC_ICR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) 	imsc = readl(ldata->base + RTC_IMSC);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) 	if (enabled == 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) 		writel(imsc | RTC_BIT_AI, ldata->base + RTC_IMSC);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) 		writel(imsc & ~RTC_BIT_AI, ldata->base + RTC_IMSC);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113)  * Convert Gregorian date to ST v2 RTC format.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) static int pl031_stv2_tm_to_time(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) 				 struct rtc_time *tm, unsigned long *st_time,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) 	unsigned long *bcd_year)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) 	int year = tm->tm_year + 1900;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) 	int wday = tm->tm_wday;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) 	/* wday masking is not working in hardware so wday must be valid */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) 	if (wday < -1 || wday > 6) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) 		dev_err(dev, "invalid wday value %d\n", tm->tm_wday);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) 	} else if (wday == -1) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) 		/* wday is not provided, calculate it here */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) 		struct rtc_time calc_tm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) 		rtc_time64_to_tm(rtc_tm_to_time64(tm), &calc_tm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) 		wday = calc_tm.tm_wday;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) 	*bcd_year = (bin2bcd(year % 100) | bin2bcd(year / 100) << 8);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) 	*st_time = ((tm->tm_mon + 1) << RTC_MON_SHIFT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) 			|	(tm->tm_mday << RTC_MDAY_SHIFT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) 			|	((wday + 1) << RTC_WDAY_SHIFT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) 			|	(tm->tm_hour << RTC_HOUR_SHIFT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) 			|	(tm->tm_min << RTC_MIN_SHIFT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) 			|	(tm->tm_sec << RTC_SEC_SHIFT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147)  * Convert ST v2 RTC format to Gregorian date.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) static int pl031_stv2_time_to_tm(unsigned long st_time, unsigned long bcd_year,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) 	struct rtc_time *tm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) 	tm->tm_year = bcd2bin(bcd_year) + (bcd2bin(bcd_year >> 8) * 100);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) 	tm->tm_mon  = ((st_time & RTC_MON_MASK) >> RTC_MON_SHIFT) - 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) 	tm->tm_mday = ((st_time & RTC_MDAY_MASK) >> RTC_MDAY_SHIFT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) 	tm->tm_wday = ((st_time & RTC_WDAY_MASK) >> RTC_WDAY_SHIFT) - 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) 	tm->tm_hour = ((st_time & RTC_HOUR_MASK) >> RTC_HOUR_SHIFT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) 	tm->tm_min  = ((st_time & RTC_MIN_MASK) >> RTC_MIN_SHIFT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) 	tm->tm_sec  = ((st_time & RTC_SEC_MASK) >> RTC_SEC_SHIFT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) 	tm->tm_yday = rtc_year_days(tm->tm_mday, tm->tm_mon, tm->tm_year);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) 	tm->tm_year -= 1900;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) static int pl031_stv2_read_time(struct device *dev, struct rtc_time *tm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) 	struct pl031_local *ldata = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) 	pl031_stv2_time_to_tm(readl(ldata->base + RTC_DR),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) 			readl(ldata->base + RTC_YDR), tm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) static int pl031_stv2_set_time(struct device *dev, struct rtc_time *tm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) 	unsigned long time;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) 	unsigned long bcd_year;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) 	struct pl031_local *ldata = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) 	ret = pl031_stv2_tm_to_time(dev, tm, &time, &bcd_year);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) 	if (ret == 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) 		writel(bcd_year, ldata->base + RTC_YLR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) 		writel(time, ldata->base + RTC_LR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) static int pl031_stv2_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) 	struct pl031_local *ldata = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) 	ret = pl031_stv2_time_to_tm(readl(ldata->base + RTC_MR),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) 			readl(ldata->base + RTC_YMR), &alarm->time);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) 	alarm->pending = readl(ldata->base + RTC_RIS) & RTC_BIT_AI;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) 	alarm->enabled = readl(ldata->base + RTC_IMSC) & RTC_BIT_AI;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) static int pl031_stv2_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) 	struct pl031_local *ldata = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) 	unsigned long time;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) 	unsigned long bcd_year;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) 	ret = pl031_stv2_tm_to_time(dev, &alarm->time,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) 				    &time, &bcd_year);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) 	if (ret == 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) 		writel(bcd_year, ldata->base + RTC_YMR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) 		writel(time, ldata->base + RTC_MR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) 		pl031_alarm_irq_enable(dev, alarm->enabled);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) static irqreturn_t pl031_interrupt(int irq, void *dev_id)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) 	struct pl031_local *ldata = dev_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) 	unsigned long rtcmis;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) 	unsigned long events = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) 	rtcmis = readl(ldata->base + RTC_MIS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) 	if (rtcmis & RTC_BIT_AI) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) 		writel(RTC_BIT_AI, ldata->base + RTC_ICR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) 		events |= (RTC_AF | RTC_IRQF);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) 		rtc_update_irq(ldata->rtc, 1, events);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) 		return IRQ_HANDLED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) 	return IRQ_NONE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) static int pl031_read_time(struct device *dev, struct rtc_time *tm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) 	struct pl031_local *ldata = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) 	rtc_time64_to_tm(readl(ldata->base + RTC_DR), tm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) static int pl031_set_time(struct device *dev, struct rtc_time *tm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) 	struct pl031_local *ldata = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) 	writel(rtc_tm_to_time64(tm), ldata->base + RTC_LR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) static int pl031_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) 	struct pl031_local *ldata = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) 	rtc_time64_to_tm(readl(ldata->base + RTC_MR), &alarm->time);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) 	alarm->pending = readl(ldata->base + RTC_RIS) & RTC_BIT_AI;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) 	alarm->enabled = readl(ldata->base + RTC_IMSC) & RTC_BIT_AI;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) static int pl031_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) 	struct pl031_local *ldata = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) 	writel(rtc_tm_to_time64(&alarm->time), ldata->base + RTC_MR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) 	pl031_alarm_irq_enable(dev, alarm->enabled);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) static void pl031_remove(struct amba_device *adev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) 	struct pl031_local *ldata = dev_get_drvdata(&adev->dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) 	dev_pm_clear_wake_irq(&adev->dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) 	device_init_wakeup(&adev->dev, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) 	if (adev->irq[0])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) 		free_irq(adev->irq[0], ldata);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) 	amba_release_regions(adev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) static int pl031_probe(struct amba_device *adev, const struct amba_id *id)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) 	struct pl031_local *ldata;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) 	struct pl031_vendor_data *vendor = id->data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) 	struct rtc_class_ops *ops;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) 	unsigned long time, data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) 	ret = amba_request_regions(adev, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) 		goto err_req;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) 	ldata = devm_kzalloc(&adev->dev, sizeof(struct pl031_local),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) 			     GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) 	ops = devm_kmemdup(&adev->dev, &vendor->ops, sizeof(vendor->ops),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) 			   GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) 	if (!ldata || !ops) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) 		ret = -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) 		goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) 	ldata->vendor = vendor;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) 	ldata->base = devm_ioremap(&adev->dev, adev->res.start,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) 				   resource_size(&adev->res));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) 	if (!ldata->base) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) 		ret = -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) 		goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) 	amba_set_drvdata(adev, ldata);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) 	dev_dbg(&adev->dev, "designer ID = 0x%02x\n", amba_manf(adev));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) 	dev_dbg(&adev->dev, "revision = 0x%01x\n", amba_rev(adev));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) 	data = readl(ldata->base + RTC_CR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) 	/* Enable the clockwatch on ST Variants */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) 	if (vendor->clockwatch)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) 		data |= RTC_CR_CWEN;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) 		data |= RTC_CR_EN;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) 	writel(data, ldata->base + RTC_CR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) 	 * On ST PL031 variants, the RTC reset value does not provide correct
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) 	 * weekday for 2000-01-01. Correct the erroneous sunday to saturday.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) 	if (vendor->st_weekday) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) 		if (readl(ldata->base + RTC_YDR) == 0x2000) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) 			time = readl(ldata->base + RTC_DR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) 			if ((time &
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) 			     (RTC_MON_MASK | RTC_MDAY_MASK | RTC_WDAY_MASK))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) 			    == 0x02120000) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) 				time = time | (0x7 << RTC_WDAY_SHIFT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) 				writel(0x2000, ldata->base + RTC_YLR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) 				writel(time, ldata->base + RTC_LR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) 	if (!adev->irq[0]) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) 		/* When there's no interrupt, no point in exposing the alarm */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) 		ops->read_alarm = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) 		ops->set_alarm = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) 		ops->alarm_irq_enable = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) 	device_init_wakeup(&adev->dev, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) 	ldata->rtc = devm_rtc_allocate_device(&adev->dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) 	if (IS_ERR(ldata->rtc)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) 		ret = PTR_ERR(ldata->rtc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) 		goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) 	ldata->rtc->ops = ops;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) 	ldata->rtc->range_min = vendor->range_min;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) 	ldata->rtc->range_max = vendor->range_max;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371) 	ret = rtc_register_device(ldata->rtc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373) 		goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) 	if (adev->irq[0]) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376) 		ret = request_irq(adev->irq[0], pl031_interrupt,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) 				  vendor->irqflags, "rtc-pl031", ldata);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378) 		if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379) 			goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) 		dev_pm_set_wake_irq(&adev->dev, adev->irq[0]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) 	amba_release_regions(adev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) err_req:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391) /* Operations for the original ARM version */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392) static struct pl031_vendor_data arm_pl031 = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393) 	.ops = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394) 		.read_time = pl031_read_time,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395) 		.set_time = pl031_set_time,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396) 		.read_alarm = pl031_read_alarm,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397) 		.set_alarm = pl031_set_alarm,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398) 		.alarm_irq_enable = pl031_alarm_irq_enable,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400) 	.range_max = U32_MAX,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403) /* The First ST derivative */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404) static struct pl031_vendor_data stv1_pl031 = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405) 	.ops = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406) 		.read_time = pl031_read_time,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407) 		.set_time = pl031_set_time,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408) 		.read_alarm = pl031_read_alarm,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409) 		.set_alarm = pl031_set_alarm,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410) 		.alarm_irq_enable = pl031_alarm_irq_enable,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412) 	.clockwatch = true,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413) 	.st_weekday = true,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414) 	.range_max = U32_MAX,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417) /* And the second ST derivative */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418) static struct pl031_vendor_data stv2_pl031 = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419) 	.ops = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420) 		.read_time = pl031_stv2_read_time,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421) 		.set_time = pl031_stv2_set_time,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422) 		.read_alarm = pl031_stv2_read_alarm,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423) 		.set_alarm = pl031_stv2_set_alarm,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424) 		.alarm_irq_enable = pl031_alarm_irq_enable,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 426) 	.clockwatch = true,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 427) 	.st_weekday = true,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 428) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 429) 	 * This variant shares the IRQ with another block and must not
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 430) 	 * suspend that IRQ line.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 431) 	 * TODO check if it shares with IRQF_NO_SUSPEND user, else we can
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 432) 	 * remove IRQF_COND_SUSPEND
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 433) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 434) 	.irqflags = IRQF_SHARED | IRQF_COND_SUSPEND,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 435) 	.range_min = RTC_TIMESTAMP_BEGIN_0000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 436) 	.range_max = RTC_TIMESTAMP_END_9999,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 437) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 438) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 439) static const struct amba_id pl031_ids[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 440) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 441) 		.id = 0x00041031,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 442) 		.mask = 0x000fffff,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 443) 		.data = &arm_pl031,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 444) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 445) 	/* ST Micro variants */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 446) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 447) 		.id = 0x00180031,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 448) 		.mask = 0x00ffffff,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 449) 		.data = &stv1_pl031,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 450) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 451) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 452) 		.id = 0x00280031,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 453) 		.mask = 0x00ffffff,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 454) 		.data = &stv2_pl031,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 455) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 456) 	{0, 0},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 457) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 458) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 459) MODULE_DEVICE_TABLE(amba, pl031_ids);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 460) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 461) static struct amba_driver pl031_driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 462) 	.drv = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 463) 		.name = "rtc-pl031",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 464) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 465) 	.id_table = pl031_ids,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 466) 	.probe = pl031_probe,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 467) 	.remove = pl031_remove,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 468) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 469) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 470) module_amba_driver(pl031_driver);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 471) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 472) MODULE_AUTHOR("Deepak Saxena <dsaxena@plexity.net>");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 473) MODULE_DESCRIPTION("ARM AMBA PL031 RTC Driver");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 474) MODULE_LICENSE("GPL");