Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) // SPDX-License-Identifier: GPL-2.0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3)  * Real Time Clock (RTC) Driver for i.MX53
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4)  * Copyright (c) 2004-2011 Freescale Semiconductor, Inc.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5)  * Copyright (c) 2017 Beckhoff Automation GmbH & Co. KG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8) #include <linux/clk.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9) #include <linux/io.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11) #include <linux/mod_devicetable.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12) #include <linux/platform_device.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13) #include <linux/pm_wakeirq.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14) #include <linux/rtc.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16) #define SRTC_LPPDR_INIT       0x41736166	/* init for glitch detect */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18) #define SRTC_LPCR_EN_LP       BIT(3)	/* lp enable */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19) #define SRTC_LPCR_WAE         BIT(4)	/* lp wakeup alarm enable */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20) #define SRTC_LPCR_ALP         BIT(7)	/* lp alarm flag */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21) #define SRTC_LPCR_NSA         BIT(11)	/* lp non secure access */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22) #define SRTC_LPCR_NVE         BIT(14)	/* lp non valid state exit bit */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23) #define SRTC_LPCR_IE          BIT(15)	/* lp init state exit bit */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25) #define SRTC_LPSR_ALP         BIT(3)	/* lp alarm flag */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26) #define SRTC_LPSR_NVES        BIT(14)	/* lp non-valid state exit status */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27) #define SRTC_LPSR_IES         BIT(15)	/* lp init state exit status */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29) #define SRTC_LPSCMR	0x00	/* LP Secure Counter MSB Reg */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30) #define SRTC_LPSCLR	0x04	/* LP Secure Counter LSB Reg */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31) #define SRTC_LPSAR	0x08	/* LP Secure Alarm Reg */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32) #define SRTC_LPCR	0x10	/* LP Control Reg */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33) #define SRTC_LPSR	0x14	/* LP Status Reg */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34) #define SRTC_LPPDR	0x18	/* LP Power Supply Glitch Detector Reg */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36) /* max. number of retries to read registers, 120 was max during test */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37) #define REG_READ_TIMEOUT 2000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39) struct mxc_rtc_data {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40) 	struct rtc_device *rtc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41) 	void __iomem *ioaddr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42) 	struct clk *clk;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43) 	spinlock_t lock; /* protects register access */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44) 	int irq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48)  * This function does write synchronization for writes to the lp srtc block.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49)  * To take care of the asynchronous CKIL clock, all writes from the IP domain
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50)  * will be synchronized to the CKIL domain.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51)  * The caller should hold the pdata->lock
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53) static void mxc_rtc_sync_lp_locked(struct device *dev, void __iomem *ioaddr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55) 	unsigned int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57) 	/* Wait for 3 CKIL cycles */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58) 	for (i = 0; i < 3; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59) 		const u32 count = readl(ioaddr + SRTC_LPSCLR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60) 		unsigned int timeout = REG_READ_TIMEOUT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62) 		while ((readl(ioaddr + SRTC_LPSCLR)) == count) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63) 			if (!--timeout) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64) 				dev_err_once(dev, "SRTC_LPSCLR stuck! Check your hw.\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65) 				return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71) /* This function is the RTC interrupt service routine. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72) static irqreturn_t mxc_rtc_interrupt(int irq, void *dev_id)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74) 	struct device *dev = dev_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75) 	struct mxc_rtc_data *pdata = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76) 	void __iomem *ioaddr = pdata->ioaddr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78) 	u32 lp_status;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79) 	u32 lp_cr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81) 	spin_lock_irqsave(&pdata->lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82) 	if (clk_enable(pdata->clk)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83) 		spin_unlock_irqrestore(&pdata->lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84) 		return IRQ_NONE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87) 	lp_status = readl(ioaddr + SRTC_LPSR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88) 	lp_cr = readl(ioaddr + SRTC_LPCR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90) 	/* update irq data & counter */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91) 	if (lp_status & SRTC_LPSR_ALP) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92) 		if (lp_cr & SRTC_LPCR_ALP)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93) 			rtc_update_irq(pdata->rtc, 1, RTC_AF | RTC_IRQF);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95) 		/* disable further lp alarm interrupts */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96) 		lp_cr &= ~(SRTC_LPCR_ALP | SRTC_LPCR_WAE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99) 	/* Update interrupt enables */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) 	writel(lp_cr, ioaddr + SRTC_LPCR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) 	/* clear interrupt status */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) 	writel(lp_status, ioaddr + SRTC_LPSR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) 	mxc_rtc_sync_lp_locked(dev, ioaddr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) 	clk_disable(pdata->clk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) 	spin_unlock_irqrestore(&pdata->lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) 	return IRQ_HANDLED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112)  * Enable clk and aquire spinlock
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113)  * @return  0 if successful; non-zero otherwise.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) static int mxc_rtc_lock(struct mxc_rtc_data *const pdata)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) 	spin_lock_irq(&pdata->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) 	ret = clk_enable(pdata->clk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) 	if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) 		spin_unlock_irq(&pdata->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) static int mxc_rtc_unlock(struct mxc_rtc_data *const pdata)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) 	clk_disable(pdata->clk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) 	spin_unlock_irq(&pdata->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136)  * This function reads the current RTC time into tm in Gregorian date.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138)  * @param  tm           contains the RTC time value upon return
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140)  * @return  0 if successful; non-zero otherwise.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) static int mxc_rtc_read_time(struct device *dev, struct rtc_time *tm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) 	struct mxc_rtc_data *pdata = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) 	const int clk_failed = clk_enable(pdata->clk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) 	if (!clk_failed) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) 		const time64_t now = readl(pdata->ioaddr + SRTC_LPSCMR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) 		rtc_time64_to_tm(now, tm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) 		clk_disable(pdata->clk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) 	return clk_failed;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158)  * This function sets the internal RTC time based on tm in Gregorian date.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160)  * @param  tm           the time value to be set in the RTC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162)  * @return  0 if successful; non-zero otherwise.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) static int mxc_rtc_set_time(struct device *dev, struct rtc_time *tm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) 	struct mxc_rtc_data *pdata = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) 	time64_t time = rtc_tm_to_time64(tm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) 	ret = mxc_rtc_lock(pdata);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) 	writel(time, pdata->ioaddr + SRTC_LPSCMR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) 	mxc_rtc_sync_lp_locked(dev, pdata->ioaddr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) 	return mxc_rtc_unlock(pdata);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180)  * This function reads the current alarm value into the passed in \b alrm
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181)  * argument. It updates the \b alrm's pending field value based on the whether
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182)  * an alarm interrupt occurs or not.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184)  * @param  alrm         contains the RTC alarm value upon return
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186)  * @return  0 if successful; non-zero otherwise.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) static int mxc_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) 	struct mxc_rtc_data *pdata = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) 	void __iomem *ioaddr = pdata->ioaddr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) 	ret = mxc_rtc_lock(pdata);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) 	rtc_time64_to_tm(readl(ioaddr + SRTC_LPSAR), &alrm->time);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) 	alrm->pending = !!(readl(ioaddr + SRTC_LPSR) & SRTC_LPSR_ALP);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) 	return mxc_rtc_unlock(pdata);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204)  * Enable/Disable alarm interrupt
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205)  * The caller should hold the pdata->lock
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) static void mxc_rtc_alarm_irq_enable_locked(struct mxc_rtc_data *pdata,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) 					    unsigned int enable)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) 	u32 lp_cr = readl(pdata->ioaddr + SRTC_LPCR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) 	if (enable)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) 		lp_cr |= (SRTC_LPCR_ALP | SRTC_LPCR_WAE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) 		lp_cr &= ~(SRTC_LPCR_ALP | SRTC_LPCR_WAE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) 	writel(lp_cr, pdata->ioaddr + SRTC_LPCR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) static int mxc_rtc_alarm_irq_enable(struct device *dev, unsigned int enable)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) 	struct mxc_rtc_data *pdata = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) 	int ret = mxc_rtc_lock(pdata);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) 	mxc_rtc_alarm_irq_enable_locked(pdata, enable);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) 	return mxc_rtc_unlock(pdata);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233)  * This function sets the RTC alarm based on passed in alrm.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235)  * @param  alrm         the alarm value to be set in the RTC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237)  * @return  0 if successful; non-zero otherwise.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) static int mxc_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) 	const time64_t time = rtc_tm_to_time64(&alrm->time);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) 	struct mxc_rtc_data *pdata = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) 	int ret = mxc_rtc_lock(pdata);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) 	writel((u32)time, pdata->ioaddr + SRTC_LPSAR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) 	/* clear alarm interrupt status bit */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) 	writel(SRTC_LPSR_ALP, pdata->ioaddr + SRTC_LPSR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) 	mxc_rtc_sync_lp_locked(dev, pdata->ioaddr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) 	mxc_rtc_alarm_irq_enable_locked(pdata, alrm->enabled);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) 	mxc_rtc_sync_lp_locked(dev, pdata->ioaddr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) 	mxc_rtc_unlock(pdata);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) static const struct rtc_class_ops mxc_rtc_ops = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) 	.read_time = mxc_rtc_read_time,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) 	.set_time = mxc_rtc_set_time,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) 	.read_alarm = mxc_rtc_read_alarm,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) 	.set_alarm = mxc_rtc_set_alarm,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) 	.alarm_irq_enable = mxc_rtc_alarm_irq_enable,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) static int mxc_rtc_wait_for_flag(void __iomem *ioaddr, int flag)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) 	unsigned int timeout = REG_READ_TIMEOUT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) 	while (!(readl(ioaddr) & flag)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) 		if (!--timeout)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) 			return -EBUSY;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) static int mxc_rtc_probe(struct platform_device *pdev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) 	struct mxc_rtc_data *pdata;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) 	void __iomem *ioaddr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) 	int ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) 	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) 	if (!pdata)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) 	pdata->ioaddr = devm_platform_ioremap_resource(pdev, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) 	if (IS_ERR(pdata->ioaddr))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) 		return PTR_ERR(pdata->ioaddr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) 	ioaddr = pdata->ioaddr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) 	pdata->clk = devm_clk_get(&pdev->dev, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) 	if (IS_ERR(pdata->clk)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) 		dev_err(&pdev->dev, "unable to get rtc clock!\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) 		return PTR_ERR(pdata->clk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) 	spin_lock_init(&pdata->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) 	pdata->irq = platform_get_irq(pdev, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) 	if (pdata->irq < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) 		return pdata->irq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) 	device_init_wakeup(&pdev->dev, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) 	ret = dev_pm_set_wake_irq(&pdev->dev, pdata->irq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) 		dev_err(&pdev->dev, "failed to enable irq wake\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) 	ret = clk_prepare_enable(pdata->clk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) 	/* initialize glitch detect */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) 	writel(SRTC_LPPDR_INIT, ioaddr + SRTC_LPPDR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) 	/* clear lp interrupt status */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) 	writel(0xFFFFFFFF, ioaddr + SRTC_LPSR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) 	/* move out of init state */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) 	writel((SRTC_LPCR_IE | SRTC_LPCR_NSA), ioaddr + SRTC_LPCR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) 	ret = mxc_rtc_wait_for_flag(ioaddr + SRTC_LPSR, SRTC_LPSR_IES);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) 	if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) 		dev_err(&pdev->dev, "Timeout waiting for SRTC_LPSR_IES\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) 		clk_disable_unprepare(pdata->clk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) 	/* move out of non-valid state */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) 	writel((SRTC_LPCR_IE | SRTC_LPCR_NVE | SRTC_LPCR_NSA |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) 		SRTC_LPCR_EN_LP), ioaddr + SRTC_LPCR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) 	ret = mxc_rtc_wait_for_flag(ioaddr + SRTC_LPSR, SRTC_LPSR_NVES);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) 	if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) 		dev_err(&pdev->dev, "Timeout waiting for SRTC_LPSR_NVES\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) 		clk_disable_unprepare(pdata->clk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) 	pdata->rtc = devm_rtc_allocate_device(&pdev->dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) 	if (IS_ERR(pdata->rtc))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) 		return PTR_ERR(pdata->rtc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) 	pdata->rtc->ops = &mxc_rtc_ops;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) 	pdata->rtc->range_max = U32_MAX;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) 	clk_disable(pdata->clk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) 	platform_set_drvdata(pdev, pdata);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) 	ret =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) 	    devm_request_irq(&pdev->dev, pdata->irq, mxc_rtc_interrupt, 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350) 			     pdev->name, &pdev->dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) 	if (ret < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) 		dev_err(&pdev->dev, "interrupt not available.\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) 		clk_unprepare(pdata->clk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) 	ret = rtc_register_device(pdata->rtc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358) 	if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) 		clk_unprepare(pdata->clk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) static int mxc_rtc_remove(struct platform_device *pdev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) 	struct mxc_rtc_data *pdata = platform_get_drvdata(pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) 	clk_disable_unprepare(pdata->clk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) static const struct of_device_id mxc_ids[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373) 	{ .compatible = "fsl,imx53-rtc", },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374) 	{}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376) MODULE_DEVICE_TABLE(of, mxc_ids);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378) static struct platform_driver mxc_rtc_driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379) 	.driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) 		.name = "mxc_rtc_v2",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381) 		.of_match_table = mxc_ids,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383) 	.probe = mxc_rtc_probe,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384) 	.remove = mxc_rtc_remove,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387) module_platform_driver(mxc_rtc_driver);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) MODULE_AUTHOR("Freescale Semiconductor, Inc.");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390) MODULE_DESCRIPTION("Real Time Clock (RTC) Driver for i.MX53");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391) MODULE_LICENSE("GPL");