Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) // SPDX-License-Identifier: GPL-2.0-only
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3)  * SPI Driver for Microchip MCP795 RTC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5)  * Copyright (C) Josef Gajdusek <atx@atx.name>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7)  * based on other Linux RTC drivers
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9)  * Device datasheet:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10)  * https://ww1.microchip.com/downloads/en/DeviceDoc/22280A.pdf
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14) #include <linux/kernel.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15) #include <linux/device.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16) #include <linux/printk.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17) #include <linux/spi/spi.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18) #include <linux/rtc.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19) #include <linux/of.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20) #include <linux/bcd.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21) #include <linux/delay.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23) /* MCP795 Instructions, see datasheet table 3-1 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24) #define MCP795_EEREAD	0x03
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25) #define MCP795_EEWRITE	0x02
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26) #define MCP795_EEWRDI	0x04
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27) #define MCP795_EEWREN	0x06
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28) #define MCP795_SRREAD	0x05
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29) #define MCP795_SRWRITE	0x01
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30) #define MCP795_READ	0x13
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31) #define MCP795_WRITE	0x12
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32) #define MCP795_UNLOCK	0x14
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33) #define MCP795_IDWRITE	0x32
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34) #define MCP795_IDREAD	0x33
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35) #define MCP795_CLRWDT	0x44
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36) #define MCP795_CLRRAM	0x54
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38) /* MCP795 RTCC registers, see datasheet table 4-1 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39) #define MCP795_REG_SECONDS	0x01
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40) #define MCP795_REG_DAY		0x04
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41) #define MCP795_REG_MONTH	0x06
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42) #define MCP795_REG_CONTROL	0x08
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43) #define MCP795_REG_ALM0_SECONDS	0x0C
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44) #define MCP795_REG_ALM0_DAY	0x0F
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46) #define MCP795_ST_BIT		BIT(7)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47) #define MCP795_24_BIT		BIT(6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48) #define MCP795_LP_BIT		BIT(5)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49) #define MCP795_EXTOSC_BIT	BIT(3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50) #define MCP795_OSCON_BIT	BIT(5)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51) #define MCP795_ALM0_BIT		BIT(4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52) #define MCP795_ALM1_BIT		BIT(5)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53) #define MCP795_ALM0IF_BIT	BIT(3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54) #define MCP795_ALM0C0_BIT	BIT(4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55) #define MCP795_ALM0C1_BIT	BIT(5)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56) #define MCP795_ALM0C2_BIT	BIT(6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58) #define SEC_PER_DAY		(24 * 60 * 60)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60) static int mcp795_rtcc_read(struct device *dev, u8 addr, u8 *buf, u8 count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62) 	struct spi_device *spi = to_spi_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64) 	u8 tx[2];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66) 	tx[0] = MCP795_READ;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67) 	tx[1] = addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68) 	ret = spi_write_then_read(spi, tx, sizeof(tx), buf, count);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71) 		dev_err(dev, "Failed reading %d bytes from address %x.\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72) 					count, addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77) static int mcp795_rtcc_write(struct device *dev, u8 addr, u8 *data, u8 count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79) 	struct spi_device *spi = to_spi_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81) 	u8 tx[257];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83) 	tx[0] = MCP795_WRITE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84) 	tx[1] = addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85) 	memcpy(&tx[2], data, count);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87) 	ret = spi_write(spi, tx, 2 + count);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90) 		dev_err(dev, "Failed to write %d bytes to address %x.\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91) 					count, addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96) static int mcp795_rtcc_set_bits(struct device *dev, u8 addr, u8 mask, u8 state)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99) 	u8 tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) 	ret = mcp795_rtcc_read(dev, addr, &tmp, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) 	if ((tmp & mask) != state) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) 		tmp = (tmp & ~mask) | state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) 		ret = mcp795_rtcc_write(dev, addr, &tmp, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) static int mcp795_stop_oscillator(struct device *dev, bool *extosc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) 	int retries = 5;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) 	u8 data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) 	ret = mcp795_rtcc_set_bits(dev, MCP795_REG_SECONDS, MCP795_ST_BIT, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) 	ret = mcp795_rtcc_read(dev, MCP795_REG_CONTROL, &data, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) 	*extosc = !!(data & MCP795_EXTOSC_BIT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) 	ret = mcp795_rtcc_set_bits(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) 				dev, MCP795_REG_CONTROL, MCP795_EXTOSC_BIT, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) 	/* wait for the OSCON bit to clear */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) 	do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) 		usleep_range(700, 800);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) 		ret = mcp795_rtcc_read(dev, MCP795_REG_DAY, &data, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) 		if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) 		if (!(data & MCP795_OSCON_BIT))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) 	} while (--retries);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) 	return !retries ? -EIO : ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) static int mcp795_start_oscillator(struct device *dev, bool *extosc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) 	if (extosc) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) 		u8 data = *extosc ? MCP795_EXTOSC_BIT : 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) 		int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) 		ret = mcp795_rtcc_set_bits(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) 			dev, MCP795_REG_CONTROL, MCP795_EXTOSC_BIT, data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) 		if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) 			return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) 	return mcp795_rtcc_set_bits(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) 			dev, MCP795_REG_SECONDS, MCP795_ST_BIT, MCP795_ST_BIT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) /* Enable or disable Alarm 0 in RTC */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) static int mcp795_update_alarm(struct device *dev, bool enable)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) 	dev_dbg(dev, "%s alarm\n", enable ? "Enable" : "Disable");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) 	if (enable) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) 		/* clear ALM0IF (Alarm 0 Interrupt Flag) bit */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) 		ret = mcp795_rtcc_set_bits(dev, MCP795_REG_ALM0_DAY,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) 					MCP795_ALM0IF_BIT, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) 		if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) 			return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) 		/* enable alarm 0 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) 		ret = mcp795_rtcc_set_bits(dev, MCP795_REG_CONTROL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) 					MCP795_ALM0_BIT, MCP795_ALM0_BIT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) 		/* disable alarm 0 and alarm 1 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) 		ret = mcp795_rtcc_set_bits(dev, MCP795_REG_CONTROL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) 					MCP795_ALM0_BIT | MCP795_ALM1_BIT, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) static int mcp795_set_time(struct device *dev, struct rtc_time *tim)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) 	u8 data[7];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) 	bool extosc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) 	/* Stop RTC and store current value of EXTOSC bit */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) 	ret = mcp795_stop_oscillator(dev, &extosc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) 	/* Read first, so we can leave config bits untouched */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) 	ret = mcp795_rtcc_read(dev, MCP795_REG_SECONDS, data, sizeof(data));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) 	data[0] = (data[0] & 0x80) | bin2bcd(tim->tm_sec);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) 	data[1] = (data[1] & 0x80) | bin2bcd(tim->tm_min);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) 	data[2] = bin2bcd(tim->tm_hour);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) 	data[3] = (data[3] & 0xF8) | bin2bcd(tim->tm_wday + 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) 	data[4] = bin2bcd(tim->tm_mday);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) 	data[5] = (data[5] & MCP795_LP_BIT) | bin2bcd(tim->tm_mon + 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) 	if (tim->tm_year > 100)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) 		tim->tm_year -= 100;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) 	data[6] = bin2bcd(tim->tm_year);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) 	/* Always write the date and month using a separate Write command.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) 	 * This is a workaround for a know silicon issue that some combinations
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) 	 * of date and month values may result in the date being reset to 1.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) 	ret = mcp795_rtcc_write(dev, MCP795_REG_SECONDS, data, 5);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) 	ret = mcp795_rtcc_write(dev, MCP795_REG_MONTH, &data[5], 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) 	/* Start back RTC and restore previous value of EXTOSC bit.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) 	 * There is no need to clear EXTOSC bit when the previous value was 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) 	 * because it was already cleared when stopping the RTC oscillator.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) 	ret = mcp795_start_oscillator(dev, extosc ? &extosc : NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) 	dev_dbg(dev, "Set mcp795: %ptR\n", tim);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) static int mcp795_read_time(struct device *dev, struct rtc_time *tim)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) 	u8 data[7];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) 	ret = mcp795_rtcc_read(dev, MCP795_REG_SECONDS, data, sizeof(data));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) 	tim->tm_sec	= bcd2bin(data[0] & 0x7F);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) 	tim->tm_min	= bcd2bin(data[1] & 0x7F);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) 	tim->tm_hour	= bcd2bin(data[2] & 0x3F);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) 	tim->tm_wday	= bcd2bin(data[3] & 0x07) - 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) 	tim->tm_mday	= bcd2bin(data[4] & 0x3F);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) 	tim->tm_mon	= bcd2bin(data[5] & 0x1F) - 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) 	tim->tm_year	= bcd2bin(data[6]) + 100; /* Assume we are in 20xx */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) 	dev_dbg(dev, "Read from mcp795: %ptR\n", tim);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) static int mcp795_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) 	struct rtc_time now_tm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) 	time64_t now;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) 	time64_t later;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) 	u8 tmp[6];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) 	/* Read current time from RTC hardware */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) 	ret = mcp795_read_time(dev, &now_tm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) 	/* Get the number of seconds since 1970 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) 	now = rtc_tm_to_time64(&now_tm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) 	later = rtc_tm_to_time64(&alm->time);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) 	if (later <= now)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) 	/* make sure alarm fires within the next one year */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) 	if ((later - now) >=
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) 		(SEC_PER_DAY * (365 + is_leap_year(alm->time.tm_year))))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) 		return -EDOM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) 	/* disable alarm */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) 	ret = mcp795_update_alarm(dev, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) 	/* Read registers, so we can leave configuration bits untouched */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) 	ret = mcp795_rtcc_read(dev, MCP795_REG_ALM0_SECONDS, tmp, sizeof(tmp));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) 	alm->time.tm_year	= -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) 	alm->time.tm_isdst	= -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) 	alm->time.tm_yday	= -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) 	tmp[0] = (tmp[0] & 0x80) | bin2bcd(alm->time.tm_sec);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) 	tmp[1] = (tmp[1] & 0x80) | bin2bcd(alm->time.tm_min);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) 	tmp[2] = (tmp[2] & 0xE0) | bin2bcd(alm->time.tm_hour);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) 	tmp[3] = (tmp[3] & 0x80) | bin2bcd(alm->time.tm_wday + 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) 	/* set alarm match: seconds, minutes, hour, day, date and month */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) 	tmp[3] |= (MCP795_ALM0C2_BIT | MCP795_ALM0C1_BIT | MCP795_ALM0C0_BIT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) 	tmp[4] = (tmp[4] & 0xC0) | bin2bcd(alm->time.tm_mday);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) 	tmp[5] = (tmp[5] & 0xE0) | bin2bcd(alm->time.tm_mon + 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) 	ret = mcp795_rtcc_write(dev, MCP795_REG_ALM0_SECONDS, tmp, sizeof(tmp));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) 	/* enable alarm if requested */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) 	if (alm->enabled) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) 		ret = mcp795_update_alarm(dev, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) 		if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) 			return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) 		dev_dbg(dev, "Alarm IRQ armed\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) 	dev_dbg(dev, "Set alarm: %ptRdr(%d) %ptRt\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) 		&alm->time, alm->time.tm_wday, &alm->time);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) static int mcp795_read_alarm(struct device *dev, struct rtc_wkalrm *alm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) 	u8 data[6];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) 	ret = mcp795_rtcc_read(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) 			dev, MCP795_REG_ALM0_SECONDS, data, sizeof(data));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) 	alm->time.tm_sec	= bcd2bin(data[0] & 0x7F);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) 	alm->time.tm_min	= bcd2bin(data[1] & 0x7F);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) 	alm->time.tm_hour	= bcd2bin(data[2] & 0x1F);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) 	alm->time.tm_wday	= bcd2bin(data[3] & 0x07) - 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) 	alm->time.tm_mday	= bcd2bin(data[4] & 0x3F);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) 	alm->time.tm_mon	= bcd2bin(data[5] & 0x1F) - 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) 	alm->time.tm_year	= -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) 	alm->time.tm_isdst	= -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) 	alm->time.tm_yday	= -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) 	dev_dbg(dev, "Read alarm: %ptRdr(%d) %ptRt\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) 		&alm->time, alm->time.tm_wday, &alm->time);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) static int mcp795_alarm_irq_enable(struct device *dev, unsigned int enabled)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) 	return mcp795_update_alarm(dev, !!enabled);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) static irqreturn_t mcp795_irq(int irq, void *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) 	struct spi_device *spi = data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) 	struct rtc_device *rtc = spi_get_drvdata(spi);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) 	struct mutex *lock = &rtc->ops_lock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) 	mutex_lock(lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358) 	/* Disable alarm.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) 	 * There is no need to clear ALM0IF (Alarm 0 Interrupt Flag) bit,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) 	 * because it is done every time when alarm is enabled.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) 	ret = mcp795_update_alarm(&spi->dev, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) 		dev_err(&spi->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) 			"Failed to disable alarm in IRQ (ret=%d)\n", ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) 	rtc_update_irq(rtc, 1, RTC_AF | RTC_IRQF);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) 	mutex_unlock(lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) 	return IRQ_HANDLED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373) static const struct rtc_class_ops mcp795_rtc_ops = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374) 		.read_time = mcp795_read_time,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) 		.set_time = mcp795_set_time,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376) 		.read_alarm = mcp795_read_alarm,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) 		.set_alarm = mcp795_set_alarm,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378) 		.alarm_irq_enable = mcp795_alarm_irq_enable
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381) static int mcp795_probe(struct spi_device *spi)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383) 	struct rtc_device *rtc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) 	spi->mode = SPI_MODE_0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387) 	spi->bits_per_word = 8;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388) 	ret = spi_setup(spi);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) 	if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390) 		dev_err(&spi->dev, "Unable to setup SPI\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394) 	/* Start the oscillator but don't set the value of EXTOSC bit */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395) 	mcp795_start_oscillator(&spi->dev, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396) 	/* Clear the 12 hour mode flag*/
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397) 	mcp795_rtcc_set_bits(&spi->dev, 0x03, MCP795_24_BIT, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399) 	rtc = devm_rtc_device_register(&spi->dev, "rtc-mcp795",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400) 					&mcp795_rtc_ops, THIS_MODULE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401) 	if (IS_ERR(rtc))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402) 		return PTR_ERR(rtc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404) 	spi_set_drvdata(spi, rtc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406) 	if (spi->irq > 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407) 		dev_dbg(&spi->dev, "Alarm support enabled\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409) 		/* Clear any pending alarm (ALM0IF bit) before requesting
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410) 		 * the interrupt.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412) 		mcp795_rtcc_set_bits(&spi->dev, MCP795_REG_ALM0_DAY,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413) 					MCP795_ALM0IF_BIT, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414) 		ret = devm_request_threaded_irq(&spi->dev, spi->irq, NULL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415) 				mcp795_irq, IRQF_TRIGGER_FALLING | IRQF_ONESHOT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416) 				dev_name(&rtc->dev), spi);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417) 		if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418) 			dev_err(&spi->dev, "Failed to request IRQ: %d: %d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419) 						spi->irq, ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421) 			device_init_wakeup(&spi->dev, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 426) #ifdef CONFIG_OF
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 427) static const struct of_device_id mcp795_of_match[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 428) 	{ .compatible = "maxim,mcp795" },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 429) 	{ }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 430) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 431) MODULE_DEVICE_TABLE(of, mcp795_of_match);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 432) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 433) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 434) static struct spi_driver mcp795_driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 435) 		.driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 436) 				.name = "rtc-mcp795",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 437) 				.of_match_table = of_match_ptr(mcp795_of_match),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 438) 		},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 439) 		.probe = mcp795_probe,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 440) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 441) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 442) module_spi_driver(mcp795_driver);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 443) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 444) MODULE_DESCRIPTION("MCP795 RTC SPI Driver");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 445) MODULE_AUTHOR("Josef Gajdusek <atx@atx.name>");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 446) MODULE_LICENSE("GPL");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 447) MODULE_ALIAS("spi:mcp795");