^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1) // SPDX-License-Identifier: GPL-2.0-only
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3) * TI LP8788 MFD - rtc driver
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5) * Copyright 2012 Texas Instruments
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7) * Author: Milo(Woogyom) Kim <milo.kim@ti.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 8) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 9)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 10) #include <linux/err.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 11) #include <linux/irqdomain.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 12) #include <linux/mfd/lp8788.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 13) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 14) #include <linux/platform_device.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 15) #include <linux/rtc.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 16) #include <linux/slab.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 17)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 18) /* register address */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 19) #define LP8788_INTEN_3 0x05
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 20) #define LP8788_RTC_UNLOCK 0x64
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 21) #define LP8788_RTC_SEC 0x70
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 22) #define LP8788_ALM1_SEC 0x77
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 23) #define LP8788_ALM1_EN 0x7D
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 24) #define LP8788_ALM2_SEC 0x7E
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 25) #define LP8788_ALM2_EN 0x84
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 26)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 27) /* mask/shift bits */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 28) #define LP8788_INT_RTC_ALM1_M BIT(1) /* Addr 05h */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 29) #define LP8788_INT_RTC_ALM1_S 1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 30) #define LP8788_INT_RTC_ALM2_M BIT(2) /* Addr 05h */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 31) #define LP8788_INT_RTC_ALM2_S 2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 32) #define LP8788_ALM_EN_M BIT(7) /* Addr 7Dh or 84h */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 33) #define LP8788_ALM_EN_S 7
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 34)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 35) #define DEFAULT_ALARM_SEL LP8788_ALARM_1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 36) #define LP8788_MONTH_OFFSET 1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 37) #define LP8788_BASE_YEAR 2000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 38) #define MAX_WDAY_BITS 7
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 39) #define LP8788_WDAY_SET 1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 40) #define RTC_UNLOCK 0x1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 41) #define RTC_LATCH 0x2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 42) #define ALARM_IRQ_FLAG (RTC_IRQF | RTC_AF)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 43)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 44) enum lp8788_time {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 45) LPTIME_SEC,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 46) LPTIME_MIN,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 47) LPTIME_HOUR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 48) LPTIME_MDAY,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 49) LPTIME_MON,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 50) LPTIME_YEAR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 51) LPTIME_WDAY,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 52) LPTIME_MAX,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 53) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 54)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 55) struct lp8788_rtc {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 56) struct lp8788 *lp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 57) struct rtc_device *rdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 58) enum lp8788_alarm_sel alarm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 59) int irq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 60) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 61)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 62) static const u8 addr_alarm_sec[LP8788_ALARM_MAX] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 63) LP8788_ALM1_SEC,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 64) LP8788_ALM2_SEC,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 65) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 66)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 67) static const u8 addr_alarm_en[LP8788_ALARM_MAX] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 68) LP8788_ALM1_EN,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 69) LP8788_ALM2_EN,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 70) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 71)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 72) static const u8 mask_alarm_en[LP8788_ALARM_MAX] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 73) LP8788_INT_RTC_ALM1_M,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 74) LP8788_INT_RTC_ALM2_M,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 75) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 76)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 77) static const u8 shift_alarm_en[LP8788_ALARM_MAX] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 78) LP8788_INT_RTC_ALM1_S,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 79) LP8788_INT_RTC_ALM2_S,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 80) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 81)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 82) static int _to_tm_wday(u8 lp8788_wday)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 83) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 84) int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 85)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 86) if (lp8788_wday == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 87) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 88)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 89) /* lookup defined weekday from read register value */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 90) for (i = 0; i < MAX_WDAY_BITS; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 91) if ((lp8788_wday >> i) == LP8788_WDAY_SET)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 92) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 93) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 94)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 95) return i + 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 96) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 97)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 98) static inline int _to_lp8788_wday(int tm_wday)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 99) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) return LP8788_WDAY_SET << (tm_wday - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) static void lp8788_rtc_unlock(struct lp8788 *lp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) lp8788_write_byte(lp, LP8788_RTC_UNLOCK, RTC_UNLOCK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) lp8788_write_byte(lp, LP8788_RTC_UNLOCK, RTC_LATCH);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) static int lp8788_rtc_read_time(struct device *dev, struct rtc_time *tm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) struct lp8788_rtc *rtc = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) struct lp8788 *lp = rtc->lp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) u8 data[LPTIME_MAX];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) lp8788_rtc_unlock(lp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) ret = lp8788_read_multi_bytes(lp, LP8788_RTC_SEC, data, LPTIME_MAX);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) tm->tm_sec = data[LPTIME_SEC];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) tm->tm_min = data[LPTIME_MIN];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) tm->tm_hour = data[LPTIME_HOUR];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) tm->tm_mday = data[LPTIME_MDAY];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) tm->tm_mon = data[LPTIME_MON] - LP8788_MONTH_OFFSET;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) tm->tm_year = data[LPTIME_YEAR] + LP8788_BASE_YEAR - 1900;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) tm->tm_wday = _to_tm_wday(data[LPTIME_WDAY]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) static int lp8788_rtc_set_time(struct device *dev, struct rtc_time *tm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) struct lp8788_rtc *rtc = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) struct lp8788 *lp = rtc->lp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) u8 data[LPTIME_MAX - 1];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) int ret, i, year;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) year = tm->tm_year + 1900 - LP8788_BASE_YEAR;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) if (year < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) dev_err(lp->dev, "invalid year: %d\n", year);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) /* because rtc weekday is a readonly register, do not update */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) data[LPTIME_SEC] = tm->tm_sec;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) data[LPTIME_MIN] = tm->tm_min;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) data[LPTIME_HOUR] = tm->tm_hour;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) data[LPTIME_MDAY] = tm->tm_mday;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) data[LPTIME_MON] = tm->tm_mon + LP8788_MONTH_OFFSET;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) data[LPTIME_YEAR] = year;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) for (i = 0; i < ARRAY_SIZE(data); i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) ret = lp8788_write_byte(lp, LP8788_RTC_SEC + i, data[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) static int lp8788_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) struct lp8788_rtc *rtc = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) struct lp8788 *lp = rtc->lp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) struct rtc_time *tm = &alarm->time;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) u8 addr, data[LPTIME_MAX];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) addr = addr_alarm_sec[rtc->alarm];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) ret = lp8788_read_multi_bytes(lp, addr, data, LPTIME_MAX);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) tm->tm_sec = data[LPTIME_SEC];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) tm->tm_min = data[LPTIME_MIN];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) tm->tm_hour = data[LPTIME_HOUR];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) tm->tm_mday = data[LPTIME_MDAY];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) tm->tm_mon = data[LPTIME_MON] - LP8788_MONTH_OFFSET;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) tm->tm_year = data[LPTIME_YEAR] + LP8788_BASE_YEAR - 1900;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) tm->tm_wday = _to_tm_wday(data[LPTIME_WDAY]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) alarm->enabled = data[LPTIME_WDAY] & LP8788_ALM_EN_M;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) static int lp8788_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) struct lp8788_rtc *rtc = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) struct lp8788 *lp = rtc->lp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) struct rtc_time *tm = &alarm->time;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) u8 addr, data[LPTIME_MAX];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) int ret, i, year;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) year = tm->tm_year + 1900 - LP8788_BASE_YEAR;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) if (year < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) dev_err(lp->dev, "invalid year: %d\n", year);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) data[LPTIME_SEC] = tm->tm_sec;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) data[LPTIME_MIN] = tm->tm_min;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) data[LPTIME_HOUR] = tm->tm_hour;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) data[LPTIME_MDAY] = tm->tm_mday;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) data[LPTIME_MON] = tm->tm_mon + LP8788_MONTH_OFFSET;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) data[LPTIME_YEAR] = year;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) data[LPTIME_WDAY] = _to_lp8788_wday(tm->tm_wday);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) for (i = 0; i < ARRAY_SIZE(data); i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) addr = addr_alarm_sec[rtc->alarm] + i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) ret = lp8788_write_byte(lp, addr, data[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) alarm->enabled = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) addr = addr_alarm_en[rtc->alarm];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) return lp8788_update_bits(lp, addr, LP8788_ALM_EN_M,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) alarm->enabled << LP8788_ALM_EN_S);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) static int lp8788_alarm_irq_enable(struct device *dev, unsigned int enable)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) struct lp8788_rtc *rtc = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) struct lp8788 *lp = rtc->lp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) u8 mask, shift;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) if (!rtc->irq)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) return -EIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) mask = mask_alarm_en[rtc->alarm];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) shift = shift_alarm_en[rtc->alarm];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) return lp8788_update_bits(lp, LP8788_INTEN_3, mask, enable << shift);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) static const struct rtc_class_ops lp8788_rtc_ops = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) .read_time = lp8788_rtc_read_time,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) .set_time = lp8788_rtc_set_time,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) .read_alarm = lp8788_read_alarm,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) .set_alarm = lp8788_set_alarm,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) .alarm_irq_enable = lp8788_alarm_irq_enable,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) static irqreturn_t lp8788_alarm_irq_handler(int irq, void *ptr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) struct lp8788_rtc *rtc = ptr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) rtc_update_irq(rtc->rdev, 1, ALARM_IRQ_FLAG);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) return IRQ_HANDLED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) static int lp8788_alarm_irq_register(struct platform_device *pdev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) struct lp8788_rtc *rtc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) struct resource *r;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) struct lp8788 *lp = rtc->lp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) struct irq_domain *irqdm = lp->irqdm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) int irq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) rtc->irq = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) /* even the alarm IRQ number is not specified, rtc time should work */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) r = platform_get_resource_byname(pdev, IORESOURCE_IRQ, LP8788_ALM_IRQ);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) if (!r)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) if (rtc->alarm == LP8788_ALARM_1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) irq = r->start;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) irq = r->end;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) rtc->irq = irq_create_mapping(irqdm, irq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) return devm_request_threaded_irq(&pdev->dev, rtc->irq, NULL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) lp8788_alarm_irq_handler,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) 0, LP8788_ALM_IRQ, rtc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) static int lp8788_rtc_probe(struct platform_device *pdev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) struct lp8788 *lp = dev_get_drvdata(pdev->dev.parent);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) struct lp8788_rtc *rtc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) struct device *dev = &pdev->dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) rtc = devm_kzalloc(dev, sizeof(struct lp8788_rtc), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) if (!rtc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) rtc->lp = lp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) rtc->alarm = lp->pdata ? lp->pdata->alarm_sel : DEFAULT_ALARM_SEL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) platform_set_drvdata(pdev, rtc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) device_init_wakeup(dev, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) rtc->rdev = devm_rtc_device_register(dev, "lp8788_rtc",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) &lp8788_rtc_ops, THIS_MODULE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) if (IS_ERR(rtc->rdev)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) dev_err(dev, "can not register rtc device\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) return PTR_ERR(rtc->rdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) if (lp8788_alarm_irq_register(pdev, rtc))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) dev_warn(lp->dev, "no rtc irq handler\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) static struct platform_driver lp8788_rtc_driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) .probe = lp8788_rtc_probe,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) .driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) .name = LP8788_DEV_RTC,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) module_platform_driver(lp8788_rtc_driver);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) MODULE_DESCRIPTION("Texas Instruments LP8788 RTC Driver");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) MODULE_AUTHOR("Milo Kim");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) MODULE_LICENSE("GPL");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) MODULE_ALIAS("platform:lp8788-rtc");