^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1) // SPDX-License-Identifier: GPL-2.0+
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3) * Freescale FlexTimer Module (FTM) alarm device driver.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5) * Copyright 2014 Freescale Semiconductor, Inc.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6) * Copyright 2019-2020 NXP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 8) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 9)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 10) #include <linux/device.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 11) #include <linux/err.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 12) #include <linux/interrupt.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 13) #include <linux/io.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 14) #include <linux/of_address.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 15) #include <linux/of_irq.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 16) #include <linux/platform_device.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 17) #include <linux/of.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 18) #include <linux/of_device.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 19) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 20) #include <linux/fsl/ftm.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 21) #include <linux/rtc.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 22) #include <linux/time.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 23) #include <linux/acpi.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 24) #include <linux/pm_wakeirq.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 25)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 26) #define FTM_SC_CLK(c) ((c) << FTM_SC_CLK_MASK_SHIFT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 27)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 28) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 29) * Select Fixed frequency clock (32KHz) as clock source
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 30) * of FlexTimer Module
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 31) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 32) #define FTM_SC_CLKS_FIXED_FREQ 0x02
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 33) #define FIXED_FREQ_CLK 32000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 34)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 35) /* Select 128 (2^7) as divider factor */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 36) #define MAX_FREQ_DIV (1 << FTM_SC_PS_MASK)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 37)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 38) /* Maximum counter value in FlexTimer's CNT registers */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 39) #define MAX_COUNT_VAL 0xffff
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 40)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 41) struct ftm_rtc {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 42) struct rtc_device *rtc_dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 43) void __iomem *base;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 44) bool big_endian;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 45) u32 alarm_freq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 46) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 47)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 48) static inline u32 rtc_readl(struct ftm_rtc *dev, u32 reg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 49) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 50) if (dev->big_endian)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 51) return ioread32be(dev->base + reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 52) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 53) return ioread32(dev->base + reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 54) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 55)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 56) static inline void rtc_writel(struct ftm_rtc *dev, u32 reg, u32 val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 57) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 58) if (dev->big_endian)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 59) iowrite32be(val, dev->base + reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 60) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 61) iowrite32(val, dev->base + reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 62) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 63)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 64) static inline void ftm_counter_enable(struct ftm_rtc *rtc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 65) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 66) u32 val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 67)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 68) /* select and enable counter clock source */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 69) val = rtc_readl(rtc, FTM_SC);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 70) val &= ~(FTM_SC_PS_MASK | FTM_SC_CLK_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 71) val |= (FTM_SC_PS_MASK | FTM_SC_CLK(FTM_SC_CLKS_FIXED_FREQ));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 72) rtc_writel(rtc, FTM_SC, val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 73) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 74)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 75) static inline void ftm_counter_disable(struct ftm_rtc *rtc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 76) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 77) u32 val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 78)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 79) /* disable counter clock source */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 80) val = rtc_readl(rtc, FTM_SC);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 81) val &= ~(FTM_SC_PS_MASK | FTM_SC_CLK_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 82) rtc_writel(rtc, FTM_SC, val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 83) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 84)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 85) static inline void ftm_irq_acknowledge(struct ftm_rtc *rtc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 86) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 87) unsigned int timeout = 100;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 88)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 89) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 90) *Fix errata A-007728 for flextimer
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 91) * If the FTM counter reaches the FTM_MOD value between
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 92) * the reading of the TOF bit and the writing of 0 to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 93) * the TOF bit, the process of clearing the TOF bit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 94) * does not work as expected when FTMx_CONF[NUMTOF] != 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 95) * and the current TOF count is less than FTMx_CONF[NUMTOF].
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 96) * If the above condition is met, the TOF bit remains set.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 97) * If the TOF interrupt is enabled (FTMx_SC[TOIE] = 1),the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 98) * TOF interrupt also remains asserted.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 99) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) * Above is the errata discription
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) * In one word: software clearing TOF bit not works when
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) * FTMx_CONF[NUMTOF] was seted as nonzero and FTM counter
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) * reaches the FTM_MOD value.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) * The workaround is clearing TOF bit until it works
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) * (FTM counter doesn't always reache the FTM_MOD anyway),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) * which may cost some cycles.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) while ((FTM_SC_TOF & rtc_readl(rtc, FTM_SC)) && timeout--)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) rtc_writel(rtc, FTM_SC, rtc_readl(rtc, FTM_SC) & (~FTM_SC_TOF));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) static inline void ftm_irq_enable(struct ftm_rtc *rtc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) u32 val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) val = rtc_readl(rtc, FTM_SC);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) val |= FTM_SC_TOIE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) rtc_writel(rtc, FTM_SC, val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) static inline void ftm_irq_disable(struct ftm_rtc *rtc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) u32 val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) val = rtc_readl(rtc, FTM_SC);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) val &= ~FTM_SC_TOIE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) rtc_writel(rtc, FTM_SC, val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) static inline void ftm_reset_counter(struct ftm_rtc *rtc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) * The CNT register contains the FTM counter value.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) * Reset clears the CNT register. Writing any value to COUNT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) * updates the counter with its initial value, CNTIN.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) rtc_writel(rtc, FTM_CNT, 0x00);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) static void ftm_clean_alarm(struct ftm_rtc *rtc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) ftm_counter_disable(rtc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) rtc_writel(rtc, FTM_CNTIN, 0x00);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) rtc_writel(rtc, FTM_MOD, ~0U);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) ftm_reset_counter(rtc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) static irqreturn_t ftm_rtc_alarm_interrupt(int irq, void *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) struct ftm_rtc *rtc = dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) rtc_update_irq(rtc->rtc_dev, 1, RTC_IRQF | RTC_AF);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) ftm_irq_acknowledge(rtc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) ftm_irq_disable(rtc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) ftm_clean_alarm(rtc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) return IRQ_HANDLED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) static int ftm_rtc_alarm_irq_enable(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) unsigned int enabled)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) struct ftm_rtc *rtc = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) if (enabled)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) ftm_irq_enable(rtc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) ftm_irq_disable(rtc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) * Note:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) * The function is not really getting time from the RTC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) * since FlexTimer is not a RTC device, but we need to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) * get time to setup alarm, so we are using system time
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) * for now.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) static int ftm_rtc_read_time(struct device *dev, struct rtc_time *tm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) rtc_time64_to_tm(ktime_get_real_seconds(), tm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) static int ftm_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) * 1. Select fixed frequency clock (32KHz) as clock source;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) * 2. Select 128 (2^7) as divider factor;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) * So clock is 250 Hz (32KHz/128).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) * 3. FlexTimer's CNT register is a 32bit register,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) * but the register's 16 bit as counter value,it's other 16 bit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) * is reserved.So minimum counter value is 0x0,maximum counter
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) * value is 0xffff.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) * So max alarm value is 262 (65536 / 250) seconds
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) static int ftm_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) time64_t alm_time;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) unsigned long long cycle;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) struct ftm_rtc *rtc = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) alm_time = rtc_tm_to_time64(&alm->time);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) ftm_clean_alarm(rtc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) cycle = (alm_time - ktime_get_real_seconds()) * rtc->alarm_freq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) if (cycle > MAX_COUNT_VAL) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) pr_err("Out of alarm range {0~262} seconds.\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) return -ERANGE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) ftm_irq_disable(rtc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) * The counter increments until the value of MOD is reached,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) * at which point the counter is reloaded with the value of CNTIN.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) * The TOF (the overflow flag) bit is set when the FTM counter
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) * changes from MOD to CNTIN. So we should using the cycle - 1.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) rtc_writel(rtc, FTM_MOD, cycle - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) ftm_counter_enable(rtc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) ftm_irq_enable(rtc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) static const struct rtc_class_ops ftm_rtc_ops = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) .read_time = ftm_rtc_read_time,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) .read_alarm = ftm_rtc_read_alarm,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) .set_alarm = ftm_rtc_set_alarm,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) .alarm_irq_enable = ftm_rtc_alarm_irq_enable,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) static int ftm_rtc_probe(struct platform_device *pdev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) int irq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) struct ftm_rtc *rtc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) if (unlikely(!rtc)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) dev_err(&pdev->dev, "cannot alloc memory for rtc\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) platform_set_drvdata(pdev, rtc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) rtc->rtc_dev = devm_rtc_allocate_device(&pdev->dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) if (IS_ERR(rtc->rtc_dev))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) return PTR_ERR(rtc->rtc_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) rtc->base = devm_platform_ioremap_resource(pdev, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) if (IS_ERR(rtc->base)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) dev_err(&pdev->dev, "cannot ioremap resource for rtc\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) return PTR_ERR(rtc->base);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) irq = platform_get_irq(pdev, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) if (irq < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) return irq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) ret = devm_request_irq(&pdev->dev, irq, ftm_rtc_alarm_interrupt,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) 0, dev_name(&pdev->dev), rtc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) if (ret < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) dev_err(&pdev->dev, "failed to request irq\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) rtc->big_endian =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) device_property_read_bool(&pdev->dev, "big-endian");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) rtc->alarm_freq = (u32)FIXED_FREQ_CLK / (u32)MAX_FREQ_DIV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) rtc->rtc_dev->ops = &ftm_rtc_ops;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) device_init_wakeup(&pdev->dev, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) ret = dev_pm_set_wake_irq(&pdev->dev, irq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) dev_err(&pdev->dev, "failed to enable irq wake\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) ret = rtc_register_device(rtc->rtc_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) dev_err(&pdev->dev, "can't register rtc device\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) static const struct of_device_id ftm_rtc_match[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) { .compatible = "fsl,ls1012a-ftm-alarm", },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) { .compatible = "fsl,ls1021a-ftm-alarm", },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) { .compatible = "fsl,ls1028a-ftm-alarm", },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) { .compatible = "fsl,ls1043a-ftm-alarm", },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) { .compatible = "fsl,ls1046a-ftm-alarm", },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) { .compatible = "fsl,ls1088a-ftm-alarm", },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) { .compatible = "fsl,ls208xa-ftm-alarm", },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) { .compatible = "fsl,lx2160a-ftm-alarm", },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) { },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) MODULE_DEVICE_TABLE(of, ftm_rtc_match);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) static const struct acpi_device_id ftm_imx_acpi_ids[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) {"NXP0014",},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) { }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) MODULE_DEVICE_TABLE(acpi, ftm_imx_acpi_ids);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) static struct platform_driver ftm_rtc_driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) .probe = ftm_rtc_probe,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) .driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) .name = "ftm-alarm",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) .of_match_table = ftm_rtc_match,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) .acpi_match_table = ACPI_PTR(ftm_imx_acpi_ids),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) static int __init ftm_alarm_init(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) return platform_driver_register(&ftm_rtc_driver);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) device_initcall(ftm_alarm_init);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) MODULE_DESCRIPTION("NXP/Freescale FlexTimer alarm driver");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) MODULE_AUTHOR("Biwen Li <biwen.li@nxp.com>");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) MODULE_LICENSE("GPL");