Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) // SPDX-License-Identifier: GPL-2.0+
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3)  * rtc-ab-b5ze-s3 - Driver for Abracon AB-RTCMC-32.768Khz-B5ZE-S3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4)  *                  I2C RTC / Alarm chip
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6)  * Copyright (C) 2014, Arnaud EBALARD <arno@natisbad.org>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8)  * Detailed datasheet of the chip is available here:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10)  *  https://www.abracon.com/realtimeclock/AB-RTCMC-32.768kHz-B5ZE-S3-Application-Manual.pdf
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12)  * This work is based on ISL12057 driver (drivers/rtc/rtc-isl12057.c).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17) #include <linux/rtc.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18) #include <linux/i2c.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19) #include <linux/bcd.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20) #include <linux/of.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21) #include <linux/regmap.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22) #include <linux/interrupt.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24) #define DRV_NAME "rtc-ab-b5ze-s3"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26) /* Control section */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27) #define ABB5ZES3_REG_CTRL1	   0x00	   /* Control 1 register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28) #define ABB5ZES3_REG_CTRL1_CIE	   BIT(0)  /* Pulse interrupt enable */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29) #define ABB5ZES3_REG_CTRL1_AIE	   BIT(1)  /* Alarm interrupt enable */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30) #define ABB5ZES3_REG_CTRL1_SIE	   BIT(2)  /* Second interrupt enable */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31) #define ABB5ZES3_REG_CTRL1_PM	   BIT(3)  /* 24h/12h mode */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32) #define ABB5ZES3_REG_CTRL1_SR	   BIT(4)  /* Software reset */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33) #define ABB5ZES3_REG_CTRL1_STOP	   BIT(5)  /* RTC circuit enable */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34) #define ABB5ZES3_REG_CTRL1_CAP	   BIT(7)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36) #define ABB5ZES3_REG_CTRL2	   0x01	   /* Control 2 register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37) #define ABB5ZES3_REG_CTRL2_CTBIE   BIT(0)  /* Countdown timer B int. enable */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38) #define ABB5ZES3_REG_CTRL2_CTAIE   BIT(1)  /* Countdown timer A int. enable */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39) #define ABB5ZES3_REG_CTRL2_WTAIE   BIT(2)  /* Watchdog timer A int. enable */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40) #define ABB5ZES3_REG_CTRL2_AF	   BIT(3)  /* Alarm interrupt status */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41) #define ABB5ZES3_REG_CTRL2_SF	   BIT(4)  /* Second interrupt status */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42) #define ABB5ZES3_REG_CTRL2_CTBF	   BIT(5)  /* Countdown timer B int. status */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43) #define ABB5ZES3_REG_CTRL2_CTAF	   BIT(6)  /* Countdown timer A int. status */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44) #define ABB5ZES3_REG_CTRL2_WTAF	   BIT(7)  /* Watchdog timer A int. status */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46) #define ABB5ZES3_REG_CTRL3	   0x02	   /* Control 3 register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47) #define ABB5ZES3_REG_CTRL3_PM2	   BIT(7)  /* Power Management bit 2 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48) #define ABB5ZES3_REG_CTRL3_PM1	   BIT(6)  /* Power Management bit 1 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49) #define ABB5ZES3_REG_CTRL3_PM0	   BIT(5)  /* Power Management bit 0 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50) #define ABB5ZES3_REG_CTRL3_BSF	   BIT(3)  /* Battery switchover int. status */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51) #define ABB5ZES3_REG_CTRL3_BLF	   BIT(2)  /* Battery low int. status */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52) #define ABB5ZES3_REG_CTRL3_BSIE	   BIT(1)  /* Battery switchover int. enable */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53) #define ABB5ZES3_REG_CTRL3_BLIE	   BIT(0)  /* Battery low int. enable */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55) #define ABB5ZES3_CTRL_SEC_LEN	   3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57) /* RTC section */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58) #define ABB5ZES3_REG_RTC_SC	   0x03	   /* RTC Seconds register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59) #define ABB5ZES3_REG_RTC_SC_OSC	   BIT(7)  /* Clock integrity status */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60) #define ABB5ZES3_REG_RTC_MN	   0x04	   /* RTC Minutes register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61) #define ABB5ZES3_REG_RTC_HR	   0x05	   /* RTC Hours register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62) #define ABB5ZES3_REG_RTC_HR_PM	   BIT(5)  /* RTC Hours PM bit */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63) #define ABB5ZES3_REG_RTC_DT	   0x06	   /* RTC Date register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64) #define ABB5ZES3_REG_RTC_DW	   0x07	   /* RTC Day of the week register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65) #define ABB5ZES3_REG_RTC_MO	   0x08	   /* RTC Month register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66) #define ABB5ZES3_REG_RTC_YR	   0x09	   /* RTC Year register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68) #define ABB5ZES3_RTC_SEC_LEN	   7
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70) /* Alarm section (enable bits are all active low) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71) #define ABB5ZES3_REG_ALRM_MN	   0x0A	   /* Alarm - minute register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72) #define ABB5ZES3_REG_ALRM_MN_AE	   BIT(7)  /* Minute enable */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73) #define ABB5ZES3_REG_ALRM_HR	   0x0B	   /* Alarm - hours register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74) #define ABB5ZES3_REG_ALRM_HR_AE	   BIT(7)  /* Hour enable */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75) #define ABB5ZES3_REG_ALRM_DT	   0x0C	   /* Alarm - date register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76) #define ABB5ZES3_REG_ALRM_DT_AE	   BIT(7)  /* Date (day of the month) enable */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77) #define ABB5ZES3_REG_ALRM_DW	   0x0D	   /* Alarm - day of the week reg. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78) #define ABB5ZES3_REG_ALRM_DW_AE	   BIT(7)  /* Day of the week enable */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80) #define ABB5ZES3_ALRM_SEC_LEN	   4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82) /* Frequency offset section */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83) #define ABB5ZES3_REG_FREQ_OF	   0x0E	   /* Frequency offset register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84) #define ABB5ZES3_REG_FREQ_OF_MODE  0x0E	   /* Offset mode: 2 hours / minute */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86) /* CLOCKOUT section */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87) #define ABB5ZES3_REG_TIM_CLK	   0x0F	   /* Timer & Clockout register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88) #define ABB5ZES3_REG_TIM_CLK_TAM   BIT(7)  /* Permanent/pulsed timer A/int. 2 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89) #define ABB5ZES3_REG_TIM_CLK_TBM   BIT(6)  /* Permanent/pulsed timer B */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90) #define ABB5ZES3_REG_TIM_CLK_COF2  BIT(5)  /* Clkout Freq bit 2 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91) #define ABB5ZES3_REG_TIM_CLK_COF1  BIT(4)  /* Clkout Freq bit 1 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92) #define ABB5ZES3_REG_TIM_CLK_COF0  BIT(3)  /* Clkout Freq bit 0 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93) #define ABB5ZES3_REG_TIM_CLK_TAC1  BIT(2)  /* Timer A: - 01 : countdown */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94) #define ABB5ZES3_REG_TIM_CLK_TAC0  BIT(1)  /*	       - 10 : timer	*/
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95) #define ABB5ZES3_REG_TIM_CLK_TBC   BIT(0)  /* Timer B enable */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97) /* Timer A Section */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98) #define ABB5ZES3_REG_TIMA_CLK	   0x10	   /* Timer A clock register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99) #define ABB5ZES3_REG_TIMA_CLK_TAQ2 BIT(2)  /* Freq bit 2 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) #define ABB5ZES3_REG_TIMA_CLK_TAQ1 BIT(1)  /* Freq bit 1 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) #define ABB5ZES3_REG_TIMA_CLK_TAQ0 BIT(0)  /* Freq bit 0 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) #define ABB5ZES3_REG_TIMA	   0x11	   /* Timer A register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) #define ABB5ZES3_TIMA_SEC_LEN	   2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) /* Timer B Section */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) #define ABB5ZES3_REG_TIMB_CLK	   0x12	   /* Timer B clock register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) #define ABB5ZES3_REG_TIMB_CLK_TBW2 BIT(6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) #define ABB5ZES3_REG_TIMB_CLK_TBW1 BIT(5)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) #define ABB5ZES3_REG_TIMB_CLK_TBW0 BIT(4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) #define ABB5ZES3_REG_TIMB_CLK_TAQ2 BIT(2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) #define ABB5ZES3_REG_TIMB_CLK_TAQ1 BIT(1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) #define ABB5ZES3_REG_TIMB_CLK_TAQ0 BIT(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) #define ABB5ZES3_REG_TIMB	   0x13	   /* Timer B register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) #define ABB5ZES3_TIMB_SEC_LEN	   2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) #define ABB5ZES3_MEM_MAP_LEN	   0x14
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) struct abb5zes3_rtc_data {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) 	struct rtc_device *rtc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) 	struct regmap *regmap;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) 	int irq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) 	bool battery_low;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) 	bool timer_alarm; /* current alarm is via timer A */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130)  * Try and match register bits w/ fixed null values to see whether we
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131)  * are dealing with an ABB5ZES3.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) static int abb5zes3_i2c_validate_chip(struct regmap *regmap)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) 	u8 regs[ABB5ZES3_MEM_MAP_LEN];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) 	static const u8 mask[ABB5ZES3_MEM_MAP_LEN] = { 0x00, 0x00, 0x10, 0x00,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) 						       0x80, 0xc0, 0xc0, 0xf8,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) 						       0xe0, 0x00, 0x00, 0x40,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) 						       0x40, 0x78, 0x00, 0x00,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) 						       0xf8, 0x00, 0x88, 0x00 };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) 	int ret, i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) 	ret = regmap_bulk_read(regmap, 0, regs, ABB5ZES3_MEM_MAP_LEN);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) 	for (i = 0; i < ABB5ZES3_MEM_MAP_LEN; ++i) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) 		if (regs[i] & mask[i]) /* check if bits are cleared */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) 			return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) /* Clear alarm status bit. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) static int _abb5zes3_rtc_clear_alarm(struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) 	ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL2,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) 				 ABB5ZES3_REG_CTRL2_AF, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) 		dev_err(dev, "%s: clearing alarm failed (%d)\n", __func__, ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) /* Enable or disable alarm (i.e. alarm interrupt generation) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) static int _abb5zes3_rtc_update_alarm(struct device *dev, bool enable)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) 	ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) 				 ABB5ZES3_REG_CTRL1_AIE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) 				 enable ? ABB5ZES3_REG_CTRL1_AIE : 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) 		dev_err(dev, "%s: writing alarm INT failed (%d)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) 			__func__, ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) /* Enable or disable timer (watchdog timer A interrupt generation) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) static int _abb5zes3_rtc_update_timer(struct device *dev, bool enable)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) 	ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL2,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) 				 ABB5ZES3_REG_CTRL2_WTAIE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) 				 enable ? ABB5ZES3_REG_CTRL2_WTAIE : 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) 		dev_err(dev, "%s: writing timer INT failed (%d)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) 			__func__, ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202)  * Note: we only read, so regmap inner lock protection is sufficient, i.e.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203)  * we do not need driver's main lock protection.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) static int _abb5zes3_rtc_read_time(struct device *dev, struct rtc_time *tm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) 	u8 regs[ABB5ZES3_REG_RTC_SC + ABB5ZES3_RTC_SEC_LEN];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) 	int ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) 	 * As we need to read CTRL1 register anyway to access 24/12h
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) 	 * mode bit, we do a single bulk read of both control and RTC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) 	 * sections (they are consecutive). This also ease indexing
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) 	 * of register values after bulk read.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) 	ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_CTRL1, regs,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) 			       sizeof(regs));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) 	if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) 		dev_err(dev, "%s: reading RTC time failed (%d)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) 			__func__, ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) 	/* If clock integrity is not guaranteed, do not return a time value */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) 	if (regs[ABB5ZES3_REG_RTC_SC] & ABB5ZES3_REG_RTC_SC_OSC)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) 		return -ENODATA;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) 	tm->tm_sec = bcd2bin(regs[ABB5ZES3_REG_RTC_SC] & 0x7F);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) 	tm->tm_min = bcd2bin(regs[ABB5ZES3_REG_RTC_MN]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) 	if (regs[ABB5ZES3_REG_CTRL1] & ABB5ZES3_REG_CTRL1_PM) { /* 12hr mode */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) 		tm->tm_hour = bcd2bin(regs[ABB5ZES3_REG_RTC_HR] & 0x1f);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) 		if (regs[ABB5ZES3_REG_RTC_HR] & ABB5ZES3_REG_RTC_HR_PM) /* PM */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) 			tm->tm_hour += 12;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) 	} else {						/* 24hr mode */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) 		tm->tm_hour = bcd2bin(regs[ABB5ZES3_REG_RTC_HR]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) 	tm->tm_mday = bcd2bin(regs[ABB5ZES3_REG_RTC_DT]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) 	tm->tm_wday = bcd2bin(regs[ABB5ZES3_REG_RTC_DW]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) 	tm->tm_mon  = bcd2bin(regs[ABB5ZES3_REG_RTC_MO]) - 1; /* starts at 1 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) 	tm->tm_year = bcd2bin(regs[ABB5ZES3_REG_RTC_YR]) + 100;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) static int abb5zes3_rtc_set_time(struct device *dev, struct rtc_time *tm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) 	u8 regs[ABB5ZES3_REG_RTC_SC + ABB5ZES3_RTC_SEC_LEN];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) 	regs[ABB5ZES3_REG_RTC_SC] = bin2bcd(tm->tm_sec); /* MSB=0 clears OSC */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) 	regs[ABB5ZES3_REG_RTC_MN] = bin2bcd(tm->tm_min);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) 	regs[ABB5ZES3_REG_RTC_HR] = bin2bcd(tm->tm_hour); /* 24-hour format */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) 	regs[ABB5ZES3_REG_RTC_DT] = bin2bcd(tm->tm_mday);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) 	regs[ABB5ZES3_REG_RTC_DW] = bin2bcd(tm->tm_wday);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) 	regs[ABB5ZES3_REG_RTC_MO] = bin2bcd(tm->tm_mon + 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) 	regs[ABB5ZES3_REG_RTC_YR] = bin2bcd(tm->tm_year - 100);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) 	ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_RTC_SC,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) 				regs + ABB5ZES3_REG_RTC_SC,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) 				ABB5ZES3_RTC_SEC_LEN);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270)  * Set provided TAQ and Timer A registers (TIMA_CLK and TIMA) based on
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271)  * given number of seconds.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) static inline void sec_to_timer_a(u8 secs, u8 *taq, u8 *timer_a)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) 	*taq = ABB5ZES3_REG_TIMA_CLK_TAQ1; /* 1Hz */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) 	*timer_a = secs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280)  * Return current number of seconds in Timer A. As we only use
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281)  * timer A with a 1Hz freq, this is what we expect to have.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) static inline int sec_from_timer_a(u8 *secs, u8 taq, u8 timer_a)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) 	if (taq != ABB5ZES3_REG_TIMA_CLK_TAQ1) /* 1Hz */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) 	*secs = timer_a;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294)  * Read alarm currently configured via a watchdog timer using timer A. This
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295)  * is done by reading current RTC time and adding remaining timer time.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) static int _abb5zes3_rtc_read_timer(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) 				    struct rtc_wkalrm *alarm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) 	struct rtc_time rtc_tm, *alarm_tm = &alarm->time;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) 	u8 regs[ABB5ZES3_TIMA_SEC_LEN + 1];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) 	unsigned long rtc_secs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) 	unsigned int reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) 	u8 timer_secs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) 	 * Instead of doing two separate calls, because they are consecutive,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) 	 * we grab both clockout register and Timer A section. The latter is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) 	 * used to decide if timer A is enabled (as a watchdog timer).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) 	ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_TIM_CLK, regs,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) 			       ABB5ZES3_TIMA_SEC_LEN + 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) 	if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) 		dev_err(dev, "%s: reading Timer A section failed (%d)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) 			__func__, ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) 	/* get current time ... */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) 	ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) 	/* ... convert to seconds ... */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) 	rtc_secs = rtc_tm_to_time64(&rtc_tm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) 	/* ... add remaining timer A time ... */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) 	ret = sec_from_timer_a(&timer_secs, regs[1], regs[2]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) 	/* ... and convert back. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) 	rtc_time64_to_tm(rtc_secs + timer_secs, alarm_tm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) 	ret = regmap_read(data->regmap, ABB5ZES3_REG_CTRL2, &reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) 	if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) 		dev_err(dev, "%s: reading ctrl reg failed (%d)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) 			__func__, ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) 	alarm->enabled = !!(reg & ABB5ZES3_REG_CTRL2_WTAIE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) /* Read alarm currently configured via a RTC alarm registers. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350) static int _abb5zes3_rtc_read_alarm(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) 				    struct rtc_wkalrm *alarm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) 	struct rtc_time rtc_tm, *alarm_tm = &alarm->time;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) 	unsigned long rtc_secs, alarm_secs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) 	u8 regs[ABB5ZES3_ALRM_SEC_LEN];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) 	unsigned int reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) 	ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_ALRM_MN, regs,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) 			       ABB5ZES3_ALRM_SEC_LEN);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) 	if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) 		dev_err(dev, "%s: reading alarm section failed (%d)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) 			__func__, ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) 	alarm_tm->tm_sec  = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) 	alarm_tm->tm_min  = bcd2bin(regs[0] & 0x7f);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) 	alarm_tm->tm_hour = bcd2bin(regs[1] & 0x3f);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371) 	alarm_tm->tm_mday = bcd2bin(regs[2] & 0x3f);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) 	alarm_tm->tm_wday = -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) 	 * The alarm section does not store year/month. We use the ones in rtc
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376) 	 * section as a basis and increment month and then year if needed to get
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) 	 * alarm after current time.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379) 	ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383) 	alarm_tm->tm_year = rtc_tm.tm_year;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384) 	alarm_tm->tm_mon = rtc_tm.tm_mon;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) 	rtc_secs = rtc_tm_to_time64(&rtc_tm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387) 	alarm_secs = rtc_tm_to_time64(alarm_tm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) 	if (alarm_secs < rtc_secs) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390) 		if (alarm_tm->tm_mon == 11) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391) 			alarm_tm->tm_mon = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392) 			alarm_tm->tm_year += 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394) 			alarm_tm->tm_mon += 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398) 	ret = regmap_read(data->regmap, ABB5ZES3_REG_CTRL1, &reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399) 	if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400) 		dev_err(dev, "%s: reading ctrl reg failed (%d)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401) 			__func__, ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405) 	alarm->enabled = !!(reg & ABB5ZES3_REG_CTRL1_AIE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411)  * As the Alarm mechanism supported by the chip is only accurate to the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412)  * minute, we use the watchdog timer mechanism provided by timer A
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413)  * (up to 256 seconds w/ a second accuracy) for low alarm values (below
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414)  * 4 minutes). Otherwise, we use the common alarm mechanism provided
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415)  * by the chip. In order for that to work, we keep track of currently
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416)  * configured timer type via 'timer_alarm' flag in our private data
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417)  * structure.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419) static int abb5zes3_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421) 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424) 	if (data->timer_alarm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425) 		ret = _abb5zes3_rtc_read_timer(dev, alarm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 426) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 427) 		ret = _abb5zes3_rtc_read_alarm(dev, alarm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 428) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 429) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 430) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 431) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 432) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 433)  * Set alarm using chip alarm mechanism. It is only accurate to the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 434)  * minute (not the second). The function expects alarm interrupt to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 435)  * be disabled.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 436)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 437) static int _abb5zes3_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 438) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 439) 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 440) 	struct rtc_time *alarm_tm = &alarm->time;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 441) 	u8 regs[ABB5ZES3_ALRM_SEC_LEN];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 442) 	struct rtc_time rtc_tm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 443) 	int ret, enable = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 444) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 445) 	if (!alarm->enabled) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 446) 		enable = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 447) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 448) 		unsigned long rtc_secs, alarm_secs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 449) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 450) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 451) 		 * Chip only support alarms up to one month in the future. Let's
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 452) 		 * return an error if we get something after that limit.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 453) 		 * Comparison is done by incrementing rtc_tm month field by one
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 454) 		 * and checking alarm value is still below.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 455) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 456) 		ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 457) 		if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 458) 			return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 459) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 460) 		if (rtc_tm.tm_mon == 11) { /* handle year wrapping */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 461) 			rtc_tm.tm_mon = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 462) 			rtc_tm.tm_year += 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 463) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 464) 			rtc_tm.tm_mon += 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 465) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 466) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 467) 		rtc_secs = rtc_tm_to_time64(&rtc_tm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 468) 		alarm_secs = rtc_tm_to_time64(alarm_tm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 469) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 470) 		if (alarm_secs > rtc_secs) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 471) 			dev_err(dev, "%s: alarm maximum is one month in the future (%d)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 472) 				__func__, ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 473) 			return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 474) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 475) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 476) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 477) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 478) 	 * Program all alarm registers but DW one. For each register, setting
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 479) 	 * MSB to 0 enables associated alarm.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 480) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 481) 	regs[0] = bin2bcd(alarm_tm->tm_min) & 0x7f;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 482) 	regs[1] = bin2bcd(alarm_tm->tm_hour) & 0x3f;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 483) 	regs[2] = bin2bcd(alarm_tm->tm_mday) & 0x3f;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 484) 	regs[3] = ABB5ZES3_REG_ALRM_DW_AE; /* do not match day of the week */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 485) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 486) 	ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_ALRM_MN, regs,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 487) 				ABB5ZES3_ALRM_SEC_LEN);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 488) 	if (ret < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 489) 		dev_err(dev, "%s: writing ALARM section failed (%d)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 490) 			__func__, ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 491) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 492) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 493) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 494) 	/* Record currently configured alarm is not a timer */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 495) 	data->timer_alarm = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 496) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 497) 	/* Enable or disable alarm interrupt generation */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 498) 	return _abb5zes3_rtc_update_alarm(dev, enable);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 499) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 500) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 501) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 502)  * Set alarm using timer watchdog (via timer A) mechanism. The function expects
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 503)  * timer A interrupt to be disabled.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 504)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 505) static int _abb5zes3_rtc_set_timer(struct device *dev, struct rtc_wkalrm *alarm,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 506) 				   u8 secs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 507) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 508) 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 509) 	u8 regs[ABB5ZES3_TIMA_SEC_LEN];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 510) 	u8 mask = ABB5ZES3_REG_TIM_CLK_TAC0 | ABB5ZES3_REG_TIM_CLK_TAC1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 511) 	int ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 512) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 513) 	/* Program given number of seconds to Timer A registers */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 514) 	sec_to_timer_a(secs, &regs[0], &regs[1]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 515) 	ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_TIMA_CLK, regs,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 516) 				ABB5ZES3_TIMA_SEC_LEN);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 517) 	if (ret < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 518) 		dev_err(dev, "%s: writing timer section failed\n", __func__);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 519) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 520) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 521) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 522) 	/* Configure Timer A as a watchdog timer */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 523) 	ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_TIM_CLK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 524) 				 mask, ABB5ZES3_REG_TIM_CLK_TAC1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 525) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 526) 		dev_err(dev, "%s: failed to update timer\n", __func__);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 527) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 528) 	/* Record currently configured alarm is a timer */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 529) 	data->timer_alarm = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 530) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 531) 	/* Enable or disable timer interrupt generation */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 532) 	return _abb5zes3_rtc_update_timer(dev, alarm->enabled);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 533) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 534) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 535) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 536)  * The chip has an alarm which is only accurate to the minute. In order to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 537)  * handle alarms below that limit, we use the watchdog timer function of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 538)  * timer A. More precisely, the timer method is used for alarms below 240
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 539)  * seconds.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 540)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 541) static int abb5zes3_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 542) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 543) 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 544) 	struct rtc_time *alarm_tm = &alarm->time;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 545) 	unsigned long rtc_secs, alarm_secs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 546) 	struct rtc_time rtc_tm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 547) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 548) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 549) 	ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 550) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 551) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 552) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 553) 	rtc_secs = rtc_tm_to_time64(&rtc_tm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 554) 	alarm_secs = rtc_tm_to_time64(alarm_tm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 555) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 556) 	/* Let's first disable both the alarm and the timer interrupts */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 557) 	ret = _abb5zes3_rtc_update_alarm(dev, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 558) 	if (ret < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 559) 		dev_err(dev, "%s: unable to disable alarm (%d)\n", __func__,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 560) 			ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 561) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 562) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 563) 	ret = _abb5zes3_rtc_update_timer(dev, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 564) 	if (ret < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 565) 		dev_err(dev, "%s: unable to disable timer (%d)\n", __func__,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 566) 			ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 567) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 568) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 569) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 570) 	data->timer_alarm = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 571) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 572) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 573) 	 * Let's now configure the alarm; if we are expected to ring in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 574) 	 * more than 240s, then we setup an alarm. Otherwise, a timer.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 575) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 576) 	if ((alarm_secs > rtc_secs) && ((alarm_secs - rtc_secs) <= 240))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 577) 		ret = _abb5zes3_rtc_set_timer(dev, alarm,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 578) 					      alarm_secs - rtc_secs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 579) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 580) 		ret = _abb5zes3_rtc_set_alarm(dev, alarm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 581) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 582) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 583) 		dev_err(dev, "%s: unable to configure alarm (%d)\n", __func__,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 584) 			ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 585) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 586) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 587) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 588) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 589) /* Enable or disable battery low irq generation */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 590) static inline int _abb5zes3_rtc_battery_low_irq_enable(struct regmap *regmap,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 591) 						       bool enable)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 592) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 593) 	return regmap_update_bits(regmap, ABB5ZES3_REG_CTRL3,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 594) 				  ABB5ZES3_REG_CTRL3_BLIE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 595) 				  enable ? ABB5ZES3_REG_CTRL3_BLIE : 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 596) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 597) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 598) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 599)  * Check current RTC status and enable/disable what needs to be. Return 0 if
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 600)  * everything went ok and a negative value upon error.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 601)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 602) static int abb5zes3_rtc_check_setup(struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 603) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 604) 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 605) 	struct regmap *regmap = data->regmap;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 606) 	unsigned int reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 607) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 608) 	u8 mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 609) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 610) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 611) 	 * By default, the devices generates a 32.768KHz signal on IRQ#1 pin. It
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 612) 	 * is disabled here to prevent polluting the interrupt line and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 613) 	 * uselessly triggering the IRQ handler we install for alarm and battery
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 614) 	 * low events. Note: this is done before clearing int. status below
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 615) 	 * in this function.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 616) 	 * We also disable all timers and set timer interrupt to permanent (not
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 617) 	 * pulsed).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 618) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 619) 	mask = (ABB5ZES3_REG_TIM_CLK_TBC | ABB5ZES3_REG_TIM_CLK_TAC0 |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 620) 		ABB5ZES3_REG_TIM_CLK_TAC1 | ABB5ZES3_REG_TIM_CLK_COF0 |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 621) 		ABB5ZES3_REG_TIM_CLK_COF1 | ABB5ZES3_REG_TIM_CLK_COF2 |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 622) 		ABB5ZES3_REG_TIM_CLK_TBM | ABB5ZES3_REG_TIM_CLK_TAM);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 623) 	ret = regmap_update_bits(regmap, ABB5ZES3_REG_TIM_CLK, mask,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 624) 				 ABB5ZES3_REG_TIM_CLK_COF0 |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 625) 				 ABB5ZES3_REG_TIM_CLK_COF1 |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 626) 				 ABB5ZES3_REG_TIM_CLK_COF2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 627) 	if (ret < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 628) 		dev_err(dev, "%s: unable to initialize clkout register (%d)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 629) 			__func__, ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 630) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 631) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 632) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 633) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 634) 	 * Each component of the alarm (MN, HR, DT, DW) can be enabled/disabled
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 635) 	 * individually by clearing/setting MSB of each associated register. So,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 636) 	 * we set all alarm enable bits to disable current alarm setting.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 637) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 638) 	mask = (ABB5ZES3_REG_ALRM_MN_AE | ABB5ZES3_REG_ALRM_HR_AE |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 639) 		ABB5ZES3_REG_ALRM_DT_AE | ABB5ZES3_REG_ALRM_DW_AE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 640) 	ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL2, mask, mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 641) 	if (ret < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 642) 		dev_err(dev, "%s: unable to disable alarm setting (%d)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 643) 			__func__, ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 644) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 645) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 646) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 647) 	/* Set Control 1 register (RTC enabled, 24hr mode, all int. disabled) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 648) 	mask = (ABB5ZES3_REG_CTRL1_CIE | ABB5ZES3_REG_CTRL1_AIE |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 649) 		ABB5ZES3_REG_CTRL1_SIE | ABB5ZES3_REG_CTRL1_PM |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 650) 		ABB5ZES3_REG_CTRL1_CAP | ABB5ZES3_REG_CTRL1_STOP);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 651) 	ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL1, mask, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 652) 	if (ret < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 653) 		dev_err(dev, "%s: unable to initialize CTRL1 register (%d)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 654) 			__func__, ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 655) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 656) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 657) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 658) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 659) 	 * Set Control 2 register (timer int. disabled, alarm status cleared).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 660) 	 * WTAF is read-only and cleared automatically by reading the register.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 661) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 662) 	mask = (ABB5ZES3_REG_CTRL2_CTBIE | ABB5ZES3_REG_CTRL2_CTAIE |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 663) 		ABB5ZES3_REG_CTRL2_WTAIE | ABB5ZES3_REG_CTRL2_AF |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 664) 		ABB5ZES3_REG_CTRL2_SF | ABB5ZES3_REG_CTRL2_CTBF |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 665) 		ABB5ZES3_REG_CTRL2_CTAF);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 666) 	ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL2, mask, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 667) 	if (ret < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 668) 		dev_err(dev, "%s: unable to initialize CTRL2 register (%d)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 669) 			__func__, ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 670) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 671) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 672) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 673) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 674) 	 * Enable battery low detection function and battery switchover function
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 675) 	 * (standard mode). Disable associated interrupts. Clear battery
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 676) 	 * switchover flag but not battery low flag. The latter is checked
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 677) 	 * later below.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 678) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 679) 	mask = (ABB5ZES3_REG_CTRL3_PM0  | ABB5ZES3_REG_CTRL3_PM1 |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 680) 		ABB5ZES3_REG_CTRL3_PM2  | ABB5ZES3_REG_CTRL3_BLIE |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 681) 		ABB5ZES3_REG_CTRL3_BSIE | ABB5ZES3_REG_CTRL3_BSF);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 682) 	ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL3, mask, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 683) 	if (ret < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 684) 		dev_err(dev, "%s: unable to initialize CTRL3 register (%d)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 685) 			__func__, ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 686) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 687) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 688) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 689) 	/* Check oscillator integrity flag */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 690) 	ret = regmap_read(regmap, ABB5ZES3_REG_RTC_SC, &reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 691) 	if (ret < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 692) 		dev_err(dev, "%s: unable to read osc. integrity flag (%d)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 693) 			__func__, ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 694) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 695) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 696) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 697) 	if (reg & ABB5ZES3_REG_RTC_SC_OSC) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 698) 		dev_err(dev, "clock integrity not guaranteed. Osc. has stopped or has been interrupted.\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 699) 		dev_err(dev, "change battery (if not already done) and then set time to reset osc. failure flag.\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 700) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 701) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 702) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 703) 	 * Check battery low flag at startup: this allows reporting battery
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 704) 	 * is low at startup when IRQ line is not connected. Note: we record
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 705) 	 * current status to avoid reenabling this interrupt later in probe
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 706) 	 * function if battery is low.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 707) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 708) 	ret = regmap_read(regmap, ABB5ZES3_REG_CTRL3, &reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 709) 	if (ret < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 710) 		dev_err(dev, "%s: unable to read battery low flag (%d)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 711) 			__func__, ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 712) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 713) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 714) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 715) 	data->battery_low = reg & ABB5ZES3_REG_CTRL3_BLF;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 716) 	if (data->battery_low) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 717) 		dev_err(dev, "RTC battery is low; please, consider changing it!\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 718) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 719) 		ret = _abb5zes3_rtc_battery_low_irq_enable(regmap, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 720) 		if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 721) 			dev_err(dev, "%s: disabling battery low interrupt generation failed (%d)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 722) 				__func__, ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 723) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 724) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 725) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 726) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 727) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 728) static int abb5zes3_rtc_alarm_irq_enable(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 729) 					 unsigned int enable)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 730) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 731) 	struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 732) 	int ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 733) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 734) 	if (rtc_data->irq) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 735) 		if (rtc_data->timer_alarm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 736) 			ret = _abb5zes3_rtc_update_timer(dev, enable);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 737) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 738) 			ret = _abb5zes3_rtc_update_alarm(dev, enable);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 739) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 740) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 741) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 742) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 743) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 744) static irqreturn_t _abb5zes3_rtc_interrupt(int irq, void *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 745) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 746) 	struct i2c_client *client = data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 747) 	struct device *dev = &client->dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 748) 	struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 749) 	struct rtc_device *rtc = rtc_data->rtc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 750) 	u8 regs[ABB5ZES3_CTRL_SEC_LEN];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 751) 	int ret, handled = IRQ_NONE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 752) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 753) 	ret = regmap_bulk_read(rtc_data->regmap, 0, regs,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 754) 			       ABB5ZES3_CTRL_SEC_LEN);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 755) 	if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 756) 		dev_err(dev, "%s: unable to read control section (%d)!\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 757) 			__func__, ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 758) 		return handled;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 759) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 760) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 761) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 762) 	 * Check battery low detection flag and disable battery low interrupt
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 763) 	 * generation if flag is set (interrupt can only be cleared when
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 764) 	 * battery is replaced).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 765) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 766) 	if (regs[ABB5ZES3_REG_CTRL3] & ABB5ZES3_REG_CTRL3_BLF) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 767) 		dev_err(dev, "RTC battery is low; please change it!\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 768) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 769) 		_abb5zes3_rtc_battery_low_irq_enable(rtc_data->regmap, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 770) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 771) 		handled = IRQ_HANDLED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 772) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 773) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 774) 	/* Check alarm flag */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 775) 	if (regs[ABB5ZES3_REG_CTRL2] & ABB5ZES3_REG_CTRL2_AF) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 776) 		dev_dbg(dev, "RTC alarm!\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 777) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 778) 		rtc_update_irq(rtc, 1, RTC_IRQF | RTC_AF);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 779) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 780) 		/* Acknowledge and disable the alarm */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 781) 		_abb5zes3_rtc_clear_alarm(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 782) 		_abb5zes3_rtc_update_alarm(dev, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 783) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 784) 		handled = IRQ_HANDLED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 785) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 786) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 787) 	/* Check watchdog Timer A flag */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 788) 	if (regs[ABB5ZES3_REG_CTRL2] & ABB5ZES3_REG_CTRL2_WTAF) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 789) 		dev_dbg(dev, "RTC timer!\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 790) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 791) 		rtc_update_irq(rtc, 1, RTC_IRQF | RTC_AF);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 792) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 793) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 794) 		 * Acknowledge and disable the alarm. Note: WTAF
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 795) 		 * flag had been cleared when reading CTRL2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 796) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 797) 		_abb5zes3_rtc_update_timer(dev, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 798) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 799) 		rtc_data->timer_alarm = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 800) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 801) 		handled = IRQ_HANDLED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 802) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 803) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 804) 	return handled;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 805) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 806) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 807) static const struct rtc_class_ops rtc_ops = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 808) 	.read_time = _abb5zes3_rtc_read_time,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 809) 	.set_time = abb5zes3_rtc_set_time,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 810) 	.read_alarm = abb5zes3_rtc_read_alarm,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 811) 	.set_alarm = abb5zes3_rtc_set_alarm,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 812) 	.alarm_irq_enable = abb5zes3_rtc_alarm_irq_enable,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 813) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 814) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 815) static const struct regmap_config abb5zes3_rtc_regmap_config = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 816) 	.reg_bits = 8,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 817) 	.val_bits = 8,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 818) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 819) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 820) static int abb5zes3_probe(struct i2c_client *client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 821) 			  const struct i2c_device_id *id)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 822) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 823) 	struct abb5zes3_rtc_data *data = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 824) 	struct device *dev = &client->dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 825) 	struct regmap *regmap;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 826) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 827) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 828) 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 829) 				     I2C_FUNC_SMBUS_BYTE_DATA |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 830) 				     I2C_FUNC_SMBUS_I2C_BLOCK))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 831) 		return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 832) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 833) 	regmap = devm_regmap_init_i2c(client, &abb5zes3_rtc_regmap_config);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 834) 	if (IS_ERR(regmap)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 835) 		ret = PTR_ERR(regmap);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 836) 		dev_err(dev, "%s: regmap allocation failed: %d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 837) 			__func__, ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 838) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 839) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 840) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 841) 	ret = abb5zes3_i2c_validate_chip(regmap);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 842) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 843) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 844) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 845) 	data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 846) 	if (!data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 847) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 848) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 849) 	data->regmap = regmap;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 850) 	dev_set_drvdata(dev, data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 851) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 852) 	ret = abb5zes3_rtc_check_setup(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 853) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 854) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 855) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 856) 	data->rtc = devm_rtc_allocate_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 857) 	ret = PTR_ERR_OR_ZERO(data->rtc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 858) 	if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 859) 		dev_err(dev, "%s: unable to allocate RTC device (%d)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 860) 			__func__, ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 861) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 862) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 863) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 864) 	if (client->irq > 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 865) 		ret = devm_request_threaded_irq(dev, client->irq, NULL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 866) 						_abb5zes3_rtc_interrupt,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 867) 						IRQF_SHARED | IRQF_ONESHOT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 868) 						DRV_NAME, client);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 869) 		if (!ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 870) 			device_init_wakeup(dev, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 871) 			data->irq = client->irq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 872) 			dev_dbg(dev, "%s: irq %d used by RTC\n", __func__,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 873) 				client->irq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 874) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 875) 			dev_err(dev, "%s: irq %d unavailable (%d)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 876) 				__func__, client->irq, ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 877) 			goto err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 878) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 879) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 880) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 881) 	data->rtc->ops = &rtc_ops;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 882) 	data->rtc->range_min = RTC_TIMESTAMP_BEGIN_2000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 883) 	data->rtc->range_max = RTC_TIMESTAMP_END_2099;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 884) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 885) 	/* Enable battery low detection interrupt if battery not already low */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 886) 	if (!data->battery_low && data->irq) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 887) 		ret = _abb5zes3_rtc_battery_low_irq_enable(regmap, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 888) 		if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 889) 			dev_err(dev, "%s: enabling battery low interrupt generation failed (%d)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 890) 				__func__, ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 891) 			goto err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 892) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 893) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 894) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 895) 	ret = rtc_register_device(data->rtc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 896) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 897) err:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 898) 	if (ret && data->irq)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 899) 		device_init_wakeup(dev, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 900) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 901) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 902) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 903) #ifdef CONFIG_PM_SLEEP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 904) static int abb5zes3_rtc_suspend(struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 905) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 906) 	struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 907) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 908) 	if (device_may_wakeup(dev))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 909) 		return enable_irq_wake(rtc_data->irq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 910) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 911) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 912) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 913) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 914) static int abb5zes3_rtc_resume(struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 915) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 916) 	struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 917) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 918) 	if (device_may_wakeup(dev))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 919) 		return disable_irq_wake(rtc_data->irq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 920) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 921) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 922) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 923) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 924) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 925) static SIMPLE_DEV_PM_OPS(abb5zes3_rtc_pm_ops, abb5zes3_rtc_suspend,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 926) 			 abb5zes3_rtc_resume);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 927) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 928) #ifdef CONFIG_OF
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 929) static const struct of_device_id abb5zes3_dt_match[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 930) 	{ .compatible = "abracon,abb5zes3" },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 931) 	{ },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 932) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 933) MODULE_DEVICE_TABLE(of, abb5zes3_dt_match);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 934) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 935) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 936) static const struct i2c_device_id abb5zes3_id[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 937) 	{ "abb5zes3", 0 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 938) 	{ }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 939) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 940) MODULE_DEVICE_TABLE(i2c, abb5zes3_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 941) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 942) static struct i2c_driver abb5zes3_driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 943) 	.driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 944) 		.name = DRV_NAME,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 945) 		.pm = &abb5zes3_rtc_pm_ops,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 946) 		.of_match_table = of_match_ptr(abb5zes3_dt_match),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 947) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 948) 	.probe	  = abb5zes3_probe,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 949) 	.id_table = abb5zes3_id,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 950) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 951) module_i2c_driver(abb5zes3_driver);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 952) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 953) MODULE_AUTHOR("Arnaud EBALARD <arno@natisbad.org>");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 954) MODULE_DESCRIPTION("Abracon AB-RTCMC-32.768kHz-B5ZE-S3 RTC/Alarm driver");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 955) MODULE_LICENSE("GPL");