^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1) // SPDX-License-Identifier: GPL-2.0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3) * RTC subsystem, base class
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5) * Copyright (C) 2005 Tower Technologies
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6) * Author: Alessandro Zummo <a.zummo@towertech.it>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 8) * class skeleton from drivers/hwmon/hwmon.c
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 9) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 10)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 11) #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 12)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 13) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 14) #include <linux/of.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 15) #include <linux/rtc.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 16) #include <linux/kdev_t.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 17) #include <linux/idr.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 18) #include <linux/slab.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 19) #include <linux/workqueue.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 20)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 21) #include "rtc-core.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 22)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 23) static DEFINE_IDA(rtc_ida);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 24) struct class *rtc_class;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 25)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 26) static void rtc_device_release(struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 27) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 28) struct rtc_device *rtc = to_rtc_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 29)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 30) ida_simple_remove(&rtc_ida, rtc->id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 31) kfree(rtc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 32) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 33)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 34) #ifdef CONFIG_RTC_HCTOSYS_DEVICE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 35) /* Result of the last RTC to system clock attempt. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 36) int rtc_hctosys_ret = -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 37)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 38) /* IMPORTANT: the RTC only stores whole seconds. It is arbitrary
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 39) * whether it stores the most close value or the value with partial
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 40) * seconds truncated. However, it is important that we use it to store
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 41) * the truncated value. This is because otherwise it is necessary,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 42) * in an rtc sync function, to read both xtime.tv_sec and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 43) * xtime.tv_nsec. On some processors (i.e. ARM), an atomic read
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 44) * of >32bits is not possible. So storing the most close value would
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 45) * slow down the sync API. So here we have the truncated value and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 46) * the best guess is to add 0.5s.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 47) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 48)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 49) static void rtc_hctosys(struct rtc_device *rtc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 50) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 51) int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 52) struct rtc_time tm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 53) struct timespec64 tv64 = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 54) .tv_nsec = NSEC_PER_SEC >> 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 55) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 56)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 57) err = rtc_read_time(rtc, &tm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 58) if (err) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 59) dev_err(rtc->dev.parent,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 60) "hctosys: unable to read the hardware clock\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 61) goto err_read;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 62) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 63)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 64) tv64.tv_sec = rtc_tm_to_time64(&tm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 65)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 66) #if BITS_PER_LONG == 32
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 67) if (tv64.tv_sec > INT_MAX) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 68) err = -ERANGE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 69) goto err_read;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 70) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 71) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 72)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 73) err = do_settimeofday64(&tv64);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 74)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 75) dev_info(rtc->dev.parent, "setting system clock to %ptR UTC (%lld)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 76) &tm, (long long)tv64.tv_sec);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 77)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 78) err_read:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 79) rtc_hctosys_ret = err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 80) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 81) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 82)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 83) #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 84) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 85) * On suspend(), measure the delta between one RTC and the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 86) * system's wall clock; restore it on resume().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 87) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 88)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 89) static struct timespec64 old_rtc, old_system, old_delta;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 90)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 91) static int rtc_suspend(struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 92) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 93) struct rtc_device *rtc = to_rtc_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 94) struct rtc_time tm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 95) struct timespec64 delta, delta_delta;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 96) int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 97)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 98) if (timekeeping_rtc_skipsuspend())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 99) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) if (strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE) != 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) /* snapshot the current RTC and system time at suspend*/
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) err = rtc_read_time(rtc, &tm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) if (err < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) pr_debug("%s: fail to read rtc time\n", dev_name(&rtc->dev));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) ktime_get_real_ts64(&old_system);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) old_rtc.tv_sec = rtc_tm_to_time64(&tm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) * To avoid drift caused by repeated suspend/resumes,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) * which each can add ~1 second drift error,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) * try to compensate so the difference in system time
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) * and rtc time stays close to constant.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) delta = timespec64_sub(old_system, old_rtc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) delta_delta = timespec64_sub(delta, old_delta);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) if (delta_delta.tv_sec < -2 || delta_delta.tv_sec >= 2) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) * if delta_delta is too large, assume time correction
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) * has occurred and set old_delta to the current delta.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) old_delta = delta;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) /* Otherwise try to adjust old_system to compensate */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) old_system = timespec64_sub(old_system, delta_delta);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) static int rtc_resume(struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) struct rtc_device *rtc = to_rtc_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) struct rtc_time tm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) struct timespec64 new_system, new_rtc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) struct timespec64 sleep_time;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) if (timekeeping_rtc_skipresume())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) rtc_hctosys_ret = -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) if (strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE) != 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) /* snapshot the current rtc and system time at resume */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) ktime_get_real_ts64(&new_system);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) err = rtc_read_time(rtc, &tm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) if (err < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) pr_debug("%s: fail to read rtc time\n", dev_name(&rtc->dev));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) new_rtc.tv_sec = rtc_tm_to_time64(&tm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) new_rtc.tv_nsec = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) if (new_rtc.tv_sec < old_rtc.tv_sec) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) pr_debug("%s: time travel!\n", dev_name(&rtc->dev));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) /* calculate the RTC time delta (sleep time)*/
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) sleep_time = timespec64_sub(new_rtc, old_rtc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) * Since these RTC suspend/resume handlers are not called
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) * at the very end of suspend or the start of resume,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) * some run-time may pass on either sides of the sleep time
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) * so subtract kernel run-time between rtc_suspend to rtc_resume
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) * to keep things accurate.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) sleep_time = timespec64_sub(sleep_time,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) timespec64_sub(new_system, old_system));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) if (sleep_time.tv_sec >= 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) timekeeping_inject_sleeptime64(&sleep_time);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) rtc_hctosys_ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) static SIMPLE_DEV_PM_OPS(rtc_class_dev_pm_ops, rtc_suspend, rtc_resume);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) #define RTC_CLASS_DEV_PM_OPS (&rtc_class_dev_pm_ops)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) #define RTC_CLASS_DEV_PM_OPS NULL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) /* Ensure the caller will set the id before releasing the device */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) static struct rtc_device *rtc_allocate_device(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) struct rtc_device *rtc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) rtc = kzalloc(sizeof(*rtc), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) if (!rtc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) device_initialize(&rtc->dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) /* Drivers can revise this default after allocating the device. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) rtc->set_offset_nsec = NSEC_PER_SEC / 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) rtc->irq_freq = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) rtc->max_user_freq = 64;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) rtc->dev.class = rtc_class;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) rtc->dev.groups = rtc_get_dev_attribute_groups();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) rtc->dev.release = rtc_device_release;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) mutex_init(&rtc->ops_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) spin_lock_init(&rtc->irq_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) init_waitqueue_head(&rtc->irq_queue);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) /* Init timerqueue */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) timerqueue_init_head(&rtc->timerqueue);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) INIT_WORK(&rtc->irqwork, rtc_timer_do_work);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) /* Init aie timer */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) rtc_timer_init(&rtc->aie_timer, rtc_aie_update_irq, rtc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) /* Init uie timer */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) rtc_timer_init(&rtc->uie_rtctimer, rtc_uie_update_irq, rtc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) /* Init pie timer */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) hrtimer_init(&rtc->pie_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) rtc->pie_timer.function = rtc_pie_update_irq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) rtc->pie_enabled = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) return rtc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) static int rtc_device_get_id(struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) int of_id = -1, id = -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) if (dev->of_node)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) of_id = of_alias_get_id(dev->of_node, "rtc");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) else if (dev->parent && dev->parent->of_node)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) of_id = of_alias_get_id(dev->parent->of_node, "rtc");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) if (of_id >= 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) id = ida_simple_get(&rtc_ida, of_id, of_id + 1, GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) if (id < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) dev_warn(dev, "/aliases ID %d not available\n", of_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) if (id < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) id = ida_simple_get(&rtc_ida, 0, 0, GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) return id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) static void rtc_device_get_offset(struct rtc_device *rtc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) time64_t range_secs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) u32 start_year;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) * If RTC driver did not implement the range of RTC hardware device,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) * then we can not expand the RTC range by adding or subtracting one
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) * offset.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) if (rtc->range_min == rtc->range_max)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) ret = device_property_read_u32(rtc->dev.parent, "start-year",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) &start_year);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) if (!ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) rtc->start_secs = mktime64(start_year, 1, 1, 0, 0, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) rtc->set_start_time = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) * If user did not implement the start time for RTC driver, then no
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) * need to expand the RTC range.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) if (!rtc->set_start_time)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) range_secs = rtc->range_max - rtc->range_min + 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) * If the start_secs is larger than the maximum seconds (rtc->range_max)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) * supported by RTC hardware or the maximum seconds of new expanded
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) * range (start_secs + rtc->range_max - rtc->range_min) is less than
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) * rtc->range_min, which means the minimum seconds (rtc->range_min) of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) * RTC hardware will be mapped to start_secs by adding one offset, so
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) * the offset seconds calculation formula should be:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) * rtc->offset_secs = rtc->start_secs - rtc->range_min;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) * If the start_secs is larger than the minimum seconds (rtc->range_min)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) * supported by RTC hardware, then there is one region is overlapped
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) * between the original RTC hardware range and the new expanded range,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) * and this overlapped region do not need to be mapped into the new
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) * expanded range due to it is valid for RTC device. So the minimum
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) * seconds of RTC hardware (rtc->range_min) should be mapped to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) * rtc->range_max + 1, then the offset seconds formula should be:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) * rtc->offset_secs = rtc->range_max - rtc->range_min + 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) * If the start_secs is less than the minimum seconds (rtc->range_min),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) * which is similar to case 2. So the start_secs should be mapped to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) * start_secs + rtc->range_max - rtc->range_min + 1, then the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) * offset seconds formula should be:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) * rtc->offset_secs = -(rtc->range_max - rtc->range_min + 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) * Otherwise the offset seconds should be 0.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) if (rtc->start_secs > rtc->range_max ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) rtc->start_secs + range_secs - 1 < rtc->range_min)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) rtc->offset_secs = rtc->start_secs - rtc->range_min;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) else if (rtc->start_secs > rtc->range_min)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) rtc->offset_secs = range_secs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) else if (rtc->start_secs < rtc->range_min)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) rtc->offset_secs = -range_secs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) rtc->offset_secs = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) * rtc_device_unregister - removes the previously registered RTC class device
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) * @rtc: the RTC class device to destroy
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) static void rtc_device_unregister(struct rtc_device *rtc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) mutex_lock(&rtc->ops_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) * Remove innards of this RTC, then disable it, before
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) * letting any rtc_class_open() users access it again
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) rtc_proc_del_device(rtc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) cdev_device_del(&rtc->char_dev, &rtc->dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) rtc->ops = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) mutex_unlock(&rtc->ops_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) put_device(&rtc->dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) static void devm_rtc_release_device(struct device *dev, void *res)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) struct rtc_device *rtc = *(struct rtc_device **)res;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) rtc_nvmem_unregister(rtc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) if (rtc->registered)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) rtc_device_unregister(rtc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) put_device(&rtc->dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350) struct rtc_device *devm_rtc_allocate_device(struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) struct rtc_device **ptr, *rtc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) int id, err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) id = rtc_device_get_id(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) if (id < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) return ERR_PTR(id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) ptr = devres_alloc(devm_rtc_release_device, sizeof(*ptr), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) if (!ptr) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) err = -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) goto exit_ida;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) rtc = rtc_allocate_device();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) if (!rtc) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) err = -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) goto exit_devres;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371) *ptr = rtc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) devres_add(dev, ptr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374) rtc->id = id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) rtc->dev.parent = dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376) dev_set_name(&rtc->dev, "rtc%d", id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378) return rtc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) exit_devres:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381) devres_free(ptr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382) exit_ida:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383) ida_simple_remove(&rtc_ida, id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384) return ERR_PTR(err);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) EXPORT_SYMBOL_GPL(devm_rtc_allocate_device);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388) int __rtc_register_device(struct module *owner, struct rtc_device *rtc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390) struct rtc_wkalrm alrm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391) int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393) if (!rtc->ops) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394) dev_dbg(&rtc->dev, "no ops set\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398) rtc->owner = owner;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399) rtc_device_get_offset(rtc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401) /* Check to see if there is an ALARM already set in hw */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402) err = __rtc_read_alarm(rtc, &alrm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403) if (!err && !rtc_valid_tm(&alrm.time))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404) rtc_initialize_alarm(rtc, &alrm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406) rtc_dev_prepare(rtc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408) err = cdev_device_add(&rtc->char_dev, &rtc->dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409) if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410) dev_warn(rtc->dev.parent, "failed to add char device %d:%d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411) MAJOR(rtc->dev.devt), rtc->id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413) dev_dbg(rtc->dev.parent, "char device (%d:%d)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414) MAJOR(rtc->dev.devt), rtc->id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416) rtc_proc_add_device(rtc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418) rtc->registered = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419) dev_info(rtc->dev.parent, "registered as %s\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420) dev_name(&rtc->dev));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422) #ifdef CONFIG_RTC_HCTOSYS_DEVICE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423) if (!strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424) rtc_hctosys(rtc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 426)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 427) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 428) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 429) EXPORT_SYMBOL_GPL(__rtc_register_device);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 430)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 431) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 432) * devm_rtc_device_register - resource managed rtc_device_register()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 433) * @dev: the device to register
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 434) * @name: the name of the device (unused)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 435) * @ops: the rtc operations structure
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 436) * @owner: the module owner
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 437) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 438) * @return a struct rtc on success, or an ERR_PTR on error
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 439) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 440) * Managed rtc_device_register(). The rtc_device returned from this function
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 441) * are automatically freed on driver detach.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 442) * This function is deprecated, use devm_rtc_allocate_device and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 443) * rtc_register_device instead
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 444) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 445) struct rtc_device *devm_rtc_device_register(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 446) const char *name,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 447) const struct rtc_class_ops *ops,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 448) struct module *owner)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 449) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 450) struct rtc_device *rtc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 451) int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 452)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 453) rtc = devm_rtc_allocate_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 454) if (IS_ERR(rtc))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 455) return rtc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 456)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 457) rtc->ops = ops;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 458)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 459) err = __rtc_register_device(owner, rtc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 460) if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 461) return ERR_PTR(err);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 462)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 463) return rtc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 464) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 465) EXPORT_SYMBOL_GPL(devm_rtc_device_register);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 466)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 467) static int __init rtc_init(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 468) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 469) rtc_class = class_create(THIS_MODULE, "rtc");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 470) if (IS_ERR(rtc_class)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 471) pr_err("couldn't create class\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 472) return PTR_ERR(rtc_class);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 473) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 474) rtc_class->pm = RTC_CLASS_DEV_PM_OPS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 475) rtc_dev_init();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 476) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 477) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 478) subsys_initcall(rtc_init);