Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) // SPDX-License-Identifier: GPL-2.0-only
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3)  * Remote Processor Framework Elf loader
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5)  * Copyright (C) 2011 Texas Instruments, Inc.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6)  * Copyright (C) 2011 Google, Inc.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8)  * Ohad Ben-Cohen <ohad@wizery.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9)  * Brian Swetland <swetland@google.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10)  * Mark Grosen <mgrosen@ti.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11)  * Fernando Guzman Lugo <fernando.lugo@ti.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12)  * Suman Anna <s-anna@ti.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13)  * Robert Tivy <rtivy@ti.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14)  * Armando Uribe De Leon <x0095078@ti.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15)  * Sjur Brændeland <sjur.brandeland@stericsson.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18) #define pr_fmt(fmt)    "%s: " fmt, __func__
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21) #include <linux/firmware.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22) #include <linux/remoteproc.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23) #include <linux/elf.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25) #include "remoteproc_internal.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26) #include "remoteproc_elf_helpers.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29)  * rproc_elf_sanity_check() - Sanity Check for ELF32/ELF64 firmware image
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30)  * @rproc: the remote processor handle
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31)  * @fw: the ELF firmware image
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33)  * Make sure this fw image is sane (ie a correct ELF32/ELF64 file).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35) int rproc_elf_sanity_check(struct rproc *rproc, const struct firmware *fw)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37) 	const char *name = rproc->firmware;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38) 	struct device *dev = &rproc->dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40) 	 * Elf files are beginning with the same structure. Thus, to simplify
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41) 	 * header parsing, we can use the elf32_hdr one for both elf64 and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42) 	 * elf32.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44) 	struct elf32_hdr *ehdr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45) 	u32 elf_shdr_get_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46) 	u64 phoff, shoff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47) 	char class;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48) 	u16 phnum;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50) 	if (!fw) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51) 		dev_err(dev, "failed to load %s\n", name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55) 	if (fw->size < sizeof(struct elf32_hdr)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56) 		dev_err(dev, "Image is too small\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60) 	ehdr = (struct elf32_hdr *)fw->data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62) 	if (memcmp(ehdr->e_ident, ELFMAG, SELFMAG)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63) 		dev_err(dev, "Image is corrupted (bad magic)\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67) 	class = ehdr->e_ident[EI_CLASS];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68) 	if (class != ELFCLASS32 && class != ELFCLASS64) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69) 		dev_err(dev, "Unsupported class: %d\n", class);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73) 	if (class == ELFCLASS64 && fw->size < sizeof(struct elf64_hdr)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74) 		dev_err(dev, "elf64 header is too small\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78) 	/* We assume the firmware has the same endianness as the host */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79) # ifdef __LITTLE_ENDIAN
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80) 	if (ehdr->e_ident[EI_DATA] != ELFDATA2LSB) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81) # else /* BIG ENDIAN */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82) 	if (ehdr->e_ident[EI_DATA] != ELFDATA2MSB) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83) # endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84) 		dev_err(dev, "Unsupported firmware endianness\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88) 	phoff = elf_hdr_get_e_phoff(class, fw->data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89) 	shoff = elf_hdr_get_e_shoff(class, fw->data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90) 	phnum =  elf_hdr_get_e_phnum(class, fw->data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91) 	elf_shdr_get_size = elf_size_of_shdr(class);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93) 	if (fw->size < shoff + elf_shdr_get_size) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94) 		dev_err(dev, "Image is too small\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98) 	if (phnum == 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99) 		dev_err(dev, "No loadable segments\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) 	if (phoff > fw->size) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) 		dev_err(dev, "Firmware size is too small\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) 	dev_dbg(dev, "Firmware is an elf%d file\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) 		class == ELFCLASS32 ? 32 : 64);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) EXPORT_SYMBOL(rproc_elf_sanity_check);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116)  * rproc_elf_get_boot_addr() - Get rproc's boot address.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117)  * @rproc: the remote processor handle
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118)  * @fw: the ELF firmware image
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120)  * This function returns the entry point address of the ELF
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121)  * image.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123)  * Note that the boot address is not a configurable property of all remote
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124)  * processors. Some will always boot at a specific hard-coded address.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) u64 rproc_elf_get_boot_addr(struct rproc *rproc, const struct firmware *fw)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) 	return elf_hdr_get_e_entry(fw_elf_get_class(fw), fw->data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) EXPORT_SYMBOL(rproc_elf_get_boot_addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133)  * rproc_elf_load_segments() - load firmware segments to memory
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134)  * @rproc: remote processor which will be booted using these fw segments
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135)  * @fw: the ELF firmware image
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137)  * This function loads the firmware segments to memory, where the remote
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138)  * processor expects them.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140)  * Some remote processors will expect their code and data to be placed
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141)  * in specific device addresses, and can't have them dynamically assigned.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143)  * We currently support only those kind of remote processors, and expect
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144)  * the program header's paddr member to contain those addresses. We then go
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145)  * through the physically contiguous "carveout" memory regions which we
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146)  * allocated (and mapped) earlier on behalf of the remote processor,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147)  * and "translate" device address to kernel addresses, so we can copy the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148)  * segments where they are expected.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150)  * Currently we only support remote processors that required carveout
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151)  * allocations and got them mapped onto their iommus. Some processors
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152)  * might be different: they might not have iommus, and would prefer to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153)  * directly allocate memory for every segment/resource. This is not yet
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154)  * supported, though.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) int rproc_elf_load_segments(struct rproc *rproc, const struct firmware *fw)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) 	struct device *dev = &rproc->dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) 	const void *ehdr, *phdr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) 	int i, ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) 	u16 phnum;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) 	const u8 *elf_data = fw->data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) 	u8 class = fw_elf_get_class(fw);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) 	u32 elf_phdr_get_size = elf_size_of_phdr(class);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) 	ehdr = elf_data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) 	phnum = elf_hdr_get_e_phnum(class, ehdr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) 	phdr = elf_data + elf_hdr_get_e_phoff(class, ehdr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) 	/* go through the available ELF segments */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) 	for (i = 0; i < phnum; i++, phdr += elf_phdr_get_size) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) 		u64 da = elf_phdr_get_p_paddr(class, phdr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) 		u64 memsz = elf_phdr_get_p_memsz(class, phdr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) 		u64 filesz = elf_phdr_get_p_filesz(class, phdr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) 		u64 offset = elf_phdr_get_p_offset(class, phdr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) 		u32 type = elf_phdr_get_p_type(class, phdr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) 		bool is_iomem = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) 		void *ptr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) 		if (type != PT_LOAD)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) 		dev_dbg(dev, "phdr: type %d da 0x%llx memsz 0x%llx filesz 0x%llx\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) 			type, da, memsz, filesz);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) 		if (filesz > memsz) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) 			dev_err(dev, "bad phdr filesz 0x%llx memsz 0x%llx\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) 				filesz, memsz);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) 			ret = -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) 		if (offset + filesz > fw->size) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) 			dev_err(dev, "truncated fw: need 0x%llx avail 0x%zx\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) 				offset + filesz, fw->size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) 			ret = -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) 		if (!rproc_u64_fit_in_size_t(memsz)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) 			dev_err(dev, "size (%llx) does not fit in size_t type\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) 				memsz);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) 			ret = -EOVERFLOW;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) 		/* grab the kernel address for this device address */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) 		ptr = rproc_da_to_va(rproc, da, memsz, &is_iomem);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) 		if (!ptr) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) 			dev_err(dev, "bad phdr da 0x%llx mem 0x%llx\n", da,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) 				memsz);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) 			ret = -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) 		/* put the segment where the remote processor expects it */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) 		if (filesz) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) 			if (is_iomem)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) 				memcpy_toio((void __iomem *)ptr, elf_data + offset, filesz);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) 			else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) 				memcpy(ptr, elf_data + offset, filesz);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) 		 * Zero out remaining memory for this segment.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) 		 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) 		 * This isn't strictly required since dma_alloc_coherent already
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) 		 * did this for us. albeit harmless, we may consider removing
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) 		 * this.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) 		if (memsz > filesz) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) 			if (is_iomem)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) 				memset_io((void __iomem *)(ptr + filesz), 0, memsz - filesz);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) 			else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) 				memset(ptr + filesz, 0, memsz - filesz);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) EXPORT_SYMBOL(rproc_elf_load_segments);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) static const void *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) find_table(struct device *dev, const struct firmware *fw)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) 	const void *shdr, *name_table_shdr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) 	const char *name_table;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) 	struct resource_table *table = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) 	const u8 *elf_data = (void *)fw->data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) 	u8 class = fw_elf_get_class(fw);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) 	size_t fw_size = fw->size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) 	const void *ehdr = elf_data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) 	u16 shnum = elf_hdr_get_e_shnum(class, ehdr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) 	u32 elf_shdr_get_size = elf_size_of_shdr(class);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) 	u16 shstrndx = elf_hdr_get_e_shstrndx(class, ehdr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) 	/* look for the resource table and handle it */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) 	/* First, get the section header according to the elf class */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) 	shdr = elf_data + elf_hdr_get_e_shoff(class, ehdr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) 	/* Compute name table section header entry in shdr array */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) 	name_table_shdr = shdr + (shstrndx * elf_shdr_get_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) 	/* Finally, compute the name table section address in elf */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) 	name_table = elf_data + elf_shdr_get_sh_offset(class, name_table_shdr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) 	for (i = 0; i < shnum; i++, shdr += elf_shdr_get_size) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) 		u64 size = elf_shdr_get_sh_size(class, shdr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) 		u64 offset = elf_shdr_get_sh_offset(class, shdr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) 		u32 name = elf_shdr_get_sh_name(class, shdr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) 		if (strcmp(name_table + name, ".resource_table"))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) 		table = (struct resource_table *)(elf_data + offset);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) 		/* make sure we have the entire table */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) 		if (offset + size > fw_size || offset + size < size) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) 			dev_err(dev, "resource table truncated\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) 			return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) 		/* make sure table has at least the header */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) 		if (sizeof(struct resource_table) > size) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) 			dev_err(dev, "header-less resource table\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) 			return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) 		/* we don't support any version beyond the first */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) 		if (table->ver != 1) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) 			dev_err(dev, "unsupported fw ver: %d\n", table->ver);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) 			return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) 		/* make sure reserved bytes are zeroes */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) 		if (table->reserved[0] || table->reserved[1]) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) 			dev_err(dev, "non zero reserved bytes\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) 			return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) 		/* make sure the offsets array isn't truncated */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) 		if (struct_size(table, offset, table->num) > size) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) 			dev_err(dev, "resource table incomplete\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) 			return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) 		return shdr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) 	return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313)  * rproc_elf_load_rsc_table() - load the resource table
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314)  * @rproc: the rproc handle
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315)  * @fw: the ELF firmware image
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317)  * This function finds the resource table inside the remote processor's
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318)  * firmware, load it into the @cached_table and update @table_ptr.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320)  * Return: 0 on success, negative errno on failure.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) int rproc_elf_load_rsc_table(struct rproc *rproc, const struct firmware *fw)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) 	const void *shdr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) 	struct device *dev = &rproc->dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) 	struct resource_table *table = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) 	const u8 *elf_data = fw->data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) 	size_t tablesz;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) 	u8 class = fw_elf_get_class(fw);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) 	u64 sh_offset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) 	shdr = find_table(dev, fw);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) 	if (!shdr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) 	sh_offset = elf_shdr_get_sh_offset(class, shdr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) 	table = (struct resource_table *)(elf_data + sh_offset);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) 	tablesz = elf_shdr_get_sh_size(class, shdr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) 	 * Create a copy of the resource table. When a virtio device starts
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) 	 * and calls vring_new_virtqueue() the address of the allocated vring
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) 	 * will be stored in the cached_table. Before the device is started,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) 	 * cached_table will be copied into device memory.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) 	rproc->cached_table = kmemdup(table, tablesz, GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) 	if (!rproc->cached_table)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350) 	rproc->table_ptr = rproc->cached_table;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) 	rproc->table_sz = tablesz;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) EXPORT_SYMBOL(rproc_elf_load_rsc_table);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358)  * rproc_elf_find_loaded_rsc_table() - find the loaded resource table
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359)  * @rproc: the rproc handle
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360)  * @fw: the ELF firmware image
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362)  * This function finds the location of the loaded resource table. Don't
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363)  * call this function if the table wasn't loaded yet - it's a bug if you do.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365)  * Returns the pointer to the resource table if it is found or NULL otherwise.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366)  * If the table wasn't loaded yet the result is unspecified.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) struct resource_table *rproc_elf_find_loaded_rsc_table(struct rproc *rproc,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) 						       const struct firmware *fw)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371) 	const void *shdr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) 	u64 sh_addr, sh_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373) 	u8 class = fw_elf_get_class(fw);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374) 	struct device *dev = &rproc->dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376) 	shdr = find_table(&rproc->dev, fw);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) 	if (!shdr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) 	sh_addr = elf_shdr_get_sh_addr(class, shdr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381) 	sh_size = elf_shdr_get_sh_size(class, shdr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383) 	if (!rproc_u64_fit_in_size_t(sh_size)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384) 		dev_err(dev, "size (%llx) does not fit in size_t type\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) 			sh_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) 	return rproc_da_to_va(rproc, sh_addr, sh_size, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391) EXPORT_SYMBOL(rproc_elf_find_loaded_rsc_table);