^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1) // SPDX-License-Identifier: GPL-2.0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3) * Copyright (c) 2017-2019 Borislav Petkov, SUSE Labs.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5) #include <linux/mm.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6) #include <linux/gfp.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7) #include <linux/ras.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 8) #include <linux/kernel.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 9) #include <linux/workqueue.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 10)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 11) #include <asm/mce.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 12)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 13) #include "debugfs.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 14)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 15) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 16) * RAS Correctable Errors Collector
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 17) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 18) * This is a simple gadget which collects correctable errors and counts their
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 19) * occurrence per physical page address.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 20) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 21) * We've opted for possibly the simplest data structure to collect those - an
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 22) * array of the size of a memory page. It stores 512 u64's with the following
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 23) * structure:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 24) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 25) * [63 ... PFN ... 12 | 11 ... generation ... 10 | 9 ... count ... 0]
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 26) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 27) * The generation in the two highest order bits is two bits which are set to 11b
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 28) * on every insertion. During the course of each entry's existence, the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 29) * generation field gets decremented during spring cleaning to 10b, then 01b and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 30) * then 00b.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 31) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 32) * This way we're employing the natural numeric ordering to make sure that newly
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 33) * inserted/touched elements have higher 12-bit counts (which we've manufactured)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 34) * and thus iterating over the array initially won't kick out those elements
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 35) * which were inserted last.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 36) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 37) * Spring cleaning is what we do when we reach a certain number CLEAN_ELEMS of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 38) * elements entered into the array, during which, we're decaying all elements.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 39) * If, after decay, an element gets inserted again, its generation is set to 11b
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 40) * to make sure it has higher numerical count than other, older elements and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 41) * thus emulate an an LRU-like behavior when deleting elements to free up space
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 42) * in the page.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 43) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 44) * When an element reaches it's max count of action_threshold, we try to poison
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 45) * it by assuming that errors triggered action_threshold times in a single page
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 46) * are excessive and that page shouldn't be used anymore. action_threshold is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 47) * initialized to COUNT_MASK which is the maximum.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 48) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 49) * That error event entry causes cec_add_elem() to return !0 value and thus
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 50) * signal to its callers to log the error.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 51) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 52) * To the question why we've chosen a page and moving elements around with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 53) * memmove(), it is because it is a very simple structure to handle and max data
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 54) * movement is 4K which on highly optimized modern CPUs is almost unnoticeable.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 55) * We wanted to avoid the pointer traversal of more complex structures like a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 56) * linked list or some sort of a balancing search tree.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 57) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 58) * Deleting an element takes O(n) but since it is only a single page, it should
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 59) * be fast enough and it shouldn't happen all too often depending on error
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 60) * patterns.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 61) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 62)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 63) #undef pr_fmt
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 64) #define pr_fmt(fmt) "RAS: " fmt
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 65)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 66) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 67) * We use DECAY_BITS bits of PAGE_SHIFT bits for counting decay, i.e., how long
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 68) * elements have stayed in the array without having been accessed again.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 69) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 70) #define DECAY_BITS 2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 71) #define DECAY_MASK ((1ULL << DECAY_BITS) - 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 72) #define MAX_ELEMS (PAGE_SIZE / sizeof(u64))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 73)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 74) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 75) * Threshold amount of inserted elements after which we start spring
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 76) * cleaning.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 77) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 78) #define CLEAN_ELEMS (MAX_ELEMS >> DECAY_BITS)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 79)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 80) /* Bits which count the number of errors happened in this 4K page. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 81) #define COUNT_BITS (PAGE_SHIFT - DECAY_BITS)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 82) #define COUNT_MASK ((1ULL << COUNT_BITS) - 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 83) #define FULL_COUNT_MASK (PAGE_SIZE - 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 84)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 85) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 86) * u64: [ 63 ... 12 | DECAY_BITS | COUNT_BITS ]
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 87) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 88)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 89) #define PFN(e) ((e) >> PAGE_SHIFT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 90) #define DECAY(e) (((e) >> COUNT_BITS) & DECAY_MASK)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 91) #define COUNT(e) ((unsigned int)(e) & COUNT_MASK)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 92) #define FULL_COUNT(e) ((e) & (PAGE_SIZE - 1))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 93)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 94) static struct ce_array {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 95) u64 *array; /* container page */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 96) unsigned int n; /* number of elements in the array */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 97)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 98) unsigned int decay_count; /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 99) * number of element insertions/increments
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) * since the last spring cleaning.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) u64 pfns_poisoned; /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) * number of PFNs which got poisoned.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) u64 ces_entered; /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) * The number of correctable errors
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) * entered into the collector.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) u64 decays_done; /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) * Times we did spring cleaning.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) union {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) struct {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) __u32 disabled : 1, /* cmdline disabled */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) __resv : 31;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) __u32 flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) } ce_arr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) static DEFINE_MUTEX(ce_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) static u64 dfs_pfn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) /* Amount of errors after which we offline */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) static u64 action_threshold = COUNT_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) /* Each element "decays" each decay_interval which is 24hrs by default. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) #define CEC_DECAY_DEFAULT_INTERVAL 24 * 60 * 60 /* 24 hrs */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) #define CEC_DECAY_MIN_INTERVAL 1 * 60 * 60 /* 1h */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) #define CEC_DECAY_MAX_INTERVAL 30 * 24 * 60 * 60 /* one month */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) static struct delayed_work cec_work;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) static u64 decay_interval = CEC_DECAY_DEFAULT_INTERVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) * Decrement decay value. We're using DECAY_BITS bits to denote decay of an
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) * element in the array. On insertion and any access, it gets reset to max.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) static void do_spring_cleaning(struct ce_array *ca)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) for (i = 0; i < ca->n; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) u8 decay = DECAY(ca->array[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) if (!decay)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) decay--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) ca->array[i] &= ~(DECAY_MASK << COUNT_BITS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) ca->array[i] |= (decay << COUNT_BITS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) ca->decay_count = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) ca->decays_done++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) * @interval in seconds
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) static void cec_mod_work(unsigned long interval)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) unsigned long iv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) iv = interval * HZ;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) mod_delayed_work(system_wq, &cec_work, round_jiffies(iv));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) static void cec_work_fn(struct work_struct *work)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) mutex_lock(&ce_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) do_spring_cleaning(&ce_arr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) mutex_unlock(&ce_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) cec_mod_work(decay_interval);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) * @to: index of the smallest element which is >= then @pfn.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) * Return the index of the pfn if found, otherwise negative value.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) static int __find_elem(struct ce_array *ca, u64 pfn, unsigned int *to)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) int min = 0, max = ca->n - 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) u64 this_pfn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) while (min <= max) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) int i = (min + max) >> 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) this_pfn = PFN(ca->array[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) if (this_pfn < pfn)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) min = i + 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) else if (this_pfn > pfn)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) max = i - 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) else if (this_pfn == pfn) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) if (to)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) *to = i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) return i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) * When the loop terminates without finding @pfn, min has the index of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) * the element slot where the new @pfn should be inserted. The loop
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) * terminates when min > max, which means the min index points to the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) * bigger element while the max index to the smaller element, in-between
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) * which the new @pfn belongs to.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) * For more details, see exercise 1, Section 6.2.1 in TAOCP, vol. 3.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) if (to)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) *to = min;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) return -ENOKEY;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) static int find_elem(struct ce_array *ca, u64 pfn, unsigned int *to)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) WARN_ON(!to);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) if (!ca->n) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) *to = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) return -ENOKEY;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) return __find_elem(ca, pfn, to);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) static void del_elem(struct ce_array *ca, int idx)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) /* Save us a function call when deleting the last element. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) if (ca->n - (idx + 1))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) memmove((void *)&ca->array[idx],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) (void *)&ca->array[idx + 1],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) (ca->n - (idx + 1)) * sizeof(u64));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) ca->n--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) static u64 del_lru_elem_unlocked(struct ce_array *ca)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) unsigned int min = FULL_COUNT_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) int i, min_idx = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) for (i = 0; i < ca->n; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) unsigned int this = FULL_COUNT(ca->array[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) if (min > this) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) min = this;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) min_idx = i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) del_elem(ca, min_idx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) return PFN(ca->array[min_idx]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) * We return the 0th pfn in the error case under the assumption that it cannot
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) * be poisoned and excessive CEs in there are a serious deal anyway.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) static u64 __maybe_unused del_lru_elem(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) struct ce_array *ca = &ce_arr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) u64 pfn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) if (!ca->n)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) mutex_lock(&ce_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) pfn = del_lru_elem_unlocked(ca);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) mutex_unlock(&ce_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) return pfn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) static bool sanity_check(struct ce_array *ca)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) bool ret = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) u64 prev = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) for (i = 0; i < ca->n; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) u64 this = PFN(ca->array[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) if (WARN(prev > this, "prev: 0x%016llx <-> this: 0x%016llx\n", prev, this))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) ret = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) prev = this;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) if (!ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) pr_info("Sanity check dump:\n{ n: %d\n", ca->n);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) for (i = 0; i < ca->n; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) u64 this = PFN(ca->array[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) pr_info(" %03d: [%016llx|%03llx]\n", i, this, FULL_COUNT(ca->array[i]));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) pr_info("}\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) * cec_add_elem - Add an element to the CEC array.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) * @pfn: page frame number to insert
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) * Return values:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) * - <0: on error
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) * - 0: on success
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) * - >0: when the inserted pfn was offlined
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) static int cec_add_elem(u64 pfn)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) struct ce_array *ca = &ce_arr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) int count, err, ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) unsigned int to = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) * We can be called very early on the identify_cpu() path where we are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) * not initialized yet. We ignore the error for simplicity.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) if (!ce_arr.array || ce_arr.disabled)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) mutex_lock(&ce_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) ca->ces_entered++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) /* Array full, free the LRU slot. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) if (ca->n == MAX_ELEMS)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) WARN_ON(!del_lru_elem_unlocked(ca));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) err = find_elem(ca, pfn, &to);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) if (err < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) * Shift range [to-end] to make room for one more element.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) memmove((void *)&ca->array[to + 1],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) (void *)&ca->array[to],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) (ca->n - to) * sizeof(u64));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) ca->array[to] = pfn << PAGE_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) ca->n++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) /* Add/refresh element generation and increment count */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) ca->array[to] |= DECAY_MASK << COUNT_BITS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) ca->array[to]++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) /* Check action threshold and soft-offline, if reached. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) count = COUNT(ca->array[to]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) if (count >= action_threshold) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) u64 pfn = ca->array[to] >> PAGE_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) if (!pfn_valid(pfn)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) pr_warn("CEC: Invalid pfn: 0x%llx\n", pfn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) /* We have reached max count for this page, soft-offline it. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) pr_err("Soft-offlining pfn: 0x%llx\n", pfn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) memory_failure_queue(pfn, MF_SOFT_OFFLINE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) ca->pfns_poisoned++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373) del_elem(ca, to);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376) * Return a >0 value to callers, to denote that we've reached
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) * the offlining threshold.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379) ret = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381) goto unlock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384) ca->decay_count++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) if (ca->decay_count >= CLEAN_ELEMS)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387) do_spring_cleaning(ca);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) WARN_ON_ONCE(sanity_check(ca));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391) unlock:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392) mutex_unlock(&ce_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397) static int u64_get(void *data, u64 *val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399) *val = *(u64 *)data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404) static int pfn_set(void *data, u64 val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406) *(u64 *)data = val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408) cec_add_elem(val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413) DEFINE_DEBUGFS_ATTRIBUTE(pfn_ops, u64_get, pfn_set, "0x%llx\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415) static int decay_interval_set(void *data, u64 val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417) if (val < CEC_DECAY_MIN_INTERVAL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420) if (val > CEC_DECAY_MAX_INTERVAL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423) *(u64 *)data = val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424) decay_interval = val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 426) cec_mod_work(decay_interval);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 427)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 428) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 429) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 430) DEFINE_DEBUGFS_ATTRIBUTE(decay_interval_ops, u64_get, decay_interval_set, "%lld\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 431)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 432) static int action_threshold_set(void *data, u64 val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 433) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 434) *(u64 *)data = val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 435)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 436) if (val > COUNT_MASK)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 437) val = COUNT_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 438)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 439) action_threshold = val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 440)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 441) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 442) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 443) DEFINE_DEBUGFS_ATTRIBUTE(action_threshold_ops, u64_get, action_threshold_set, "%lld\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 444)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 445) static const char * const bins[] = { "00", "01", "10", "11" };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 446)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 447) static int array_show(struct seq_file *m, void *v)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 448) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 449) struct ce_array *ca = &ce_arr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 450) int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 451)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 452) mutex_lock(&ce_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 453)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 454) seq_printf(m, "{ n: %d\n", ca->n);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 455) for (i = 0; i < ca->n; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 456) u64 this = PFN(ca->array[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 457)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 458) seq_printf(m, " %3d: [%016llx|%s|%03llx]\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 459) i, this, bins[DECAY(ca->array[i])], COUNT(ca->array[i]));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 460) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 461)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 462) seq_printf(m, "}\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 463)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 464) seq_printf(m, "Stats:\nCEs: %llu\nofflined pages: %llu\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 465) ca->ces_entered, ca->pfns_poisoned);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 466)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 467) seq_printf(m, "Flags: 0x%x\n", ca->flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 468)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 469) seq_printf(m, "Decay interval: %lld seconds\n", decay_interval);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 470) seq_printf(m, "Decays: %lld\n", ca->decays_done);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 471)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 472) seq_printf(m, "Action threshold: %lld\n", action_threshold);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 473)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 474) mutex_unlock(&ce_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 475)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 476) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 477) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 478)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 479) DEFINE_SHOW_ATTRIBUTE(array);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 480)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 481) static int __init create_debugfs_nodes(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 482) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 483) struct dentry *d, *pfn, *decay, *count, *array;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 484)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 485) d = debugfs_create_dir("cec", ras_debugfs_dir);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 486) if (!d) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 487) pr_warn("Error creating cec debugfs node!\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 488) return -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 489) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 490)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 491) decay = debugfs_create_file("decay_interval", S_IRUSR | S_IWUSR, d,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 492) &decay_interval, &decay_interval_ops);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 493) if (!decay) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 494) pr_warn("Error creating decay_interval debugfs node!\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 495) goto err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 496) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 497)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 498) count = debugfs_create_file("action_threshold", S_IRUSR | S_IWUSR, d,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 499) &action_threshold, &action_threshold_ops);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 500) if (!count) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 501) pr_warn("Error creating action_threshold debugfs node!\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 502) goto err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 503) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 504)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 505) if (!IS_ENABLED(CONFIG_RAS_CEC_DEBUG))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 506) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 507)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 508) pfn = debugfs_create_file("pfn", S_IRUSR | S_IWUSR, d, &dfs_pfn, &pfn_ops);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 509) if (!pfn) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 510) pr_warn("Error creating pfn debugfs node!\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 511) goto err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 512) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 513)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 514) array = debugfs_create_file("array", S_IRUSR, d, NULL, &array_fops);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 515) if (!array) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 516) pr_warn("Error creating array debugfs node!\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 517) goto err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 518) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 519)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 520) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 521)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 522) err:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 523) debugfs_remove_recursive(d);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 524)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 525) return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 526) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 527)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 528) static int cec_notifier(struct notifier_block *nb, unsigned long val,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 529) void *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 530) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 531) struct mce *m = (struct mce *)data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 532)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 533) if (!m)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 534) return NOTIFY_DONE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 535)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 536) /* We eat only correctable DRAM errors with usable addresses. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 537) if (mce_is_memory_error(m) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 538) mce_is_correctable(m) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 539) mce_usable_address(m)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 540) if (!cec_add_elem(m->addr >> PAGE_SHIFT)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 541) m->kflags |= MCE_HANDLED_CEC;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 542) return NOTIFY_OK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 543) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 544) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 545)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 546) return NOTIFY_DONE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 547) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 548)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 549) static struct notifier_block cec_nb = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 550) .notifier_call = cec_notifier,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 551) .priority = MCE_PRIO_CEC,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 552) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 553)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 554) static int __init cec_init(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 555) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 556) if (ce_arr.disabled)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 557) return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 558)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 559) ce_arr.array = (void *)get_zeroed_page(GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 560) if (!ce_arr.array) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 561) pr_err("Error allocating CE array page!\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 562) return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 563) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 564)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 565) if (create_debugfs_nodes()) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 566) free_page((unsigned long)ce_arr.array);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 567) return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 568) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 569)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 570) INIT_DELAYED_WORK(&cec_work, cec_work_fn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 571) schedule_delayed_work(&cec_work, CEC_DECAY_DEFAULT_INTERVAL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 572)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 573) mce_register_decode_chain(&cec_nb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 574)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 575) pr_info("Correctable Errors collector initialized.\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 576) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 577) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 578) late_initcall(cec_init);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 579)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 580) int __init parse_cec_param(char *str)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 581) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 582) if (!str)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 583) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 584)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 585) if (*str == '=')
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 586) str++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 587)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 588) if (!strcmp(str, "cec_disable"))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 589) ce_arr.disabled = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 590) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 591) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 592)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 593) return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 594) }