^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1) // SPDX-License-Identifier: GPL-2.0-or-later
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3) * drivers/pwm/pwm-tegra.c
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5) * Tegra pulse-width-modulation controller driver
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7) * Copyright (c) 2010-2020, NVIDIA Corporation.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 8) * Based on arch/arm/plat-mxc/pwm.c by Sascha Hauer <s.hauer@pengutronix.de>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 9) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 10) * Overview of Tegra Pulse Width Modulator Register:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 11) * 1. 13-bit: Frequency division (SCALE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 12) * 2. 8-bit : Pulse division (DUTY)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 13) * 3. 1-bit : Enable bit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 14) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 15) * The PWM clock frequency is divided by 256 before subdividing it based
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 16) * on the programmable frequency division value to generate the required
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 17) * frequency for PWM output. The maximum output frequency that can be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 18) * achieved is (max rate of source clock) / 256.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 19) * e.g. if source clock rate is 408 MHz, maximum output frequency can be:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 20) * 408 MHz/256 = 1.6 MHz.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 21) * This 1.6 MHz frequency can further be divided using SCALE value in PWM.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 22) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 23) * PWM pulse width: 8 bits are usable [23:16] for varying pulse width.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 24) * To achieve 100% duty cycle, program Bit [24] of this register to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 25) * 1’b1. In which case the other bits [23:16] are set to don't care.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 26) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 27) * Limitations:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 28) * - When PWM is disabled, the output is driven to inactive.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 29) * - It does not allow the current PWM period to complete and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 30) * stops abruptly.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 31) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 32) * - If the register is reconfigured while PWM is running,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 33) * it does not complete the currently running period.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 34) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 35) * - If the user input duty is beyond acceptible limits,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 36) * -EINVAL is returned.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 37) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 38)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 39) #include <linux/clk.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 40) #include <linux/err.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 41) #include <linux/io.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 42) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 43) #include <linux/of.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 44) #include <linux/of_device.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 45) #include <linux/pwm.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 46) #include <linux/platform_device.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 47) #include <linux/pinctrl/consumer.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 48) #include <linux/slab.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 49) #include <linux/reset.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 50)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 51) #define PWM_ENABLE (1 << 31)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 52) #define PWM_DUTY_WIDTH 8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 53) #define PWM_DUTY_SHIFT 16
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 54) #define PWM_SCALE_WIDTH 13
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 55) #define PWM_SCALE_SHIFT 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 56)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 57) struct tegra_pwm_soc {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 58) unsigned int num_channels;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 59)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 60) /* Maximum IP frequency for given SoCs */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 61) unsigned long max_frequency;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 62) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 63)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 64) struct tegra_pwm_chip {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 65) struct pwm_chip chip;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 66) struct device *dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 67)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 68) struct clk *clk;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 69) struct reset_control*rst;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 70)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 71) unsigned long clk_rate;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 72) unsigned long min_period_ns;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 73)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 74) void __iomem *regs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 75)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 76) const struct tegra_pwm_soc *soc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 77) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 78)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 79) static inline struct tegra_pwm_chip *to_tegra_pwm_chip(struct pwm_chip *chip)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 80) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 81) return container_of(chip, struct tegra_pwm_chip, chip);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 82) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 83)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 84) static inline u32 pwm_readl(struct tegra_pwm_chip *chip, unsigned int num)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 85) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 86) return readl(chip->regs + (num << 4));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 87) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 88)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 89) static inline void pwm_writel(struct tegra_pwm_chip *chip, unsigned int num,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 90) unsigned long val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 91) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 92) writel(val, chip->regs + (num << 4));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 93) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 94)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 95) static int tegra_pwm_config(struct pwm_chip *chip, struct pwm_device *pwm,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 96) int duty_ns, int period_ns)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 97) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 98) struct tegra_pwm_chip *pc = to_tegra_pwm_chip(chip);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 99) unsigned long long c = duty_ns, hz;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) unsigned long rate, required_clk_rate;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) u32 val = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) * Convert from duty_ns / period_ns to a fixed number of duty ticks
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) * per (1 << PWM_DUTY_WIDTH) cycles and make sure to round to the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) * nearest integer during division.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) c *= (1 << PWM_DUTY_WIDTH);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) c = DIV_ROUND_CLOSEST_ULL(c, period_ns);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) val = (u32)c << PWM_DUTY_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) * min period = max clock limit >> PWM_DUTY_WIDTH
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) if (period_ns < pc->min_period_ns)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) * Compute the prescaler value for which (1 << PWM_DUTY_WIDTH)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) * cycles at the PWM clock rate will take period_ns nanoseconds.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) * num_channels: If single instance of PWM controller has multiple
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) * channels (e.g. Tegra210 or older) then it is not possible to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) * configure separate clock rates to each of the channels, in such
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) * case the value stored during probe will be referred.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) * If every PWM controller instance has one channel respectively, i.e.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) * nums_channels == 1 then only the clock rate can be modified
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) * dynamically (e.g. Tegra186 or Tegra194).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) if (pc->soc->num_channels == 1) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) * Rate is multiplied with 2^PWM_DUTY_WIDTH so that it matches
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) * with the maximum possible rate that the controller can
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) * provide. Any further lower value can be derived by setting
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) * PFM bits[0:12].
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) * required_clk_rate is a reference rate for source clock and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) * it is derived based on user requested period. By setting the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) * source clock rate as required_clk_rate, PWM controller will
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) * be able to configure the requested period.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) required_clk_rate =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) (NSEC_PER_SEC / period_ns) << PWM_DUTY_WIDTH;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) err = clk_set_rate(pc->clk, required_clk_rate);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) if (err < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) /* Store the new rate for further references */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) pc->clk_rate = clk_get_rate(pc->clk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) rate = pc->clk_rate >> PWM_DUTY_WIDTH;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) /* Consider precision in PWM_SCALE_WIDTH rate calculation */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) hz = DIV_ROUND_CLOSEST_ULL(100ULL * NSEC_PER_SEC, period_ns);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) rate = DIV_ROUND_CLOSEST_ULL(100ULL * rate, hz);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) * Since the actual PWM divider is the register's frequency divider
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) * field plus 1, we need to decrement to get the correct value to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) * write to the register.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) if (rate > 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) rate--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) * Make sure that the rate will fit in the register's frequency
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) * divider field.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) if (rate >> PWM_SCALE_WIDTH)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) val |= rate << PWM_SCALE_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) * If the PWM channel is disabled, make sure to turn on the clock
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) * before writing the register. Otherwise, keep it enabled.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) if (!pwm_is_enabled(pwm)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) err = clk_prepare_enable(pc->clk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) if (err < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) } else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) val |= PWM_ENABLE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) pwm_writel(pc, pwm->hwpwm, val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) * If the PWM is not enabled, turn the clock off again to save power.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) if (!pwm_is_enabled(pwm))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) clk_disable_unprepare(pc->clk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) static int tegra_pwm_enable(struct pwm_chip *chip, struct pwm_device *pwm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) struct tegra_pwm_chip *pc = to_tegra_pwm_chip(chip);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) int rc = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) u32 val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) rc = clk_prepare_enable(pc->clk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) if (rc < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) return rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) val = pwm_readl(pc, pwm->hwpwm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) val |= PWM_ENABLE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) pwm_writel(pc, pwm->hwpwm, val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) static void tegra_pwm_disable(struct pwm_chip *chip, struct pwm_device *pwm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) struct tegra_pwm_chip *pc = to_tegra_pwm_chip(chip);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) u32 val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) val = pwm_readl(pc, pwm->hwpwm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) val &= ~PWM_ENABLE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) pwm_writel(pc, pwm->hwpwm, val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) clk_disable_unprepare(pc->clk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) static const struct pwm_ops tegra_pwm_ops = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) .config = tegra_pwm_config,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) .enable = tegra_pwm_enable,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) .disable = tegra_pwm_disable,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) .owner = THIS_MODULE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) static int tegra_pwm_probe(struct platform_device *pdev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) struct tegra_pwm_chip *pwm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) struct resource *r;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) pwm = devm_kzalloc(&pdev->dev, sizeof(*pwm), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) if (!pwm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) pwm->soc = of_device_get_match_data(&pdev->dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) pwm->dev = &pdev->dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) pwm->regs = devm_ioremap_resource(&pdev->dev, r);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) if (IS_ERR(pwm->regs))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) return PTR_ERR(pwm->regs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) platform_set_drvdata(pdev, pwm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) pwm->clk = devm_clk_get(&pdev->dev, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) if (IS_ERR(pwm->clk))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) return PTR_ERR(pwm->clk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) /* Set maximum frequency of the IP */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) ret = clk_set_rate(pwm->clk, pwm->soc->max_frequency);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) if (ret < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) dev_err(&pdev->dev, "Failed to set max frequency: %d\n", ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) * The requested and configured frequency may differ due to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) * clock register resolutions. Get the configured frequency
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) * so that PWM period can be calculated more accurately.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) pwm->clk_rate = clk_get_rate(pwm->clk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) /* Set minimum limit of PWM period for the IP */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) pwm->min_period_ns =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) (NSEC_PER_SEC / (pwm->soc->max_frequency >> PWM_DUTY_WIDTH)) + 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) pwm->rst = devm_reset_control_get_exclusive(&pdev->dev, "pwm");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) if (IS_ERR(pwm->rst)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) ret = PTR_ERR(pwm->rst);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) dev_err(&pdev->dev, "Reset control is not found: %d\n", ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) reset_control_deassert(pwm->rst);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) pwm->chip.dev = &pdev->dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) pwm->chip.ops = &tegra_pwm_ops;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) pwm->chip.base = -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) pwm->chip.npwm = pwm->soc->num_channels;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) ret = pwmchip_add(&pwm->chip);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) if (ret < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) dev_err(&pdev->dev, "pwmchip_add() failed: %d\n", ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) reset_control_assert(pwm->rst);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) static int tegra_pwm_remove(struct platform_device *pdev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) struct tegra_pwm_chip *pc = platform_get_drvdata(pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) if (WARN_ON(!pc))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) err = clk_prepare_enable(pc->clk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) if (err < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) reset_control_assert(pc->rst);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) clk_disable_unprepare(pc->clk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) return pwmchip_remove(&pc->chip);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) #ifdef CONFIG_PM_SLEEP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) static int tegra_pwm_suspend(struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) return pinctrl_pm_select_sleep_state(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) static int tegra_pwm_resume(struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) return pinctrl_pm_select_default_state(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) static const struct tegra_pwm_soc tegra20_pwm_soc = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) .num_channels = 4,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) .max_frequency = 48000000UL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) static const struct tegra_pwm_soc tegra186_pwm_soc = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) .num_channels = 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) .max_frequency = 102000000UL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) static const struct tegra_pwm_soc tegra194_pwm_soc = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) .num_channels = 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) .max_frequency = 408000000UL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) static const struct of_device_id tegra_pwm_of_match[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) { .compatible = "nvidia,tegra20-pwm", .data = &tegra20_pwm_soc },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350) { .compatible = "nvidia,tegra186-pwm", .data = &tegra186_pwm_soc },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) { .compatible = "nvidia,tegra194-pwm", .data = &tegra194_pwm_soc },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) { }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) MODULE_DEVICE_TABLE(of, tegra_pwm_of_match);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) static const struct dev_pm_ops tegra_pwm_pm_ops = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) SET_SYSTEM_SLEEP_PM_OPS(tegra_pwm_suspend, tegra_pwm_resume)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) static struct platform_driver tegra_pwm_driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) .driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) .name = "tegra-pwm",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) .of_match_table = tegra_pwm_of_match,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) .pm = &tegra_pwm_pm_ops,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) .probe = tegra_pwm_probe,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) .remove = tegra_pwm_remove,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) module_platform_driver(tegra_pwm_driver);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) MODULE_LICENSE("GPL");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373) MODULE_AUTHOR("Sandipan Patra <spatra@nvidia.com>");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374) MODULE_DESCRIPTION("Tegra PWM controller driver");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) MODULE_ALIAS("platform:tegra-pwm");