^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1) // SPDX-License-Identifier: GPL-2.0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3) * Copyright (C) 2017-2018 SiFive
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4) * For SiFive's PWM IP block documentation please refer Chapter 14 of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5) * Reference Manual : https://static.dev.sifive.com/FU540-C000-v1.0.pdf
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7) * Limitations:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 8) * - When changing both duty cycle and period, we cannot prevent in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 9) * software that the output might produce a period with mixed
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 10) * settings (new period length and old duty cycle).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 11) * - The hardware cannot generate a 100% duty cycle.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 12) * - The hardware generates only inverted output.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 13) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 14) #include <linux/clk.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 15) #include <linux/io.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 16) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 17) #include <linux/platform_device.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 18) #include <linux/pwm.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 19) #include <linux/slab.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 20) #include <linux/bitfield.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 21)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 22) /* Register offsets */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 23) #define PWM_SIFIVE_PWMCFG 0x0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 24) #define PWM_SIFIVE_PWMCOUNT 0x8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 25) #define PWM_SIFIVE_PWMS 0x10
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 26) #define PWM_SIFIVE_PWMCMP0 0x20
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 27)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 28) /* PWMCFG fields */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 29) #define PWM_SIFIVE_PWMCFG_SCALE GENMASK(3, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 30) #define PWM_SIFIVE_PWMCFG_STICKY BIT(8)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 31) #define PWM_SIFIVE_PWMCFG_ZERO_CMP BIT(9)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 32) #define PWM_SIFIVE_PWMCFG_DEGLITCH BIT(10)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 33) #define PWM_SIFIVE_PWMCFG_EN_ALWAYS BIT(12)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 34) #define PWM_SIFIVE_PWMCFG_EN_ONCE BIT(13)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 35) #define PWM_SIFIVE_PWMCFG_CENTER BIT(16)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 36) #define PWM_SIFIVE_PWMCFG_GANG BIT(24)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 37) #define PWM_SIFIVE_PWMCFG_IP BIT(28)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 38)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 39) /* PWM_SIFIVE_SIZE_PWMCMP is used to calculate offset for pwmcmpX registers */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 40) #define PWM_SIFIVE_SIZE_PWMCMP 4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 41) #define PWM_SIFIVE_CMPWIDTH 16
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 42) #define PWM_SIFIVE_DEFAULT_PERIOD 10000000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 43)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 44) struct pwm_sifive_ddata {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 45) struct pwm_chip chip;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 46) struct mutex lock; /* lock to protect user_count */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 47) struct notifier_block notifier;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 48) struct clk *clk;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 49) void __iomem *regs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 50) unsigned int real_period;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 51) unsigned int approx_period;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 52) int user_count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 53) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 54)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 55) static inline
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 56) struct pwm_sifive_ddata *pwm_sifive_chip_to_ddata(struct pwm_chip *c)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 57) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 58) return container_of(c, struct pwm_sifive_ddata, chip);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 59) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 60)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 61) static int pwm_sifive_request(struct pwm_chip *chip, struct pwm_device *pwm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 62) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 63) struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 64)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 65) mutex_lock(&ddata->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 66) ddata->user_count++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 67) mutex_unlock(&ddata->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 68)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 69) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 70) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 71)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 72) static void pwm_sifive_free(struct pwm_chip *chip, struct pwm_device *pwm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 73) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 74) struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 75)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 76) mutex_lock(&ddata->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 77) ddata->user_count--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 78) mutex_unlock(&ddata->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 79) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 80)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 81) static void pwm_sifive_update_clock(struct pwm_sifive_ddata *ddata,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 82) unsigned long rate)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 83) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 84) unsigned long long num;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 85) unsigned long scale_pow;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 86) int scale;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 87) u32 val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 88) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 89) * The PWM unit is used with pwmzerocmp=0, so the only way to modify the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 90) * period length is using pwmscale which provides the number of bits the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 91) * counter is shifted before being feed to the comparators. A period
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 92) * lasts (1 << (PWM_SIFIVE_CMPWIDTH + pwmscale)) clock ticks.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 93) * (1 << (PWM_SIFIVE_CMPWIDTH + scale)) * 10^9/rate = period
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 94) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 95) scale_pow = div64_ul(ddata->approx_period * (u64)rate, NSEC_PER_SEC);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 96) scale = clamp(ilog2(scale_pow) - PWM_SIFIVE_CMPWIDTH, 0, 0xf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 97)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 98) val = PWM_SIFIVE_PWMCFG_EN_ALWAYS |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 99) FIELD_PREP(PWM_SIFIVE_PWMCFG_SCALE, scale);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) writel(val, ddata->regs + PWM_SIFIVE_PWMCFG);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) /* As scale <= 15 the shift operation cannot overflow. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) num = (unsigned long long)NSEC_PER_SEC << (PWM_SIFIVE_CMPWIDTH + scale);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) ddata->real_period = div64_ul(num, rate);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) dev_dbg(ddata->chip.dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) "New real_period = %u ns\n", ddata->real_period);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) static void pwm_sifive_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) struct pwm_state *state)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) u32 duty, val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) duty = readl(ddata->regs + PWM_SIFIVE_PWMCMP0 +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) pwm->hwpwm * PWM_SIFIVE_SIZE_PWMCMP);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) state->enabled = duty > 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) val = readl(ddata->regs + PWM_SIFIVE_PWMCFG);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) if (!(val & PWM_SIFIVE_PWMCFG_EN_ALWAYS))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) state->enabled = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) state->period = ddata->real_period;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) state->duty_cycle =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) (u64)duty * ddata->real_period >> PWM_SIFIVE_CMPWIDTH;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) state->polarity = PWM_POLARITY_INVERSED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) static int pwm_sifive_enable(struct pwm_chip *chip, bool enable)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) if (enable) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) ret = clk_enable(ddata->clk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) dev_err(ddata->chip.dev, "Enable clk failed\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) if (!enable)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) clk_disable(ddata->clk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) static int pwm_sifive_apply(struct pwm_chip *chip, struct pwm_device *pwm,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) const struct pwm_state *state)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) struct pwm_state cur_state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) unsigned int duty_cycle;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) unsigned long long num;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) bool enabled;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) int ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) u32 frac;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) if (state->polarity != PWM_POLARITY_INVERSED)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) ret = clk_enable(ddata->clk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) dev_err(ddata->chip.dev, "Enable clk failed\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) mutex_lock(&ddata->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) cur_state = pwm->state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) enabled = cur_state.enabled;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) duty_cycle = state->duty_cycle;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) if (!state->enabled)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) duty_cycle = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) * The problem of output producing mixed setting as mentioned at top,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) * occurs here. To minimize the window for this problem, we are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) * calculating the register values first and then writing them
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) * consecutively
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) num = (u64)duty_cycle * (1U << PWM_SIFIVE_CMPWIDTH);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) frac = DIV64_U64_ROUND_CLOSEST(num, state->period);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) /* The hardware cannot generate a 100% duty cycle */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) frac = min(frac, (1U << PWM_SIFIVE_CMPWIDTH) - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) if (state->period != ddata->approx_period) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) if (ddata->user_count != 1) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) ret = -EBUSY;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) goto exit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) ddata->approx_period = state->period;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) pwm_sifive_update_clock(ddata, clk_get_rate(ddata->clk));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) writel(frac, ddata->regs + PWM_SIFIVE_PWMCMP0 +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) pwm->hwpwm * PWM_SIFIVE_SIZE_PWMCMP);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) if (state->enabled != enabled)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) pwm_sifive_enable(chip, state->enabled);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) exit:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) clk_disable(ddata->clk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) mutex_unlock(&ddata->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) static const struct pwm_ops pwm_sifive_ops = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) .request = pwm_sifive_request,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) .free = pwm_sifive_free,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) .get_state = pwm_sifive_get_state,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) .apply = pwm_sifive_apply,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) .owner = THIS_MODULE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) static int pwm_sifive_clock_notifier(struct notifier_block *nb,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) unsigned long event, void *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) struct clk_notifier_data *ndata = data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) struct pwm_sifive_ddata *ddata =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) container_of(nb, struct pwm_sifive_ddata, notifier);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) if (event == POST_RATE_CHANGE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) pwm_sifive_update_clock(ddata, ndata->new_rate);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) return NOTIFY_OK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) static int pwm_sifive_probe(struct platform_device *pdev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) struct device *dev = &pdev->dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) struct pwm_sifive_ddata *ddata;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) struct pwm_chip *chip;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) struct resource *res;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) ddata = devm_kzalloc(dev, sizeof(*ddata), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) if (!ddata)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) mutex_init(&ddata->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) chip = &ddata->chip;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) chip->dev = dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) chip->ops = &pwm_sifive_ops;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) chip->of_xlate = of_pwm_xlate_with_flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) chip->of_pwm_n_cells = 3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) chip->base = -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) chip->npwm = 4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) ddata->regs = devm_ioremap_resource(dev, res);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) if (IS_ERR(ddata->regs))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) return PTR_ERR(ddata->regs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) ddata->clk = devm_clk_get(dev, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) if (IS_ERR(ddata->clk))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) return dev_err_probe(dev, PTR_ERR(ddata->clk),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) "Unable to find controller clock\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) ret = clk_prepare_enable(ddata->clk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) dev_err(dev, "failed to enable clock for pwm: %d\n", ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) /* Watch for changes to underlying clock frequency */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) ddata->notifier.notifier_call = pwm_sifive_clock_notifier;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) ret = clk_notifier_register(ddata->clk, &ddata->notifier);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) dev_err(dev, "failed to register clock notifier: %d\n", ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) goto disable_clk;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) ret = pwmchip_add(chip);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) if (ret < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) dev_err(dev, "cannot register PWM: %d\n", ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) goto unregister_clk;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) platform_set_drvdata(pdev, ddata);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) dev_dbg(dev, "SiFive PWM chip registered %d PWMs\n", chip->npwm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) unregister_clk:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) clk_notifier_unregister(ddata->clk, &ddata->notifier);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) disable_clk:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) clk_disable_unprepare(ddata->clk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) static int pwm_sifive_remove(struct platform_device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) struct pwm_sifive_ddata *ddata = platform_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) bool is_enabled = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) struct pwm_device *pwm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) int ret, ch;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) for (ch = 0; ch < ddata->chip.npwm; ch++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) pwm = &ddata->chip.pwms[ch];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) if (pwm->state.enabled) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) is_enabled = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) if (is_enabled)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) clk_disable(ddata->clk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) clk_disable_unprepare(ddata->clk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) ret = pwmchip_remove(&ddata->chip);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) clk_notifier_unregister(ddata->clk, &ddata->notifier);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) static const struct of_device_id pwm_sifive_of_match[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) { .compatible = "sifive,pwm0" },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) {},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) MODULE_DEVICE_TABLE(of, pwm_sifive_of_match);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) static struct platform_driver pwm_sifive_driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) .probe = pwm_sifive_probe,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) .remove = pwm_sifive_remove,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) .driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) .name = "pwm-sifive",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) .of_match_table = pwm_sifive_of_match,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) module_platform_driver(pwm_sifive_driver);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) MODULE_DESCRIPTION("SiFive PWM driver");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) MODULE_LICENSE("GPL v2");