Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) // SPDX-License-Identifier: GPL-2.0-or-later
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3)  * Broadcom BCM7038 PWM driver
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4)  * Author: Florian Fainelli
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6)  * Copyright (C) 2015 Broadcom Corporation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9) #define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11) #include <linux/clk.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12) #include <linux/export.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13) #include <linux/init.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14) #include <linux/io.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15) #include <linux/kernel.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17) #include <linux/of.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18) #include <linux/platform_device.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19) #include <linux/pwm.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20) #include <linux/spinlock.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22) #define PWM_CTRL		0x00
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23) #define  CTRL_START		BIT(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24) #define  CTRL_OEB		BIT(1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25) #define  CTRL_FORCE_HIGH	BIT(2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26) #define  CTRL_OPENDRAIN		BIT(3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27) #define  CTRL_CHAN_OFFS		4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29) #define PWM_CTRL2		0x04
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30) #define  CTRL2_OUT_SELECT	BIT(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32) #define PWM_CH_SIZE		0x8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34) #define PWM_CWORD_MSB(ch)	(0x08 + ((ch) * PWM_CH_SIZE))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35) #define PWM_CWORD_LSB(ch)	(0x0c + ((ch) * PWM_CH_SIZE))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37) /* Number of bits for the CWORD value */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38) #define CWORD_BIT_SIZE		16
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41)  * Maximum control word value allowed when variable-frequency PWM is used as a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42)  * clock for the constant-frequency PMW.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44) #define CONST_VAR_F_MAX		32768
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45) #define CONST_VAR_F_MIN		1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47) #define PWM_ON(ch)		(0x18 + ((ch) * PWM_CH_SIZE))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48) #define  PWM_ON_MIN		1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49) #define PWM_PERIOD(ch)		(0x1c + ((ch) * PWM_CH_SIZE))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50) #define  PWM_PERIOD_MIN		0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52) #define PWM_ON_PERIOD_MAX	0xff
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54) struct brcmstb_pwm {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55) 	void __iomem *base;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56) 	spinlock_t lock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57) 	struct clk *clk;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58) 	struct pwm_chip chip;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61) static inline u32 brcmstb_pwm_readl(struct brcmstb_pwm *p,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62) 				    unsigned int offset)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64) 	if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65) 		return __raw_readl(p->base + offset);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67) 		return readl_relaxed(p->base + offset);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70) static inline void brcmstb_pwm_writel(struct brcmstb_pwm *p, u32 value,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71) 				      unsigned int offset)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73) 	if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74) 		__raw_writel(value, p->base + offset);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76) 		writel_relaxed(value, p->base + offset);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79) static inline struct brcmstb_pwm *to_brcmstb_pwm(struct pwm_chip *chip)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81) 	return container_of(chip, struct brcmstb_pwm, chip);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85)  * Fv is derived from the variable frequency output. The variable frequency
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86)  * output is configured using this formula:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88)  * W = cword, if cword < 2 ^ 15 else 16-bit 2's complement of cword
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90)  * Fv = W x 2 ^ -16 x 27Mhz (reference clock)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92)  * The period is: (period + 1) / Fv and "on" time is on / (period + 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94)  * The PWM core framework specifies that the "duty_ns" parameter is in fact the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95)  * "on" time, so this translates directly into our HW programming here.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97) static int brcmstb_pwm_config(struct pwm_chip *chip, struct pwm_device *pwm,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98) 			      int duty_ns, int period_ns)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) 	struct brcmstb_pwm *p = to_brcmstb_pwm(chip);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) 	unsigned long pc, dc, cword = CONST_VAR_F_MAX;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) 	unsigned int channel = pwm->hwpwm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) 	u32 value;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) 	 * If asking for a duty_ns equal to period_ns, we need to substract
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) 	 * the period value by 1 to make it shorter than the "on" time and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) 	 * produce a flat 100% duty cycle signal, and max out the "on" time
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) 	if (duty_ns == period_ns) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) 		dc = PWM_ON_PERIOD_MAX;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) 		pc = PWM_ON_PERIOD_MAX - 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) 		goto done;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) 	while (1) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) 		u64 rate, tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) 		 * Calculate the base rate from base frequency and current
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) 		 * cword
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) 		rate = (u64)clk_get_rate(p->clk) * (u64)cword;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) 		do_div(rate, 1 << CWORD_BIT_SIZE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) 		tmp = period_ns * rate;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) 		do_div(tmp, NSEC_PER_SEC);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) 		pc = tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) 		tmp = (duty_ns + 1) * rate;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) 		do_div(tmp, NSEC_PER_SEC);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) 		dc = tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) 		 * We can be called with separate duty and period updates,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) 		 * so do not reject dc == 0 right away
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) 		if (pc == PWM_PERIOD_MIN || (dc < PWM_ON_MIN && duty_ns))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) 			return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) 		/* We converged on a calculation */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) 		if (pc <= PWM_ON_PERIOD_MAX && dc <= PWM_ON_PERIOD_MAX)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) 		 * The cword needs to be a power of 2 for the variable
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) 		 * frequency generator to output a 50% duty cycle variable
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) 		 * frequency which is used as input clock to the fixed
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) 		 * frequency generator.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) 		cword >>= 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) 		 * Desired periods are too large, we do not have a divider
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) 		 * for them
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) 		if (cword < CONST_VAR_F_MIN)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) 			return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) done:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) 	 * Configure the defined "cword" value to have the variable frequency
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) 	 * generator output a base frequency for the constant frequency
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) 	 * generator to derive from.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) 	spin_lock(&p->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) 	brcmstb_pwm_writel(p, cword >> 8, PWM_CWORD_MSB(channel));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) 	brcmstb_pwm_writel(p, cword & 0xff, PWM_CWORD_LSB(channel));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) 	/* Select constant frequency signal output */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) 	value = brcmstb_pwm_readl(p, PWM_CTRL2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) 	value |= CTRL2_OUT_SELECT << (channel * CTRL_CHAN_OFFS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) 	brcmstb_pwm_writel(p, value, PWM_CTRL2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) 	/* Configure on and period value */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) 	brcmstb_pwm_writel(p, pc, PWM_PERIOD(channel));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) 	brcmstb_pwm_writel(p, dc, PWM_ON(channel));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) 	spin_unlock(&p->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) static inline void brcmstb_pwm_enable_set(struct brcmstb_pwm *p,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) 					  unsigned int channel, bool enable)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) 	unsigned int shift = channel * CTRL_CHAN_OFFS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) 	u32 value;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) 	spin_lock(&p->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) 	value = brcmstb_pwm_readl(p, PWM_CTRL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) 	if (enable) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) 		value &= ~(CTRL_OEB << shift);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) 		value |= (CTRL_START | CTRL_OPENDRAIN) << shift;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) 		value &= ~((CTRL_START | CTRL_OPENDRAIN) << shift);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) 		value |= CTRL_OEB << shift;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) 	brcmstb_pwm_writel(p, value, PWM_CTRL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) 	spin_unlock(&p->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) static int brcmstb_pwm_enable(struct pwm_chip *chip, struct pwm_device *pwm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) 	struct brcmstb_pwm *p = to_brcmstb_pwm(chip);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) 	brcmstb_pwm_enable_set(p, pwm->hwpwm, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) static void brcmstb_pwm_disable(struct pwm_chip *chip, struct pwm_device *pwm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) 	struct brcmstb_pwm *p = to_brcmstb_pwm(chip);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) 	brcmstb_pwm_enable_set(p, pwm->hwpwm, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) static const struct pwm_ops brcmstb_pwm_ops = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) 	.config = brcmstb_pwm_config,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) 	.enable = brcmstb_pwm_enable,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) 	.disable = brcmstb_pwm_disable,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) 	.owner = THIS_MODULE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) static const struct of_device_id brcmstb_pwm_of_match[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) 	{ .compatible = "brcm,bcm7038-pwm", },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) 	{ /* sentinel */ }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) MODULE_DEVICE_TABLE(of, brcmstb_pwm_of_match);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) static int brcmstb_pwm_probe(struct platform_device *pdev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) 	struct brcmstb_pwm *p;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) 	struct resource *res;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) 	p = devm_kzalloc(&pdev->dev, sizeof(*p), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) 	if (!p)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) 	spin_lock_init(&p->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) 	p->clk = devm_clk_get(&pdev->dev, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) 	if (IS_ERR(p->clk)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) 		dev_err(&pdev->dev, "failed to obtain clock\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) 		return PTR_ERR(p->clk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) 	ret = clk_prepare_enable(p->clk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) 	if (ret < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) 		dev_err(&pdev->dev, "failed to enable clock: %d\n", ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) 	platform_set_drvdata(pdev, p);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) 	p->chip.dev = &pdev->dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) 	p->chip.ops = &brcmstb_pwm_ops;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) 	p->chip.base = -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) 	p->chip.npwm = 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) 	p->base = devm_ioremap_resource(&pdev->dev, res);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) 	if (IS_ERR(p->base)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) 		ret = PTR_ERR(p->base);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) 		goto out_clk;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) 	ret = pwmchip_add(&p->chip);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) 	if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) 		dev_err(&pdev->dev, "failed to add PWM chip: %d\n", ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) 		goto out_clk;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) out_clk:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) 	clk_disable_unprepare(p->clk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) static int brcmstb_pwm_remove(struct platform_device *pdev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) 	struct brcmstb_pwm *p = platform_get_drvdata(pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) 	ret = pwmchip_remove(&p->chip);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) 	clk_disable_unprepare(p->clk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) #ifdef CONFIG_PM_SLEEP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) static int brcmstb_pwm_suspend(struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) 	struct brcmstb_pwm *p = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) 	clk_disable(p->clk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) static int brcmstb_pwm_resume(struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) 	struct brcmstb_pwm *p = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) 	clk_enable(p->clk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) static SIMPLE_DEV_PM_OPS(brcmstb_pwm_pm_ops, brcmstb_pwm_suspend,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) 			 brcmstb_pwm_resume);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) static struct platform_driver brcmstb_pwm_driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) 	.probe = brcmstb_pwm_probe,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) 	.remove = brcmstb_pwm_remove,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) 	.driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) 		.name = "pwm-brcmstb",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) 		.of_match_table = brcmstb_pwm_of_match,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) 		.pm = &brcmstb_pwm_pm_ops,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) module_platform_driver(brcmstb_pwm_driver);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) MODULE_AUTHOR("Florian Fainelli <f.fainelli@gmail.com>");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) MODULE_DESCRIPTION("Broadcom STB PWM driver");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) MODULE_ALIAS("platform:pwm-brcmstb");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) MODULE_LICENSE("GPL");