Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags   |
// SPDX-License-Identifier: GPL-2.0-only
/*
* Common code for Intel Running Average Power Limit (RAPL) support.
* Copyright (c) 2019, Intel Corporation.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/list.h>
#include <linux/types.h>
#include <linux/device.h>
#include <linux/slab.h>
#include <linux/log2.h>
#include <linux/bitmap.h>
#include <linux/delay.h>
#include <linux/sysfs.h>
#include <linux/cpu.h>
#include <linux/powercap.h>
#include <linux/suspend.h>
#include <linux/intel_rapl.h>
#include <linux/processor.h>
#include <linux/platform_device.h>
#include <asm/iosf_mbi.h>
#include <asm/cpu_device_id.h>
#include <asm/intel-family.h>
/* bitmasks for RAPL MSRs, used by primitive access functions */
#define ENERGY_STATUS_MASK 0xffffffff
#define POWER_LIMIT1_MASK 0x7FFF
#define POWER_LIMIT1_ENABLE BIT(15)
#define POWER_LIMIT1_CLAMP BIT(16)
#define POWER_LIMIT2_MASK (0x7FFFULL<<32)
#define POWER_LIMIT2_ENABLE BIT_ULL(47)
#define POWER_LIMIT2_CLAMP BIT_ULL(48)
#define POWER_HIGH_LOCK BIT_ULL(63)
#define POWER_LOW_LOCK BIT(31)
#define POWER_LIMIT4_MASK 0x1FFF
#define TIME_WINDOW1_MASK (0x7FULL<<17)
#define TIME_WINDOW2_MASK (0x7FULL<<49)
#define POWER_UNIT_OFFSET 0
#define POWER_UNIT_MASK 0x0F
#define ENERGY_UNIT_OFFSET 0x08
#define ENERGY_UNIT_MASK 0x1F00
#define TIME_UNIT_OFFSET 0x10
#define TIME_UNIT_MASK 0xF0000
#define POWER_INFO_MAX_MASK (0x7fffULL<<32)
#define POWER_INFO_MIN_MASK (0x7fffULL<<16)
#define POWER_INFO_MAX_TIME_WIN_MASK (0x3fULL<<48)
#define POWER_INFO_THERMAL_SPEC_MASK 0x7fff
#define PERF_STATUS_THROTTLE_TIME_MASK 0xffffffff
#define PP_POLICY_MASK 0x1F
/* Non HW constants */
#define RAPL_PRIMITIVE_DERIVED BIT(1) /* not from raw data */
#define RAPL_PRIMITIVE_DUMMY BIT(2)
#define TIME_WINDOW_MAX_MSEC 40000
#define TIME_WINDOW_MIN_MSEC 250
#define ENERGY_UNIT_SCALE 1000 /* scale from driver unit to powercap unit */
enum unit_type {
<------>ARBITRARY_UNIT, /* no translation */
<------>POWER_UNIT,
<------>ENERGY_UNIT,
<------>TIME_UNIT,
};
/* per domain data, some are optional */
#define NR_RAW_PRIMITIVES (NR_RAPL_PRIMITIVES - 2)
#define DOMAIN_STATE_INACTIVE BIT(0)
#define DOMAIN_STATE_POWER_LIMIT_SET BIT(1)
#define DOMAIN_STATE_BIOS_LOCKED BIT(2)
static const char pl1_name[] = "long_term";
static const char pl2_name[] = "short_term";
static const char pl4_name[] = "peak_power";
#define power_zone_to_rapl_domain(_zone) \
<------>container_of(_zone, struct rapl_domain, power_zone)
struct rapl_defaults {
<------>u8 floor_freq_reg_addr;
<------>int (*check_unit)(struct rapl_package *rp, int cpu);
<------>void (*set_floor_freq)(struct rapl_domain *rd, bool mode);
<------>u64 (*compute_time_window)(struct rapl_package *rp, u64 val,
<------><------><------><------> bool to_raw);
<------>unsigned int dram_domain_energy_unit;
<------>unsigned int psys_domain_energy_unit;
};
static struct rapl_defaults *rapl_defaults;
/* Sideband MBI registers */
#define IOSF_CPU_POWER_BUDGET_CTL_BYT (0x2)
#define IOSF_CPU_POWER_BUDGET_CTL_TNG (0xdf)
#define PACKAGE_PLN_INT_SAVED BIT(0)
#define MAX_PRIM_NAME (32)
/* per domain data. used to describe individual knobs such that access function
* can be consolidated into one instead of many inline functions.
*/
struct rapl_primitive_info {
<------>const char *name;
<------>u64 mask;
<------>int shift;
<------>enum rapl_domain_reg_id id;
<------>enum unit_type unit;
<------>u32 flag;
};
#define PRIMITIVE_INFO_INIT(p, m, s, i, u, f) { \
<------><------>.name = #p, \
<------><------>.mask = m, \
<------><------>.shift = s, \
<------><------>.id = i, \
<------><------>.unit = u, \
<------><------>.flag = f \
<------>}
static void rapl_init_domains(struct rapl_package *rp);
static int rapl_read_data_raw(struct rapl_domain *rd,
<------><------><------> enum rapl_primitives prim,
<------><------><------> bool xlate, u64 *data);
static int rapl_write_data_raw(struct rapl_domain *rd,
<------><------><------> enum rapl_primitives prim,
<------><------><------> unsigned long long value);
static u64 rapl_unit_xlate(struct rapl_domain *rd,
<------><------><------> enum unit_type type, u64 value, int to_raw);
static void package_power_limit_irq_save(struct rapl_package *rp);
static LIST_HEAD(rapl_packages); /* guarded by CPU hotplug lock */
static const char *const rapl_domain_names[] = {
<------>"package",
<------>"core",
<------>"uncore",
<------>"dram",
<------>"psys",
};
static int get_energy_counter(struct powercap_zone *power_zone,
<------><------><------> u64 *energy_raw)
{
<------>struct rapl_domain *rd;
<------>u64 energy_now;
<------>/* prevent CPU hotplug, make sure the RAPL domain does not go
<------> * away while reading the counter.
<------> */
<------>get_online_cpus();
<------>rd = power_zone_to_rapl_domain(power_zone);
<------>if (!rapl_read_data_raw(rd, ENERGY_COUNTER, true, &energy_now)) {
<------><------>*energy_raw = energy_now;
<------><------>put_online_cpus();
<------><------>return 0;
<------>}
<------>put_online_cpus();
<------>return -EIO;
}
static int get_max_energy_counter(struct powercap_zone *pcd_dev, u64 *energy)
{
<------>struct rapl_domain *rd = power_zone_to_rapl_domain(pcd_dev);
<------>*energy = rapl_unit_xlate(rd, ENERGY_UNIT, ENERGY_STATUS_MASK, 0);
<------>return 0;
}
static int release_zone(struct powercap_zone *power_zone)
{
<------>struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
<------>struct rapl_package *rp = rd->rp;
<------>/* package zone is the last zone of a package, we can free
<------> * memory here since all children has been unregistered.
<------> */
<------>if (rd->id == RAPL_DOMAIN_PACKAGE) {
<------><------>kfree(rd);
<------><------>rp->domains = NULL;
<------>}
<------>return 0;
}
static int find_nr_power_limit(struct rapl_domain *rd)
{
<------>int i, nr_pl = 0;
<------>for (i = 0; i < NR_POWER_LIMITS; i++) {
<------><------>if (rd->rpl[i].name)
<------><------><------>nr_pl++;
<------>}
<------>return nr_pl;
}
static int set_domain_enable(struct powercap_zone *power_zone, bool mode)
{
<------>struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
<------>if (rd->state & DOMAIN_STATE_BIOS_LOCKED)
<------><------>return -EACCES;
<------>get_online_cpus();
<------>rapl_write_data_raw(rd, PL1_ENABLE, mode);
<------>if (rapl_defaults->set_floor_freq)
<------><------>rapl_defaults->set_floor_freq(rd, mode);
<------>put_online_cpus();
<------>return 0;
}
static int get_domain_enable(struct powercap_zone *power_zone, bool *mode)
{
<------>struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
<------>u64 val;
<------>if (rd->state & DOMAIN_STATE_BIOS_LOCKED) {
<------><------>*mode = false;
<------><------>return 0;
<------>}
<------>get_online_cpus();
<------>if (rapl_read_data_raw(rd, PL1_ENABLE, true, &val)) {
<------><------>put_online_cpus();
<------><------>return -EIO;
<------>}
<------>*mode = val;
<------>put_online_cpus();
<------>return 0;
}
/* per RAPL domain ops, in the order of rapl_domain_type */
static const struct powercap_zone_ops zone_ops[] = {
<------>/* RAPL_DOMAIN_PACKAGE */
<------>{
<------> .get_energy_uj = get_energy_counter,
<------> .get_max_energy_range_uj = get_max_energy_counter,
<------> .release = release_zone,
<------> .set_enable = set_domain_enable,
<------> .get_enable = get_domain_enable,
<------> },
<------>/* RAPL_DOMAIN_PP0 */
<------>{
<------> .get_energy_uj = get_energy_counter,
<------> .get_max_energy_range_uj = get_max_energy_counter,
<------> .release = release_zone,
<------> .set_enable = set_domain_enable,
<------> .get_enable = get_domain_enable,
<------> },
<------>/* RAPL_DOMAIN_PP1 */
<------>{
<------> .get_energy_uj = get_energy_counter,
<------> .get_max_energy_range_uj = get_max_energy_counter,
<------> .release = release_zone,
<------> .set_enable = set_domain_enable,
<------> .get_enable = get_domain_enable,
<------> },
<------>/* RAPL_DOMAIN_DRAM */
<------>{
<------> .get_energy_uj = get_energy_counter,
<------> .get_max_energy_range_uj = get_max_energy_counter,
<------> .release = release_zone,
<------> .set_enable = set_domain_enable,
<------> .get_enable = get_domain_enable,
<------> },
<------>/* RAPL_DOMAIN_PLATFORM */
<------>{
<------> .get_energy_uj = get_energy_counter,
<------> .get_max_energy_range_uj = get_max_energy_counter,
<------> .release = release_zone,
<------> .set_enable = set_domain_enable,
<------> .get_enable = get_domain_enable,
<------> },
};
/*
* Constraint index used by powercap can be different than power limit (PL)
* index in that some PLs maybe missing due to non-existent MSRs. So we
* need to convert here by finding the valid PLs only (name populated).
*/
static int contraint_to_pl(struct rapl_domain *rd, int cid)
{
<------>int i, j;
<------>for (i = 0, j = 0; i < NR_POWER_LIMITS; i++) {
<------><------>if ((rd->rpl[i].name) && j++ == cid) {
<------><------><------>pr_debug("%s: index %d\n", __func__, i);
<------><------><------>return i;
<------><------>}
<------>}
<------>pr_err("Cannot find matching power limit for constraint %d\n", cid);
<------>return -EINVAL;
}
static int set_power_limit(struct powercap_zone *power_zone, int cid,
<------><------><------> u64 power_limit)
{
<------>struct rapl_domain *rd;
<------>struct rapl_package *rp;
<------>int ret = 0;
<------>int id;
<------>get_online_cpus();
<------>rd = power_zone_to_rapl_domain(power_zone);
<------>id = contraint_to_pl(rd, cid);
<------>if (id < 0) {
<------><------>ret = id;
<------><------>goto set_exit;
<------>}
<------>rp = rd->rp;
<------>if (rd->state & DOMAIN_STATE_BIOS_LOCKED) {
<------><------>dev_warn(&power_zone->dev,
<------><------><------> "%s locked by BIOS, monitoring only\n", rd->name);
<------><------>ret = -EACCES;
<------><------>goto set_exit;
<------>}
<------>switch (rd->rpl[id].prim_id) {
<------>case PL1_ENABLE:
<------><------>rapl_write_data_raw(rd, POWER_LIMIT1, power_limit);
<------><------>break;
<------>case PL2_ENABLE:
<------><------>rapl_write_data_raw(rd, POWER_LIMIT2, power_limit);
<------><------>break;
<------>case PL4_ENABLE:
<------><------>rapl_write_data_raw(rd, POWER_LIMIT4, power_limit);
<------><------>break;
<------>default:
<------><------>ret = -EINVAL;
<------>}
<------>if (!ret)
<------><------>package_power_limit_irq_save(rp);
set_exit:
<------>put_online_cpus();
<------>return ret;
}
static int get_current_power_limit(struct powercap_zone *power_zone, int cid,
<------><------><------><------> u64 *data)
{
<------>struct rapl_domain *rd;
<------>u64 val;
<------>int prim;
<------>int ret = 0;
<------>int id;
<------>get_online_cpus();
<------>rd = power_zone_to_rapl_domain(power_zone);
<------>id = contraint_to_pl(rd, cid);
<------>if (id < 0) {
<------><------>ret = id;
<------><------>goto get_exit;
<------>}
<------>switch (rd->rpl[id].prim_id) {
<------>case PL1_ENABLE:
<------><------>prim = POWER_LIMIT1;
<------><------>break;
<------>case PL2_ENABLE:
<------><------>prim = POWER_LIMIT2;
<------><------>break;
<------>case PL4_ENABLE:
<------><------>prim = POWER_LIMIT4;
<------><------>break;
<------>default:
<------><------>put_online_cpus();
<------><------>return -EINVAL;
<------>}
<------>if (rapl_read_data_raw(rd, prim, true, &val))
<------><------>ret = -EIO;
<------>else
<------><------>*data = val;
get_exit:
<------>put_online_cpus();
<------>return ret;
}
static int set_time_window(struct powercap_zone *power_zone, int cid,
<------><------><------> u64 window)
{
<------>struct rapl_domain *rd;
<------>int ret = 0;
<------>int id;
<------>get_online_cpus();
<------>rd = power_zone_to_rapl_domain(power_zone);
<------>id = contraint_to_pl(rd, cid);
<------>if (id < 0) {
<------><------>ret = id;
<------><------>goto set_time_exit;
<------>}
<------>switch (rd->rpl[id].prim_id) {
<------>case PL1_ENABLE:
<------><------>rapl_write_data_raw(rd, TIME_WINDOW1, window);
<------><------>break;
<------>case PL2_ENABLE:
<------><------>rapl_write_data_raw(rd, TIME_WINDOW2, window);
<------><------>break;
<------>default:
<------><------>ret = -EINVAL;
<------>}
set_time_exit:
<------>put_online_cpus();
<------>return ret;
}
static int get_time_window(struct powercap_zone *power_zone, int cid,
<------><------><------> u64 *data)
{
<------>struct rapl_domain *rd;
<------>u64 val;
<------>int ret = 0;
<------>int id;
<------>get_online_cpus();
<------>rd = power_zone_to_rapl_domain(power_zone);
<------>id = contraint_to_pl(rd, cid);
<------>if (id < 0) {
<------><------>ret = id;
<------><------>goto get_time_exit;
<------>}
<------>switch (rd->rpl[id].prim_id) {
<------>case PL1_ENABLE:
<------><------>ret = rapl_read_data_raw(rd, TIME_WINDOW1, true, &val);
<------><------>break;
<------>case PL2_ENABLE:
<------><------>ret = rapl_read_data_raw(rd, TIME_WINDOW2, true, &val);
<------><------>break;
<------>case PL4_ENABLE:
<------><------>/*
<------><------> * Time window parameter is not applicable for PL4 entry
<------><------> * so assigining '0' as default value.
<------><------> */
<------><------>val = 0;
<------><------>break;
<------>default:
<------><------>put_online_cpus();
<------><------>return -EINVAL;
<------>}
<------>if (!ret)
<------><------>*data = val;
get_time_exit:
<------>put_online_cpus();
<------>return ret;
}
static const char *get_constraint_name(struct powercap_zone *power_zone,
<------><------><------><------> int cid)
{
<------>struct rapl_domain *rd;
<------>int id;
<------>rd = power_zone_to_rapl_domain(power_zone);
<------>id = contraint_to_pl(rd, cid);
<------>if (id >= 0)
<------><------>return rd->rpl[id].name;
<------>return NULL;
}
static int get_max_power(struct powercap_zone *power_zone, int id, u64 *data)
{
<------>struct rapl_domain *rd;
<------>u64 val;
<------>int prim;
<------>int ret = 0;
<------>get_online_cpus();
<------>rd = power_zone_to_rapl_domain(power_zone);
<------>switch (rd->rpl[id].prim_id) {
<------>case PL1_ENABLE:
<------><------>prim = THERMAL_SPEC_POWER;
<------><------>break;
<------>case PL2_ENABLE:
<------><------>prim = MAX_POWER;
<------><------>break;
<------>case PL4_ENABLE:
<------><------>prim = MAX_POWER;
<------><------>break;
<------>default:
<------><------>put_online_cpus();
<------><------>return -EINVAL;
<------>}
<------>if (rapl_read_data_raw(rd, prim, true, &val))
<------><------>ret = -EIO;
<------>else
<------><------>*data = val;
<------>/* As a generalization rule, PL4 would be around two times PL2. */
<------>if (rd->rpl[id].prim_id == PL4_ENABLE)
<------><------>*data = *data * 2;
<------>put_online_cpus();
<------>return ret;
}
static const struct powercap_zone_constraint_ops constraint_ops = {
<------>.set_power_limit_uw = set_power_limit,
<------>.get_power_limit_uw = get_current_power_limit,
<------>.set_time_window_us = set_time_window,
<------>.get_time_window_us = get_time_window,
<------>.get_max_power_uw = get_max_power,
<------>.get_name = get_constraint_name,
};
/* called after domain detection and package level data are set */
static void rapl_init_domains(struct rapl_package *rp)
{
<------>enum rapl_domain_type i;
<------>enum rapl_domain_reg_id j;
<------>struct rapl_domain *rd = rp->domains;
<------>for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
<------><------>unsigned int mask = rp->domain_map & (1 << i);
<------><------>if (!mask)
<------><------><------>continue;
<------><------>rd->rp = rp;
<------><------>if (i == RAPL_DOMAIN_PLATFORM && rp->id > 0) {
<------><------><------>snprintf(rd->name, RAPL_DOMAIN_NAME_LENGTH, "psys-%d",
<------><------><------><------>cpu_data(rp->lead_cpu).phys_proc_id);
<------><------>} else
<------><------><------>snprintf(rd->name, RAPL_DOMAIN_NAME_LENGTH, "%s",
<------><------><------><------>rapl_domain_names[i]);
<------><------>rd->id = i;
<------><------>rd->rpl[0].prim_id = PL1_ENABLE;
<------><------>rd->rpl[0].name = pl1_name;
<------><------>/*
<------><------> * The PL2 power domain is applicable for limits two
<------><------> * and limits three
<------><------> */
<------><------>if (rp->priv->limits[i] >= 2) {
<------><------><------>rd->rpl[1].prim_id = PL2_ENABLE;
<------><------><------>rd->rpl[1].name = pl2_name;
<------><------>}
<------><------>/* Enable PL4 domain if the total power limits are three */
<------><------>if (rp->priv->limits[i] == 3) {
<------><------><------>rd->rpl[2].prim_id = PL4_ENABLE;
<------><------><------>rd->rpl[2].name = pl4_name;
<------><------>}
<------><------>for (j = 0; j < RAPL_DOMAIN_REG_MAX; j++)
<------><------><------>rd->regs[j] = rp->priv->regs[i][j];
<------><------>switch (i) {
<------><------>case RAPL_DOMAIN_DRAM:
<------><------><------>rd->domain_energy_unit =
<------><------><------> rapl_defaults->dram_domain_energy_unit;
<------><------><------>if (rd->domain_energy_unit)
<------><------><------><------>pr_info("DRAM domain energy unit %dpj\n",
<------><------><------><------><------>rd->domain_energy_unit);
<------><------><------>break;
<------><------>case RAPL_DOMAIN_PLATFORM:
<------><------><------>rd->domain_energy_unit =
<------><------><------> rapl_defaults->psys_domain_energy_unit;
<------><------><------>if (rd->domain_energy_unit)
<------><------><------><------>pr_info("Platform domain energy unit %dpj\n",
<------><------><------><------><------>rd->domain_energy_unit);
<------><------><------>break;
<------><------>default:
<------><------><------>break;
<------><------>}
<------><------>rd++;
<------>}
}
static u64 rapl_unit_xlate(struct rapl_domain *rd, enum unit_type type,
<------><------><------> u64 value, int to_raw)
{
<------>u64 units = 1;
<------>struct rapl_package *rp = rd->rp;
<------>u64 scale = 1;
<------>switch (type) {
<------>case POWER_UNIT:
<------><------>units = rp->power_unit;
<------><------>break;
<------>case ENERGY_UNIT:
<------><------>scale = ENERGY_UNIT_SCALE;
<------><------>/* per domain unit takes precedence */
<------><------>if (rd->domain_energy_unit)
<------><------><------>units = rd->domain_energy_unit;
<------><------>else
<------><------><------>units = rp->energy_unit;
<------><------>break;
<------>case TIME_UNIT:
<------><------>return rapl_defaults->compute_time_window(rp, value, to_raw);
<------>case ARBITRARY_UNIT:
<------>default:
<------><------>return value;
<------>}
<------>if (to_raw)
<------><------>return div64_u64(value, units) * scale;
<------>value *= units;
<------>return div64_u64(value, scale);
}
/* in the order of enum rapl_primitives */
static struct rapl_primitive_info rpi[] = {
<------>/* name, mask, shift, msr index, unit divisor */
<------>PRIMITIVE_INFO_INIT(ENERGY_COUNTER, ENERGY_STATUS_MASK, 0,
<------><------><------> RAPL_DOMAIN_REG_STATUS, ENERGY_UNIT, 0),
<------>PRIMITIVE_INFO_INIT(POWER_LIMIT1, POWER_LIMIT1_MASK, 0,
<------><------><------> RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
<------>PRIMITIVE_INFO_INIT(POWER_LIMIT2, POWER_LIMIT2_MASK, 32,
<------><------><------> RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
<------>PRIMITIVE_INFO_INIT(POWER_LIMIT4, POWER_LIMIT4_MASK, 0,
<------><------><------><------>RAPL_DOMAIN_REG_PL4, POWER_UNIT, 0),
<------>PRIMITIVE_INFO_INIT(FW_LOCK, POWER_LOW_LOCK, 31,
<------><------><------> RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
<------>PRIMITIVE_INFO_INIT(PL1_ENABLE, POWER_LIMIT1_ENABLE, 15,
<------><------><------> RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
<------>PRIMITIVE_INFO_INIT(PL1_CLAMP, POWER_LIMIT1_CLAMP, 16,
<------><------><------> RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
<------>PRIMITIVE_INFO_INIT(PL2_ENABLE, POWER_LIMIT2_ENABLE, 47,
<------><------><------> RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
<------>PRIMITIVE_INFO_INIT(PL2_CLAMP, POWER_LIMIT2_CLAMP, 48,
<------><------><------> RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
<------>PRIMITIVE_INFO_INIT(PL4_ENABLE, POWER_LIMIT4_MASK, 0,
<------><------><------><------>RAPL_DOMAIN_REG_PL4, ARBITRARY_UNIT, 0),
<------>PRIMITIVE_INFO_INIT(TIME_WINDOW1, TIME_WINDOW1_MASK, 17,
<------><------><------> RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
<------>PRIMITIVE_INFO_INIT(TIME_WINDOW2, TIME_WINDOW2_MASK, 49,
<------><------><------> RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
<------>PRIMITIVE_INFO_INIT(THERMAL_SPEC_POWER, POWER_INFO_THERMAL_SPEC_MASK,
<------><------><------> 0, RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
<------>PRIMITIVE_INFO_INIT(MAX_POWER, POWER_INFO_MAX_MASK, 32,
<------><------><------> RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
<------>PRIMITIVE_INFO_INIT(MIN_POWER, POWER_INFO_MIN_MASK, 16,
<------><------><------> RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
<------>PRIMITIVE_INFO_INIT(MAX_TIME_WINDOW, POWER_INFO_MAX_TIME_WIN_MASK, 48,
<------><------><------> RAPL_DOMAIN_REG_INFO, TIME_UNIT, 0),
<------>PRIMITIVE_INFO_INIT(THROTTLED_TIME, PERF_STATUS_THROTTLE_TIME_MASK, 0,
<------><------><------> RAPL_DOMAIN_REG_PERF, TIME_UNIT, 0),
<------>PRIMITIVE_INFO_INIT(PRIORITY_LEVEL, PP_POLICY_MASK, 0,
<------><------><------> RAPL_DOMAIN_REG_POLICY, ARBITRARY_UNIT, 0),
<------>/* non-hardware */
<------>PRIMITIVE_INFO_INIT(AVERAGE_POWER, 0, 0, 0, POWER_UNIT,
<------><------><------> RAPL_PRIMITIVE_DERIVED),
<------>{NULL, 0, 0, 0},
};
/* Read primitive data based on its related struct rapl_primitive_info.
* if xlate flag is set, return translated data based on data units, i.e.
* time, energy, and power.
* RAPL MSRs are non-architectual and are laid out not consistently across
* domains. Here we use primitive info to allow writing consolidated access
* functions.
* For a given primitive, it is processed by MSR mask and shift. Unit conversion
* is pre-assigned based on RAPL unit MSRs read at init time.
* 63-------------------------- 31--------------------------- 0
* | xxxxx (mask) |
* | |<- shift ----------------|
* 63-------------------------- 31--------------------------- 0
*/
static int rapl_read_data_raw(struct rapl_domain *rd,
<------><------><------> enum rapl_primitives prim, bool xlate, u64 *data)
{
<------>u64 value;
<------>struct rapl_primitive_info *rp = &rpi[prim];
<------>struct reg_action ra;
<------>int cpu;
<------>if (!rp->name || rp->flag & RAPL_PRIMITIVE_DUMMY)
<------><------>return -EINVAL;
<------>ra.reg = rd->regs[rp->id];
<------>if (!ra.reg)
<------><------>return -EINVAL;
<------>cpu = rd->rp->lead_cpu;
<------>/* domain with 2 limits has different bit */
<------>if (prim == FW_LOCK && rd->rp->priv->limits[rd->id] == 2) {
<------><------>rp->mask = POWER_HIGH_LOCK;
<------><------>rp->shift = 63;
<------>}
<------>/* non-hardware data are collected by the polling thread */
<------>if (rp->flag & RAPL_PRIMITIVE_DERIVED) {
<------><------>*data = rd->rdd.primitives[prim];
<------><------>return 0;
<------>}
<------>ra.mask = rp->mask;
<------>if (rd->rp->priv->read_raw(cpu, &ra)) {
<------><------>pr_debug("failed to read reg 0x%llx on cpu %d\n", ra.reg, cpu);
<------><------>return -EIO;
<------>}
<------>value = ra.value >> rp->shift;
<------>if (xlate)
<------><------>*data = rapl_unit_xlate(rd, rp->unit, value, 0);
<------>else
<------><------>*data = value;
<------>return 0;
}
/* Similar use of primitive info in the read counterpart */
static int rapl_write_data_raw(struct rapl_domain *rd,
<------><------><------> enum rapl_primitives prim,
<------><------><------> unsigned long long value)
{
<------>struct rapl_primitive_info *rp = &rpi[prim];
<------>int cpu;
<------>u64 bits;
<------>struct reg_action ra;
<------>int ret;
<------>cpu = rd->rp->lead_cpu;
<------>bits = rapl_unit_xlate(rd, rp->unit, value, 1);
<------>bits <<= rp->shift;
<------>bits &= rp->mask;
<------>memset(&ra, 0, sizeof(ra));
<------>ra.reg = rd->regs[rp->id];
<------>ra.mask = rp->mask;
<------>ra.value = bits;
<------>ret = rd->rp->priv->write_raw(cpu, &ra);
<------>return ret;
}
/*
* Raw RAPL data stored in MSRs are in certain scales. We need to
* convert them into standard units based on the units reported in
* the RAPL unit MSRs. This is specific to CPUs as the method to
* calculate units differ on different CPUs.
* We convert the units to below format based on CPUs.
* i.e.
* energy unit: picoJoules : Represented in picoJoules by default
* power unit : microWatts : Represented in milliWatts by default
* time unit : microseconds: Represented in seconds by default
*/
static int rapl_check_unit_core(struct rapl_package *rp, int cpu)
{
<------>struct reg_action ra;
<------>u32 value;
<------>ra.reg = rp->priv->reg_unit;
<------>ra.mask = ~0;
<------>if (rp->priv->read_raw(cpu, &ra)) {
<------><------>pr_err("Failed to read power unit REG 0x%llx on CPU %d, exit.\n",
<------><------> rp->priv->reg_unit, cpu);
<------><------>return -ENODEV;
<------>}
<------>value = (ra.value & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
<------>rp->energy_unit = ENERGY_UNIT_SCALE * 1000000 / (1 << value);
<------>value = (ra.value & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
<------>rp->power_unit = 1000000 / (1 << value);
<------>value = (ra.value & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
<------>rp->time_unit = 1000000 / (1 << value);
<------>pr_debug("Core CPU %s energy=%dpJ, time=%dus, power=%duW\n",
<------><------> rp->name, rp->energy_unit, rp->time_unit, rp->power_unit);
<------>return 0;
}
static int rapl_check_unit_atom(struct rapl_package *rp, int cpu)
{
<------>struct reg_action ra;
<------>u32 value;
<------>ra.reg = rp->priv->reg_unit;
<------>ra.mask = ~0;
<------>if (rp->priv->read_raw(cpu, &ra)) {
<------><------>pr_err("Failed to read power unit REG 0x%llx on CPU %d, exit.\n",
<------><------> rp->priv->reg_unit, cpu);
<------><------>return -ENODEV;
<------>}
<------>value = (ra.value & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
<------>rp->energy_unit = ENERGY_UNIT_SCALE * 1 << value;
<------>value = (ra.value & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
<------>rp->power_unit = (1 << value) * 1000;
<------>value = (ra.value & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
<------>rp->time_unit = 1000000 / (1 << value);
<------>pr_debug("Atom %s energy=%dpJ, time=%dus, power=%duW\n",
<------><------> rp->name, rp->energy_unit, rp->time_unit, rp->power_unit);
<------>return 0;
}
static void power_limit_irq_save_cpu(void *info)
{
<------>u32 l, h = 0;
<------>struct rapl_package *rp = (struct rapl_package *)info;
<------>/* save the state of PLN irq mask bit before disabling it */
<------>rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
<------>if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED)) {
<------><------>rp->power_limit_irq = l & PACKAGE_THERM_INT_PLN_ENABLE;
<------><------>rp->power_limit_irq |= PACKAGE_PLN_INT_SAVED;
<------>}
<------>l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
<------>wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
}
/* REVISIT:
* When package power limit is set artificially low by RAPL, LVT
* thermal interrupt for package power limit should be ignored
* since we are not really exceeding the real limit. The intention
* is to avoid excessive interrupts while we are trying to save power.
* A useful feature might be routing the package_power_limit interrupt
* to userspace via eventfd. once we have a usecase, this is simple
* to do by adding an atomic notifier.
*/
static void package_power_limit_irq_save(struct rapl_package *rp)
{
<------>if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
<------><------>return;
<------>smp_call_function_single(rp->lead_cpu, power_limit_irq_save_cpu, rp, 1);
}
/*
* Restore per package power limit interrupt enable state. Called from cpu
* hotplug code on package removal.
*/
static void package_power_limit_irq_restore(struct rapl_package *rp)
{
<------>u32 l, h;
<------>if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
<------><------>return;
<------>/* irq enable state not saved, nothing to restore */
<------>if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED))
<------><------>return;
<------>rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
<------>if (rp->power_limit_irq & PACKAGE_THERM_INT_PLN_ENABLE)
<------><------>l |= PACKAGE_THERM_INT_PLN_ENABLE;
<------>else
<------><------>l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
<------>wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
}
static void set_floor_freq_default(struct rapl_domain *rd, bool mode)
{
<------>int nr_powerlimit = find_nr_power_limit(rd);
<------>/* always enable clamp such that p-state can go below OS requested
<------> * range. power capping priority over guranteed frequency.
<------> */
<------>rapl_write_data_raw(rd, PL1_CLAMP, mode);
<------>/* some domains have pl2 */
<------>if (nr_powerlimit > 1) {
<------><------>rapl_write_data_raw(rd, PL2_ENABLE, mode);
<------><------>rapl_write_data_raw(rd, PL2_CLAMP, mode);
<------>}
}
static void set_floor_freq_atom(struct rapl_domain *rd, bool enable)
{
<------>static u32 power_ctrl_orig_val;
<------>u32 mdata;
<------>if (!rapl_defaults->floor_freq_reg_addr) {
<------><------>pr_err("Invalid floor frequency config register\n");
<------><------>return;
<------>}
<------>if (!power_ctrl_orig_val)
<------><------>iosf_mbi_read(BT_MBI_UNIT_PMC, MBI_CR_READ,
<------><------><------> rapl_defaults->floor_freq_reg_addr,
<------><------><------> &power_ctrl_orig_val);
<------>mdata = power_ctrl_orig_val;
<------>if (enable) {
<------><------>mdata &= ~(0x7f << 8);
<------><------>mdata |= 1 << 8;
<------>}
<------>iosf_mbi_write(BT_MBI_UNIT_PMC, MBI_CR_WRITE,
<------><------> rapl_defaults->floor_freq_reg_addr, mdata);
}
static u64 rapl_compute_time_window_core(struct rapl_package *rp, u64 value,
<------><------><------><------><------> bool to_raw)
{
<------>u64 f, y; /* fraction and exp. used for time unit */
<------>/*
<------> * Special processing based on 2^Y*(1+F/4), refer
<------> * to Intel Software Developer's manual Vol.3B: CH 14.9.3.
<------> */
<------>if (!to_raw) {
<------><------>f = (value & 0x60) >> 5;
<------><------>y = value & 0x1f;
<------><------>value = (1 << y) * (4 + f) * rp->time_unit / 4;
<------>} else {
<------><------>do_div(value, rp->time_unit);
<------><------>y = ilog2(value);
<------><------>f = div64_u64(4 * (value - (1 << y)), 1 << y);
<------><------>value = (y & 0x1f) | ((f & 0x3) << 5);
<------>}
<------>return value;
}
static u64 rapl_compute_time_window_atom(struct rapl_package *rp, u64 value,
<------><------><------><------><------> bool to_raw)
{
<------>/*
<------> * Atom time unit encoding is straight forward val * time_unit,
<------> * where time_unit is default to 1 sec. Never 0.
<------> */
<------>if (!to_raw)
<------><------>return (value) ? value *= rp->time_unit : rp->time_unit;
<------>value = div64_u64(value, rp->time_unit);
<------>return value;
}
static const struct rapl_defaults rapl_defaults_core = {
<------>.floor_freq_reg_addr = 0,
<------>.check_unit = rapl_check_unit_core,
<------>.set_floor_freq = set_floor_freq_default,
<------>.compute_time_window = rapl_compute_time_window_core,
};
static const struct rapl_defaults rapl_defaults_hsw_server = {
<------>.check_unit = rapl_check_unit_core,
<------>.set_floor_freq = set_floor_freq_default,
<------>.compute_time_window = rapl_compute_time_window_core,
<------>.dram_domain_energy_unit = 15300,
};
static const struct rapl_defaults rapl_defaults_spr_server = {
<------>.check_unit = rapl_check_unit_core,
<------>.set_floor_freq = set_floor_freq_default,
<------>.compute_time_window = rapl_compute_time_window_core,
<------>.dram_domain_energy_unit = 15300,
<------>.psys_domain_energy_unit = 1000000000,
};
static const struct rapl_defaults rapl_defaults_byt = {
<------>.floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_BYT,
<------>.check_unit = rapl_check_unit_atom,
<------>.set_floor_freq = set_floor_freq_atom,
<------>.compute_time_window = rapl_compute_time_window_atom,
};
static const struct rapl_defaults rapl_defaults_tng = {
<------>.floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_TNG,
<------>.check_unit = rapl_check_unit_atom,
<------>.set_floor_freq = set_floor_freq_atom,
<------>.compute_time_window = rapl_compute_time_window_atom,
};
static const struct rapl_defaults rapl_defaults_ann = {
<------>.floor_freq_reg_addr = 0,
<------>.check_unit = rapl_check_unit_atom,
<------>.set_floor_freq = NULL,
<------>.compute_time_window = rapl_compute_time_window_atom,
};
static const struct rapl_defaults rapl_defaults_cht = {
<------>.floor_freq_reg_addr = 0,
<------>.check_unit = rapl_check_unit_atom,
<------>.set_floor_freq = NULL,
<------>.compute_time_window = rapl_compute_time_window_atom,
};
static const struct x86_cpu_id rapl_ids[] __initconst = {
<------>X86_MATCH_INTEL_FAM6_MODEL(SANDYBRIDGE, &rapl_defaults_core),
<------>X86_MATCH_INTEL_FAM6_MODEL(SANDYBRIDGE_X, &rapl_defaults_core),
<------>X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE, &rapl_defaults_core),
<------>X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE_X, &rapl_defaults_core),
<------>X86_MATCH_INTEL_FAM6_MODEL(HASWELL, &rapl_defaults_core),
<------>X86_MATCH_INTEL_FAM6_MODEL(HASWELL_L, &rapl_defaults_core),
<------>X86_MATCH_INTEL_FAM6_MODEL(HASWELL_G, &rapl_defaults_core),
<------>X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, &rapl_defaults_hsw_server),
<------>X86_MATCH_INTEL_FAM6_MODEL(BROADWELL, &rapl_defaults_core),
<------>X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_G, &rapl_defaults_core),
<------>X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_D, &rapl_defaults_core),
<------>X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, &rapl_defaults_hsw_server),
<------>X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE, &rapl_defaults_core),
<------>X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_L, &rapl_defaults_core),
<------>X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X, &rapl_defaults_hsw_server),
<------>X86_MATCH_INTEL_FAM6_MODEL(KABYLAKE_L, &rapl_defaults_core),
<------>X86_MATCH_INTEL_FAM6_MODEL(KABYLAKE, &rapl_defaults_core),
<------>X86_MATCH_INTEL_FAM6_MODEL(CANNONLAKE_L, &rapl_defaults_core),
<------>X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_L, &rapl_defaults_core),
<------>X86_MATCH_INTEL_FAM6_MODEL(ICELAKE, &rapl_defaults_core),
<------>X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_NNPI, &rapl_defaults_core),
<------>X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, &rapl_defaults_hsw_server),
<------>X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, &rapl_defaults_hsw_server),
<------>X86_MATCH_INTEL_FAM6_MODEL(COMETLAKE_L, &rapl_defaults_core),
<------>X86_MATCH_INTEL_FAM6_MODEL(COMETLAKE, &rapl_defaults_core),
<------>X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE_L, &rapl_defaults_core),
<------>X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE, &rapl_defaults_core),
<------>X86_MATCH_INTEL_FAM6_MODEL(ROCKETLAKE, &rapl_defaults_core),
<------>X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE, &rapl_defaults_core),
<------>X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, &rapl_defaults_spr_server),
<------>X86_MATCH_INTEL_FAM6_MODEL(LAKEFIELD, &rapl_defaults_core),
<------>X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT, &rapl_defaults_byt),
<------>X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT, &rapl_defaults_cht),
<------>X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT_MID, &rapl_defaults_tng),
<------>X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT_MID, &rapl_defaults_ann),
<------>X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT, &rapl_defaults_core),
<------>X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT_PLUS, &rapl_defaults_core),
<------>X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT_D, &rapl_defaults_core),
<------>X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT, &rapl_defaults_core),
<------>X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_D, &rapl_defaults_core),
<------>X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_L, &rapl_defaults_core),
<------>X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNL, &rapl_defaults_hsw_server),
<------>X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNM, &rapl_defaults_hsw_server),
<------>{}
};
MODULE_DEVICE_TABLE(x86cpu, rapl_ids);
/* Read once for all raw primitive data for domains */
static void rapl_update_domain_data(struct rapl_package *rp)
{
<------>int dmn, prim;
<------>u64 val;
<------>for (dmn = 0; dmn < rp->nr_domains; dmn++) {
<------><------>pr_debug("update %s domain %s data\n", rp->name,
<------><------><------> rp->domains[dmn].name);
<------><------>/* exclude non-raw primitives */
<------><------>for (prim = 0; prim < NR_RAW_PRIMITIVES; prim++) {
<------><------><------>if (!rapl_read_data_raw(&rp->domains[dmn], prim,
<------><------><------><------><------><------>rpi[prim].unit, &val))
<------><------><------><------>rp->domains[dmn].rdd.primitives[prim] = val;
<------><------>}
<------>}
}
static int rapl_package_register_powercap(struct rapl_package *rp)
{
<------>struct rapl_domain *rd;
<------>struct powercap_zone *power_zone = NULL;
<------>int nr_pl, ret;
<------>/* Update the domain data of the new package */
<------>rapl_update_domain_data(rp);
<------>/* first we register package domain as the parent zone */
<------>for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
<------><------>if (rd->id == RAPL_DOMAIN_PACKAGE) {
<------><------><------>nr_pl = find_nr_power_limit(rd);
<------><------><------>pr_debug("register package domain %s\n", rp->name);
<------><------><------>power_zone = powercap_register_zone(&rd->power_zone,
<------><------><------><------><------> rp->priv->control_type, rp->name,
<------><------><------><------><------> NULL, &zone_ops[rd->id], nr_pl,
<------><------><------><------><------> &constraint_ops);
<------><------><------>if (IS_ERR(power_zone)) {
<------><------><------><------>pr_debug("failed to register power zone %s\n",
<------><------><------><------><------> rp->name);
<------><------><------><------>return PTR_ERR(power_zone);
<------><------><------>}
<------><------><------>/* track parent zone in per package/socket data */
<------><------><------>rp->power_zone = power_zone;
<------><------><------>/* done, only one package domain per socket */
<------><------><------>break;
<------><------>}
<------>}
<------>if (!power_zone) {
<------><------>pr_err("no package domain found, unknown topology!\n");
<------><------>return -ENODEV;
<------>}
<------>/* now register domains as children of the socket/package */
<------>for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
<------><------>struct powercap_zone *parent = rp->power_zone;
<------><------>if (rd->id == RAPL_DOMAIN_PACKAGE)
<------><------><------>continue;
<------><------>if (rd->id == RAPL_DOMAIN_PLATFORM)
<------><------><------>parent = NULL;
<------><------>/* number of power limits per domain varies */
<------><------>nr_pl = find_nr_power_limit(rd);
<------><------>power_zone = powercap_register_zone(&rd->power_zone,
<------><------><------><------><------><------> rp->priv->control_type,
<------><------><------><------><------><------> rd->name, parent,
<------><------><------><------><------><------> &zone_ops[rd->id], nr_pl,
<------><------><------><------><------><------> &constraint_ops);
<------><------>if (IS_ERR(power_zone)) {
<------><------><------>pr_debug("failed to register power_zone, %s:%s\n",
<------><------><------><------> rp->name, rd->name);
<------><------><------>ret = PTR_ERR(power_zone);
<------><------><------>goto err_cleanup;
<------><------>}
<------>}
<------>return 0;
err_cleanup:
<------>/*
<------> * Clean up previously initialized domains within the package if we
<------> * failed after the first domain setup.
<------> */
<------>while (--rd >= rp->domains) {
<------><------>pr_debug("unregister %s domain %s\n", rp->name, rd->name);
<------><------>powercap_unregister_zone(rp->priv->control_type,
<------><------><------><------><------> &rd->power_zone);
<------>}
<------>return ret;
}
static int rapl_check_domain(int cpu, int domain, struct rapl_package *rp)
{
<------>struct reg_action ra;
<------>switch (domain) {
<------>case RAPL_DOMAIN_PACKAGE:
<------>case RAPL_DOMAIN_PP0:
<------>case RAPL_DOMAIN_PP1:
<------>case RAPL_DOMAIN_DRAM:
<------>case RAPL_DOMAIN_PLATFORM:
<------><------>ra.reg = rp->priv->regs[domain][RAPL_DOMAIN_REG_STATUS];
<------><------>break;
<------>default:
<------><------>pr_err("invalid domain id %d\n", domain);
<------><------>return -EINVAL;
<------>}
<------>/* make sure domain counters are available and contains non-zero
<------> * values, otherwise skip it.
<------> */
<------>ra.mask = ENERGY_STATUS_MASK;
<------>if (rp->priv->read_raw(cpu, &ra) || !ra.value)
<------><------>return -ENODEV;
<------>return 0;
}
/*
* Check if power limits are available. Two cases when they are not available:
* 1. Locked by BIOS, in this case we still provide read-only access so that
* users can see what limit is set by the BIOS.
* 2. Some CPUs make some domains monitoring only which means PLx MSRs may not
* exist at all. In this case, we do not show the constraints in powercap.
*
* Called after domains are detected and initialized.
*/
static void rapl_detect_powerlimit(struct rapl_domain *rd)
{
<------>u64 val64;
<------>int i;
<------>/* check if the domain is locked by BIOS, ignore if MSR doesn't exist */
<------>if (!rapl_read_data_raw(rd, FW_LOCK, false, &val64)) {
<------><------>if (val64) {
<------><------><------>pr_info("RAPL %s domain %s locked by BIOS\n",
<------><------><------><------>rd->rp->name, rd->name);
<------><------><------>rd->state |= DOMAIN_STATE_BIOS_LOCKED;
<------><------>}
<------>}
<------>/* check if power limit MSR exists, otherwise domain is monitoring only */
<------>for (i = 0; i < NR_POWER_LIMITS; i++) {
<------><------>int prim = rd->rpl[i].prim_id;
<------><------>if (rapl_read_data_raw(rd, prim, false, &val64))
<------><------><------>rd->rpl[i].name = NULL;
<------>}
}
/* Detect active and valid domains for the given CPU, caller must
* ensure the CPU belongs to the targeted package and CPU hotlug is disabled.
*/
static int rapl_detect_domains(struct rapl_package *rp, int cpu)
{
<------>struct rapl_domain *rd;
<------>int i;
<------>for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
<------><------>/* use physical package id to read counters */
<------><------>if (!rapl_check_domain(cpu, i, rp)) {
<------><------><------>rp->domain_map |= 1 << i;
<------><------><------>pr_info("Found RAPL domain %s\n", rapl_domain_names[i]);
<------><------>}
<------>}
<------>rp->nr_domains = bitmap_weight(&rp->domain_map, RAPL_DOMAIN_MAX);
<------>if (!rp->nr_domains) {
<------><------>pr_debug("no valid rapl domains found in %s\n", rp->name);
<------><------>return -ENODEV;
<------>}
<------>pr_debug("found %d domains on %s\n", rp->nr_domains, rp->name);
<------>rp->domains = kcalloc(rp->nr_domains + 1, sizeof(struct rapl_domain),
<------><------><------> GFP_KERNEL);
<------>if (!rp->domains)
<------><------>return -ENOMEM;
<------>rapl_init_domains(rp);
<------>for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++)
<------><------>rapl_detect_powerlimit(rd);
<------>return 0;
}
/* called from CPU hotplug notifier, hotplug lock held */
void rapl_remove_package(struct rapl_package *rp)
{
<------>struct rapl_domain *rd, *rd_package = NULL;
<------>package_power_limit_irq_restore(rp);
<------>for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
<------><------>rapl_write_data_raw(rd, PL1_ENABLE, 0);
<------><------>rapl_write_data_raw(rd, PL1_CLAMP, 0);
<------><------>if (find_nr_power_limit(rd) > 1) {
<------><------><------>rapl_write_data_raw(rd, PL2_ENABLE, 0);
<------><------><------>rapl_write_data_raw(rd, PL2_CLAMP, 0);
<------><------><------>rapl_write_data_raw(rd, PL4_ENABLE, 0);
<------><------>}
<------><------>if (rd->id == RAPL_DOMAIN_PACKAGE) {
<------><------><------>rd_package = rd;
<------><------><------>continue;
<------><------>}
<------><------>pr_debug("remove package, undo power limit on %s: %s\n",
<------><------><------> rp->name, rd->name);
<------><------>powercap_unregister_zone(rp->priv->control_type,
<------><------><------><------><------> &rd->power_zone);
<------>}
<------>/* do parent zone last */
<------>powercap_unregister_zone(rp->priv->control_type,
<------><------><------><------> &rd_package->power_zone);
<------>list_del(&rp->plist);
<------>kfree(rp);
}
EXPORT_SYMBOL_GPL(rapl_remove_package);
/* caller to ensure CPU hotplug lock is held */
struct rapl_package *rapl_find_package_domain(int cpu, struct rapl_if_priv *priv)
{
<------>int id = topology_logical_die_id(cpu);
<------>struct rapl_package *rp;
<------>list_for_each_entry(rp, &rapl_packages, plist) {
<------><------>if (rp->id == id
<------><------> && rp->priv->control_type == priv->control_type)
<------><------><------>return rp;
<------>}
<------>return NULL;
}
EXPORT_SYMBOL_GPL(rapl_find_package_domain);
/* called from CPU hotplug notifier, hotplug lock held */
struct rapl_package *rapl_add_package(int cpu, struct rapl_if_priv *priv)
{
<------>int id = topology_logical_die_id(cpu);
<------>struct rapl_package *rp;
<------>struct cpuinfo_x86 *c = &cpu_data(cpu);
<------>int ret;
<------>if (!rapl_defaults)
<------><------>return ERR_PTR(-ENODEV);
<------>rp = kzalloc(sizeof(struct rapl_package), GFP_KERNEL);
<------>if (!rp)
<------><------>return ERR_PTR(-ENOMEM);
<------>/* add the new package to the list */
<------>rp->id = id;
<------>rp->lead_cpu = cpu;
<------>rp->priv = priv;
<------>if (topology_max_die_per_package() > 1)
<------><------>snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH,
<------><------><------> "package-%d-die-%d", c->phys_proc_id, c->cpu_die_id);
<------>else
<------><------>snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH, "package-%d",
<------><------><------> c->phys_proc_id);
<------>/* check if the package contains valid domains */
<------>if (rapl_detect_domains(rp, cpu) || rapl_defaults->check_unit(rp, cpu)) {
<------><------>ret = -ENODEV;
<------><------>goto err_free_package;
<------>}
<------>ret = rapl_package_register_powercap(rp);
<------>if (!ret) {
<------><------>INIT_LIST_HEAD(&rp->plist);
<------><------>list_add(&rp->plist, &rapl_packages);
<------><------>return rp;
<------>}
err_free_package:
<------>kfree(rp->domains);
<------>kfree(rp);
<------>return ERR_PTR(ret);
}
EXPORT_SYMBOL_GPL(rapl_add_package);
static void power_limit_state_save(void)
{
<------>struct rapl_package *rp;
<------>struct rapl_domain *rd;
<------>int nr_pl, ret, i;
<------>get_online_cpus();
<------>list_for_each_entry(rp, &rapl_packages, plist) {
<------><------>if (!rp->power_zone)
<------><------><------>continue;
<------><------>rd = power_zone_to_rapl_domain(rp->power_zone);
<------><------>nr_pl = find_nr_power_limit(rd);
<------><------>for (i = 0; i < nr_pl; i++) {
<------><------><------>switch (rd->rpl[i].prim_id) {
<------><------><------>case PL1_ENABLE:
<------><------><------><------>ret = rapl_read_data_raw(rd,
<------><------><------><------><------><------> POWER_LIMIT1, true,
<------><------><------><------><------><------> &rd->rpl[i].last_power_limit);
<------><------><------><------>if (ret)
<------><------><------><------><------>rd->rpl[i].last_power_limit = 0;
<------><------><------><------>break;
<------><------><------>case PL2_ENABLE:
<------><------><------><------>ret = rapl_read_data_raw(rd,
<------><------><------><------><------><------> POWER_LIMIT2, true,
<------><------><------><------><------><------> &rd->rpl[i].last_power_limit);
<------><------><------><------>if (ret)
<------><------><------><------><------>rd->rpl[i].last_power_limit = 0;
<------><------><------><------>break;
<------><------><------>case PL4_ENABLE:
<------><------><------><------>ret = rapl_read_data_raw(rd,
<------><------><------><------><------><------> POWER_LIMIT4, true,
<------><------><------><------><------><------> &rd->rpl[i].last_power_limit);
<------><------><------><------>if (ret)
<------><------><------><------><------>rd->rpl[i].last_power_limit = 0;
<------><------><------><------>break;
<------><------><------>}
<------><------>}
<------>}
<------>put_online_cpus();
}
static void power_limit_state_restore(void)
{
<------>struct rapl_package *rp;
<------>struct rapl_domain *rd;
<------>int nr_pl, i;
<------>get_online_cpus();
<------>list_for_each_entry(rp, &rapl_packages, plist) {
<------><------>if (!rp->power_zone)
<------><------><------>continue;
<------><------>rd = power_zone_to_rapl_domain(rp->power_zone);
<------><------>nr_pl = find_nr_power_limit(rd);
<------><------>for (i = 0; i < nr_pl; i++) {
<------><------><------>switch (rd->rpl[i].prim_id) {
<------><------><------>case PL1_ENABLE:
<------><------><------><------>if (rd->rpl[i].last_power_limit)
<------><------><------><------><------>rapl_write_data_raw(rd, POWER_LIMIT1,
<------><------><------><------><------> rd->rpl[i].last_power_limit);
<------><------><------><------>break;
<------><------><------>case PL2_ENABLE:
<------><------><------><------>if (rd->rpl[i].last_power_limit)
<------><------><------><------><------>rapl_write_data_raw(rd, POWER_LIMIT2,
<------><------><------><------><------> rd->rpl[i].last_power_limit);
<------><------><------><------>break;
<------><------><------>case PL4_ENABLE:
<------><------><------><------>if (rd->rpl[i].last_power_limit)
<------><------><------><------><------>rapl_write_data_raw(rd, POWER_LIMIT4,
<------><------><------><------><------> rd->rpl[i].last_power_limit);
<------><------><------><------>break;
<------><------><------>}
<------><------>}
<------>}
<------>put_online_cpus();
}
static int rapl_pm_callback(struct notifier_block *nb,
<------><------><------> unsigned long mode, void *_unused)
{
<------>switch (mode) {
<------>case PM_SUSPEND_PREPARE:
<------><------>power_limit_state_save();
<------><------>break;
<------>case PM_POST_SUSPEND:
<------><------>power_limit_state_restore();
<------><------>break;
<------>}
<------>return NOTIFY_OK;
}
static struct notifier_block rapl_pm_notifier = {
<------>.notifier_call = rapl_pm_callback,
};
static struct platform_device *rapl_msr_platdev;
static int __init rapl_init(void)
{
<------>const struct x86_cpu_id *id;
<------>int ret;
<------>id = x86_match_cpu(rapl_ids);
<------>if (!id) {
<------><------>pr_err("driver does not support CPU family %d model %d\n",
<------><------> boot_cpu_data.x86, boot_cpu_data.x86_model);
<------><------>return -ENODEV;
<------>}
<------>rapl_defaults = (struct rapl_defaults *)id->driver_data;
<------>ret = register_pm_notifier(&rapl_pm_notifier);
<------>if (ret)
<------><------>return ret;
<------>rapl_msr_platdev = platform_device_alloc("intel_rapl_msr", 0);
<------>if (!rapl_msr_platdev) {
<------><------>ret = -ENOMEM;
<------><------>goto end;
<------>}
<------>ret = platform_device_add(rapl_msr_platdev);
<------>if (ret)
<------><------>platform_device_put(rapl_msr_platdev);
end:
<------>if (ret)
<------><------>unregister_pm_notifier(&rapl_pm_notifier);
<------>return ret;
}
static void __exit rapl_exit(void)
{
<------>platform_device_unregister(rapl_msr_platdev);
<------>unregister_pm_notifier(&rapl_pm_notifier);
}
fs_initcall(rapl_init);
module_exit(rapl_exit);
MODULE_DESCRIPTION("Intel Runtime Average Power Limit (RAPL) common code");
MODULE_AUTHOR("Jacob Pan <jacob.jun.pan@intel.com>");
MODULE_LICENSE("GPL v2");