^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1) // SPDX-License-Identifier: GPL-2.0-only
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3) * Copyright 2020 Linaro Limited
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5) * Author: Daniel Lezcano <daniel.lezcano@linaro.org>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7) * The DTPM CPU is based on the energy model. It hooks the CPU in the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 8) * DTPM tree which in turns update the power number by propagating the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 9) * power number from the CPU energy model information to the parents.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 10) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 11) * The association between the power and the performance state, allows
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 12) * to set the power of the CPU at the OPP granularity.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 13) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 14) * The CPU hotplug is supported and the power numbers will be updated
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 15) * if a CPU is hot plugged / unplugged.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 16) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 17) #include <linux/cpumask.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 18) #include <linux/cpufreq.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 19) #include <linux/cpuhotplug.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 20) #include <linux/dtpm.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 21) #include <linux/energy_model.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 22) #include <linux/pm_qos.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 23) #include <linux/slab.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 24) #include <linux/units.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 25)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 26) static struct dtpm *__parent;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 27)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 28) static DEFINE_PER_CPU(struct dtpm *, dtpm_per_cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 29)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 30) struct dtpm_cpu {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 31) struct freq_qos_request qos_req;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 32) int cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 33) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 34)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 35) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 36) * When a new CPU is inserted at hotplug or boot time, add the power
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 37) * contribution and update the dtpm tree.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 38) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 39) static int power_add(struct dtpm *dtpm, struct em_perf_domain *em)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 40) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 41) u64 power_min, power_max;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 42)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 43) power_min = em->table[0].power;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 44) power_min *= MICROWATT_PER_MILLIWATT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 45) power_min += dtpm->power_min;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 46)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 47) power_max = em->table[em->nr_perf_states - 1].power;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 48) power_max *= MICROWATT_PER_MILLIWATT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 49) power_max += dtpm->power_max;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 50)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 51) return dtpm_update_power(dtpm, power_min, power_max);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 52) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 53)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 54) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 55) * When a CPU is unplugged, remove its power contribution from the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 56) * dtpm tree.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 57) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 58) static int power_sub(struct dtpm *dtpm, struct em_perf_domain *em)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 59) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 60) u64 power_min, power_max;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 61)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 62) power_min = em->table[0].power;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 63) power_min *= MICROWATT_PER_MILLIWATT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 64) power_min = dtpm->power_min - power_min;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 65)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 66) power_max = em->table[em->nr_perf_states - 1].power;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 67) power_max *= MICROWATT_PER_MILLIWATT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 68) power_max = dtpm->power_max - power_max;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 69)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 70) return dtpm_update_power(dtpm, power_min, power_max);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 71) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 72)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 73) static u64 set_pd_power_limit(struct dtpm *dtpm, u64 power_limit)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 74) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 75) struct dtpm_cpu *dtpm_cpu = dtpm->private;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 76) struct em_perf_domain *pd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 77) struct cpumask cpus;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 78) unsigned long freq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 79) u64 power;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 80) int i, nr_cpus;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 81)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 82) pd = em_cpu_get(dtpm_cpu->cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 83)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 84) cpumask_and(&cpus, cpu_online_mask, to_cpumask(pd->cpus));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 85)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 86) nr_cpus = cpumask_weight(&cpus);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 87)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 88) for (i = 0; i < pd->nr_perf_states; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 89)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 90) power = pd->table[i].power * MICROWATT_PER_MILLIWATT * nr_cpus;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 91)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 92) if (power > power_limit)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 93) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 94) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 95)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 96) freq = pd->table[i - 1].frequency;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 97)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 98) freq_qos_update_request(&dtpm_cpu->qos_req, freq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 99)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) power_limit = pd->table[i - 1].power *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) MICROWATT_PER_MILLIWATT * nr_cpus;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) return power_limit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) static u64 get_pd_power_uw(struct dtpm *dtpm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) struct dtpm_cpu *dtpm_cpu = dtpm->private;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) struct em_perf_domain *pd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) struct cpumask cpus;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) unsigned long freq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) int i, nr_cpus;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) pd = em_cpu_get(dtpm_cpu->cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) freq = cpufreq_quick_get(dtpm_cpu->cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) cpumask_and(&cpus, cpu_online_mask, to_cpumask(pd->cpus));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) nr_cpus = cpumask_weight(&cpus);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) for (i = 0; i < pd->nr_perf_states; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) if (pd->table[i].frequency < freq)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) return pd->table[i].power *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) MICROWATT_PER_MILLIWATT * nr_cpus;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) static void pd_release(struct dtpm *dtpm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) struct dtpm_cpu *dtpm_cpu = dtpm->private;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) if (freq_qos_request_active(&dtpm_cpu->qos_req))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) freq_qos_remove_request(&dtpm_cpu->qos_req);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) kfree(dtpm_cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) static struct dtpm_ops dtpm_ops = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) .set_power_uw = set_pd_power_limit,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) .get_power_uw = get_pd_power_uw,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) .release = pd_release,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) static int cpuhp_dtpm_cpu_offline(unsigned int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) struct cpufreq_policy *policy;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) struct em_perf_domain *pd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) struct dtpm *dtpm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) policy = cpufreq_cpu_get(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) if (!policy)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) pd = em_cpu_get(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) if (!pd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) dtpm = per_cpu(dtpm_per_cpu, cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) power_sub(dtpm, pd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) if (cpumask_weight(policy->cpus) != 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) for_each_cpu(cpu, policy->related_cpus)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) per_cpu(dtpm_per_cpu, cpu) = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) dtpm_unregister(dtpm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) static int cpuhp_dtpm_cpu_online(unsigned int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) struct dtpm *dtpm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) struct dtpm_cpu *dtpm_cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) struct cpufreq_policy *policy;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) struct em_perf_domain *pd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) char name[CPUFREQ_NAME_LEN];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) int ret = -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) policy = cpufreq_cpu_get(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) if (!policy)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) pd = em_cpu_get(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) if (!pd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) dtpm = per_cpu(dtpm_per_cpu, cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) if (dtpm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) return power_add(dtpm, pd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) dtpm = dtpm_alloc(&dtpm_ops);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) if (!dtpm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) dtpm_cpu = kzalloc(sizeof(*dtpm_cpu), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) if (!dtpm_cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) goto out_kfree_dtpm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) dtpm->private = dtpm_cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) dtpm_cpu->cpu = cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) for_each_cpu(cpu, policy->related_cpus)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) per_cpu(dtpm_per_cpu, cpu) = dtpm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) sprintf(name, "cpu%d", dtpm_cpu->cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) ret = dtpm_register(name, dtpm, __parent);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) goto out_kfree_dtpm_cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) ret = power_add(dtpm, pd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) goto out_dtpm_unregister;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) ret = freq_qos_add_request(&policy->constraints,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) &dtpm_cpu->qos_req, FREQ_QOS_MAX,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) pd->table[pd->nr_perf_states - 1].frequency);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) goto out_power_sub;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) out_power_sub:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) power_sub(dtpm, pd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) out_dtpm_unregister:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) dtpm_unregister(dtpm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) dtpm_cpu = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) dtpm = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) out_kfree_dtpm_cpu:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) for_each_cpu(cpu, policy->related_cpus)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) per_cpu(dtpm_per_cpu, cpu) = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) kfree(dtpm_cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) out_kfree_dtpm:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) kfree(dtpm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) int dtpm_register_cpu(struct dtpm *parent)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) __parent = parent;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) return cpuhp_setup_state(CPUHP_AP_DTPM_CPU_ONLINE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) "dtpm_cpu:online",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) cpuhp_dtpm_cpu_online,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) cpuhp_dtpm_cpu_offline);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) }