/*
* rk818 battery driver
*
* Copyright (C) 2016 Rockchip Electronics Co., Ltd
* chenjh <chenjh@rock-chips.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*/
#include <linux/delay.h>
#include <linux/fb.h>
#include <linux/gpio.h>
#include <linux/iio/consumer.h>
#include <linux/iio/iio.h>
#include <linux/irq.h>
#include <linux/irqdomain.h>
#include <linux/jiffies.h>
#include <linux/mfd/rk808.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/of_gpio.h>
#include <linux/platform_device.h>
#include <linux/power_supply.h>
#include <linux/power/rk_usbbc.h>
#include <linux/regmap.h>
#include <linux/rk_keys.h>
#include <linux/rtc.h>
#include <linux/timer.h>
#include <linux/wakelock.h>
#include <linux/workqueue.h>
#include "rk818_battery.h"
static int dbg_enable = 0;
module_param_named(dbg_level, dbg_enable, int, 0644);
#define DBG(args...) \
do { \
if (dbg_enable) { \
pr_info(args); \
} \
} while (0)
#define BAT_INFO(fmt, args...) pr_info("rk818-bat: "fmt, ##args)
/* default param */
#define DEFAULT_BAT_RES 135
#define DEFAULT_SLP_ENTER_CUR 300
#define DEFAULT_SLP_EXIT_CUR 300
#define DEFAULT_SLP_FILTER_CUR 100
#define DEFAULT_PWROFF_VOL_THRESD 3400
#define DEFAULT_MONITOR_SEC 5
#define DEFAULT_ALGR_VOL_THRESD1 3850
#define DEFAULT_ALGR_VOL_THRESD2 3950
#define DEFAULT_MAX_SOC_OFFSET 60
#define DEFAULT_FB_TEMP TEMP_105C
#define DEFAULT_ZERO_RESERVE_DSOC 10
#define DEFAULT_POFFSET 42
#define DEFAULT_COFFSET 0x832
#define DEFAULT_SAMPLE_RES 20
#define DEFAULT_ENERGY_MODE 0
#define INVALID_COFFSET_MIN 0x780
#define INVALID_COFFSET_MAX 0x980
#define INVALID_VOL_THRESD 2500
/* sample resistor and division */
#define SAMPLE_RES_10MR 10
#define SAMPLE_RES_20MR 20
#define SAMPLE_RES_DIV1 1
#define SAMPLE_RES_DIV2 2
/* virtual params */
#define VIRTUAL_CURRENT 1000
#define VIRTUAL_VOLTAGE 3888
#define VIRTUAL_SOC 66
#define VIRTUAL_PRESET 1
#define VIRTUAL_TEMPERATURE 188
#define VIRTUAL_STATUS POWER_SUPPLY_STATUS_CHARGING
/* charge */
#define FINISH_CHRG_CUR1 1000
#define FINISH_CHRG_CUR2 1500
#define FINISH_MAX_SOC_DELAY 20
#define TERM_CHRG_DSOC 88
#define TERM_CHRG_CURR 600
#define TERM_CHRG_K 650
#define SIMULATE_CHRG_INTV 8
#define SIMULATE_CHRG_CURR 400
#define SIMULATE_CHRG_K 1500
#define FULL_CHRG_K 400
/* zero algorithm */
#define PWROFF_THRESD 3400
#define MIN_ZERO_DSOC_ACCURACY 10 /*0.01%*/
#define MIN_ZERO_OVERCNT 100
#define MIN_ACCURACY 1
#define DEF_PWRPATH_RES 50
#define WAIT_DSOC_DROP_SEC 15
#define WAIT_SHTD_DROP_SEC 30
#define ZERO_GAP_XSOC1 10
#define ZERO_GAP_XSOC2 5
#define ZERO_GAP_XSOC3 3
#define ZERO_LOAD_LVL1 1400
#define ZERO_LOAD_LVL2 600
#define ZERO_GAP_CALIB 5
#define ADC_CALIB_THRESHOLD 4
#define ADC_CALIB_LMT_MIN 3
#define ADC_CALIB_CNT 5
#define NTC_CALC_FACTOR 7
/* time */
#define POWER_ON_SEC_BASE 1
#define MINUTE(x) ((x) * 60)
/* sleep */
#define SLP_CURR_MAX 40
#define SLP_CURR_MIN 6
#define DISCHRG_TIME_STEP1 MINUTE(10)
#define DISCHRG_TIME_STEP2 MINUTE(60)
#define SLP_DSOC_VOL_THRESD 3600
#define REBOOT_PERIOD_SEC 180
#define REBOOT_MAX_CNT 80
/* fcc */
#define MIN_FCC 500
/* TS detect battery temperature */
#define ADC_CUR_MSK 0x03
#define ADC_CUR_20UA 0x00
#define ADC_CUR_40UA 0x01
#define ADC_CUR_60UA 0x02
#define ADC_CUR_80UA 0x03
#define NTC_CALC_FACTOR_80UA 7
#define NTC_CALC_FACTOR_60UA 9
#define NTC_CALC_FACTOR_40UA 13
#define NTC_CALC_FACTOR_20UA 27
#define NTC_80UA_MAX_MEASURE 27500
#define NTC_60UA_MAX_MEASURE 36666
#define NTC_40UA_MAX_MEASURE 55000
#define NTC_20UA_MAX_MEASURE 110000
#define INPUT_CUR80MA (0x01)
static const char *bat_status[] = {
"charge off", "dead charge", "trickle charge", "cc cv",
"finish", "usb over vol", "bat temp error", "timer error",
};
struct rk818_battery {
struct platform_device *pdev;
struct rk808 *rk818;
struct regmap *regmap;
struct device *dev;
struct power_supply *bat;
struct power_supply *usb_psy;
struct power_supply *ac_psy;
struct battery_platform_data *pdata;
struct workqueue_struct *bat_monitor_wq;
struct delayed_work bat_delay_work;
struct delayed_work calib_delay_work;
struct wake_lock wake_lock;
struct notifier_block fb_nb;
struct timer_list caltimer;
time64_t rtc_base;
int bat_res;
int chrg_status;
bool is_initialized;
bool is_first_power_on;
u8 res_div;
int current_max;
int voltage_max;
int current_avg;
int voltage_avg;
int voltage_ocv;
int voltage_relax;
int voltage_k;
int voltage_b;
int remain_cap;
int design_cap;
int nac;
int fcc;
int qmax;
int dsoc;
int rsoc;
int poffset;
int age_ocv_soc;
bool age_allow_update;
int age_level;
int age_ocv_cap;
int age_voltage;
int age_adjust_cap;
unsigned long age_keep_sec;
int zero_timeout_cnt;
int zero_remain_cap;
int zero_dsoc;
int zero_linek;
u64 zero_drop_sec;
u64 shtd_drop_sec;
int sm_remain_cap;
int sm_linek;
int sm_chrg_dsoc;
int sm_dischrg_dsoc;
int algo_rest_val;
int algo_rest_mode;
int sleep_sum_cap;
int sleep_remain_cap;
unsigned long sleep_dischrg_sec;
unsigned long sleep_sum_sec;
bool sleep_chrg_online;
u8 sleep_chrg_status;
bool adc_allow_update;
int fb_blank;
bool s2r; /*suspend to resume*/
u32 work_mode;
int temperature;
u32 monitor_ms;
u32 pwroff_min;
u32 adc_calib_cnt;
unsigned long finish_base;
unsigned long boot_base;
unsigned long flat_match_sec;
unsigned long plug_in_base;
unsigned long plug_out_base;
u8 halt_cnt;
bool is_halt;
bool is_max_soc_offset;
bool is_sw_reset;
bool is_ocv_calib;
bool is_first_on;
bool is_force_calib;
int last_dsoc;
int ocv_pre_dsoc;
int ocv_new_dsoc;
int max_pre_dsoc;
int max_new_dsoc;
int force_pre_dsoc;
int force_new_dsoc;
int dbg_cap_low0;
int dbg_pwr_dsoc;
int dbg_pwr_rsoc;
int dbg_pwr_vol;
int dbg_chrg_min[10];
int dbg_meet_soc;
int dbg_calc_dsoc;
int dbg_calc_rsoc;
u8 ac_in;
u8 usb_in;
int is_charging;
unsigned long charge_count;
};
#define DIV(x) ((x) ? (x) : 1)
static u64 get_boot_sec(void)
{
struct timespec64 ts;
ktime_get_boottime_ts64(&ts);
return ts.tv_sec;
}
static unsigned long base2sec(unsigned long x)
{
if (x)
return (get_boot_sec() > x) ? (get_boot_sec() - x) : 0;
else
return 0;
}
static unsigned long base2min(unsigned long x)
{
return base2sec(x) / 60;
}
static u32 interpolate(int value, u32 *table, int size)
{
u8 i;
u16 d;
for (i = 0; i < size; i++) {
if (value < table[i])
break;
}
if ((i > 0) && (i < size)) {
d = (value - table[i - 1]) * (MAX_INTERPOLATE / (size - 1));
d /= table[i] - table[i - 1];
d = d + (i - 1) * (MAX_INTERPOLATE / (size - 1));
} else {
d = i * ((MAX_INTERPOLATE + size / 2) / size);
}
if (d > 1000)
d = 1000;
return d;
}
/* (a*b)/c */
static int32_t ab_div_c(u32 a, u32 b, u32 c)
{
bool sign;
u32 ans = MAX_INT;
int tmp;
sign = ((((a ^ b) ^ c) & 0x80000000) != 0);
if (c != 0) {
if (sign)
c = -c;
tmp = (a * b + (c >> 1)) / c;
if (tmp < MAX_INT)
ans = tmp;
}
if (sign)
ans = -ans;
return ans;
}
static int rk818_bat_read(struct rk818_battery *di, u8 reg)
{
int ret, val;
ret = regmap_read(di->regmap, reg, &val);
if (ret)
dev_err(di->dev, "read reg:0x%x failed\n", reg);
return val;
}
static int rk818_bat_write(struct rk818_battery *di, u8 reg, u8 buf)
{
int ret;
ret = regmap_write(di->regmap, reg, buf);
if (ret)
dev_err(di->dev, "i2c write reg: 0x%2x error\n", reg);
return ret;
}
static int rk818_bat_set_bits(struct rk818_battery *di, u8 reg, u8 mask, u8 buf)
{
int ret;
ret = regmap_update_bits(di->regmap, reg, mask, buf);
if (ret)
dev_err(di->dev, "write reg:0x%x failed\n", reg);
return ret;
}
static int rk818_bat_clear_bits(struct rk818_battery *di, u8 reg, u8 mask)
{
int ret;
ret = regmap_update_bits(di->regmap, reg, mask, 0);
if (ret)
dev_err(di->dev, "clr reg:0x%02x failed\n", reg);
return ret;
}
static void rk818_bat_dump_regs(struct rk818_battery *di, u8 start, u8 end)
{
int i;
if (!dbg_enable)
return;
DBG("dump regs from: 0x%x-->0x%x\n", start, end);
for (i = start; i < end; i++)
DBG("0x%x: 0x%0x\n", i, rk818_bat_read(di, i));
}
static bool rk818_bat_chrg_online(struct rk818_battery *di)
{
u8 buf;
buf = rk818_bat_read(di, RK818_VB_MON_REG);
return (buf & PLUG_IN_STS) ? true : false;
}
static int rk818_bat_get_coulomb_cap(struct rk818_battery *di)
{
int val = 0;
val |= rk818_bat_read(di, RK818_GASCNT3_REG) << 24;
val |= rk818_bat_read(di, RK818_GASCNT2_REG) << 16;
val |= rk818_bat_read(di, RK818_GASCNT1_REG) << 8;
val |= rk818_bat_read(di, RK818_GASCNT0_REG) << 0;
return (val / 2390) * di->res_div;
}
static int rk818_bat_get_rsoc(struct rk818_battery *di)
{
int remain_cap;
remain_cap = rk818_bat_get_coulomb_cap(di);
return (remain_cap + di->fcc / 200) * 100 / DIV(di->fcc);
}
static ssize_t bat_info_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
char cmd;
struct rk818_battery *di = dev_get_drvdata(dev);
sscanf(buf, "%c", &cmd);
if (cmd == 'n')
rk818_bat_set_bits(di, RK818_MISC_MARK_REG,
FG_RESET_NOW, FG_RESET_NOW);
else if (cmd == 'm')
rk818_bat_set_bits(di, RK818_MISC_MARK_REG,
FG_RESET_LATE, FG_RESET_LATE);
else if (cmd == 'c')
rk818_bat_clear_bits(di, RK818_MISC_MARK_REG,
FG_RESET_LATE | FG_RESET_NOW);
else if (cmd == 'r')
BAT_INFO("0x%2x\n", rk818_bat_read(di, RK818_MISC_MARK_REG));
else
BAT_INFO("command error\n");
return count;
}
static struct device_attribute rk818_bat_attr[] = {
__ATTR(bat, 0664, NULL, bat_info_store),
};
static void rk818_bat_enable_gauge(struct rk818_battery *di)
{
u8 buf;
buf = rk818_bat_read(di, RK818_TS_CTRL_REG);
buf |= GG_EN;
rk818_bat_write(di, RK818_TS_CTRL_REG, buf);
}
static void rk818_bat_save_age_level(struct rk818_battery *di, u8 level)
{
rk818_bat_write(di, RK818_UPDAT_LEVE_REG, level);
}
static u8 rk818_bat_get_age_level(struct rk818_battery *di)
{
return rk818_bat_read(di, RK818_UPDAT_LEVE_REG);
}
static int rk818_bat_get_vcalib0(struct rk818_battery *di)
{
int val = 0;
val |= rk818_bat_read(di, RK818_VCALIB0_REGL) << 0;
val |= rk818_bat_read(di, RK818_VCALIB0_REGH) << 8;
DBG("<%s>. voffset0: 0x%x\n", __func__, val);
return val;
}
static int rk818_bat_get_vcalib1(struct rk818_battery *di)
{
int val = 0;
val |= rk818_bat_read(di, RK818_VCALIB1_REGL) << 0;
val |= rk818_bat_read(di, RK818_VCALIB1_REGH) << 8;
DBG("<%s>. voffset1: 0x%x\n", __func__, val);
return val;
}
static int rk818_bat_get_ioffset(struct rk818_battery *di)
{
int val = 0;
val |= rk818_bat_read(di, RK818_IOFFSET_REGL) << 0;
val |= rk818_bat_read(di, RK818_IOFFSET_REGH) << 8;
DBG("<%s>. ioffset: 0x%x\n", __func__, val);
return val;
}
static int rk818_bat_get_coffset(struct rk818_battery *di)
{
int val = 0;
val |= rk818_bat_read(di, RK818_CAL_OFFSET_REGL) << 0;
val |= rk818_bat_read(di, RK818_CAL_OFFSET_REGH) << 8;
DBG("<%s>. coffset: 0x%x\n", __func__, val);
return val;
}
static void rk818_bat_set_coffset(struct rk818_battery *di, int val)
{
u8 buf;
if ((val < INVALID_COFFSET_MIN) || (val > INVALID_COFFSET_MAX)) {
BAT_INFO("set invalid coffset=0x%x\n", val);
return;
}
buf = (val >> 8) & 0xff;
rk818_bat_write(di, RK818_CAL_OFFSET_REGH, buf);
buf = (val >> 0) & 0xff;
rk818_bat_write(di, RK818_CAL_OFFSET_REGL, buf);
DBG("<%s>. coffset: 0x%x\n", __func__, val);
}
static void rk818_bat_init_voltage_kb(struct rk818_battery *di)
{
int vcalib0, vcalib1;
vcalib0 = rk818_bat_get_vcalib0(di);
vcalib1 = rk818_bat_get_vcalib1(di);
di->voltage_k = (4200 - 3000) * 1000 / DIV(vcalib1 - vcalib0);
di->voltage_b = 4200 - (di->voltage_k * vcalib1) / 1000;
DBG("voltage_k=%d(*1000),voltage_b=%d\n", di->voltage_k, di->voltage_b);
}
static int rk818_bat_get_ocv_voltage(struct rk818_battery *di)
{
int vol, val = 0;
val |= rk818_bat_read(di, RK818_BAT_OCV_REGL) << 0;
val |= rk818_bat_read(di, RK818_BAT_OCV_REGH) << 8;
vol = di->voltage_k * val / 1000 + di->voltage_b;
return vol;
}
static int rk818_bat_get_avg_voltage(struct rk818_battery *di)
{
int vol, val = 0;
val |= rk818_bat_read(di, RK818_BAT_VOL_REGL) << 0;
val |= rk818_bat_read(di, RK818_BAT_VOL_REGH) << 8;
vol = di->voltage_k * val / 1000 + di->voltage_b;
return vol;
}
static bool is_rk818_bat_relax_mode(struct rk818_battery *di)
{
u8 status;
status = rk818_bat_read(di, RK818_GGSTS_REG);
if (!(status & RELAX_VOL1_UPD) || !(status & RELAX_VOL2_UPD))
return false;
else
return true;
}
static u16 rk818_bat_get_relax_vol1(struct rk818_battery *di)
{
u16 vol, val = 0;
val |= rk818_bat_read(di, RK818_RELAX_VOL1_REGL) << 0;
val |= rk818_bat_read(di, RK818_RELAX_VOL1_REGH) << 8;
vol = di->voltage_k * val / 1000 + di->voltage_b;
return vol;
}
static u16 rk818_bat_get_relax_vol2(struct rk818_battery *di)
{
u16 vol, val = 0;
val |= rk818_bat_read(di, RK818_RELAX_VOL2_REGL) << 0;
val |= rk818_bat_read(di, RK818_RELAX_VOL2_REGH) << 8;
vol = di->voltage_k * val / 1000 + di->voltage_b;
return vol;
}
static u16 rk818_bat_get_relax_voltage(struct rk818_battery *di)
{
u16 relax_vol1, relax_vol2;
if (!is_rk818_bat_relax_mode(di))
return 0;
relax_vol1 = rk818_bat_get_relax_vol1(di);
relax_vol2 = rk818_bat_get_relax_vol2(di);
return relax_vol1 > relax_vol2 ? relax_vol1 : relax_vol2;
}
static int rk818_bat_get_avg_current(struct rk818_battery *di)
{
int cur, val = 0;
val |= rk818_bat_read(di, RK818_BAT_CUR_AVG_REGL) << 0;
val |= rk818_bat_read(di, RK818_BAT_CUR_AVG_REGH) << 8;
if (val & 0x800)
val -= 4096;
cur = val * di->res_div * 1506 / 1000;
return cur;
}
static int rk818_bat_vol_to_ocvsoc(struct rk818_battery *di, int voltage)
{
u32 *ocv_table, temp;
int ocv_size, ocv_soc;
ocv_table = di->pdata->ocv_table;
ocv_size = di->pdata->ocv_size;
temp = interpolate(voltage, ocv_table, ocv_size);
ocv_soc = ab_div_c(temp, MAX_PERCENTAGE, MAX_INTERPOLATE);
return ocv_soc;
}
static int rk818_bat_vol_to_ocvcap(struct rk818_battery *di, int voltage)
{
u32 *ocv_table, temp;
int ocv_size, cap;
ocv_table = di->pdata->ocv_table;
ocv_size = di->pdata->ocv_size;
temp = interpolate(voltage, ocv_table, ocv_size);
cap = ab_div_c(temp, di->fcc, MAX_INTERPOLATE);
return cap;
}
static int rk818_bat_vol_to_zerosoc(struct rk818_battery *di, int voltage)
{
u32 *ocv_table, temp;
int ocv_size, ocv_soc;
ocv_table = di->pdata->zero_table;
ocv_size = di->pdata->ocv_size;
temp = interpolate(voltage, ocv_table, ocv_size);
ocv_soc = ab_div_c(temp, MAX_PERCENTAGE, MAX_INTERPOLATE);
return ocv_soc;
}
static int rk818_bat_vol_to_zerocap(struct rk818_battery *di, int voltage)
{
u32 *ocv_table, temp;
int ocv_size, cap;
ocv_table = di->pdata->zero_table;
ocv_size = di->pdata->ocv_size;
temp = interpolate(voltage, ocv_table, ocv_size);
cap = ab_div_c(temp, di->fcc, MAX_INTERPOLATE);
return cap;
}
static int rk818_bat_get_iadc(struct rk818_battery *di)
{
int val = 0;
val |= rk818_bat_read(di, RK818_BAT_CUR_AVG_REGL) << 0;
val |= rk818_bat_read(di, RK818_BAT_CUR_AVG_REGH) << 8;
if (val > 2047)
val -= 4096;
return val;
}
static bool rk818_bat_adc_calib(struct rk818_battery *di)
{
int i, ioffset, coffset, adc, save_coffset;
if ((di->chrg_status != CHARGE_FINISH) ||
(di->adc_calib_cnt > ADC_CALIB_CNT) ||
(base2min(di->boot_base) < ADC_CALIB_LMT_MIN) ||
(abs(di->current_avg) < ADC_CALIB_THRESHOLD))
return false;
di->adc_calib_cnt++;
save_coffset = rk818_bat_get_coffset(di);
for (i = 0; i < 5; i++) {
adc = rk818_bat_get_iadc(di);
if (!rk818_bat_chrg_online(di)) {
rk818_bat_set_coffset(di, save_coffset);
BAT_INFO("quit, charger plugout when calib adc\n");
return false;
}
coffset = rk818_bat_get_coffset(di);
rk818_bat_set_coffset(di, coffset + adc);
msleep(2000);
adc = rk818_bat_get_iadc(di);
if (abs(adc) < ADC_CALIB_THRESHOLD) {
coffset = rk818_bat_get_coffset(di);
ioffset = rk818_bat_get_ioffset(di);
di->poffset = coffset - ioffset;
rk818_bat_write(di, RK818_POFFSET_REG, di->poffset);
BAT_INFO("new offset:c=0x%x, i=0x%x, p=0x%x\n",
coffset, ioffset, di->poffset);
return true;
} else {
BAT_INFO("coffset calib again %d.., max_cnt=%d\n",
i, di->adc_calib_cnt);
rk818_bat_set_coffset(di, coffset);
msleep(2000);
}
}
rk818_bat_set_coffset(di, save_coffset);
return false;
}
static void rk818_bat_set_ioffset_sample(struct rk818_battery *di)
{
u8 ggcon;
ggcon = rk818_bat_read(di, RK818_GGCON_REG);
ggcon &= ~ADC_CAL_MIN_MSK;
ggcon |= ADC_CAL_8MIN;
rk818_bat_write(di, RK818_GGCON_REG, ggcon);
}
static void rk818_bat_set_ocv_sample(struct rk818_battery *di)
{
u8 ggcon;
ggcon = rk818_bat_read(di, RK818_GGCON_REG);
ggcon &= ~OCV_SAMP_MIN_MSK;
ggcon |= OCV_SAMP_8MIN;
rk818_bat_write(di, RK818_GGCON_REG, ggcon);
}
static void rk818_bat_restart_relax(struct rk818_battery *di)
{
u8 ggsts;
ggsts = rk818_bat_read(di, RK818_GGSTS_REG);
ggsts &= ~RELAX_VOL12_UPD_MSK;
rk818_bat_write(di, RK818_GGSTS_REG, ggsts);
}
static void rk818_bat_set_relax_sample(struct rk818_battery *di)
{
u8 buf;
int enter_thres, exit_thres;
struct battery_platform_data *pdata = di->pdata;
enter_thres = pdata->sleep_enter_current * 1000 / 1506 / DIV(di->res_div);
exit_thres = pdata->sleep_exit_current * 1000 / 1506 / DIV(di->res_div);
/* set relax enter and exit threshold */
buf = enter_thres & 0xff;
rk818_bat_write(di, RK818_RELAX_ENTRY_THRES_REGL, buf);
buf = (enter_thres >> 8) & 0xff;
rk818_bat_write(di, RK818_RELAX_ENTRY_THRES_REGH, buf);
buf = exit_thres & 0xff;
rk818_bat_write(di, RK818_RELAX_EXIT_THRES_REGL, buf);
buf = (exit_thres >> 8) & 0xff;
rk818_bat_write(di, RK818_RELAX_EXIT_THRES_REGH, buf);
/* reset relax update state */
rk818_bat_restart_relax(di);
DBG("<%s>. sleep_enter_current = %d, sleep_exit_current = %d\n",
__func__, pdata->sleep_enter_current, pdata->sleep_exit_current);
}
static bool is_rk818_bat_exist(struct rk818_battery *di)
{
return (rk818_bat_read(di, RK818_SUP_STS_REG) & BAT_EXS) ? true : false;
}
static bool is_rk818_bat_first_pwron(struct rk818_battery *di)
{
u8 buf;
buf = rk818_bat_read(di, RK818_GGSTS_REG);
if (buf & BAT_CON) {
buf &= ~BAT_CON;
rk818_bat_write(di, RK818_GGSTS_REG, buf);
return true;
}
return false;
}
static u8 rk818_bat_get_pwroff_min(struct rk818_battery *di)
{
u8 cur, last;
cur = rk818_bat_read(di, RK818_NON_ACT_TIMER_CNT_REG);
last = rk818_bat_read(di, RK818_NON_ACT_TIMER_CNT_SAVE_REG);
rk818_bat_write(di, RK818_NON_ACT_TIMER_CNT_SAVE_REG, cur);
return (cur != last) ? cur : 0;
}
static u8 is_rk818_bat_initialized(struct rk818_battery *di)
{
u8 val = rk818_bat_read(di, RK818_MISC_MARK_REG);
if (val & FG_INIT) {
val &= ~FG_INIT;
rk818_bat_write(di, RK818_MISC_MARK_REG, val);
return true;
} else {
return false;
}
}
static bool is_rk818_bat_ocv_valid(struct rk818_battery *di)
{
return (!di->is_initialized && di->pwroff_min >= 30) ? true : false;
}
static void rk818_bat_init_age_algorithm(struct rk818_battery *di)
{
int age_level, ocv_soc, ocv_cap, ocv_vol;
if (di->is_first_power_on || is_rk818_bat_ocv_valid(di)) {
DBG("<%s> enter.\n", __func__);
ocv_vol = rk818_bat_get_ocv_voltage(di);
ocv_soc = rk818_bat_vol_to_ocvsoc(di, ocv_vol);
ocv_cap = rk818_bat_vol_to_ocvcap(di, ocv_vol);
if (ocv_soc < 20) {
di->age_voltage = ocv_vol;
di->age_ocv_cap = ocv_cap;
di->age_ocv_soc = ocv_soc;
di->age_adjust_cap = 0;
if (ocv_soc <= 0)
di->age_level = 100;
else if (ocv_soc < 5)
di->age_level = 95;
else if (ocv_soc < 10)
di->age_level = 90;
else
di->age_level = 80;
age_level = rk818_bat_get_age_level(di);
if (age_level > di->age_level) {
di->age_allow_update = false;
age_level -= 5;
if (age_level <= 80)
age_level = 80;
rk818_bat_save_age_level(di, age_level);
} else {
di->age_allow_update = true;
di->age_keep_sec = get_boot_sec();
}
BAT_INFO("init_age_algorithm: "
"age_vol:%d, age_ocv_cap:%d, "
"age_ocv_soc:%d, old_age_level:%d, "
"age_allow_update:%d, new_age_level:%d\n",
di->age_voltage, di->age_ocv_cap,
ocv_soc, age_level, di->age_allow_update,
di->age_level);
}
}
}
static enum power_supply_property rk818_bat_props[] = {
POWER_SUPPLY_PROP_CURRENT_NOW,
POWER_SUPPLY_PROP_VOLTAGE_NOW,
POWER_SUPPLY_PROP_PRESENT,
POWER_SUPPLY_PROP_HEALTH,
POWER_SUPPLY_PROP_CAPACITY,
POWER_SUPPLY_PROP_CAPACITY_LEVEL,
POWER_SUPPLY_PROP_TEMP,
POWER_SUPPLY_PROP_STATUS,
POWER_SUPPLY_PROP_CHARGE_COUNTER,
POWER_SUPPLY_PROP_CHARGE_FULL,
POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
POWER_SUPPLY_PROP_TIME_TO_FULL_NOW,
POWER_SUPPLY_PROP_VOLTAGE_MAX,
POWER_SUPPLY_PROP_CURRENT_MAX,
};
static int rk818_bat_get_usb_psy(struct device *dev, void *data)
{
struct rk818_battery *di = data;
struct power_supply *psy = dev_get_drvdata(dev);
if (psy->desc->type == POWER_SUPPLY_TYPE_USB) {
di->usb_psy = psy;
return 1;
}
return 0;
}
static int rk818_bat_get_ac_psy(struct device *dev, void *data)
{
struct rk818_battery *di = data;
struct power_supply *psy = dev_get_drvdata(dev);
if (psy->desc->type == POWER_SUPPLY_TYPE_MAINS) {
di->ac_psy = psy;
return 1;
}
return 0;
}
static void rk818_bat_get_chrg_psy(struct rk818_battery *di)
{
if (!di->usb_psy)
class_for_each_device(power_supply_class, NULL, (void *)di,
rk818_bat_get_usb_psy);
if (!di->ac_psy)
class_for_each_device(power_supply_class, NULL, (void *)di,
rk818_bat_get_ac_psy);
}
static int rk818_bat_get_charge_state(struct rk818_battery *di)
{
union power_supply_propval val;
int ret;
if (!di->usb_psy || !di->ac_psy)
rk818_bat_get_chrg_psy(di);
if (di->usb_psy) {
ret = di->usb_psy->desc->get_property(di->usb_psy,
POWER_SUPPLY_PROP_ONLINE,
&val);
if (!ret)
di->usb_in = val.intval;
}
if (di->ac_psy) {
ret = di->ac_psy->desc->get_property(di->ac_psy,
POWER_SUPPLY_PROP_ONLINE,
&val);
if (!ret)
di->ac_in = val.intval;
}
DBG("%s: ac_online=%d, usb_online=%d\n",
__func__, di->ac_in, di->usb_in);
return (di->usb_in || di->ac_in);
}
static int rk818_get_capacity_leve(struct rk818_battery *di)
{
if (di->pdata->bat_mode == MODE_VIRTUAL)
return POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
if (di->dsoc < 1)
return POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
else if (di->dsoc <= 20)
return POWER_SUPPLY_CAPACITY_LEVEL_LOW;
else if (di->dsoc <= 70)
return POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
else if (di->dsoc <= 90)
return POWER_SUPPLY_CAPACITY_LEVEL_HIGH;
else
return POWER_SUPPLY_CAPACITY_LEVEL_FULL;
}
static int rk818_battery_time_to_full(struct rk818_battery *di)
{
int time_sec;
int cap_temp;
if (di->pdata->bat_mode == MODE_VIRTUAL) {
time_sec = 3600;
} else if (di->voltage_avg > 0) {
cap_temp = di->pdata->design_capacity - di->remain_cap;
if (cap_temp < 0)
cap_temp = 0;
time_sec = (3600 * cap_temp) / di->voltage_avg;
} else {
time_sec = 3600 * 24; /* One day */
}
return time_sec;
}
static int rk818_battery_get_property(struct power_supply *psy,
enum power_supply_property psp,
union power_supply_propval *val)
{
struct rk818_battery *di = power_supply_get_drvdata(psy);
switch (psp) {
case POWER_SUPPLY_PROP_CURRENT_NOW:
val->intval = di->current_avg * 1000;/*uA*/
if (di->pdata->bat_mode == MODE_VIRTUAL)
val->intval = VIRTUAL_CURRENT * 1000;
break;
case POWER_SUPPLY_PROP_VOLTAGE_NOW:
val->intval = di->voltage_avg * 1000;/*uV*/
if (di->pdata->bat_mode == MODE_VIRTUAL)
val->intval = VIRTUAL_VOLTAGE * 1000;
break;
case POWER_SUPPLY_PROP_PRESENT:
val->intval = is_rk818_bat_exist(di);
if (di->pdata->bat_mode == MODE_VIRTUAL)
val->intval = VIRTUAL_PRESET;
break;
case POWER_SUPPLY_PROP_CAPACITY:
val->intval = di->dsoc;
if (di->pdata->bat_mode == MODE_VIRTUAL)
val->intval = VIRTUAL_SOC;
DBG("<%s>. report dsoc: %d\n", __func__, val->intval);
break;
case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
val->intval = rk818_get_capacity_leve(di);
break;
case POWER_SUPPLY_PROP_HEALTH:
val->intval = POWER_SUPPLY_HEALTH_GOOD;
break;
case POWER_SUPPLY_PROP_TEMP:
val->intval = di->temperature;
if (di->pdata->bat_mode == MODE_VIRTUAL)
val->intval = VIRTUAL_TEMPERATURE;
break;
case POWER_SUPPLY_PROP_STATUS:
if (di->pdata->bat_mode == MODE_VIRTUAL)
val->intval = VIRTUAL_STATUS;
else if (di->dsoc == 100)
val->intval = POWER_SUPPLY_STATUS_FULL;
else if (rk818_bat_get_charge_state(di))
val->intval = POWER_SUPPLY_STATUS_CHARGING;
else
val->intval = POWER_SUPPLY_STATUS_DISCHARGING;
break;
case POWER_SUPPLY_PROP_CHARGE_COUNTER:
val->intval = di->charge_count;
break;
case POWER_SUPPLY_PROP_CHARGE_FULL:
case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
val->intval = di->pdata->design_capacity * 1000;/* uAh */
break;
case POWER_SUPPLY_PROP_TIME_TO_FULL_NOW:
val->intval = rk818_battery_time_to_full(di);
break;
case POWER_SUPPLY_PROP_VOLTAGE_MAX:
val->intval = di->voltage_max;
break;
case POWER_SUPPLY_PROP_CURRENT_MAX:
val->intval = di->current_max;
break;
default:
return -EINVAL;
}
return 0;
}
static const struct power_supply_desc rk818_bat_desc = {
.name = "battery",
.type = POWER_SUPPLY_TYPE_BATTERY,
.properties = rk818_bat_props,
.num_properties = ARRAY_SIZE(rk818_bat_props),
.get_property = rk818_battery_get_property,
};
static int rk818_bat_init_power_supply(struct rk818_battery *di)
{
struct power_supply_config psy_cfg = { .drv_data = di, };
di->bat = devm_power_supply_register(di->dev, &rk818_bat_desc, &psy_cfg);
if (IS_ERR(di->bat)) {
dev_err(di->dev, "register bat power supply fail\n");
return PTR_ERR(di->bat);
}
return 0;
}
static void rk818_bat_save_cap(struct rk818_battery *di, int cap)
{
u8 buf;
static u32 old_cap;
if (cap >= di->qmax)
cap = di->qmax;
if (cap <= 0)
cap = 0;
if (old_cap == cap)
return;
old_cap = cap;
buf = (cap >> 24) & 0xff;
rk818_bat_write(di, RK818_REMAIN_CAP_REG3, buf);
buf = (cap >> 16) & 0xff;
rk818_bat_write(di, RK818_REMAIN_CAP_REG2, buf);
buf = (cap >> 8) & 0xff;
rk818_bat_write(di, RK818_REMAIN_CAP_REG1, buf);
buf = (cap >> 0) & 0xff;
rk818_bat_write(di, RK818_REMAIN_CAP_REG0, buf);
}
static int rk818_bat_get_prev_cap(struct rk818_battery *di)
{
int val = 0;
val |= rk818_bat_read(di, RK818_REMAIN_CAP_REG3) << 24;
val |= rk818_bat_read(di, RK818_REMAIN_CAP_REG2) << 16;
val |= rk818_bat_read(di, RK818_REMAIN_CAP_REG1) << 8;
val |= rk818_bat_read(di, RK818_REMAIN_CAP_REG0) << 0;
return val;
}
static void rk818_bat_save_fcc(struct rk818_battery *di, u32 fcc)
{
u8 buf;
buf = (fcc >> 24) & 0xff;
rk818_bat_write(di, RK818_NEW_FCC_REG3, buf);
buf = (fcc >> 16) & 0xff;
rk818_bat_write(di, RK818_NEW_FCC_REG2, buf);
buf = (fcc >> 8) & 0xff;
rk818_bat_write(di, RK818_NEW_FCC_REG1, buf);
buf = (fcc >> 0) & 0xff;
rk818_bat_write(di, RK818_NEW_FCC_REG0, buf);
BAT_INFO("save fcc: %d\n", fcc);
}
static int rk818_bat_get_fcc(struct rk818_battery *di)
{
u32 fcc = 0;
fcc |= rk818_bat_read(di, RK818_NEW_FCC_REG3) << 24;
fcc |= rk818_bat_read(di, RK818_NEW_FCC_REG2) << 16;
fcc |= rk818_bat_read(di, RK818_NEW_FCC_REG1) << 8;
fcc |= rk818_bat_read(di, RK818_NEW_FCC_REG0) << 0;
if (fcc < MIN_FCC) {
BAT_INFO("invalid fcc(%d), use design cap", fcc);
fcc = di->pdata->design_capacity;
rk818_bat_save_fcc(di, fcc);
} else if (fcc > di->pdata->design_qmax) {
BAT_INFO("invalid fcc(%d), use qmax", fcc);
fcc = di->pdata->design_qmax;
rk818_bat_save_fcc(di, fcc);
}
return fcc;
}
static void rk818_bat_init_coulomb_cap(struct rk818_battery *di, u32 capacity)
{
u8 buf;
u32 cap;
cap = capacity * 2390 / DIV(di->res_div);
buf = (cap >> 24) & 0xff;
rk818_bat_write(di, RK818_GASCNT_CAL_REG3, buf);
buf = (cap >> 16) & 0xff;
rk818_bat_write(di, RK818_GASCNT_CAL_REG2, buf);
buf = (cap >> 8) & 0xff;
rk818_bat_write(di, RK818_GASCNT_CAL_REG1, buf);
buf = ((cap >> 0) & 0xff);
rk818_bat_write(di, RK818_GASCNT_CAL_REG0, buf);
DBG("<%s>. new coulomb cap = %d\n", __func__, capacity);
di->remain_cap = capacity;
di->rsoc = rk818_bat_get_rsoc(di);
}
static void rk818_bat_save_dsoc(struct rk818_battery *di, u8 save_soc)
{
static int last_soc = -1;
if (last_soc != save_soc) {
rk818_bat_write(di, RK818_SOC_REG, save_soc);
last_soc = save_soc;
}
}
static int rk818_bat_get_prev_dsoc(struct rk818_battery *di)
{
return rk818_bat_read(di, RK818_SOC_REG);
}
static void rk818_bat_save_reboot_cnt(struct rk818_battery *di, u8 save_cnt)
{
rk818_bat_write(di, RK818_REBOOT_CNT_REG, save_cnt);
}
static int rk818_bat_fb_notifier(struct notifier_block *nb,
unsigned long event, void *data)
{
struct rk818_battery *di;
struct fb_event *evdata = data;
if (event != FB_EVENT_BLANK)
return NOTIFY_DONE;
di = container_of(nb, struct rk818_battery, fb_nb);
di->fb_blank = *(int *)evdata->data;
return NOTIFY_OK;
}
static int rk818_bat_register_fb_notify(struct rk818_battery *di)
{
memset(&di->fb_nb, 0, sizeof(di->fb_nb));
di->fb_nb.notifier_call = rk818_bat_fb_notifier;
return fb_register_client(&di->fb_nb);
}
static int rk818_bat_unregister_fb_notify(struct rk818_battery *di)
{
return fb_unregister_client(&di->fb_nb);
}
static u8 rk818_bat_get_halt_cnt(struct rk818_battery *di)
{
return rk818_bat_read(di, RK818_HALT_CNT_REG);
}
static void rk818_bat_inc_halt_cnt(struct rk818_battery *di)
{
u8 cnt;
cnt = rk818_bat_read(di, RK818_HALT_CNT_REG);
rk818_bat_write(di, RK818_HALT_CNT_REG, ++cnt);
}
static bool is_rk818_bat_last_halt(struct rk818_battery *di)
{
int pre_cap = rk818_bat_get_prev_cap(di);
int now_cap = rk818_bat_get_coulomb_cap(di);
/* over 10%: system halt last time */
if (abs(now_cap - pre_cap) > (di->fcc / 10)) {
rk818_bat_inc_halt_cnt(di);
return true;
} else {
return false;
}
}
static void rk818_bat_first_pwron(struct rk818_battery *di)
{
int ocv_vol;
rk818_bat_save_fcc(di, di->design_cap);
ocv_vol = rk818_bat_get_ocv_voltage(di);
di->fcc = rk818_bat_get_fcc(di);
di->nac = rk818_bat_vol_to_ocvcap(di, ocv_vol);
di->rsoc = rk818_bat_vol_to_ocvsoc(di, ocv_vol);
di->dsoc = di->rsoc;
di->is_first_on = true;
BAT_INFO("first on: dsoc=%d, rsoc=%d cap=%d, fcc=%d, ov=%d\n",
di->dsoc, di->rsoc, di->nac, di->fcc, ocv_vol);
}
static void rk818_bat_not_first_pwron(struct rk818_battery *di)
{
int now_cap, pre_soc, pre_cap, ocv_cap, ocv_soc, ocv_vol;
di->fcc = rk818_bat_get_fcc(di);
pre_soc = rk818_bat_get_prev_dsoc(di);
pre_cap = rk818_bat_get_prev_cap(di);
now_cap = rk818_bat_get_coulomb_cap(di);
di->is_halt = is_rk818_bat_last_halt(di);
di->halt_cnt = rk818_bat_get_halt_cnt(di);
di->is_initialized = is_rk818_bat_initialized(di);
di->is_ocv_calib = is_rk818_bat_ocv_valid(di);
if (di->is_initialized) {
BAT_INFO("initialized yet..\n");
goto finish;
} else if (di->is_halt) {
BAT_INFO("system halt last time... cap: pre=%d, now=%d\n",
pre_cap, now_cap);
if (now_cap < 0)
now_cap = 0;
rk818_bat_init_coulomb_cap(di, now_cap);
pre_cap = now_cap;
pre_soc = di->rsoc;
goto finish;
} else if (di->is_ocv_calib) {
ocv_vol = rk818_bat_get_ocv_voltage(di);
ocv_soc = rk818_bat_vol_to_ocvsoc(di, ocv_vol);
ocv_cap = rk818_bat_vol_to_ocvcap(di, ocv_vol);
pre_cap = ocv_cap;
di->ocv_pre_dsoc = pre_soc;
di->ocv_new_dsoc = ocv_soc;
if (abs(ocv_soc - pre_soc) >= di->pdata->max_soc_offset) {
di->ocv_pre_dsoc = pre_soc;
di->ocv_new_dsoc = ocv_soc;
di->is_max_soc_offset = true;
BAT_INFO("trigger max soc offset, dsoc: %d -> %d\n",
pre_soc, ocv_soc);
pre_soc = ocv_soc;
}
BAT_INFO("OCV calib: cap=%d, rsoc=%d\n", ocv_cap, ocv_soc);
} else if (di->pwroff_min > 0) {
ocv_vol = rk818_bat_get_ocv_voltage(di);
ocv_soc = rk818_bat_vol_to_ocvsoc(di, ocv_vol);
ocv_cap = rk818_bat_vol_to_ocvcap(di, ocv_vol);
di->force_pre_dsoc = pre_soc;
di->force_new_dsoc = ocv_soc;
if (abs(ocv_soc - pre_soc) >= 80) {
di->is_force_calib = true;
BAT_INFO("dsoc force calib: %d -> %d\n",
pre_soc, ocv_soc);
pre_soc = ocv_soc;
pre_cap = ocv_cap;
}
}
finish:
di->dsoc = pre_soc;
di->nac = pre_cap;
if (di->nac < 0)
di->nac = 0;
BAT_INFO("dsoc=%d cap=%d v=%d ov=%d rv=%d min=%d psoc=%d pcap=%d\n",
di->dsoc, di->nac, rk818_bat_get_avg_voltage(di),
rk818_bat_get_ocv_voltage(di), rk818_bat_get_relax_voltage(di),
di->pwroff_min, rk818_bat_get_prev_dsoc(di),
rk818_bat_get_prev_cap(di));
}
static bool rk818_bat_ocv_sw_reset(struct rk818_battery *di)
{
u8 buf;
buf = rk818_bat_read(di, RK818_MISC_MARK_REG);
if (((buf & FG_RESET_LATE) && di->pwroff_min >= 30) ||
(buf & FG_RESET_NOW)) {
buf &= ~FG_RESET_LATE;
buf &= ~FG_RESET_NOW;
rk818_bat_write(di, RK818_MISC_MARK_REG, buf);
BAT_INFO("manual reset fuel gauge\n");
return true;
} else {
return false;
}
}
static void rk818_bat_init_rsoc(struct rk818_battery *di)
{
di->is_first_power_on = is_rk818_bat_first_pwron(di);
di->is_sw_reset = rk818_bat_ocv_sw_reset(di);
di->pwroff_min = rk818_bat_get_pwroff_min(di);
if (di->is_first_power_on || di->is_sw_reset)
rk818_bat_first_pwron(di);
else
rk818_bat_not_first_pwron(di);
}
static u8 rk818_bat_get_chrg_status(struct rk818_battery *di)
{
u8 status;
status = rk818_bat_read(di, RK818_SUP_STS_REG) & CHRG_STATUS_MSK;
switch (status) {
case CHARGE_OFF:
DBG("CHARGE-OFF ...\n");
break;
case DEAD_CHARGE:
BAT_INFO("DEAD CHARGE...\n");
break;
case TRICKLE_CHARGE:
BAT_INFO("TRICKLE CHARGE...\n ");
break;
case CC_OR_CV:
DBG("CC or CV...\n");
break;
case CHARGE_FINISH:
DBG("CHARGE FINISH...\n");
break;
case USB_OVER_VOL:
BAT_INFO("USB OVER VOL...\n");
break;
case BAT_TMP_ERR:
BAT_INFO("BAT TMP ERROR...\n");
break;
case TIMER_ERR:
BAT_INFO("TIMER ERROR...\n");
break;
case USB_EXIST:
BAT_INFO("USB EXIST...\n");
break;
case USB_EFF:
BAT_INFO("USB EFF...\n");
break;
default:
return -EINVAL;
}
return status;
}
static u8 rk818_bat_parse_fb_temperature(struct rk818_battery *di)
{
u8 reg;
int index, fb_temp;
reg = DEFAULT_FB_TEMP;
fb_temp = di->pdata->fb_temp;
for (index = 0; index < ARRAY_SIZE(feedback_temp_array); index++) {
if (fb_temp < feedback_temp_array[index])
break;
reg = (index << FB_TEMP_SHIFT);
}
return reg;
}
static u8 rk818_bat_parse_finish_ma(struct rk818_battery *di, int fcc)
{
u8 ma;
if (di->pdata->sample_res == SAMPLE_RES_10MR)
ma = FINISH_100MA;
else if (fcc > 5000)
ma = FINISH_250MA;
else if (fcc >= 4000)
ma = FINISH_200MA;
else if (fcc >= 3000)
ma = FINISH_150MA;
else
ma = FINISH_100MA;
return ma;
}
static void rk818_bat_init_chrg_config(struct rk818_battery *di)
{
u8 usb_ctrl, chrg_ctrl2, chrg_ctrl3;
u8 thermal, ggcon, finish_ma, fb_temp;
finish_ma = rk818_bat_parse_finish_ma(di, di->fcc);
fb_temp = rk818_bat_parse_fb_temperature(di);
ggcon = rk818_bat_read(di, RK818_GGCON_REG);
thermal = rk818_bat_read(di, RK818_THERMAL_REG);
usb_ctrl = rk818_bat_read(di, RK818_USB_CTRL_REG);
chrg_ctrl2 = rk818_bat_read(di, RK818_CHRG_CTRL_REG2);
chrg_ctrl3 = rk818_bat_read(di, RK818_CHRG_CTRL_REG3);
/* set charge finish current */
chrg_ctrl3 |= CHRG_TERM_DIG_SIGNAL;
chrg_ctrl2 &= ~FINISH_CUR_MSK;
chrg_ctrl2 |= finish_ma;
/* disable cccv mode */
chrg_ctrl3 &= ~CHRG_TIMER_CCCV_EN;
/* set feed back temperature */
if (di->pdata->fb_temp)
usb_ctrl |= CHRG_CT_EN;
else
usb_ctrl &= ~CHRG_CT_EN;
thermal &= ~FB_TEMP_MSK;
thermal |= fb_temp;
/* adc current mode */
ggcon |= ADC_CUR_MODE;
rk818_bat_write(di, RK818_GGCON_REG, ggcon);
rk818_bat_write(di, RK818_THERMAL_REG, thermal);
rk818_bat_write(di, RK818_USB_CTRL_REG, usb_ctrl);
rk818_bat_write(di, RK818_CHRG_CTRL_REG2, chrg_ctrl2);
rk818_bat_write(di, RK818_CHRG_CTRL_REG3, chrg_ctrl3);
}
static void rk818_bat_init_coffset(struct rk818_battery *di)
{
int coffset, ioffset;
ioffset = rk818_bat_get_ioffset(di);
di->poffset = rk818_bat_read(di, RK818_POFFSET_REG);
if (!di->poffset)
di->poffset = DEFAULT_POFFSET;
coffset = di->poffset + ioffset;
if (coffset < INVALID_COFFSET_MIN || coffset > INVALID_COFFSET_MAX)
coffset = DEFAULT_COFFSET;
rk818_bat_set_coffset(di, coffset);
DBG("<%s>. offset: p=0x%x, i=0x%x, c=0x%x\n",
__func__, di->poffset, ioffset, rk818_bat_get_coffset(di));
}
static void rk818_bat_caltimer_isr(struct timer_list *t)
{
struct rk818_battery *di = from_timer(di, t, caltimer);
mod_timer(&di->caltimer, jiffies + MINUTE(8) * HZ);
queue_delayed_work(di->bat_monitor_wq, &di->calib_delay_work,
msecs_to_jiffies(10));
}
static void rk818_bat_internal_calib(struct work_struct *work)
{
int ioffset, poffset;
struct rk818_battery *di = container_of(work,
struct rk818_battery, calib_delay_work.work);
/* calib coffset */
poffset = rk818_bat_read(di, RK818_POFFSET_REG);
if (poffset)
di->poffset = poffset;
else
di->poffset = DEFAULT_POFFSET;
ioffset = rk818_bat_get_ioffset(di);
rk818_bat_set_coffset(di, ioffset + di->poffset);
/* calib voltage kb */
rk818_bat_init_voltage_kb(di);
BAT_INFO("caltimer: ioffset=0x%x, coffset=0x%x, poffset=%d\n",
ioffset, rk818_bat_get_coffset(di), di->poffset);
}
static void rk818_bat_init_caltimer(struct rk818_battery *di)
{
timer_setup(&di->caltimer, rk818_bat_caltimer_isr, 0);
di->caltimer.expires = jiffies + MINUTE(8) * HZ;
add_timer(&di->caltimer);
INIT_DELAYED_WORK(&di->calib_delay_work, rk818_bat_internal_calib);
}
static void rk818_bat_init_zero_table(struct rk818_battery *di)
{
int i, diff, min, max;
size_t ocv_size, length;
ocv_size = di->pdata->ocv_size;
length = sizeof(di->pdata->zero_table) * ocv_size;
di->pdata->zero_table =
devm_kzalloc(di->dev, length, GFP_KERNEL);
if (!di->pdata->zero_table) {
di->pdata->zero_table = di->pdata->ocv_table;
dev_err(di->dev, "malloc zero table fail\n");
return;
}
min = di->pdata->pwroff_vol,
max = di->pdata->ocv_table[ocv_size - 4];
diff = (max - min) / DIV(ocv_size - 1);
for (i = 0; i < ocv_size; i++)
di->pdata->zero_table[i] = min + (i * diff);
for (i = 0; i < ocv_size; i++)
DBG("zero[%d] = %d\n", i, di->pdata->zero_table[i]);
for (i = 0; i < ocv_size; i++)
DBG("ocv[%d] = %d\n", i, di->pdata->ocv_table[i]);
}
static void rk818_bat_calc_sm_linek(struct rk818_battery *di)
{
int linek, current_avg;
u8 diff, delta;
delta = abs(di->dsoc - di->rsoc);
diff = delta * 3;/* speed:3/4 */
current_avg = rk818_bat_get_avg_current(di);
if (current_avg >= 0) {
if (di->dsoc < di->rsoc)
linek = 1000 * (delta + diff) / DIV(diff);
else if (di->dsoc > di->rsoc)
linek = 1000 * diff / DIV(delta + diff);
else
linek = 1000;
di->dbg_meet_soc = (di->dsoc >= di->rsoc) ?
(di->dsoc + diff) : (di->rsoc + diff);
} else {
if (di->dsoc < di->rsoc)
linek = -1000 * diff / DIV(delta + diff);
else if (di->dsoc > di->rsoc)
linek = -1000 * (delta + diff) / DIV(diff);
else
linek = -1000;
di->dbg_meet_soc = (di->dsoc >= di->rsoc) ?
(di->dsoc - diff) : (di->rsoc - diff);
}
di->sm_linek = linek;
di->sm_remain_cap = di->remain_cap;
di->dbg_calc_dsoc = di->dsoc;
di->dbg_calc_rsoc = di->rsoc;
DBG("<%s>.diff=%d, k=%d, cur=%d\n", __func__, diff, linek, current_avg);
}
static void rk818_bat_calc_zero_linek(struct rk818_battery *di)
{
int dead_voltage, ocv_voltage;
int voltage_avg, current_avg, vsys;
int ocv_cap, dead_cap, xsoc;
int ocv_soc, dead_soc;
int pwroff_vol;
int i, cnt = 0, vol_old, vol_now;
int org_linek = 0, min_gap_xsoc;
if ((abs(di->current_avg) < 500) && (di->dsoc > 10))
pwroff_vol = di->pdata->pwroff_vol + 50;
else
pwroff_vol = di->pdata->pwroff_vol;
do {
vol_old = rk818_bat_get_avg_voltage(di);
msleep(100);
vol_now = rk818_bat_get_avg_voltage(di);
cnt++;
} while ((vol_old == vol_now) && (cnt < 11));
voltage_avg = 0;
for (i = 0; i < 10; i++) {
voltage_avg += rk818_bat_get_avg_voltage(di);
msleep(100);
}
/* calc estimate ocv voltage */
voltage_avg /= 10;
current_avg = rk818_bat_get_avg_current(di);
vsys = voltage_avg + (current_avg * DEF_PWRPATH_RES) / 1000;
DBG("ZERO0: shtd_vol: org = %d, now = %d, zero_reserve_dsoc = %d\n",
di->pdata->pwroff_vol, pwroff_vol, di->pdata->zero_reserve_dsoc);
dead_voltage = pwroff_vol - current_avg *
(di->bat_res + DEF_PWRPATH_RES) / 1000;
ocv_voltage = voltage_avg - (current_avg * di->bat_res) / 1000;
DBG("ZERO0: dead_voltage(shtd) = %d, ocv_voltage(now) = %d\n",
dead_voltage, ocv_voltage);
/* calc estimate soc and cap */
dead_soc = rk818_bat_vol_to_zerosoc(di, dead_voltage);
dead_cap = rk818_bat_vol_to_zerocap(di, dead_voltage);
DBG("ZERO0: dead_soc = %d, dead_cap = %d\n",
dead_soc, dead_cap);
ocv_soc = rk818_bat_vol_to_zerosoc(di, ocv_voltage);
ocv_cap = rk818_bat_vol_to_zerocap(di, ocv_voltage);
DBG("ZERO0: ocv_soc = %d, ocv_cap = %d\n",
ocv_soc, ocv_cap);
/* xsoc: available rsoc */
xsoc = ocv_soc - dead_soc;
/* min_gap_xsoc: reserve xsoc */
if (abs(current_avg) > ZERO_LOAD_LVL1)
min_gap_xsoc = ZERO_GAP_XSOC3;
else if (abs(current_avg) > ZERO_LOAD_LVL2)
min_gap_xsoc = ZERO_GAP_XSOC2;
else
min_gap_xsoc = ZERO_GAP_XSOC1;
if ((xsoc <= 30) && (di->dsoc >= di->pdata->zero_reserve_dsoc))
min_gap_xsoc = min_gap_xsoc + ZERO_GAP_CALIB;
di->zero_remain_cap = di->remain_cap;
di->zero_timeout_cnt = 0;
if ((di->dsoc <= 1) && (xsoc > 0)) {
di->zero_linek = 400;
di->zero_drop_sec = 0;
} else if (xsoc >= 0) {
di->zero_drop_sec = 0;
di->zero_linek = (di->zero_dsoc + xsoc / 2) / DIV(xsoc);
org_linek = di->zero_linek;
/* battery energy mode to use up voltage */
if ((di->pdata->energy_mode) &&
(xsoc - di->dsoc >= ZERO_GAP_XSOC3) &&
(di->dsoc <= 10) && (di->zero_linek < 300)) {
di->zero_linek = 300;
DBG("ZERO-new: zero_linek adjust step0...\n");
/* reserve enough power yet, slow down any way */
} else if ((xsoc - di->dsoc >= min_gap_xsoc) ||
((xsoc - di->dsoc >= ZERO_GAP_XSOC2) &&
(di->dsoc <= 10) && (xsoc > 15))) {
if (xsoc <= 20 &&
di->dsoc >= di->pdata->zero_reserve_dsoc)
di->zero_linek = 1200;
else if (xsoc - di->dsoc >= 2 * min_gap_xsoc)
di->zero_linek = 400;
else if (xsoc - di->dsoc >= 3 + min_gap_xsoc)
di->zero_linek = 600;
else
di->zero_linek = 800;
DBG("ZERO-new: zero_linek adjust step1...\n");
/* control zero mode beginning enter */
} else if ((di->zero_linek > 1800) && (di->dsoc > 70)) {
di->zero_linek = 1800;
DBG("ZERO-new: zero_linek adjust step2...\n");
/* dsoc close to xsoc: it must reserve power */
} else if ((di->zero_linek > 1000) && (di->zero_linek < 1200)) {
di->zero_linek = 1200;
DBG("ZERO-new: zero_linek adjust step3...\n");
/* dsoc[5~15], dsoc < xsoc */
} else if ((di->dsoc <= 15 && di->dsoc > 5) &&
(di->zero_linek <= 1200)) {
/* slow down */
if (xsoc - di->dsoc >= min_gap_xsoc)
di->zero_linek = 800;
/* reserve power */
else
di->zero_linek = 1200;
DBG("ZERO-new: zero_linek adjust step4...\n");
/* dsoc[5, 100], dsoc < xsoc */
} else if ((di->zero_linek < 1000) && (di->dsoc >= 5)) {
if ((xsoc - di->dsoc) < min_gap_xsoc) {
/* reserve power */
di->zero_linek = 1200;
} else {
if (abs(di->current_avg) > 500)/* heavy */
di->zero_linek = 900;
else
di->zero_linek = 1000;
}
DBG("ZERO-new: zero_linek adjust step5...\n");
/* dsoc[0~5], dsoc < xsoc */
} else if ((di->zero_linek < 1000) && (di->dsoc <= 5)) {
if ((xsoc - di->dsoc) <= 3)
di->zero_linek = 1200;
else
di->zero_linek = 800;
DBG("ZERO-new: zero_linek adjust step6...\n");
}
} else {
/* xsoc < 0 */
di->zero_linek = 1000;
if (!di->zero_drop_sec)
di->zero_drop_sec = get_boot_sec();
if (base2sec(di->zero_drop_sec) >= WAIT_DSOC_DROP_SEC) {
DBG("ZERO0: t=%lu\n", base2sec(di->zero_drop_sec));
di->zero_drop_sec = 0;
di->dsoc--;
di->zero_dsoc = (di->dsoc + 1) * 1000 -
MIN_ACCURACY;
}
}
if (voltage_avg < pwroff_vol - 70) {
if (!di->shtd_drop_sec)
di->shtd_drop_sec = get_boot_sec();
if (base2sec(di->shtd_drop_sec) > WAIT_SHTD_DROP_SEC) {
BAT_INFO("voltage extreme low...soc:%d->0\n", di->dsoc);
di->shtd_drop_sec = 0;
di->dsoc = 0;
}
} else {
di->shtd_drop_sec = 0;
}
DBG("ZERO-new: org_linek=%d, zero_linek=%d, dsoc=%d, Xsoc=%d, "
"rsoc=%d, gap=%d, v=%d, vsys=%d\n"
"ZERO-new: di->zero_dsoc=%d, zero_remain_cap=%d, zero_drop=%ld, "
"sht_drop=%ld\n\n",
org_linek, di->zero_linek, di->dsoc, xsoc, di->rsoc,
min_gap_xsoc, voltage_avg, vsys, di->zero_dsoc, di->zero_remain_cap,
base2sec(di->zero_drop_sec), base2sec(di->shtd_drop_sec));
}
static void rk818_bat_finish_algo_prepare(struct rk818_battery *di)
{
di->finish_base = get_boot_sec();
if (!di->finish_base)
di->finish_base = 1;
}
static void rk818_bat_smooth_algo_prepare(struct rk818_battery *di)
{
int tmp_soc;
tmp_soc = di->sm_chrg_dsoc / 1000;
if (tmp_soc != di->dsoc)
di->sm_chrg_dsoc = di->dsoc * 1000;
tmp_soc = di->sm_dischrg_dsoc / 1000;
if (tmp_soc != di->dsoc)
di->sm_dischrg_dsoc =
(di->dsoc + 1) * 1000 - MIN_ACCURACY;
DBG("<%s>. tmp_soc=%d, dsoc=%d, dsoc:sm_dischrg=%d, sm_chrg=%d\n",
__func__, tmp_soc, di->dsoc, di->sm_dischrg_dsoc, di->sm_chrg_dsoc);
rk818_bat_calc_sm_linek(di);
}
static void rk818_bat_zero_algo_prepare(struct rk818_battery *di)
{
int tmp_dsoc;
di->zero_timeout_cnt = 0;
tmp_dsoc = di->zero_dsoc / 1000;
if (tmp_dsoc != di->dsoc)
di->zero_dsoc = (di->dsoc + 1) * 1000 - MIN_ACCURACY;
DBG("<%s>. first calc, reinit linek\n", __func__);
rk818_bat_calc_zero_linek(di);
}
static void rk818_bat_calc_zero_algorithm(struct rk818_battery *di)
{
int tmp_soc = 0, sm_delta_dsoc = 0;
tmp_soc = di->zero_dsoc / 1000;
if (tmp_soc == di->dsoc)
goto out;
DBG("<%s>. enter: dsoc=%d, rsoc=%d\n", __func__, di->dsoc, di->rsoc);
/* when discharge slow down, take sm chrg into calc */
if (di->dsoc < di->rsoc) {
/* take sm charge rest into calc */
tmp_soc = di->sm_chrg_dsoc / 1000;
if (tmp_soc == di->dsoc) {
sm_delta_dsoc = di->sm_chrg_dsoc - di->dsoc * 1000;
di->sm_chrg_dsoc = di->dsoc * 1000;
di->zero_dsoc += sm_delta_dsoc;
DBG("ZERO1: take sm chrg,delta=%d\n", sm_delta_dsoc);
}
}
/* when discharge speed up, take sm dischrg into calc */
if (di->dsoc > di->rsoc) {
/* take sm discharge rest into calc */
tmp_soc = di->sm_dischrg_dsoc / 1000;
if (tmp_soc == di->dsoc) {
sm_delta_dsoc = di->sm_dischrg_dsoc -
((di->dsoc + 1) * 1000 - MIN_ACCURACY);
di->sm_dischrg_dsoc = (di->dsoc + 1) * 1000 -
MIN_ACCURACY;
di->zero_dsoc += sm_delta_dsoc;
DBG("ZERO1: take sm dischrg,delta=%d\n", sm_delta_dsoc);
}
}
/* check overflow */
if (di->zero_dsoc > (di->dsoc + 1) * 1000 - MIN_ACCURACY) {
DBG("ZERO1: zero dsoc overflow: %d\n", di->zero_dsoc);
di->zero_dsoc = (di->dsoc + 1) * 1000 - MIN_ACCURACY;
}
/* check new dsoc */
tmp_soc = di->zero_dsoc / 1000;
if (tmp_soc != di->dsoc) {
/* avoid dsoc jump when heavy load */
if ((di->dsoc - tmp_soc) > 1) {
di->dsoc--;
di->zero_dsoc = (di->dsoc + 1) * 1000 - MIN_ACCURACY;
DBG("ZERO1: heavy load...\n");
} else {
di->dsoc = tmp_soc;
}
di->zero_drop_sec = 0;
}
out:
DBG("ZERO1: zero_dsoc(Y0)=%d, dsoc=%d, rsoc=%d, tmp_soc=%d\n",
di->zero_dsoc, di->dsoc, di->rsoc, tmp_soc);
DBG("ZERO1: sm_dischrg_dsoc=%d, sm_chrg_dsoc=%d\n",
di->sm_dischrg_dsoc, di->sm_chrg_dsoc);
}
static void rk818_bat_zero_algorithm(struct rk818_battery *di)
{
int delta_cap = 0, delta_soc = 0;
di->zero_timeout_cnt++;
delta_cap = di->zero_remain_cap - di->remain_cap;
delta_soc = di->zero_linek * (delta_cap * 100) / DIV(di->fcc);
DBG("ZERO1: zero_linek=%d, zero_dsoc(Y0)=%d, dsoc=%d, rsoc=%d\n"
"ZERO1: delta_soc(X0)=%d, delta_cap=%d, zero_remain_cap = %d\n"
"ZERO1: timeout_cnt=%d, sm_dischrg=%d, sm_chrg=%d\n\n",
di->zero_linek, di->zero_dsoc, di->dsoc, di->rsoc,
delta_soc, delta_cap, di->zero_remain_cap,
di->zero_timeout_cnt, di->sm_dischrg_dsoc, di->sm_chrg_dsoc);
if ((delta_soc >= MIN_ZERO_DSOC_ACCURACY) ||
(di->zero_timeout_cnt > MIN_ZERO_OVERCNT) ||
(di->zero_linek == 0)) {
DBG("ZERO1:--------- enter calc -----------\n");
di->zero_timeout_cnt = 0;
di->zero_dsoc -= delta_soc;
rk818_bat_calc_zero_algorithm(di);
rk818_bat_calc_zero_linek(di);
}
}
static void rk818_bat_dump_time_table(struct rk818_battery *di)
{
u8 i;
static int old_index;
static int old_min;
int mod = di->dsoc % 10;
int index = di->dsoc / 10;
u32 time;
if (rk818_bat_chrg_online(di))
time = base2min(di->plug_in_base);
else
time = base2min(di->plug_out_base);
if ((mod == 0) && (index > 0) && (old_index != index)) {
di->dbg_chrg_min[index - 1] = time - old_min;
old_min = time;
old_index = index;
}
for (i = 1; i < 11; i++)
DBG("Time[%d]=%d, ", (i * 10), di->dbg_chrg_min[i - 1]);
DBG("\n");
}
static void rk818_bat_debug_info(struct rk818_battery *di)
{
u8 sup_tst, ggcon, ggsts, vb_mod, ts_ctrl, reboot_cnt;
u8 usb_ctrl, chrg_ctrl1, thermal;
u8 int_sts1, int_sts2;
u8 int_msk1, int_msk2;
u8 chrg_ctrl2, chrg_ctrl3, rtc, misc, dcdc_en;
char *work_mode[] = {"ZERO", "FINISH", "UN", "UN", "SMOOTH"};
char *bat_mode[] = {"BAT", "VIRTUAL"};
if (rk818_bat_chrg_online(di))
di->plug_out_base = get_boot_sec();
else
di->plug_in_base = get_boot_sec();
rk818_bat_dump_time_table(di);
if (!dbg_enable)
return;
ts_ctrl = rk818_bat_read(di, RK818_TS_CTRL_REG);
misc = rk818_bat_read(di, RK818_MISC_MARK_REG);
ggcon = rk818_bat_read(di, RK818_GGCON_REG);
ggsts = rk818_bat_read(di, RK818_GGSTS_REG);
sup_tst = rk818_bat_read(di, RK818_SUP_STS_REG);
vb_mod = rk818_bat_read(di, RK818_VB_MON_REG);
usb_ctrl = rk818_bat_read(di, RK818_USB_CTRL_REG);
chrg_ctrl1 = rk818_bat_read(di, RK818_CHRG_CTRL_REG1);
chrg_ctrl2 = rk818_bat_read(di, RK818_CHRG_CTRL_REG2);
chrg_ctrl3 = rk818_bat_read(di, RK818_CHRG_CTRL_REG3);
rtc = rk818_bat_read(di, 0);
thermal = rk818_bat_read(di, RK818_THERMAL_REG);
int_sts1 = rk818_bat_read(di, RK818_INT_STS_REG1);
int_sts2 = rk818_bat_read(di, RK818_INT_STS_REG2);
int_msk1 = rk818_bat_read(di, RK818_INT_STS_MSK_REG1);
int_msk2 = rk818_bat_read(di, RK818_INT_STS_MSK_REG2);
dcdc_en = rk818_bat_read(di, RK818_DCDC_EN_REG);
reboot_cnt = rk818_bat_read(di, RK818_REBOOT_CNT_REG);
DBG("\n------- DEBUG REGS, [Ver: %s] -------------------\n"
"GGCON=0x%2x, GGSTS=0x%2x, RTC=0x%2x, DCDC_EN2=0x%2x\n"
"SUP_STS= 0x%2x, VB_MOD=0x%2x, USB_CTRL=0x%2x\n"
"THERMAL=0x%2x, MISC_MARK=0x%2x, TS_CTRL=0x%2x\n"
"CHRG_CTRL:REG1=0x%2x, REG2=0x%2x, REG3=0x%2x\n"
"INT_STS: REG1=0x%2x, REG2=0x%2x\n"
"INT_MSK: REG1=0x%2x, REG2=0x%2x\n",
DRIVER_VERSION, ggcon, ggsts, rtc, dcdc_en,
sup_tst, vb_mod, usb_ctrl,
thermal, misc, ts_ctrl,
chrg_ctrl1, chrg_ctrl2, chrg_ctrl3,
int_sts1, int_sts2, int_msk1, int_msk2
);
DBG("###############################################################\n"
"Dsoc=%d, Rsoc=%d, Vavg=%d, Iavg=%d, Cap=%d, Fcc=%d, d=%d\n"
"K=%d, Mode=%s, Oldcap=%d, Is=%d, Ip=%d, Vs=%d\n"
"fb_temp=%d, bat_temp=%d, sample_res=%d, USB=%d, DC=%d\n"
"off:i=0x%x, c=0x%x, p=%d, Rbat=%d, age_ocv_cap=%d, fb=%d, hot=%d\n"
"adp:finish=%lu, boot_min=%lu, sleep_min=%lu, adc=%d, Vsys=%d\n"
"bat:%s, meet: soc=%d, calc: dsoc=%d, rsoc=%d, Vocv=%d\n"
"pwr: dsoc=%d, rsoc=%d, vol=%d, halt: st=%d, cnt=%d, reboot=%d\n"
"ocv_c=%d: %d -> %d; max_c=%d: %d -> %d; force_c=%d: %d -> %d\n"
"min=%d, init=%d, sw=%d, below0=%d, first=%d, changed=%d\n"
"###############################################################\n",
di->dsoc, di->rsoc, di->voltage_avg, di->current_avg,
di->remain_cap, di->fcc, di->rsoc - di->dsoc,
di->sm_linek, work_mode[di->work_mode], di->sm_remain_cap,
di->res_div * chrg_cur_sel_array[chrg_ctrl1 & 0x0f],
chrg_cur_input_array[usb_ctrl & 0x0f],
chrg_vol_sel_array[(chrg_ctrl1 & 0x70) >> 4],
feedback_temp_array[(thermal & 0x0c) >> 2], di->temperature,
di->pdata->sample_res, di->usb_in, di->ac_in,
rk818_bat_get_ioffset(di),
rk818_bat_get_coffset(di), di->poffset, di->bat_res,
di->age_adjust_cap, di->fb_blank, !!(thermal & HOTDIE_STS),
base2min(di->finish_base),
base2min(di->boot_base), di->sleep_sum_sec / 60,
di->adc_allow_update,
di->voltage_avg + di->current_avg * DEF_PWRPATH_RES / 1000,
bat_mode[di->pdata->bat_mode], di->dbg_meet_soc, di->dbg_calc_dsoc,
di->dbg_calc_rsoc, di->voltage_ocv, di->dbg_pwr_dsoc,
di->dbg_pwr_rsoc, di->dbg_pwr_vol, di->is_halt, di->halt_cnt,
reboot_cnt, di->is_ocv_calib, di->ocv_pre_dsoc, di->ocv_new_dsoc,
di->is_max_soc_offset, di->max_pre_dsoc, di->max_new_dsoc,
di->is_force_calib, di->force_pre_dsoc, di->force_new_dsoc,
di->pwroff_min, di->is_initialized, di->is_sw_reset,
di->dbg_cap_low0, di->is_first_on, di->last_dsoc
);
}
static void rk818_bat_init_capacity(struct rk818_battery *di, u32 cap)
{
int delta_cap;
delta_cap = cap - di->remain_cap;
if (!delta_cap)
return;
di->age_adjust_cap += delta_cap;
rk818_bat_init_coulomb_cap(di, cap);
rk818_bat_smooth_algo_prepare(di);
rk818_bat_zero_algo_prepare(di);
}
static void rk818_bat_update_age_fcc(struct rk818_battery *di)
{
int fcc, remain_cap, age_keep_min, lock_fcc;
lock_fcc = rk818_bat_get_coulomb_cap(di);
remain_cap = lock_fcc - di->age_ocv_cap - di->age_adjust_cap;
age_keep_min = base2min(di->age_keep_sec);
DBG("%s: lock_fcc=%d, age_ocv_cap=%d, age_adjust_cap=%d, remain_cap=%d,"
"age_allow_update=%d, age_keep_min=%d\n",
__func__, lock_fcc, di->age_ocv_cap, di->age_adjust_cap, remain_cap,
di->age_allow_update, age_keep_min);
if ((di->chrg_status == CHARGE_FINISH) && (di->age_allow_update) &&
(age_keep_min < 1200)) {
di->age_allow_update = false;
fcc = remain_cap * 100 / DIV(100 - di->age_ocv_soc);
BAT_INFO("lock_fcc=%d, calc_cap=%d, age: soc=%d, cap=%d, "
"level=%d, fcc:%d->%d?\n",
lock_fcc, remain_cap, di->age_ocv_soc,
di->age_ocv_cap, di->age_level, di->fcc, fcc);
if ((fcc < di->qmax) && (fcc > MIN_FCC)) {
BAT_INFO("fcc:%d->%d!\n", di->fcc, fcc);
di->fcc = fcc;
rk818_bat_init_capacity(di, di->fcc);
rk818_bat_save_fcc(di, di->fcc);
rk818_bat_save_age_level(di, di->age_level);
}
}
}
static void rk818_bat_wait_finish_sig(struct rk818_battery *di)
{
int chrg_finish_vol = di->pdata->max_chrg_voltage;
if (!rk818_bat_chrg_online(di))
return;
if ((di->chrg_status == CHARGE_FINISH) && (di->adc_allow_update) &&
(di->voltage_avg > chrg_finish_vol - 150)) {
rk818_bat_update_age_fcc(di);
if (rk818_bat_adc_calib(di))
di->adc_allow_update = false;
}
}
static void rk818_bat_finish_algorithm(struct rk818_battery *di)
{
unsigned long finish_sec, soc_sec;
int plus_soc, finish_current, rest = 0;
/* rsoc */
if ((di->remain_cap != di->fcc) &&
(rk818_bat_get_chrg_status(di) == CHARGE_FINISH)) {
di->age_adjust_cap += (di->fcc - di->remain_cap);
rk818_bat_init_coulomb_cap(di, di->fcc);
}
/* dsoc */
if (di->dsoc < 100) {
if (!di->finish_base)
di->finish_base = get_boot_sec();
finish_current = (di->rsoc - di->dsoc) > FINISH_MAX_SOC_DELAY ?
FINISH_CHRG_CUR2 : FINISH_CHRG_CUR1;
finish_sec = base2sec(di->finish_base);
soc_sec = di->fcc * 3600 / 100 / DIV(finish_current);
plus_soc = finish_sec / DIV(soc_sec);
if (finish_sec > soc_sec) {
rest = finish_sec % soc_sec;
di->dsoc += plus_soc;
di->finish_base = get_boot_sec();
if (di->finish_base > rest)
di->finish_base = get_boot_sec() - rest;
}
DBG("<%s>.CHARGE_FINISH:dsoc<100,dsoc=%d\n"
"soc_time=%lu, sec_finish=%lu, plus_soc=%d, rest=%d\n",
__func__, di->dsoc, soc_sec, finish_sec, plus_soc, rest);
}
}
static void rk818_bat_calc_smooth_dischrg(struct rk818_battery *di)
{
int tmp_soc = 0, sm_delta_dsoc = 0, zero_delta_dsoc = 0;
tmp_soc = di->sm_dischrg_dsoc / 1000;
if (tmp_soc == di->dsoc)
goto out;
DBG("<%s>. enter: dsoc=%d, rsoc=%d\n", __func__, di->dsoc, di->rsoc);
/* when dischrge slow down, take sm charge rest into calc */
if (di->dsoc < di->rsoc) {
tmp_soc = di->sm_chrg_dsoc / 1000;
if (tmp_soc == di->dsoc) {
sm_delta_dsoc = di->sm_chrg_dsoc - di->dsoc * 1000;
di->sm_chrg_dsoc = di->dsoc * 1000;
di->sm_dischrg_dsoc += sm_delta_dsoc;
DBG("<%s>. take sm dischrg, delta=%d\n",
__func__, sm_delta_dsoc);
}
}
/* when discharge speed up, take zero discharge rest into calc */
if (di->dsoc > di->rsoc) {
tmp_soc = di->zero_dsoc / 1000;
if (tmp_soc == di->dsoc) {
zero_delta_dsoc = di->zero_dsoc - ((di->dsoc + 1) *
1000 - MIN_ACCURACY);
di->zero_dsoc = (di->dsoc + 1) * 1000 - MIN_ACCURACY;
di->sm_dischrg_dsoc += zero_delta_dsoc;
DBG("<%s>. take zero schrg, delta=%d\n",
__func__, zero_delta_dsoc);
}
}
/* check up overflow */
if ((di->sm_dischrg_dsoc) > ((di->dsoc + 1) * 1000 - MIN_ACCURACY)) {
DBG("<%s>. dischrg_dsoc up overflow\n", __func__);
di->sm_dischrg_dsoc = (di->dsoc + 1) *
1000 - MIN_ACCURACY;
}
/* check new dsoc */
tmp_soc = di->sm_dischrg_dsoc / 1000;
if (tmp_soc != di->dsoc) {
di->dsoc = tmp_soc;
di->sm_chrg_dsoc = di->dsoc * 1000;
}
out:
DBG("<%s>. dsoc=%d, rsoc=%d, dsoc:sm_dischrg=%d, sm_chrg=%d, zero=%d\n",
__func__, di->dsoc, di->rsoc, di->sm_dischrg_dsoc, di->sm_chrg_dsoc,
di->zero_dsoc);
}
static void rk818_bat_calc_smooth_chrg(struct rk818_battery *di)
{
int tmp_soc = 0, sm_delta_dsoc = 0, zero_delta_dsoc = 0;
tmp_soc = di->sm_chrg_dsoc / 1000;
if (tmp_soc == di->dsoc)
goto out;
DBG("<%s>. enter: dsoc=%d, rsoc=%d\n", __func__, di->dsoc, di->rsoc);
/* when charge slow down, take zero & sm dischrg into calc */
if (di->dsoc > di->rsoc) {
/* take sm discharge rest into calc */
tmp_soc = di->sm_dischrg_dsoc / 1000;
if (tmp_soc == di->dsoc) {
sm_delta_dsoc = di->sm_dischrg_dsoc -
((di->dsoc + 1) * 1000 - MIN_ACCURACY);
di->sm_dischrg_dsoc = (di->dsoc + 1) * 1000 -
MIN_ACCURACY;
di->sm_chrg_dsoc += sm_delta_dsoc;
DBG("<%s>. take sm dischrg, delta=%d\n",
__func__, sm_delta_dsoc);
}
/* take zero discharge rest into calc */
tmp_soc = di->zero_dsoc / 1000;
if (tmp_soc == di->dsoc) {
zero_delta_dsoc = di->zero_dsoc -
((di->dsoc + 1) * 1000 - MIN_ACCURACY);
di->zero_dsoc = (di->dsoc + 1) * 1000 - MIN_ACCURACY;
di->sm_chrg_dsoc += zero_delta_dsoc;
DBG("<%s>. take zero dischrg, delta=%d\n",
__func__, zero_delta_dsoc);
}
}
/* check down overflow */
if (di->sm_chrg_dsoc < di->dsoc * 1000) {
DBG("<%s>. chrg_dsoc down overflow\n", __func__);
di->sm_chrg_dsoc = di->dsoc * 1000;
}
/* check new dsoc */
tmp_soc = di->sm_chrg_dsoc / 1000;
if (tmp_soc != di->dsoc) {
di->dsoc = tmp_soc;
di->sm_dischrg_dsoc = (di->dsoc + 1) * 1000 - MIN_ACCURACY;
}
out:
DBG("<%s>.dsoc=%d, rsoc=%d, dsoc: sm_dischrg=%d, sm_chrg=%d, zero=%d\n",
__func__, di->dsoc, di->rsoc, di->sm_dischrg_dsoc, di->sm_chrg_dsoc,
di->zero_dsoc);
}
static void rk818_bat_smooth_algorithm(struct rk818_battery *di)
{
int ydsoc = 0, delta_cap = 0, old_cap = 0;
unsigned long tgt_sec = 0;
di->remain_cap = rk818_bat_get_coulomb_cap(di);
/* full charge: slow down */
if ((di->dsoc == 99) && (di->chrg_status == CC_OR_CV) &&
(di->current_avg > 0)) {
di->sm_linek = FULL_CHRG_K;
/* terminal charge, slow down */
} else if ((di->current_avg >= TERM_CHRG_CURR) &&
(di->chrg_status == CC_OR_CV) && (di->dsoc >= TERM_CHRG_DSOC)) {
di->sm_linek = TERM_CHRG_K;
DBG("<%s>. terminal mode..\n", __func__);
/* simulate charge, speed up */
} else if ((di->current_avg <= SIMULATE_CHRG_CURR) &&
(di->current_avg > 0) && (di->chrg_status == CC_OR_CV) &&
(di->dsoc < TERM_CHRG_DSOC) &&
((di->rsoc - di->dsoc) >= SIMULATE_CHRG_INTV)) {
di->sm_linek = SIMULATE_CHRG_K;
DBG("<%s>. simulate mode..\n", __func__);
} else {
/* charge and discharge switch */
if ((di->sm_linek * di->current_avg <= 0) ||
(di->sm_linek == TERM_CHRG_K) ||
(di->sm_linek == FULL_CHRG_K) ||
(di->sm_linek == SIMULATE_CHRG_K)) {
DBG("<%s>. linek mode, retinit sm linek..\n", __func__);
rk818_bat_calc_sm_linek(di);
}
}
old_cap = di->sm_remain_cap;
/*
* when dsoc equal rsoc(not include full, term, simulate case),
* sm_linek should change to -1000/1000 smoothly to avoid dsoc+1/-1
* right away, so change it after flat seconds
*/
if ((di->dsoc == di->rsoc) && (abs(di->sm_linek) != 1000) &&
(di->sm_linek != FULL_CHRG_K && di->sm_linek != TERM_CHRG_K &&
di->sm_linek != SIMULATE_CHRG_K)) {
if (!di->flat_match_sec)
di->flat_match_sec = get_boot_sec();
tgt_sec = di->fcc * 3600 / 100 / DIV(abs(di->current_avg)) / 3;
if (base2sec(di->flat_match_sec) >= tgt_sec) {
di->flat_match_sec = 0;
di->sm_linek = (di->current_avg >= 0) ? 1000 : -1000;
}
DBG("<%s>. flat_sec=%ld, tgt_sec=%ld, sm_k=%d\n", __func__,
base2sec(di->flat_match_sec), tgt_sec, di->sm_linek);
} else {
di->flat_match_sec = 0;
}
/* abs(k)=1000 or dsoc=100, stop calc */
if ((abs(di->sm_linek) == 1000) || (di->current_avg >= 0 &&
di->chrg_status == CC_OR_CV && di->dsoc >= 100)) {
DBG("<%s>. sm_linek=%d\n", __func__, di->sm_linek);
if (abs(di->sm_linek) == 1000) {
di->dsoc = di->rsoc;
di->sm_linek = (di->sm_linek > 0) ? 1000 : -1000;
DBG("<%s>. dsoc == rsoc, sm_linek=%d\n",
__func__, di->sm_linek);
}
di->sm_remain_cap = di->remain_cap;
di->sm_chrg_dsoc = di->dsoc * 1000;
di->sm_dischrg_dsoc = (di->dsoc + 1) * 1000 - MIN_ACCURACY;
DBG("<%s>. sm_dischrg_dsoc=%d, sm_chrg_dsoc=%d\n",
__func__, di->sm_dischrg_dsoc, di->sm_chrg_dsoc);
} else {
delta_cap = di->remain_cap - di->sm_remain_cap;
if (delta_cap == 0) {
DBG("<%s>. delta_cap = 0\n", __func__);
return;
}
ydsoc = di->sm_linek * abs(delta_cap) * 100 / DIV(di->fcc);
if (ydsoc == 0) {
DBG("<%s>. ydsoc = 0\n", __func__);
return;
}
di->sm_remain_cap = di->remain_cap;
DBG("<%s>. k=%d, ydsoc=%d; cap:old=%d, new:%d; delta_cap=%d\n",
__func__, di->sm_linek, ydsoc, old_cap,
di->sm_remain_cap, delta_cap);
/* discharge mode */
if (ydsoc < 0) {
di->sm_dischrg_dsoc += ydsoc;
rk818_bat_calc_smooth_dischrg(di);
/* charge mode */
} else {
di->sm_chrg_dsoc += ydsoc;
rk818_bat_calc_smooth_chrg(di);
}
if (di->s2r) {
di->s2r = false;
rk818_bat_calc_sm_linek(di);
}
}
}
/*
* cccv and finish switch all the time will cause dsoc freeze,
* if so, do finish chrg, 100ma is less than min finish_ma.
*/
static bool rk818_bat_fake_finish_mode(struct rk818_battery *di)
{
if ((di->rsoc == 100) && (rk818_bat_get_chrg_status(di) == CC_OR_CV) &&
(abs(di->current_avg) <= 100))
return true;
else
return false;
}
static void rk818_bat_display_smooth(struct rk818_battery *di)
{
/* discharge: reinit "zero & smooth" algorithm to avoid handling dsoc */
if (di->s2r && !di->sleep_chrg_online) {
DBG("s2r: discharge, reset algorithm...\n");
di->s2r = false;
rk818_bat_zero_algo_prepare(di);
rk818_bat_smooth_algo_prepare(di);
return;
}
if (di->work_mode == MODE_FINISH) {
DBG("step1: charge finish...\n");
rk818_bat_finish_algorithm(di);
if ((rk818_bat_get_chrg_status(di) != CHARGE_FINISH) &&
!rk818_bat_fake_finish_mode(di)) {
if ((di->current_avg < 0) &&
(di->voltage_avg < di->pdata->zero_algorithm_vol)) {
DBG("step1: change to zero mode...\n");
rk818_bat_zero_algo_prepare(di);
di->work_mode = MODE_ZERO;
} else {
DBG("step1: change to smooth mode...\n");
rk818_bat_smooth_algo_prepare(di);
di->work_mode = MODE_SMOOTH;
}
}
} else if (di->work_mode == MODE_ZERO) {
DBG("step2: zero algorithm...\n");
rk818_bat_zero_algorithm(di);
if ((di->voltage_avg >= di->pdata->zero_algorithm_vol + 50) ||
(di->current_avg >= 0)) {
DBG("step2: change to smooth mode...\n");
rk818_bat_smooth_algo_prepare(di);
di->work_mode = MODE_SMOOTH;
} else if ((rk818_bat_get_chrg_status(di) == CHARGE_FINISH) ||
rk818_bat_fake_finish_mode(di)) {
DBG("step2: change to finish mode...\n");
rk818_bat_finish_algo_prepare(di);
di->work_mode = MODE_FINISH;
}
} else {
DBG("step3: smooth algorithm...\n");
rk818_bat_smooth_algorithm(di);
if ((di->current_avg < 0) &&
(di->voltage_avg < di->pdata->zero_algorithm_vol)) {
DBG("step3: change to zero mode...\n");
rk818_bat_zero_algo_prepare(di);
di->work_mode = MODE_ZERO;
} else if ((rk818_bat_get_chrg_status(di) == CHARGE_FINISH) ||
rk818_bat_fake_finish_mode(di)) {
DBG("step3: change to finish mode...\n");
rk818_bat_finish_algo_prepare(di);
di->work_mode = MODE_FINISH;
}
}
}
static void rk818_bat_relax_vol_calib(struct rk818_battery *di)
{
int soc, cap, vol;
vol = di->voltage_relax;
soc = rk818_bat_vol_to_ocvsoc(di, vol);
cap = rk818_bat_vol_to_ocvcap(di, vol);
rk818_bat_init_capacity(di, cap);
BAT_INFO("sleep ocv calib: rsoc=%d, cap=%d\n", soc, cap);
}
static void rk818_bat_relife_age_flag(struct rk818_battery *di)
{
u8 ocv_soc, ocv_cap, soc_level;
if (di->voltage_relax <= 0)
return;
ocv_soc = rk818_bat_vol_to_ocvsoc(di, di->voltage_relax);
ocv_cap = rk818_bat_vol_to_ocvcap(di, di->voltage_relax);
DBG("<%s>. ocv_soc=%d, min=%lu, vol=%d\n", __func__,
ocv_soc, di->sleep_dischrg_sec / 60, di->voltage_relax);
/* sleep enough time and ocv_soc enough low */
if (!di->age_allow_update && ocv_soc <= 10) {
di->age_voltage = di->voltage_relax;
di->age_ocv_cap = ocv_cap;
di->age_ocv_soc = ocv_soc;
di->age_adjust_cap = 0;
if (ocv_soc <= 1)
di->age_level = 100;
else if (ocv_soc < 5)
di->age_level = 90;
else
di->age_level = 80;
soc_level = rk818_bat_get_age_level(di);
if (soc_level > di->age_level) {
di->age_allow_update = false;
} else {
di->age_allow_update = true;
di->age_keep_sec = get_boot_sec();
}
BAT_INFO("resume: age_vol:%d, age_ocv_cap:%d, age_ocv_soc:%d, "
"soc_level:%d, age_allow_update:%d, "
"age_level:%d\n",
di->age_voltage, di->age_ocv_cap, ocv_soc, soc_level,
di->age_allow_update, di->age_level);
}
}
static int rk818_bat_sleep_dischrg(struct rk818_battery *di)
{
bool ocv_soc_updated = false;
int tgt_dsoc, gap_soc, sleep_soc = 0;
int pwroff_vol = di->pdata->pwroff_vol;
unsigned long sleep_sec = di->sleep_dischrg_sec;
DBG("<%s>. enter: dsoc=%d, rsoc=%d, rv=%d, v=%d, sleep_min=%lu\n",
__func__, di->dsoc, di->rsoc, di->voltage_relax,
di->voltage_avg, sleep_sec / 60);
if (di->voltage_relax >= di->voltage_avg) {
rk818_bat_relax_vol_calib(di);
rk818_bat_restart_relax(di);
rk818_bat_relife_age_flag(di);
ocv_soc_updated = true;
}
/* handle dsoc */
if (di->dsoc <= di->rsoc) {
di->sleep_sum_cap = (SLP_CURR_MIN * sleep_sec / 3600);
sleep_soc = di->sleep_sum_cap * 100 / DIV(di->fcc);
tgt_dsoc = di->dsoc - sleep_soc;
if (sleep_soc > 0) {
BAT_INFO("calib0: rl=%d, dl=%d, intval=%d\n",
di->rsoc, di->dsoc, sleep_soc);
if (di->dsoc < 5) {
di->dsoc--;
} else if ((tgt_dsoc < 5) && (di->dsoc >= 5)) {
if (di->dsoc == 5)
di->dsoc--;
else
di->dsoc = 5;
} else if (tgt_dsoc > 5) {
di->dsoc = tgt_dsoc;
}
}
DBG("%s: dsoc<=rsoc, sum_cap=%d==>sleep_soc=%d, tgt_dsoc=%d\n",
__func__, di->sleep_sum_cap, sleep_soc, tgt_dsoc);
} else {
/* di->dsoc > di->rsoc */
di->sleep_sum_cap = (SLP_CURR_MAX * sleep_sec / 3600);
sleep_soc = di->sleep_sum_cap / DIV(di->fcc / 100);
gap_soc = di->dsoc - di->rsoc;
BAT_INFO("calib1: rsoc=%d, dsoc=%d, intval=%d\n",
di->rsoc, di->dsoc, sleep_soc);
if (gap_soc > sleep_soc) {
if ((gap_soc - 5) > (sleep_soc * 2))
di->dsoc -= (sleep_soc * 2);
else
di->dsoc -= sleep_soc;
} else {
di->dsoc = di->rsoc;
}
DBG("%s: dsoc>rsoc, sum_cap=%d=>sleep_soc=%d, gap_soc=%d\n",
__func__, di->sleep_sum_cap, sleep_soc, gap_soc);
}
if (di->voltage_avg <= pwroff_vol - 70) {
di->dsoc = 0;
rk_send_wakeup_key();
BAT_INFO("low power sleeping, shutdown... %d\n", di->dsoc);
}
if (ocv_soc_updated && sleep_soc && (di->rsoc - di->dsoc) < 5 &&
di->dsoc < 40) {
di->dsoc--;
BAT_INFO("low power sleeping, reserved... %d\n", di->dsoc);
}
if (di->dsoc <= 0) {
di->dsoc = 0;
rk_send_wakeup_key();
BAT_INFO("sleep dsoc is %d...\n", di->dsoc);
}
DBG("<%s>. out: dsoc=%d, rsoc=%d, sum_cap=%d\n",
__func__, di->dsoc, di->rsoc, di->sleep_sum_cap);
return sleep_soc;
}
static void rk818_bat_power_supply_changed(struct rk818_battery *di)
{
u8 status, thermal;
static int old_soc = -1;
if (di->dsoc > 100)
di->dsoc = 100;
else if (di->dsoc < 0)
di->dsoc = 0;
if (di->dsoc == old_soc)
return;
thermal = rk818_bat_read(di, RK818_THERMAL_REG);
status = rk818_bat_read(di, RK818_SUP_STS_REG);
status = (status & CHRG_STATUS_MSK) >> 4;
old_soc = di->dsoc;
di->last_dsoc = di->dsoc;
power_supply_changed(di->bat);
BAT_INFO("changed: dsoc=%d, rsoc=%d, v=%d, ov=%d c=%d, "
"cap=%d, f=%d, st=%s, hotdie=%d\n",
di->dsoc, di->rsoc, di->voltage_avg, di->voltage_ocv,
di->current_avg, di->remain_cap, di->fcc, bat_status[status],
!!(thermal & HOTDIE_STS));
BAT_INFO("dl=%d, rl=%d, v=%d, halt=%d, halt_n=%d, max=%d, "
"init=%d, sw=%d, calib=%d, below0=%d, force=%d\n",
di->dbg_pwr_dsoc, di->dbg_pwr_rsoc, di->dbg_pwr_vol,
di->is_halt, di->halt_cnt, di->is_max_soc_offset,
di->is_initialized, di->is_sw_reset, di->is_ocv_calib,
di->dbg_cap_low0, di->is_force_calib);
}
static u8 rk818_bat_check_reboot(struct rk818_battery *di)
{
u8 cnt;
cnt = rk818_bat_read(di, RK818_REBOOT_CNT_REG);
cnt++;
if (cnt >= REBOOT_MAX_CNT) {
BAT_INFO("reboot: %d --> %d\n", di->dsoc, di->rsoc);
di->dsoc = di->rsoc;
if (di->dsoc > 100)
di->dsoc = 100;
else if (di->dsoc < 0)
di->dsoc = 0;
rk818_bat_save_dsoc(di, di->dsoc);
cnt = REBOOT_MAX_CNT;
}
rk818_bat_save_reboot_cnt(di, cnt);
DBG("reboot cnt: %d\n", cnt);
return cnt;
}
static void rk818_bat_rsoc_daemon(struct rk818_battery *di)
{
int est_vol, remain_cap;
static unsigned long sec;
if ((di->remain_cap < 0) && (di->fb_blank != 0)) {
if (!sec)
sec = get_boot_sec();
wake_lock_timeout(&di->wake_lock,
(di->pdata->monitor_sec + 1) * HZ);
DBG("sec=%ld, hold_sec=%ld\n", sec, base2sec(sec));
if (base2sec(sec) >= 60) {
sec = 0;
di->dbg_cap_low0++;
est_vol = di->voltage_avg -
(di->bat_res * di->current_avg) / 1000;
remain_cap = rk818_bat_vol_to_ocvcap(di, est_vol);
rk818_bat_init_capacity(di, remain_cap);
BAT_INFO("adjust cap below 0 --> %d, rsoc=%d\n",
di->remain_cap, di->rsoc);
wake_unlock(&di->wake_lock);
}
} else {
sec = 0;
}
}
static void rk818_bat_update_info(struct rk818_battery *di)
{
int is_charging;
di->voltage_avg = rk818_bat_get_avg_voltage(di);
di->current_avg = rk818_bat_get_avg_current(di);
di->voltage_relax = rk818_bat_get_relax_voltage(di);
di->rsoc = rk818_bat_get_rsoc(di);
di->remain_cap = rk818_bat_get_coulomb_cap(di);
di->chrg_status = rk818_bat_get_chrg_status(di);
is_charging = rk818_bat_get_charge_state(di);
if (is_charging != di->is_charging) {
di->is_charging = is_charging;
if (is_charging)
di->charge_count++;
}
if (di->voltage_avg > di->voltage_max)
di->voltage_max = di->voltage_avg;
if (di->current_avg > di->current_max)
di->current_max = di->current_avg;
/* smooth charge */
if (di->remain_cap > di->fcc) {
di->sm_remain_cap -= (di->remain_cap - di->fcc);
DBG("<%s>. cap: remain=%d, sm_remain=%d\n",
__func__, di->remain_cap, di->sm_remain_cap);
rk818_bat_init_coulomb_cap(di, di->fcc);
}
if (di->chrg_status != CHARGE_FINISH)
di->finish_base = get_boot_sec();
/*
* we need update fcc in continuous charging state, if discharge state
* keep at least 2 hour, we decide not to update fcc, so clear the
* fcc update flag: age_allow_update.
*/
if (base2min(di->plug_out_base) > 120)
di->age_allow_update = false;
/* do adc calib: status must from cccv mode to finish mode */
if (di->chrg_status == CC_OR_CV) {
di->adc_allow_update = true;
di->adc_calib_cnt = 0;
}
}
static void rk818_bat_init_ts1_detect(struct rk818_battery *di)
{
u8 buf;
u32 *ntc_table = di->pdata->ntc_table;
if (!di->pdata->ntc_size)
return;
/* select ua */
buf = rk818_bat_read(di, RK818_TS_CTRL_REG);
buf &= ~TS1_CUR_MSK;
/* chose suitable UA for temperature detect */
if (ntc_table[0] < NTC_80UA_MAX_MEASURE) {
di->pdata->ntc_factor = NTC_CALC_FACTOR_80UA;
di->pdata->ntc_uA = 80;
buf |= ADC_CUR_80UA;
} else if (ntc_table[0] < NTC_60UA_MAX_MEASURE) {
di->pdata->ntc_factor = NTC_CALC_FACTOR_60UA;
di->pdata->ntc_uA = 60;
buf |= ADC_CUR_60UA;
} else if (ntc_table[0] < NTC_40UA_MAX_MEASURE) {
di->pdata->ntc_factor = NTC_CALC_FACTOR_40UA;
di->pdata->ntc_uA = 40;
buf |= ADC_CUR_40UA;
} else {
di->pdata->ntc_factor = NTC_CALC_FACTOR_20UA;
di->pdata->ntc_uA = 20;
buf |= ADC_CUR_20UA;
}
rk818_bat_write(di, RK818_TS_CTRL_REG, buf);
/* enable ADC_TS1_EN */
buf = rk818_bat_read(di, RK818_ADC_CTRL_REG);
buf |= ADC_TS1_EN;
rk818_bat_write(di, RK818_ADC_CTRL_REG, buf);
}
/*
* Due to hardware design issue, Vdelta = "(R_sample + R_other) * I_avg" will be
* included into TS1 adc value. We must subtract it to get correct adc value.
* The solution:
*
* (1) calculate Vdelta:
*
* adc1 - Vdelta ua1 (adc2 * ua1) - (adc1 * ua2)
* ------------- = ----- ==> equals: Vdelta = -----------------------------
* adc2 - Vdelta ua2 ua1 - ua2
*
*
* (2) calculate correct ADC value:
*
* charging: ADC = adc1 - abs(Vdelta);
* discharging: ADC = adc1 + abs(Vdelta);
*/
static int rk818_bat_get_ntc_res(struct rk818_battery *di)
{
int adc1 = 0, adc2 = 0;
int ua1, ua2, v_delta, res, val;
u8 buf;
/* read sample ua1 */
buf = rk818_bat_read(di, RK818_TS_CTRL_REG);
DBG("<%s>. read adc1, sample uA=%d\n",
__func__, ((buf & 0x03) + 1) * 20);
/* read adc adc1 */
ua1 = di->pdata->ntc_uA;
adc1 |= rk818_bat_read(di, RK818_TS1_ADC_REGL) << 0;
adc1 |= rk818_bat_read(di, RK818_TS1_ADC_REGH) << 8;
/* chose reference UA for adc2 */
ua2 = (ua1 != 20) ? 20 : 40;
buf = rk818_bat_read(di, RK818_TS_CTRL_REG);
buf &= ~TS1_CUR_MSK;
buf |= ((ua2 - 20) / 20);
rk818_bat_write(di, RK818_TS_CTRL_REG, buf);
/* read adc adc2 */
msleep(1000);
/* read sample ua2 */
buf = rk818_bat_read(di, RK818_TS_CTRL_REG);
DBG("<%s>. read adc2, sample uA=%d\n",
__func__, ((buf & 0x03) + 1) * 20);
adc2 |= rk818_bat_read(di, RK818_TS1_ADC_REGL) << 0;
adc2 |= rk818_bat_read(di, RK818_TS1_ADC_REGH) << 8;
DBG("<%s>. ua1=%d, ua2=%d, adc1=%d, adc2=%d\n",
__func__, ua1, ua2, adc1, adc2);
/* calculate delta voltage */
if (adc2 != adc1)
v_delta = abs((adc2 * ua1 - adc1 * ua2) / (ua2 - ua1));
else
v_delta = 0;
/* considering current avg direction, calcuate real adc value */
val = (di->current_avg >= 0) ? (adc1 - v_delta) : (adc1 + v_delta);
DBG("<%s>. Iavg=%d, Vdelta=%d, Vadc=%d\n",
__func__, di->current_avg, v_delta, val);
res = val * di->pdata->ntc_factor;
DBG("<%s>. val=%d, ntc_res=%d, ntc_factor=%d, Rdelta=%d\n",
__func__, val, res, di->pdata->ntc_factor,
v_delta * di->pdata->ntc_factor);
DBG("<%s>. t=[%d'C(%d) ~ %dC(%d)]\n", __func__,
di->pdata->ntc_degree_from, di->pdata->ntc_table[0],
di->pdata->ntc_degree_from + di->pdata->ntc_size - 1,
di->pdata->ntc_table[di->pdata->ntc_size - 1]);
rk818_bat_init_ts1_detect(di);
return res;
}
static void rk818_bat_set_input_current(struct rk818_battery *di,
int input_current)
{
u8 usb_ctrl;
usb_ctrl = rk818_bat_read(di, RK818_USB_CTRL_REG);
usb_ctrl &= ~0x0f;
usb_ctrl |= (input_current);
rk818_bat_write(di, RK818_USB_CTRL_REG, usb_ctrl);
}
static BLOCKING_NOTIFIER_HEAD(rk818_bat_notifier_chain);
int rk818_bat_temp_notifier_register(struct notifier_block *nb)
{
return blocking_notifier_chain_register(&rk818_bat_notifier_chain, nb);
}
EXPORT_SYMBOL_GPL(rk818_bat_temp_notifier_register);
int rk818_bat_temp_notifier_unregister(struct notifier_block *nb)
{
return blocking_notifier_chain_unregister(&rk818_bat_notifier_chain, nb);
}
EXPORT_SYMBOL_GPL(rk818_bat_temp_notifier_unregister);
static void rk818_bat_temp_notifier_callback(int temp)
{
blocking_notifier_call_chain(&rk818_bat_notifier_chain, temp, NULL);
}
static void rk818_bat_update_temperature(struct rk818_battery *di)
{
static int old_temp, first_time = 1;
u32 ntc_size, *ntc_table;
int i, res, temp;
ntc_table = di->pdata->ntc_table;
ntc_size = di->pdata->ntc_size;
di->temperature = VIRTUAL_TEMPERATURE;
if (ntc_size) {
res = rk818_bat_get_ntc_res(di);
if (res < ntc_table[ntc_size - 1]) {
di->temperature = di->pdata->ntc_degree_from +
di->pdata->ntc_size - 1;
if (di->pdata->bat_mode != MODE_VIRTUAL)
rk818_bat_set_input_current(di, INPUT_CUR80MA);
BAT_INFO("bat ntc upper max degree: R=%d\n", res);
} else if (res > ntc_table[0]) {
di->temperature = di->pdata->ntc_degree_from;
if (di->pdata->bat_mode != MODE_VIRTUAL)
rk818_bat_set_input_current(di, INPUT_CUR80MA);
BAT_INFO("bat ntc lower min degree: R=%d\n", res);
} else {
for (i = 0; i < ntc_size; i++) {
if (res >= ntc_table[i])
break;
}
/* if first in, init old_temp */
temp = (i + di->pdata->ntc_degree_from) * 10;
if (first_time == 1) {
di->temperature = temp;
old_temp = temp;
first_time = 0;
}
/*
* compare with old one, it's invalid when over 50
* and we should use old data.
*/
if (abs(temp - old_temp) > 50)
temp = old_temp;
else
old_temp = temp;
di->temperature = temp;
DBG("<%s>. temperature = %d\n",
__func__, di->temperature);
rk818_bat_temp_notifier_callback(di->temperature / 10);
}
}
}
static void rk818_bat_init_dsoc_algorithm(struct rk818_battery *di)
{
u8 buf;
int16_t rest = 0;
unsigned long soc_sec;
const char *mode_name[] = { "MODE_ZERO", "MODE_FINISH",
"MODE_SMOOTH_CHRG", "MODE_SMOOTH_DISCHRG", "MODE_SMOOTH", };
/* get rest */
rest |= rk818_bat_read(di, RK818_CALC_REST_REGH) << 8;
rest |= rk818_bat_read(di, RK818_CALC_REST_REGL) << 0;
/* get mode */
buf = rk818_bat_read(di, RK818_MISC_MARK_REG);
di->algo_rest_mode = (buf & ALGO_REST_MODE_MSK) >> ALGO_REST_MODE_SHIFT;
if (rk818_bat_get_chrg_status(di) == CHARGE_FINISH) {
if (di->algo_rest_mode == MODE_FINISH) {
soc_sec = di->fcc * 3600 / 100 / FINISH_CHRG_CUR1;
if ((rest / DIV(soc_sec)) > 0) {
if (di->dsoc < 100) {
di->dsoc++;
di->algo_rest_val = rest % soc_sec;
BAT_INFO("algorithm rest(%d) dsoc "
"inc: %d\n",
rest, di->dsoc);
} else {
di->algo_rest_val = 0;
}
} else {
di->algo_rest_val = rest;
}
} else {
di->algo_rest_val = rest;
}
} else {
/* charge speed up */
if ((rest / 1000) > 0 && rk818_bat_chrg_online(di)) {
if (di->dsoc < di->rsoc) {
di->dsoc++;
di->algo_rest_val = rest % 1000;
BAT_INFO("algorithm rest(%d) dsoc inc: %d\n",
rest, di->dsoc);
} else {
di->algo_rest_val = 0;
}
/* discharge speed up */
} else if (((rest / 1000) < 0) && !rk818_bat_chrg_online(di)) {
if (di->dsoc > di->rsoc) {
di->dsoc--;
di->algo_rest_val = rest % 1000;
BAT_INFO("algorithm rest(%d) dsoc sub: %d\n",
rest, di->dsoc);
} else {
di->algo_rest_val = 0;
}
} else {
di->algo_rest_val = rest;
}
}
if (di->dsoc >= 100)
di->dsoc = 100;
else if (di->dsoc <= 0)
di->dsoc = 0;
/* init current mode */
di->voltage_avg = rk818_bat_get_avg_voltage(di);
di->current_avg = rk818_bat_get_avg_current(di);
if (rk818_bat_get_chrg_status(di) == CHARGE_FINISH) {
rk818_bat_finish_algo_prepare(di);
di->work_mode = MODE_FINISH;
} else {
rk818_bat_smooth_algo_prepare(di);
di->work_mode = MODE_SMOOTH;
}
DBG("<%s>. init: org_rest=%d, rest=%d, mode=%s; "
"doc(x1000): zero=%d, chrg=%d, dischrg=%d, finish=%lu\n",
__func__, rest, di->algo_rest_val, mode_name[di->algo_rest_mode],
di->zero_dsoc, di->sm_chrg_dsoc, di->sm_dischrg_dsoc,
di->finish_base);
}
static void rk818_bat_save_algo_rest(struct rk818_battery *di)
{
u8 buf, mode;
int16_t algo_rest = 0;
int tmp_soc;
int zero_rest = 0, sm_chrg_rest = 0;
int sm_dischrg_rest = 0, finish_rest = 0;
const char *mode_name[] = { "MODE_ZERO", "MODE_FINISH",
"MODE_SMOOTH_CHRG", "MODE_SMOOTH_DISCHRG", "MODE_SMOOTH", };
/* zero dischrg */
tmp_soc = (di->zero_dsoc) / 1000;
if (tmp_soc == di->dsoc)
zero_rest = di->zero_dsoc - ((di->dsoc + 1) * 1000 -
MIN_ACCURACY);
/* sm chrg */
tmp_soc = di->sm_chrg_dsoc / 1000;
if (tmp_soc == di->dsoc)
sm_chrg_rest = di->sm_chrg_dsoc - di->dsoc * 1000;
/* sm dischrg */
tmp_soc = (di->sm_dischrg_dsoc) / 1000;
if (tmp_soc == di->dsoc)
sm_dischrg_rest = di->sm_dischrg_dsoc - ((di->dsoc + 1) * 1000 -
MIN_ACCURACY);
/* last time is also finish chrg, then add last rest */
if (di->algo_rest_mode == MODE_FINISH && di->algo_rest_val)
finish_rest = base2sec(di->finish_base) + di->algo_rest_val;
else
finish_rest = base2sec(di->finish_base);
/* total calc */
if ((rk818_bat_chrg_online(di) && (di->dsoc > di->rsoc)) ||
(!rk818_bat_chrg_online(di) && (di->dsoc < di->rsoc)) ||
(di->dsoc == di->rsoc)) {
di->algo_rest_val = 0;
algo_rest = 0;
DBG("<%s>. step1..\n", __func__);
} else if (di->work_mode == MODE_FINISH) {
algo_rest = finish_rest;
DBG("<%s>. step2..\n", __func__);
} else if (di->algo_rest_mode == MODE_FINISH) {
algo_rest = zero_rest + sm_dischrg_rest + sm_chrg_rest;
DBG("<%s>. step3..\n", __func__);
} else {
if (rk818_bat_chrg_online(di) && (di->dsoc < di->rsoc))
algo_rest = sm_chrg_rest + di->algo_rest_val;
else if (!rk818_bat_chrg_online(di) && (di->dsoc > di->rsoc))
algo_rest = zero_rest + sm_dischrg_rest +
di->algo_rest_val;
else
algo_rest = zero_rest + sm_dischrg_rest + sm_chrg_rest +
di->algo_rest_val;
DBG("<%s>. step4..\n", __func__);
}
/* check mode */
if ((di->work_mode == MODE_FINISH) || (di->work_mode == MODE_ZERO)) {
mode = di->work_mode;
} else {/* MODE_SMOOTH */
if (di->sm_linek > 0)
mode = MODE_SMOOTH_CHRG;
else
mode = MODE_SMOOTH_DISCHRG;
}
/* save mode */
buf = rk818_bat_read(di, RK818_MISC_MARK_REG);
buf &= ~ALGO_REST_MODE_MSK;
buf |= (mode << ALGO_REST_MODE_SHIFT);
rk818_bat_write(di, RK818_MISC_MARK_REG, buf);
/* save rest */
buf = (algo_rest >> 8) & 0xff;
rk818_bat_write(di, RK818_CALC_REST_REGH, buf);
buf = (algo_rest >> 0) & 0xff;
rk818_bat_write(di, RK818_CALC_REST_REGL, buf);
DBG("<%s>. rest: algo=%d, mode=%s, last_rest=%d; zero=%d, "
"chrg=%d, dischrg=%d, finish=%lu\n",
__func__, algo_rest, mode_name[mode], di->algo_rest_val, zero_rest,
sm_chrg_rest, sm_dischrg_rest, base2sec(di->finish_base));
}
static void rk818_bat_save_data(struct rk818_battery *di)
{
rk818_bat_save_dsoc(di, di->dsoc);
rk818_bat_save_cap(di, di->remain_cap);
rk818_bat_save_algo_rest(di);
}
static void rk818_battery_work(struct work_struct *work)
{
struct rk818_battery *di =
container_of(work, struct rk818_battery, bat_delay_work.work);
rk818_bat_update_info(di);
rk818_bat_wait_finish_sig(di);
rk818_bat_rsoc_daemon(di);
rk818_bat_update_temperature(di);
rk818_bat_display_smooth(di);
rk818_bat_power_supply_changed(di);
rk818_bat_save_data(di);
rk818_bat_debug_info(di);
queue_delayed_work(di->bat_monitor_wq, &di->bat_delay_work,
msecs_to_jiffies(di->monitor_ms));
}
static irqreturn_t rk818_vb_low_irq(int irq, void *bat)
{
struct rk818_battery *di = (struct rk818_battery *)bat;
di->dsoc = 0;
rk_send_wakeup_key();
BAT_INFO("lower power yet, power off system! v=%d, c=%d, dsoc=%d\n",
di->voltage_avg, di->current_avg, di->dsoc);
return IRQ_HANDLED;
}
static void rk818_bat_init_sysfs(struct rk818_battery *di)
{
int i, ret;
for (i = 0; i < ARRAY_SIZE(rk818_bat_attr); i++) {
ret = sysfs_create_file(&di->dev->kobj,
&rk818_bat_attr[i].attr);
if (ret)
dev_err(di->dev, "create bat node(%s) error\n",
rk818_bat_attr[i].attr.name);
}
}
static int rk818_bat_init_irqs(struct rk818_battery *di)
{
struct rk808 *rk818 = di->rk818;
struct platform_device *pdev = di->pdev;
int ret, vb_lo_irq;
vb_lo_irq = regmap_irq_get_virq(rk818->irq_data, RK818_IRQ_VB_LO);
if (vb_lo_irq < 0) {
dev_err(di->dev, "vb_lo_irq request failed!\n");
return vb_lo_irq;
}
ret = devm_request_threaded_irq(di->dev, vb_lo_irq, NULL,
rk818_vb_low_irq,
IRQF_TRIGGER_HIGH | IRQF_ONESHOT,
"rk818_vb_low", di);
if (ret) {
dev_err(&pdev->dev, "vb_lo_irq request failed!\n");
return ret;
}
enable_irq_wake(vb_lo_irq);
return 0;
}
static void rk818_bat_init_info(struct rk818_battery *di)
{
di->design_cap = di->pdata->design_capacity;
di->qmax = di->pdata->design_qmax;
di->bat_res = di->pdata->bat_res;
di->monitor_ms = di->pdata->monitor_sec * TIMER_MS_COUNTS;
di->boot_base = POWER_ON_SEC_BASE;
di->res_div = (di->pdata->sample_res == SAMPLE_RES_20MR) ?
SAMPLE_RES_DIV1 : SAMPLE_RES_DIV2;
}
static time64_t rk818_get_rtc_sec(void)
{
int err;
struct rtc_time tm;
struct rtc_device *rtc = rtc_class_open(CONFIG_RTC_HCTOSYS_DEVICE);
err = rtc_read_time(rtc, &tm);
if (err) {
dev_err(rtc->dev.parent, "read hardware clk failed\n");
return 0;
}
err = rtc_valid_tm(&tm);
if (err) {
dev_err(rtc->dev.parent, "invalid date time\n");
return 0;
}
return rtc_tm_to_time64(&tm);
}
static int rk818_bat_rtc_sleep_sec(struct rk818_battery *di)
{
int interval_sec;
interval_sec = rk818_get_rtc_sec() - di->rtc_base;
return (interval_sec > 0) ? interval_sec : 0;
}
static void rk818_bat_set_shtd_vol(struct rk818_battery *di)
{
u8 val;
/* set vbat lowest 3.0v shutdown */
val = rk818_bat_read(di, RK818_VB_MON_REG);
val &= ~(VBAT_LOW_VOL_MASK | VBAT_LOW_ACT_MASK);
val |= (RK818_VBAT_LOW_3V0 | EN_VABT_LOW_SHUT_DOWN);
rk818_bat_write(di, RK818_VB_MON_REG, val);
/* disable low irq */
rk818_bat_set_bits(di, RK818_INT_STS_MSK_REG1,
VB_LOW_INT_EN, VB_LOW_INT_EN);
}
static void rk818_bat_init_fg(struct rk818_battery *di)
{
rk818_bat_enable_gauge(di);
rk818_bat_init_voltage_kb(di);
rk818_bat_init_coffset(di);
rk818_bat_set_relax_sample(di);
rk818_bat_set_ioffset_sample(di);
rk818_bat_set_ocv_sample(di);
rk818_bat_init_ts1_detect(di);
rk818_bat_init_rsoc(di);
rk818_bat_init_coulomb_cap(di, di->nac);
rk818_bat_init_age_algorithm(di);
rk818_bat_init_chrg_config(di);
rk818_bat_set_shtd_vol(di);
rk818_bat_init_zero_table(di);
rk818_bat_init_caltimer(di);
rk818_bat_init_dsoc_algorithm(di);
di->voltage_avg = rk818_bat_get_avg_voltage(di);
di->voltage_ocv = rk818_bat_get_ocv_voltage(di);
di->voltage_relax = rk818_bat_get_relax_voltage(di);
di->current_avg = rk818_bat_get_avg_current(di);
di->remain_cap = rk818_bat_get_coulomb_cap(di);
di->dbg_pwr_dsoc = di->dsoc;
di->dbg_pwr_rsoc = di->rsoc;
di->dbg_pwr_vol = di->voltage_avg;
rk818_bat_dump_regs(di, 0x99, 0xee);
DBG("nac=%d cap=%d ov=%d v=%d rv=%d dl=%d rl=%d c=%d\n",
di->nac, di->remain_cap, di->voltage_ocv, di->voltage_avg,
di->voltage_relax, di->dsoc, di->rsoc, di->current_avg);
}
#ifdef CONFIG_OF
static int rk818_bat_parse_dt(struct rk818_battery *di)
{
u32 out_value;
int length, ret;
size_t size;
struct device_node *np = di->dev->of_node;
struct battery_platform_data *pdata;
struct device *dev = di->dev;
pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
if (!pdata)
return -ENOMEM;
di->pdata = pdata;
/* init default param */
pdata->bat_res = DEFAULT_BAT_RES;
pdata->monitor_sec = DEFAULT_MONITOR_SEC;
pdata->pwroff_vol = DEFAULT_PWROFF_VOL_THRESD;
pdata->sleep_exit_current = DEFAULT_SLP_EXIT_CUR;
pdata->sleep_enter_current = DEFAULT_SLP_ENTER_CUR;
pdata->bat_mode = MODE_BATTARY;
pdata->max_soc_offset = DEFAULT_MAX_SOC_OFFSET;
pdata->sample_res = DEFAULT_SAMPLE_RES;
pdata->energy_mode = DEFAULT_ENERGY_MODE;
pdata->fb_temp = DEFAULT_FB_TEMP;
pdata->zero_reserve_dsoc = DEFAULT_ZERO_RESERVE_DSOC;
/* parse necessary param */
if (!of_find_property(np, "ocv_table", &length)) {
dev_err(dev, "ocv_table not found!\n");
return -EINVAL;
}
pdata->ocv_size = length / sizeof(u32);
if (pdata->ocv_size <= 0) {
dev_err(dev, "invalid ocv table\n");
return -EINVAL;
}
size = sizeof(*pdata->ocv_table) * pdata->ocv_size;
pdata->ocv_table = devm_kzalloc(di->dev, size, GFP_KERNEL);
if (!pdata->ocv_table)
return -ENOMEM;
ret = of_property_read_u32_array(np, "ocv_table",
pdata->ocv_table,
pdata->ocv_size);
if (ret < 0)
return ret;
ret = of_property_read_u32(np, "design_capacity", &out_value);
if (ret < 0) {
dev_err(dev, "design_capacity not found!\n");
return ret;
}
pdata->design_capacity = out_value;
ret = of_property_read_u32(np, "design_qmax", &out_value);
if (ret < 0) {
dev_err(dev, "design_qmax not found!\n");
return ret;
}
pdata->design_qmax = out_value;
ret = of_property_read_u32(np, "max_chrg_voltage", &out_value);
if (ret < 0) {
dev_err(dev, "max_chrg_voltage missing!\n");
return ret;
}
pdata->max_chrg_voltage = out_value;
if (out_value >= 4300)
pdata->zero_algorithm_vol = DEFAULT_ALGR_VOL_THRESD2;
else
pdata->zero_algorithm_vol = DEFAULT_ALGR_VOL_THRESD1;
ret = of_property_read_u32(np, "fb_temperature", &pdata->fb_temp);
if (ret < 0)
dev_err(dev, "fb_temperature missing!\n");
ret = of_property_read_u32(np, "sample_res", &pdata->sample_res);
if (ret < 0)
dev_err(dev, "sample_res missing!\n");
ret = of_property_read_u32(np, "energy_mode", &pdata->energy_mode);
if (ret < 0)
dev_err(dev, "energy_mode missing!\n");
ret = of_property_read_u32(np, "max_soc_offset",
&pdata->max_soc_offset);
if (ret < 0)
dev_err(dev, "max_soc_offset missing!\n");
ret = of_property_read_u32(np, "monitor_sec", &pdata->monitor_sec);
if (ret < 0)
dev_err(dev, "monitor_sec missing!\n");
ret = of_property_read_u32(np, "zero_algorithm_vol",
&pdata->zero_algorithm_vol);
if (ret < 0)
dev_err(dev, "zero_algorithm_vol missing!\n");
ret = of_property_read_u32(np, "zero_reserve_dsoc",
&pdata->zero_reserve_dsoc);
ret = of_property_read_u32(np, "virtual_power", &pdata->bat_mode);
if (ret < 0)
dev_err(dev, "virtual_power missing!\n");
ret = of_property_read_u32(np, "bat_res", &pdata->bat_res);
if (ret < 0)
dev_err(dev, "bat_res missing!\n");
ret = of_property_read_u32(np, "sleep_enter_current",
&pdata->sleep_enter_current);
if (ret < 0)
dev_err(dev, "sleep_enter_current missing!\n");
ret = of_property_read_u32(np, "sleep_exit_current",
&pdata->sleep_exit_current);
if (ret < 0)
dev_err(dev, "sleep_exit_current missing!\n");
ret = of_property_read_u32(np, "power_off_thresd", &pdata->pwroff_vol);
if (ret < 0)
dev_err(dev, "power_off_thresd missing!\n");
if (!of_find_property(np, "ntc_table", &length)) {
pdata->ntc_size = 0;
} else {
/* get ntc degree base value */
ret = of_property_read_s32(np, "ntc_degree_from_v2",
&pdata->ntc_degree_from);
if (ret) {
dev_err(dev, "invalid ntc_degree_from_v2\n");
return -EINVAL;
}
pdata->ntc_size = length / sizeof(u32);
}
if (pdata->ntc_size) {
size = sizeof(*pdata->ntc_table) * pdata->ntc_size;
pdata->ntc_table = devm_kzalloc(di->dev, size, GFP_KERNEL);
if (!pdata->ntc_table)
return -ENOMEM;
ret = of_property_read_u32_array(np, "ntc_table",
pdata->ntc_table,
pdata->ntc_size);
if (ret < 0)
return ret;
}
DBG("the battery dts info dump:\n"
"bat_res:%d\n"
"design_capacity:%d\n"
"design_qmax :%d\n"
"sleep_enter_current:%d\n"
"sleep_exit_current:%d\n"
"zero_algorithm_vol:%d\n"
"zero_reserve_dsoc:%d\n"
"monitor_sec:%d\n"
"max_soc_offset:%d\n"
"virtual_power:%d\n"
"pwroff_vol:%d\n"
"sample_res:%d\n"
"ntc_size=%d\n"
"ntc_degree_from_v2:%d\n"
"ntc_degree_to:%d\n",
pdata->bat_res, pdata->design_capacity, pdata->design_qmax,
pdata->sleep_enter_current, pdata->sleep_exit_current,
pdata->zero_algorithm_vol, pdata->zero_reserve_dsoc,
pdata->monitor_sec,
pdata->max_soc_offset, pdata->bat_mode, pdata->pwroff_vol,
pdata->sample_res, pdata->ntc_size, pdata->ntc_degree_from,
pdata->ntc_degree_from + pdata->ntc_size - 1
);
return 0;
}
#else
static int rk818_bat_parse_dt(struct rk818_battery *di)
{
return -ENODEV;
}
#endif
static const struct of_device_id rk818_battery_of_match[] = {
{.compatible = "rk818-battery",},
{ },
};
static int rk818_battery_probe(struct platform_device *pdev)
{
const struct of_device_id *of_id =
of_match_device(rk818_battery_of_match, &pdev->dev);
struct rk818_battery *di;
struct rk808 *rk818 = dev_get_drvdata(pdev->dev.parent);
int ret;
if (!of_id) {
dev_err(&pdev->dev, "Failed to find matching dt id\n");
return -ENODEV;
}
di = devm_kzalloc(&pdev->dev, sizeof(*di), GFP_KERNEL);
if (!di)
return -ENOMEM;
di->rk818 = rk818;
di->pdev = pdev;
di->dev = &pdev->dev;
di->regmap = rk818->regmap;
platform_set_drvdata(pdev, di);
ret = rk818_bat_parse_dt(di);
if (ret < 0) {
dev_err(di->dev, "rk818 battery parse dt failed!\n");
return ret;
}
if (!is_rk818_bat_exist(di)) {
di->pdata->bat_mode = MODE_VIRTUAL;
dev_err(di->dev, "no battery, virtual power mode\n");
}
ret = rk818_bat_init_irqs(di);
if (ret != 0) {
dev_err(di->dev, "rk818 bat init irqs failed!\n");
return ret;
}
ret = rk818_bat_init_power_supply(di);
if (ret) {
dev_err(di->dev, "rk818 power supply register failed!\n");
return ret;
}
rk818_bat_init_info(di);
rk818_bat_init_fg(di);
rk818_bat_init_sysfs(di);
rk818_bat_register_fb_notify(di);
wake_lock_init(&di->wake_lock, WAKE_LOCK_SUSPEND, "rk818_bat_lock");
di->bat_monitor_wq = alloc_ordered_workqueue("%s",
WQ_MEM_RECLAIM | WQ_FREEZABLE, "rk818-bat-monitor-wq");
INIT_DELAYED_WORK(&di->bat_delay_work, rk818_battery_work);
queue_delayed_work(di->bat_monitor_wq, &di->bat_delay_work,
msecs_to_jiffies(TIMER_MS_COUNTS * 5));
BAT_INFO("driver version %s\n", DRIVER_VERSION);
return ret;
}
static int rk818_battery_suspend(struct platform_device *dev,
pm_message_t state)
{
struct rk818_battery *di = platform_get_drvdata(dev);
u8 val, st;
cancel_delayed_work_sync(&di->bat_delay_work);
di->s2r = false;
di->sleep_chrg_online = rk818_bat_chrg_online(di);
di->sleep_chrg_status = rk818_bat_get_chrg_status(di);
di->current_avg = rk818_bat_get_avg_current(di);
di->remain_cap = rk818_bat_get_coulomb_cap(di);
di->rsoc = rk818_bat_get_rsoc(di);
di->rtc_base = rk818_get_rtc_sec();
rk818_bat_save_data(di);
st = (rk818_bat_read(di, RK818_SUP_STS_REG) & CHRG_STATUS_MSK) >> 4;
/* if not CHARGE_FINISH, reinit finish_base.
* avoid sleep loop between suspend and resume
*/
if (di->sleep_chrg_status != CHARGE_FINISH)
di->finish_base = get_boot_sec();
/* avoid: enter suspend from MODE_ZERO: load from heavy to light */
if ((di->work_mode == MODE_ZERO) &&
(di->sleep_chrg_online) && (di->current_avg >= 0)) {
DBG("suspend: MODE_ZERO exit...\n");
/* it need't do prepare for mode finish and smooth, it will
* be done in display_smooth
*/
if (di->sleep_chrg_status == CHARGE_FINISH) {
di->work_mode = MODE_FINISH;
di->finish_base = get_boot_sec();
} else {
di->work_mode = MODE_SMOOTH;
rk818_bat_smooth_algo_prepare(di);
}
}
/* set vbat low than 3.4v to generate a wakeup irq */
val = rk818_bat_read(di, RK818_VB_MON_REG);
val &= (~(VBAT_LOW_VOL_MASK | VBAT_LOW_ACT_MASK));
val |= (RK818_VBAT_LOW_3V4 | EN_VBAT_LOW_IRQ);
rk818_bat_write(di, RK818_VB_MON_REG, val);
rk818_bat_set_bits(di, RK818_INT_STS_MSK_REG1, VB_LOW_INT_EN, 0);
BAT_INFO("suspend: dl=%d rl=%d c=%d v=%d cap=%d at=%ld ch=%d st=%s\n",
di->dsoc, di->rsoc, di->current_avg,
rk818_bat_get_avg_voltage(di), rk818_bat_get_coulomb_cap(di),
di->sleep_dischrg_sec, di->sleep_chrg_online, bat_status[st]);
return 0;
}
static int rk818_battery_resume(struct platform_device *dev)
{
struct rk818_battery *di = platform_get_drvdata(dev);
int interval_sec, time_step = 0, pwroff_vol;
u8 val, st;
di->s2r = true;
di->current_avg = rk818_bat_get_avg_current(di);
di->voltage_relax = rk818_bat_get_relax_voltage(di);
di->voltage_avg = rk818_bat_get_avg_voltage(di);
di->remain_cap = rk818_bat_get_coulomb_cap(di);
di->rsoc = rk818_bat_get_rsoc(di);
interval_sec = rk818_bat_rtc_sleep_sec(di);
di->sleep_sum_sec += interval_sec;
pwroff_vol = di->pdata->pwroff_vol;
st = (rk818_bat_read(di, RK818_SUP_STS_REG) & CHRG_STATUS_MSK) >> 4;
if (!di->sleep_chrg_online) {
/* only add up discharge sleep seconds */
di->sleep_dischrg_sec += interval_sec;
if (di->voltage_avg <= pwroff_vol + 50)
time_step = DISCHRG_TIME_STEP1;
else
time_step = DISCHRG_TIME_STEP2;
}
BAT_INFO("resume: dl=%d rl=%d c=%d v=%d rv=%d "
"cap=%d dt=%d at=%ld ch=%d st=%s\n",
di->dsoc, di->rsoc, di->current_avg, di->voltage_avg,
di->voltage_relax, rk818_bat_get_coulomb_cap(di), interval_sec,
di->sleep_dischrg_sec, di->sleep_chrg_online, bat_status[st]);
/* sleep: enough time and discharge */
if ((di->sleep_dischrg_sec > time_step) && (!di->sleep_chrg_online)) {
if (rk818_bat_sleep_dischrg(di))
di->sleep_dischrg_sec = 0;
}
rk818_bat_save_data(di);
/* set vbat lowest 3.0v shutdown */
val = rk818_bat_read(di, RK818_VB_MON_REG);
val &= ~(VBAT_LOW_VOL_MASK | VBAT_LOW_ACT_MASK);
val |= (RK818_VBAT_LOW_3V0 | EN_VABT_LOW_SHUT_DOWN);
rk818_bat_write(di, RK818_VB_MON_REG, val);
rk818_bat_set_bits(di, RK818_INT_STS_MSK_REG1,
VB_LOW_INT_EN, VB_LOW_INT_EN);
/* charge/lowpower lock: for battery work to update dsoc and rsoc */
if ((di->sleep_chrg_online) ||
(!di->sleep_chrg_online && di->voltage_avg < di->pdata->pwroff_vol))
wake_lock_timeout(&di->wake_lock, msecs_to_jiffies(2000));
queue_delayed_work(di->bat_monitor_wq, &di->bat_delay_work,
msecs_to_jiffies(1000));
return 0;
}
static void rk818_battery_shutdown(struct platform_device *dev)
{
u8 cnt = 0;
struct rk818_battery *di = platform_get_drvdata(dev);
cancel_delayed_work_sync(&di->bat_delay_work);
cancel_delayed_work_sync(&di->calib_delay_work);
rk818_bat_unregister_fb_notify(di);
del_timer(&di->caltimer);
if (base2sec(di->boot_base) < REBOOT_PERIOD_SEC)
cnt = rk818_bat_check_reboot(di);
else
rk818_bat_save_reboot_cnt(di, 0);
BAT_INFO("shutdown: dl=%d rl=%d c=%d v=%d cap=%d f=%d ch=%d n=%d "
"mode=%d rest=%d\n",
di->dsoc, di->rsoc, di->current_avg, di->voltage_avg,
di->remain_cap, di->fcc, rk818_bat_chrg_online(di), cnt,
di->algo_rest_mode, di->algo_rest_val);
}
static struct platform_driver rk818_battery_driver = {
.probe = rk818_battery_probe,
.suspend = rk818_battery_suspend,
.resume = rk818_battery_resume,
.shutdown = rk818_battery_shutdown,
.driver = {
.name = "rk818-battery",
.of_match_table = rk818_battery_of_match,
},
};
static int __init battery_init(void)
{
return platform_driver_register(&rk818_battery_driver);
}
fs_initcall_sync(battery_init);
static void __exit battery_exit(void)
{
platform_driver_unregister(&rk818_battery_driver);
}
module_exit(battery_exit);
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:rk818-battery");
MODULE_AUTHOR("chenjh<chenjh@rock-chips.com>");