^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2) * Battery driver for CPCAP PMIC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4) * Copyright (C) 2017 Tony Lindgren <tony@atomide.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6) * Some parts of the code based on earlie Motorola mapphone Linux kernel
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7) * drivers:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 8) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 9) * Copyright (C) 2009-2010 Motorola, Inc.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 10) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 11) * This program is free software; you can redistribute it and/or modify
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 12) * it under the terms of the GNU General Public License version 2 as
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 13) * published by the Free Software Foundation.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 14)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 15) * This program is distributed "as is" WITHOUT ANY WARRANTY of any
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 16) * kind, whether express or implied; without even the implied warranty
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 17) * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 18) * GNU General Public License for more details.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 19) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 20)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 21) #include <linux/delay.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 22) #include <linux/err.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 23) #include <linux/interrupt.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 24) #include <linux/kernel.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 25) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 26) #include <linux/of_device.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 27) #include <linux/platform_device.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 28) #include <linux/power_supply.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 29) #include <linux/reboot.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 30) #include <linux/regmap.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 31)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 32) #include <linux/iio/consumer.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 33) #include <linux/iio/types.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 34) #include <linux/mfd/motorola-cpcap.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 35)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 36) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 37) * Register bit defines for CPCAP_REG_BPEOL. Some of these seem to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 38) * map to MC13783UG.pdf "Table 5-19. Register 13, Power Control 0"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 39) * to enable BATTDETEN, LOBAT and EOL features. We currently use
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 40) * LOBAT interrupts instead of EOL.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 41) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 42) #define CPCAP_REG_BPEOL_BIT_EOL9 BIT(9) /* Set for EOL irq */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 43) #define CPCAP_REG_BPEOL_BIT_EOL8 BIT(8) /* Set for EOL irq */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 44) #define CPCAP_REG_BPEOL_BIT_UNKNOWN7 BIT(7)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 45) #define CPCAP_REG_BPEOL_BIT_UNKNOWN6 BIT(6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 46) #define CPCAP_REG_BPEOL_BIT_UNKNOWN5 BIT(5)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 47) #define CPCAP_REG_BPEOL_BIT_EOL_MULTI BIT(4) /* Set for multiple EOL irqs */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 48) #define CPCAP_REG_BPEOL_BIT_UNKNOWN3 BIT(3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 49) #define CPCAP_REG_BPEOL_BIT_UNKNOWN2 BIT(2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 50) #define CPCAP_REG_BPEOL_BIT_BATTDETEN BIT(1) /* Enable battery detect */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 51) #define CPCAP_REG_BPEOL_BIT_EOLSEL BIT(0) /* BPDET = 0, EOL = 1 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 52)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 53) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 54) * Register bit defines for CPCAP_REG_CCC1. These seem similar to the twl6030
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 55) * coulomb counter registers rather than the mc13892 registers. Both twl6030
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 56) * and mc13892 set bits 2 and 1 to reset and clear registers. But mc13892
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 57) * sets bit 0 to start the coulomb counter while twl6030 sets bit 0 to stop
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 58) * the coulomb counter like cpcap does. So for now, we use the twl6030 style
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 59) * naming for the registers.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 60) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 61) #define CPCAP_REG_CCC1_ACTIVE_MODE1 BIT(4) /* Update rate */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 62) #define CPCAP_REG_CCC1_ACTIVE_MODE0 BIT(3) /* Update rate */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 63) #define CPCAP_REG_CCC1_AUTOCLEAR BIT(2) /* Resets sample registers */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 64) #define CPCAP_REG_CCC1_CAL_EN BIT(1) /* Clears after write in 1s */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 65) #define CPCAP_REG_CCC1_PAUSE BIT(0) /* Stop counters, allow write */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 66) #define CPCAP_REG_CCC1_RESET_MASK (CPCAP_REG_CCC1_AUTOCLEAR | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 67) CPCAP_REG_CCC1_CAL_EN)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 68)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 69) #define CPCAP_REG_CCCC2_RATE1 BIT(5)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 70) #define CPCAP_REG_CCCC2_RATE0 BIT(4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 71) #define CPCAP_REG_CCCC2_ENABLE BIT(3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 72)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 73) #define CPCAP_BATTERY_CC_SAMPLE_PERIOD_MS 250
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 74)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 75) enum {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 76) CPCAP_BATTERY_IIO_BATTDET,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 77) CPCAP_BATTERY_IIO_VOLTAGE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 78) CPCAP_BATTERY_IIO_CHRG_CURRENT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 79) CPCAP_BATTERY_IIO_BATT_CURRENT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 80) CPCAP_BATTERY_IIO_NR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 81) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 82)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 83) enum cpcap_battery_irq_action {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 84) CPCAP_BATTERY_IRQ_ACTION_NONE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 85) CPCAP_BATTERY_IRQ_ACTION_CC_CAL_DONE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 86) CPCAP_BATTERY_IRQ_ACTION_BATTERY_LOW,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 87) CPCAP_BATTERY_IRQ_ACTION_POWEROFF,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 88) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 89)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 90) struct cpcap_interrupt_desc {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 91) const char *name;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 92) struct list_head node;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 93) int irq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 94) enum cpcap_battery_irq_action action;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 95) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 96)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 97) struct cpcap_battery_config {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 98) int cd_factor;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 99) struct power_supply_info info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) struct power_supply_battery_info bat;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) struct cpcap_coulomb_counter_data {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) s32 sample; /* 24 or 32 bits */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) s32 accumulator;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) s16 offset; /* 9 bits */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) s16 integrator; /* 13 or 16 bits */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) enum cpcap_battery_state {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) CPCAP_BATTERY_STATE_PREVIOUS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) CPCAP_BATTERY_STATE_LATEST,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) CPCAP_BATTERY_STATE_NR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) struct cpcap_battery_state_data {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) int voltage;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) int current_ua;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) int counter_uah;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) int temperature;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) ktime_t time;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) struct cpcap_coulomb_counter_data cc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) struct cpcap_battery_ddata {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) struct device *dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) struct regmap *reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) struct list_head irq_list;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) struct iio_channel *channels[CPCAP_BATTERY_IIO_NR];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) struct power_supply *psy;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) struct cpcap_battery_config config;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) struct cpcap_battery_state_data state[CPCAP_BATTERY_STATE_NR];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) u32 cc_lsb; /* μAms per LSB */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) atomic_t active;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) int status;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) u16 vendor;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) #define CPCAP_NO_BATTERY -400
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) static struct cpcap_battery_state_data *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) cpcap_battery_get_state(struct cpcap_battery_ddata *ddata,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) enum cpcap_battery_state state)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) if (state >= CPCAP_BATTERY_STATE_NR)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) return &ddata->state[state];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) static struct cpcap_battery_state_data *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) cpcap_battery_latest(struct cpcap_battery_ddata *ddata)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) return cpcap_battery_get_state(ddata, CPCAP_BATTERY_STATE_LATEST);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) static struct cpcap_battery_state_data *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) cpcap_battery_previous(struct cpcap_battery_ddata *ddata)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) return cpcap_battery_get_state(ddata, CPCAP_BATTERY_STATE_PREVIOUS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) static int cpcap_charger_battery_temperature(struct cpcap_battery_ddata *ddata,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) int *value)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) struct iio_channel *channel;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) int error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) channel = ddata->channels[CPCAP_BATTERY_IIO_BATTDET];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) error = iio_read_channel_processed(channel, value);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) if (error < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) dev_warn(ddata->dev, "%s failed: %i\n", __func__, error);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) *value = CPCAP_NO_BATTERY;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) return error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) *value /= 100;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) static int cpcap_battery_get_voltage(struct cpcap_battery_ddata *ddata)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) struct iio_channel *channel;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) int error, value = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) channel = ddata->channels[CPCAP_BATTERY_IIO_VOLTAGE];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) error = iio_read_channel_processed(channel, &value);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) if (error < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) dev_warn(ddata->dev, "%s failed: %i\n", __func__, error);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) return value * 1000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) static int cpcap_battery_get_current(struct cpcap_battery_ddata *ddata)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) struct iio_channel *channel;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) int error, value = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) channel = ddata->channels[CPCAP_BATTERY_IIO_BATT_CURRENT];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) error = iio_read_channel_processed(channel, &value);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) if (error < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) dev_warn(ddata->dev, "%s failed: %i\n", __func__, error);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) return value * 1000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) * cpcap_battery_cc_raw_div - calculate and divide coulomb counter μAms values
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) * @ddata: device driver data
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) * @sample: coulomb counter sample value
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) * @accumulator: coulomb counter integrator value
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) * @offset: coulomb counter offset value
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) * @divider: conversion divider
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) * Note that cc_lsb and cc_dur values are from Motorola Linux kernel
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) * function data_get_avg_curr_ua() and seem to be based on measured test
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) * results. It also has the following comment:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) * Adjustment factors are applied here as a temp solution per the test
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) * results. Need to work out a formal solution for this adjustment.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) * A coulomb counter for similar hardware seems to be documented in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) * "TWL6030 Gas Gauging Basics (Rev. A)" swca095a.pdf in chapter
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) * "10 Calculating Accumulated Current". We however follow what the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) * Motorola mapphone Linux kernel is doing as there may be either a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) * TI or ST coulomb counter in the PMIC.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) static int cpcap_battery_cc_raw_div(struct cpcap_battery_ddata *ddata,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) s32 sample, s32 accumulator,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) s16 offset, u32 divider)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) s64 acc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) if (!divider)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) acc = accumulator;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) acc -= (s64)sample * offset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) acc *= ddata->cc_lsb;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) acc *= -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) acc = div_s64(acc, divider);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) return acc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) /* 3600000μAms = 1μAh */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) static int cpcap_battery_cc_to_uah(struct cpcap_battery_ddata *ddata,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) s32 sample, s32 accumulator,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) s16 offset)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) return cpcap_battery_cc_raw_div(ddata, sample,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) accumulator, offset,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) 3600000);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) static int cpcap_battery_cc_to_ua(struct cpcap_battery_ddata *ddata,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) s32 sample, s32 accumulator,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) s16 offset)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) return cpcap_battery_cc_raw_div(ddata, sample,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) accumulator, offset,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) sample *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) CPCAP_BATTERY_CC_SAMPLE_PERIOD_MS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) * cpcap_battery_read_accumulated - reads cpcap coulomb counter
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) * @ddata: device driver data
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) * @ccd: coulomb counter values
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) * Based on Motorola mapphone kernel function data_read_regs().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) * Looking at the registers, the coulomb counter seems similar to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) * the coulomb counter in TWL6030. See "TWL6030 Gas Gauging Basics
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) * (Rev. A) swca095a.pdf for "10 Calculating Accumulated Current".
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) * Note that swca095a.pdf instructs to stop the coulomb counter
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) * before reading to avoid values changing. Motorola mapphone
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) * Linux kernel does not do it, so let's assume they've verified
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) * the data produced is correct.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) static int
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) cpcap_battery_read_accumulated(struct cpcap_battery_ddata *ddata,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) struct cpcap_coulomb_counter_data *ccd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) u16 buf[7]; /* CPCAP_REG_CCS1 to CCI */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) int error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) ccd->sample = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) ccd->accumulator = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) ccd->offset = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) ccd->integrator = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) /* Read coulomb counter register range */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) error = regmap_bulk_read(ddata->reg, CPCAP_REG_CCS1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) buf, ARRAY_SIZE(buf));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) if (error)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) /* Sample value CPCAP_REG_CCS1 & 2 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) ccd->sample = (buf[1] & 0x0fff) << 16;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) ccd->sample |= buf[0];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) if (ddata->vendor == CPCAP_VENDOR_TI)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) ccd->sample = sign_extend32(24, ccd->sample);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) /* Accumulator value CPCAP_REG_CCA1 & 2 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) ccd->accumulator = ((s16)buf[3]) << 16;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) ccd->accumulator |= buf[2];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) * Coulomb counter calibration offset is CPCAP_REG_CCM,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) * REG_CCO seems unused
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) ccd->offset = buf[4];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) ccd->offset = sign_extend32(ccd->offset, 9);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) /* Integrator register CPCAP_REG_CCI */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) if (ddata->vendor == CPCAP_VENDOR_TI)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) ccd->integrator = sign_extend32(buf[6], 13);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) ccd->integrator = (s16)buf[6];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) return cpcap_battery_cc_to_uah(ddata,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) ccd->sample,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) ccd->accumulator,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) ccd->offset);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) * cpcap_battery_cc_get_avg_current - read cpcap coulumb counter
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) * @ddata: cpcap battery driver device data
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) static int cpcap_battery_cc_get_avg_current(struct cpcap_battery_ddata *ddata)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) int value, acc, error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) s32 sample;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) s16 offset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) /* Coulomb counter integrator */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) error = regmap_read(ddata->reg, CPCAP_REG_CCI, &value);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) if (error)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) return error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) if (ddata->vendor == CPCAP_VENDOR_TI) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) acc = sign_extend32(value, 13);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) sample = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) acc = (s16)value;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) sample = 4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) /* Coulomb counter calibration offset */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) error = regmap_read(ddata->reg, CPCAP_REG_CCM, &value);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) if (error)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) return error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) offset = sign_extend32(value, 9);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) return cpcap_battery_cc_to_ua(ddata, sample, acc, offset);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) static bool cpcap_battery_full(struct cpcap_battery_ddata *ddata)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371) struct cpcap_battery_state_data *state = cpcap_battery_latest(ddata);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373) if (state->voltage >=
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374) (ddata->config.bat.constant_charge_voltage_max_uv - 18000))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) static int cpcap_battery_update_status(struct cpcap_battery_ddata *ddata)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382) struct cpcap_battery_state_data state, *latest, *previous;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383) ktime_t now;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384) int error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) memset(&state, 0, sizeof(state));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387) now = ktime_get();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) latest = cpcap_battery_latest(ddata);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390) if (latest) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391) s64 delta_ms = ktime_to_ms(ktime_sub(now, latest->time));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393) if (delta_ms < CPCAP_BATTERY_CC_SAMPLE_PERIOD_MS)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394) return delta_ms;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397) state.time = now;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398) state.voltage = cpcap_battery_get_voltage(ddata);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399) state.current_ua = cpcap_battery_get_current(ddata);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400) state.counter_uah = cpcap_battery_read_accumulated(ddata, &state.cc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402) error = cpcap_charger_battery_temperature(ddata,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403) &state.temperature);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404) if (error)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405) return error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407) previous = cpcap_battery_previous(ddata);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408) memcpy(previous, latest, sizeof(*previous));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409) memcpy(latest, &state, sizeof(*latest));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414) static enum power_supply_property cpcap_battery_props[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415) POWER_SUPPLY_PROP_STATUS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416) POWER_SUPPLY_PROP_PRESENT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417) POWER_SUPPLY_PROP_TECHNOLOGY,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418) POWER_SUPPLY_PROP_VOLTAGE_NOW,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419) POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420) POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421) POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422) POWER_SUPPLY_PROP_CURRENT_AVG,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423) POWER_SUPPLY_PROP_CURRENT_NOW,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424) POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425) POWER_SUPPLY_PROP_CHARGE_COUNTER,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 426) POWER_SUPPLY_PROP_POWER_NOW,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 427) POWER_SUPPLY_PROP_POWER_AVG,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 428) POWER_SUPPLY_PROP_CAPACITY_LEVEL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 429) POWER_SUPPLY_PROP_SCOPE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 430) POWER_SUPPLY_PROP_TEMP,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 431) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 432)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 433) static int cpcap_battery_get_property(struct power_supply *psy,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 434) enum power_supply_property psp,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 435) union power_supply_propval *val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 436) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 437) struct cpcap_battery_ddata *ddata = power_supply_get_drvdata(psy);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 438) struct cpcap_battery_state_data *latest, *previous;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 439) u32 sample;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 440) s32 accumulator;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 441) int cached;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 442) s64 tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 443)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 444) cached = cpcap_battery_update_status(ddata);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 445) if (cached < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 446) return cached;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 447)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 448) latest = cpcap_battery_latest(ddata);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 449) previous = cpcap_battery_previous(ddata);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 450)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 451) switch (psp) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 452) case POWER_SUPPLY_PROP_PRESENT:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 453) if (latest->temperature > CPCAP_NO_BATTERY)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 454) val->intval = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 455) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 456) val->intval = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 457) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 458) case POWER_SUPPLY_PROP_STATUS:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 459) if (cpcap_battery_full(ddata)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 460) val->intval = POWER_SUPPLY_STATUS_FULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 461) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 462) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 463) if (cpcap_battery_cc_get_avg_current(ddata) < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 464) val->intval = POWER_SUPPLY_STATUS_CHARGING;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 465) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 466) val->intval = POWER_SUPPLY_STATUS_DISCHARGING;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 467) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 468) case POWER_SUPPLY_PROP_TECHNOLOGY:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 469) val->intval = ddata->config.info.technology;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 470) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 471) case POWER_SUPPLY_PROP_VOLTAGE_NOW:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 472) val->intval = cpcap_battery_get_voltage(ddata);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 473) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 474) case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 475) val->intval = ddata->config.info.voltage_max_design;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 476) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 477) case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 478) val->intval = ddata->config.info.voltage_min_design;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 479) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 480) case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 481) val->intval = ddata->config.bat.constant_charge_voltage_max_uv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 482) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 483) case POWER_SUPPLY_PROP_CURRENT_AVG:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 484) sample = latest->cc.sample - previous->cc.sample;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 485) if (!sample) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 486) val->intval = cpcap_battery_cc_get_avg_current(ddata);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 487) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 488) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 489) accumulator = latest->cc.accumulator - previous->cc.accumulator;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 490) val->intval = cpcap_battery_cc_to_ua(ddata, sample,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 491) accumulator,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 492) latest->cc.offset);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 493) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 494) case POWER_SUPPLY_PROP_CURRENT_NOW:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 495) val->intval = latest->current_ua;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 496) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 497) case POWER_SUPPLY_PROP_CHARGE_COUNTER:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 498) val->intval = latest->counter_uah;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 499) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 500) case POWER_SUPPLY_PROP_POWER_NOW:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 501) tmp = (latest->voltage / 10000) * latest->current_ua;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 502) val->intval = div64_s64(tmp, 100);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 503) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 504) case POWER_SUPPLY_PROP_POWER_AVG:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 505) sample = latest->cc.sample - previous->cc.sample;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 506) if (!sample) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 507) tmp = cpcap_battery_cc_get_avg_current(ddata);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 508) tmp *= (latest->voltage / 10000);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 509) val->intval = div64_s64(tmp, 100);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 510) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 511) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 512) accumulator = latest->cc.accumulator - previous->cc.accumulator;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 513) tmp = cpcap_battery_cc_to_ua(ddata, sample, accumulator,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 514) latest->cc.offset);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 515) tmp *= ((latest->voltage + previous->voltage) / 20000);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 516) val->intval = div64_s64(tmp, 100);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 517) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 518) case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 519) if (cpcap_battery_full(ddata))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 520) val->intval = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 521) else if (latest->voltage >= 3750000)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 522) val->intval = POWER_SUPPLY_CAPACITY_LEVEL_HIGH;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 523) else if (latest->voltage >= 3300000)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 524) val->intval = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 525) else if (latest->voltage > 3100000)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 526) val->intval = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 527) else if (latest->voltage <= 3100000)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 528) val->intval = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 529) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 530) val->intval = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 531) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 532) case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 533) val->intval = ddata->config.info.charge_full_design;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 534) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 535) case POWER_SUPPLY_PROP_SCOPE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 536) val->intval = POWER_SUPPLY_SCOPE_SYSTEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 537) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 538) case POWER_SUPPLY_PROP_TEMP:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 539) val->intval = latest->temperature;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 540) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 541) default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 542) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 543) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 544)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 545) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 546) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 547)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 548) static int cpcap_battery_update_charger(struct cpcap_battery_ddata *ddata,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 549) int const_charge_voltage)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 550) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 551) union power_supply_propval prop;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 552) union power_supply_propval val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 553) struct power_supply *charger;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 554) int error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 555)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 556) charger = power_supply_get_by_name("usb");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 557) if (!charger)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 558) return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 559)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 560) error = power_supply_get_property(charger,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 561) POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 562) &prop);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 563) if (error)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 564) goto out_put;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 565)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 566) /* Allow charger const voltage lower than battery const voltage */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 567) if (const_charge_voltage > prop.intval)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 568) goto out_put;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 569)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 570) val.intval = const_charge_voltage;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 571)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 572) error = power_supply_set_property(charger,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 573) POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 574) &val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 575) out_put:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 576) power_supply_put(charger);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 577)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 578) return error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 579) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 580)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 581) static int cpcap_battery_set_property(struct power_supply *psy,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 582) enum power_supply_property psp,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 583) const union power_supply_propval *val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 584) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 585) struct cpcap_battery_ddata *ddata = power_supply_get_drvdata(psy);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 586)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 587) switch (psp) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 588) case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 589) if (val->intval < ddata->config.info.voltage_min_design)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 590) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 591) if (val->intval > ddata->config.info.voltage_max_design)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 592) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 593)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 594) ddata->config.bat.constant_charge_voltage_max_uv = val->intval;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 595)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 596) return cpcap_battery_update_charger(ddata, val->intval);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 597) default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 598) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 599) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 600)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 601) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 602) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 603)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 604) static int cpcap_battery_property_is_writeable(struct power_supply *psy,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 605) enum power_supply_property psp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 606) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 607) switch (psp) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 608) case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 609) return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 610) default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 611) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 612) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 613) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 614)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 615) static irqreturn_t cpcap_battery_irq_thread(int irq, void *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 616) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 617) struct cpcap_battery_ddata *ddata = data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 618) struct cpcap_battery_state_data *latest;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 619) struct cpcap_interrupt_desc *d;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 620)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 621) if (!atomic_read(&ddata->active))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 622) return IRQ_NONE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 623)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 624) list_for_each_entry(d, &ddata->irq_list, node) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 625) if (irq == d->irq)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 626) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 627) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 628)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 629) if (list_entry_is_head(d, &ddata->irq_list, node))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 630) return IRQ_NONE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 631)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 632) latest = cpcap_battery_latest(ddata);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 633)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 634) switch (d->action) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 635) case CPCAP_BATTERY_IRQ_ACTION_CC_CAL_DONE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 636) dev_info(ddata->dev, "Coulomb counter calibration done\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 637) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 638) case CPCAP_BATTERY_IRQ_ACTION_BATTERY_LOW:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 639) if (latest->current_ua >= 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 640) dev_warn(ddata->dev, "Battery low at %imV!\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 641) latest->voltage / 1000);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 642) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 643) case CPCAP_BATTERY_IRQ_ACTION_POWEROFF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 644) if (latest->current_ua >= 0 && latest->voltage <= 3200000) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 645) dev_emerg(ddata->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 646) "Battery empty at %imV, powering off\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 647) latest->voltage / 1000);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 648) orderly_poweroff(true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 649) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 650) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 651) default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 652) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 653) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 654)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 655) power_supply_changed(ddata->psy);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 656)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 657) return IRQ_HANDLED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 658) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 659)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 660) static int cpcap_battery_init_irq(struct platform_device *pdev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 661) struct cpcap_battery_ddata *ddata,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 662) const char *name)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 663) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 664) struct cpcap_interrupt_desc *d;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 665) int irq, error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 666)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 667) irq = platform_get_irq_byname(pdev, name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 668) if (irq < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 669) return irq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 670)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 671) error = devm_request_threaded_irq(ddata->dev, irq, NULL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 672) cpcap_battery_irq_thread,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 673) IRQF_SHARED | IRQF_ONESHOT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 674) name, ddata);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 675) if (error) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 676) dev_err(ddata->dev, "could not get irq %s: %i\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 677) name, error);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 678)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 679) return error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 680) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 681)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 682) d = devm_kzalloc(ddata->dev, sizeof(*d), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 683) if (!d)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 684) return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 685)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 686) d->name = name;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 687) d->irq = irq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 688)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 689) if (!strncmp(name, "cccal", 5))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 690) d->action = CPCAP_BATTERY_IRQ_ACTION_CC_CAL_DONE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 691) else if (!strncmp(name, "lowbph", 6))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 692) d->action = CPCAP_BATTERY_IRQ_ACTION_BATTERY_LOW;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 693) else if (!strncmp(name, "lowbpl", 6))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 694) d->action = CPCAP_BATTERY_IRQ_ACTION_POWEROFF;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 695)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 696) list_add(&d->node, &ddata->irq_list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 697)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 698) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 699) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 700)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 701) static int cpcap_battery_init_interrupts(struct platform_device *pdev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 702) struct cpcap_battery_ddata *ddata)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 703) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 704) static const char * const cpcap_battery_irqs[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 705) "eol", "lowbph", "lowbpl",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 706) "chrgcurr1", "battdetb"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 707) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 708) int i, error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 709)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 710) for (i = 0; i < ARRAY_SIZE(cpcap_battery_irqs); i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 711) error = cpcap_battery_init_irq(pdev, ddata,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 712) cpcap_battery_irqs[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 713) if (error)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 714) return error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 715) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 716)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 717) /* Enable calibration interrupt if already available in dts */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 718) cpcap_battery_init_irq(pdev, ddata, "cccal");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 719)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 720) /* Enable low battery interrupts for 3.3V high and 3.1V low */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 721) error = regmap_update_bits(ddata->reg, CPCAP_REG_BPEOL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 722) 0xffff,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 723) CPCAP_REG_BPEOL_BIT_BATTDETEN);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 724) if (error)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 725) return error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 726)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 727) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 728) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 729)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 730) static int cpcap_battery_init_iio(struct cpcap_battery_ddata *ddata)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 731) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 732) const char * const names[CPCAP_BATTERY_IIO_NR] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 733) "battdetb", "battp", "chg_isense", "batti",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 734) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 735) int error, i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 736)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 737) for (i = 0; i < CPCAP_BATTERY_IIO_NR; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 738) ddata->channels[i] = devm_iio_channel_get(ddata->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 739) names[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 740) if (IS_ERR(ddata->channels[i])) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 741) error = PTR_ERR(ddata->channels[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 742) goto out_err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 743) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 744)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 745) if (!ddata->channels[i]->indio_dev) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 746) error = -ENXIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 747) goto out_err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 748) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 749) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 750)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 751) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 752)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 753) out_err:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 754) return dev_err_probe(ddata->dev, error,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 755) "could not initialize VBUS or ID IIO\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 756) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 757)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 758) /* Calibrate coulomb counter */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 759) static int cpcap_battery_calibrate(struct cpcap_battery_ddata *ddata)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 760) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 761) int error, ccc1, value;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 762) unsigned long timeout;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 763)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 764) error = regmap_read(ddata->reg, CPCAP_REG_CCC1, &ccc1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 765) if (error)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 766) return error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 767)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 768) timeout = jiffies + msecs_to_jiffies(6000);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 769)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 770) /* Start calibration */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 771) error = regmap_update_bits(ddata->reg, CPCAP_REG_CCC1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 772) 0xffff,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 773) CPCAP_REG_CCC1_CAL_EN);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 774) if (error)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 775) goto restore;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 776)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 777) while (time_before(jiffies, timeout)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 778) error = regmap_read(ddata->reg, CPCAP_REG_CCC1, &value);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 779) if (error)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 780) goto restore;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 781)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 782) if (!(value & CPCAP_REG_CCC1_CAL_EN))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 783) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 784)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 785) error = regmap_read(ddata->reg, CPCAP_REG_CCM, &value);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 786) if (error)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 787) goto restore;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 788)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 789) msleep(300);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 790) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 791)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 792) /* Read calibration offset from CCM */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 793) error = regmap_read(ddata->reg, CPCAP_REG_CCM, &value);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 794) if (error)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 795) goto restore;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 796)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 797) dev_info(ddata->dev, "calibration done: 0x%04x\n", value);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 798)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 799) restore:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 800) if (error)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 801) dev_err(ddata->dev, "%s: error %i\n", __func__, error);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 802)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 803) error = regmap_update_bits(ddata->reg, CPCAP_REG_CCC1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 804) 0xffff, ccc1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 805) if (error)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 806) dev_err(ddata->dev, "%s: restore error %i\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 807) __func__, error);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 808)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 809) return error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 810) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 811)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 812) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 813) * Based on the values from Motorola mapphone Linux kernel. In the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 814) * the Motorola mapphone Linux kernel tree the value for pm_cd_factor
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 815) * is passed to the kernel via device tree. If it turns out to be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 816) * something device specific we can consider that too later.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 817) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 818) * And looking at the battery full and shutdown values for the stock
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 819) * kernel on droid 4, full is 4351000 and software initiates shutdown
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 820) * at 3078000. The device will die around 2743000.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 821) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 822) static const struct cpcap_battery_config cpcap_battery_default_data = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 823) .cd_factor = 0x3cc,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 824) .info.technology = POWER_SUPPLY_TECHNOLOGY_LION,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 825) .info.voltage_max_design = 4351000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 826) .info.voltage_min_design = 3100000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 827) .info.charge_full_design = 1740000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 828) .bat.constant_charge_voltage_max_uv = 4200000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 829) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 830)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 831) #ifdef CONFIG_OF
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 832) static const struct of_device_id cpcap_battery_id_table[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 833) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 834) .compatible = "motorola,cpcap-battery",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 835) .data = &cpcap_battery_default_data,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 836) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 837) {},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 838) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 839) MODULE_DEVICE_TABLE(of, cpcap_battery_id_table);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 840) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 841)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 842) static int cpcap_battery_probe(struct platform_device *pdev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 843) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 844) struct power_supply_desc *psy_desc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 845) struct cpcap_battery_ddata *ddata;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 846) const struct of_device_id *match;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 847) struct power_supply_config psy_cfg = {};
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 848) int error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 849)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 850) match = of_match_device(of_match_ptr(cpcap_battery_id_table),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 851) &pdev->dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 852) if (!match)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 853) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 854)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 855) if (!match->data) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 856) dev_err(&pdev->dev, "no configuration data found\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 857)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 858) return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 859) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 860)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 861) ddata = devm_kzalloc(&pdev->dev, sizeof(*ddata), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 862) if (!ddata)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 863) return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 864)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 865) INIT_LIST_HEAD(&ddata->irq_list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 866) ddata->dev = &pdev->dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 867) memcpy(&ddata->config, match->data, sizeof(ddata->config));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 868)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 869) ddata->reg = dev_get_regmap(ddata->dev->parent, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 870) if (!ddata->reg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 871) return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 872)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 873) error = cpcap_get_vendor(ddata->dev, ddata->reg, &ddata->vendor);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 874) if (error)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 875) return error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 876)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 877) switch (ddata->vendor) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 878) case CPCAP_VENDOR_ST:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 879) ddata->cc_lsb = 95374; /* μAms per LSB */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 880) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 881) case CPCAP_VENDOR_TI:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 882) ddata->cc_lsb = 91501; /* μAms per LSB */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 883) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 884) default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 885) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 886) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 887) ddata->cc_lsb = (ddata->cc_lsb * ddata->config.cd_factor) / 1000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 888)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 889) platform_set_drvdata(pdev, ddata);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 890)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 891) error = cpcap_battery_init_interrupts(pdev, ddata);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 892) if (error)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 893) return error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 894)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 895) error = cpcap_battery_init_iio(ddata);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 896) if (error)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 897) return error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 898)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 899) psy_desc = devm_kzalloc(ddata->dev, sizeof(*psy_desc), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 900) if (!psy_desc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 901) return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 902)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 903) psy_desc->name = "battery";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 904) psy_desc->type = POWER_SUPPLY_TYPE_BATTERY;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 905) psy_desc->properties = cpcap_battery_props;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 906) psy_desc->num_properties = ARRAY_SIZE(cpcap_battery_props);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 907) psy_desc->get_property = cpcap_battery_get_property;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 908) psy_desc->set_property = cpcap_battery_set_property;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 909) psy_desc->property_is_writeable = cpcap_battery_property_is_writeable;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 910)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 911) psy_cfg.of_node = pdev->dev.of_node;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 912) psy_cfg.drv_data = ddata;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 913)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 914) ddata->psy = devm_power_supply_register(ddata->dev, psy_desc,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 915) &psy_cfg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 916) error = PTR_ERR_OR_ZERO(ddata->psy);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 917) if (error) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 918) dev_err(ddata->dev, "failed to register power supply\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 919) return error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 920) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 921)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 922) atomic_set(&ddata->active, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 923)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 924) error = cpcap_battery_calibrate(ddata);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 925) if (error)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 926) return error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 927)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 928) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 929) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 930)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 931) static int cpcap_battery_remove(struct platform_device *pdev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 932) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 933) struct cpcap_battery_ddata *ddata = platform_get_drvdata(pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 934) int error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 935)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 936) atomic_set(&ddata->active, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 937) error = regmap_update_bits(ddata->reg, CPCAP_REG_BPEOL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 938) 0xffff, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 939) if (error)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 940) dev_err(&pdev->dev, "could not disable: %i\n", error);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 941)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 942) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 943) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 944)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 945) static struct platform_driver cpcap_battery_driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 946) .driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 947) .name = "cpcap_battery",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 948) .of_match_table = of_match_ptr(cpcap_battery_id_table),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 949) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 950) .probe = cpcap_battery_probe,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 951) .remove = cpcap_battery_remove,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 952) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 953) module_platform_driver(cpcap_battery_driver);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 954)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 955) MODULE_LICENSE("GPL v2");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 956) MODULE_AUTHOR("Tony Lindgren <tony@atomide.com>");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 957) MODULE_DESCRIPTION("CPCAP PMIC Battery Driver");