Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    1) // SPDX-License-Identifier: GPL-2.0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    3)  * BQ27xxx battery driver
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    4)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    5)  * Copyright (C) 2008 Rodolfo Giometti <giometti@linux.it>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    6)  * Copyright (C) 2008 Eurotech S.p.A. <info@eurotech.it>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    7)  * Copyright (C) 2010-2011 Lars-Peter Clausen <lars@metafoo.de>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    8)  * Copyright (C) 2011 Pali Rohár <pali@kernel.org>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    9)  * Copyright (C) 2017 Liam Breck <kernel@networkimprov.net>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   10)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   11)  * Based on a previous work by Copyright (C) 2008 Texas Instruments, Inc.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   12)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   13)  * Datasheets:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   14)  * https://www.ti.com/product/bq27000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   15)  * https://www.ti.com/product/bq27200
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   16)  * https://www.ti.com/product/bq27010
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   17)  * https://www.ti.com/product/bq27210
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   18)  * https://www.ti.com/product/bq27500
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   19)  * https://www.ti.com/product/bq27510-g1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   20)  * https://www.ti.com/product/bq27510-g2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   21)  * https://www.ti.com/product/bq27510-g3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   22)  * https://www.ti.com/product/bq27520-g1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   23)  * https://www.ti.com/product/bq27520-g2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   24)  * https://www.ti.com/product/bq27520-g3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   25)  * https://www.ti.com/product/bq27520-g4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   26)  * https://www.ti.com/product/bq27530-g1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   27)  * https://www.ti.com/product/bq27531-g1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   28)  * https://www.ti.com/product/bq27541-g1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   29)  * https://www.ti.com/product/bq27542-g1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   30)  * https://www.ti.com/product/bq27546-g1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   31)  * https://www.ti.com/product/bq27742-g1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   32)  * https://www.ti.com/product/bq27545-g1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   33)  * https://www.ti.com/product/bq27421-g1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   34)  * https://www.ti.com/product/bq27425-g1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   35)  * https://www.ti.com/product/bq27426
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   36)  * https://www.ti.com/product/bq27411-g1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   37)  * https://www.ti.com/product/bq27441-g1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   38)  * https://www.ti.com/product/bq27621-g1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   39)  * https://www.ti.com/product/bq27z561
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   40)  * https://www.ti.com/product/bq28z610
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   41)  * https://www.ti.com/product/bq34z100-g1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   42)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   43) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   44) #include <linux/device.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   45) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   46) #include <linux/mutex.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   47) #include <linux/param.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   48) #include <linux/jiffies.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   49) #include <linux/workqueue.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   50) #include <linux/delay.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   51) #include <linux/platform_device.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   52) #include <linux/power_supply.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   53) #include <linux/slab.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   54) #include <linux/of.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   55) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   56) #include <linux/power/bq27xxx_battery.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   57) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   58) #define BQ27XXX_MANUFACTURER	"Texas Instruments"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   59) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   60) /* BQ27XXX Flags */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   61) #define BQ27XXX_FLAG_DSC	BIT(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   62) #define BQ27XXX_FLAG_SOCF	BIT(1) /* State-of-Charge threshold final */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   63) #define BQ27XXX_FLAG_SOC1	BIT(2) /* State-of-Charge threshold 1 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   64) #define BQ27XXX_FLAG_CFGUP	BIT(4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   65) #define BQ27XXX_FLAG_FC		BIT(9)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   66) #define BQ27XXX_FLAG_OTD	BIT(14)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   67) #define BQ27XXX_FLAG_OTC	BIT(15)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   68) #define BQ27XXX_FLAG_UT		BIT(14)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   69) #define BQ27XXX_FLAG_OT		BIT(15)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   70) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   71) /* BQ27000 has different layout for Flags register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   72) #define BQ27000_FLAG_EDVF	BIT(0) /* Final End-of-Discharge-Voltage flag */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   73) #define BQ27000_FLAG_EDV1	BIT(1) /* First End-of-Discharge-Voltage flag */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   74) #define BQ27000_FLAG_CI		BIT(4) /* Capacity Inaccurate flag */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   75) #define BQ27000_FLAG_FC		BIT(5)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   76) #define BQ27000_FLAG_CHGS	BIT(7) /* Charge state flag */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   77) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   78) /* BQ27Z561 has different layout for Flags register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   79) #define BQ27Z561_FLAG_FDC	BIT(4) /* Battery fully discharged */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   80) #define BQ27Z561_FLAG_FC	BIT(5) /* Battery fully charged */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   81) #define BQ27Z561_FLAG_DIS_CH	BIT(6) /* Battery is discharging */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   82) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   83) /* control register params */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   84) #define BQ27XXX_SEALED			0x20
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   85) #define BQ27XXX_SET_CFGUPDATE		0x13
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   86) #define BQ27XXX_SOFT_RESET		0x42
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   87) #define BQ27XXX_RESET			0x41
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   88) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   89) #define BQ27XXX_RS			(20) /* Resistor sense mOhm */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   90) #define BQ27XXX_POWER_CONSTANT		(29200) /* 29.2 µV^2 * 1000 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   91) #define BQ27XXX_CURRENT_CONSTANT	(3570) /* 3.57 µV * 1000 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   92) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   93) #define INVALID_REG_ADDR	0xff
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   94) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   95) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   96)  * bq27xxx_reg_index - Register names
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   97)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   98)  * These are indexes into a device's register mapping array.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   99)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  100) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  101) enum bq27xxx_reg_index {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  102) 	BQ27XXX_REG_CTRL = 0,	/* Control */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  103) 	BQ27XXX_REG_TEMP,	/* Temperature */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  104) 	BQ27XXX_REG_INT_TEMP,	/* Internal Temperature */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  105) 	BQ27XXX_REG_VOLT,	/* Voltage */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  106) 	BQ27XXX_REG_AI,		/* Average Current */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  107) 	BQ27XXX_REG_FLAGS,	/* Flags */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  108) 	BQ27XXX_REG_TTE,	/* Time-to-Empty */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  109) 	BQ27XXX_REG_TTF,	/* Time-to-Full */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  110) 	BQ27XXX_REG_TTES,	/* Time-to-Empty Standby */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  111) 	BQ27XXX_REG_TTECP,	/* Time-to-Empty at Constant Power */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  112) 	BQ27XXX_REG_NAC,	/* Nominal Available Capacity */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  113) 	BQ27XXX_REG_FCC,	/* Full Charge Capacity */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  114) 	BQ27XXX_REG_CYCT,	/* Cycle Count */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  115) 	BQ27XXX_REG_AE,		/* Available Energy */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  116) 	BQ27XXX_REG_SOC,	/* State-of-Charge */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  117) 	BQ27XXX_REG_DCAP,	/* Design Capacity */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  118) 	BQ27XXX_REG_AP,		/* Average Power */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  119) 	BQ27XXX_DM_CTRL,	/* Block Data Control */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  120) 	BQ27XXX_DM_CLASS,	/* Data Class */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  121) 	BQ27XXX_DM_BLOCK,	/* Data Block */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  122) 	BQ27XXX_DM_DATA,	/* Block Data */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  123) 	BQ27XXX_DM_CKSUM,	/* Block Data Checksum */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  124) 	BQ27XXX_REG_MAX,	/* sentinel */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  125) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  126) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  127) #define BQ27XXX_DM_REG_ROWS \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  128) 	[BQ27XXX_DM_CTRL] = 0x61,  \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  129) 	[BQ27XXX_DM_CLASS] = 0x3e, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  130) 	[BQ27XXX_DM_BLOCK] = 0x3f, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  131) 	[BQ27XXX_DM_DATA] = 0x40,  \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  132) 	[BQ27XXX_DM_CKSUM] = 0x60
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  133) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  134) /* Register mappings */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  135) static u8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  136) 	bq27000_regs[BQ27XXX_REG_MAX] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  137) 		[BQ27XXX_REG_CTRL] = 0x00,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  138) 		[BQ27XXX_REG_TEMP] = 0x06,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  139) 		[BQ27XXX_REG_INT_TEMP] = INVALID_REG_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  140) 		[BQ27XXX_REG_VOLT] = 0x08,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  141) 		[BQ27XXX_REG_AI] = 0x14,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  142) 		[BQ27XXX_REG_FLAGS] = 0x0a,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  143) 		[BQ27XXX_REG_TTE] = 0x16,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  144) 		[BQ27XXX_REG_TTF] = 0x18,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  145) 		[BQ27XXX_REG_TTES] = 0x1c,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  146) 		[BQ27XXX_REG_TTECP] = 0x26,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  147) 		[BQ27XXX_REG_NAC] = 0x0c,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  148) 		[BQ27XXX_REG_FCC] = 0x12,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  149) 		[BQ27XXX_REG_CYCT] = 0x2a,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  150) 		[BQ27XXX_REG_AE] = 0x22,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  151) 		[BQ27XXX_REG_SOC] = 0x0b,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  152) 		[BQ27XXX_REG_DCAP] = 0x76,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  153) 		[BQ27XXX_REG_AP] = 0x24,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  154) 		[BQ27XXX_DM_CTRL] = INVALID_REG_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  155) 		[BQ27XXX_DM_CLASS] = INVALID_REG_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  156) 		[BQ27XXX_DM_BLOCK] = INVALID_REG_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  157) 		[BQ27XXX_DM_DATA] = INVALID_REG_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  158) 		[BQ27XXX_DM_CKSUM] = INVALID_REG_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  159) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  160) 	bq27010_regs[BQ27XXX_REG_MAX] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  161) 		[BQ27XXX_REG_CTRL] = 0x00,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  162) 		[BQ27XXX_REG_TEMP] = 0x06,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  163) 		[BQ27XXX_REG_INT_TEMP] = INVALID_REG_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  164) 		[BQ27XXX_REG_VOLT] = 0x08,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  165) 		[BQ27XXX_REG_AI] = 0x14,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  166) 		[BQ27XXX_REG_FLAGS] = 0x0a,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  167) 		[BQ27XXX_REG_TTE] = 0x16,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  168) 		[BQ27XXX_REG_TTF] = 0x18,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  169) 		[BQ27XXX_REG_TTES] = 0x1c,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  170) 		[BQ27XXX_REG_TTECP] = 0x26,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  171) 		[BQ27XXX_REG_NAC] = 0x0c,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  172) 		[BQ27XXX_REG_FCC] = 0x12,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  173) 		[BQ27XXX_REG_CYCT] = 0x2a,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  174) 		[BQ27XXX_REG_AE] = INVALID_REG_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  175) 		[BQ27XXX_REG_SOC] = 0x0b,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  176) 		[BQ27XXX_REG_DCAP] = 0x76,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  177) 		[BQ27XXX_REG_AP] = INVALID_REG_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  178) 		[BQ27XXX_DM_CTRL] = INVALID_REG_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  179) 		[BQ27XXX_DM_CLASS] = INVALID_REG_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  180) 		[BQ27XXX_DM_BLOCK] = INVALID_REG_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  181) 		[BQ27XXX_DM_DATA] = INVALID_REG_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  182) 		[BQ27XXX_DM_CKSUM] = INVALID_REG_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  183) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  184) 	bq2750x_regs[BQ27XXX_REG_MAX] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  185) 		[BQ27XXX_REG_CTRL] = 0x00,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  186) 		[BQ27XXX_REG_TEMP] = 0x06,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  187) 		[BQ27XXX_REG_INT_TEMP] = 0x28,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  188) 		[BQ27XXX_REG_VOLT] = 0x08,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  189) 		[BQ27XXX_REG_AI] = 0x14,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  190) 		[BQ27XXX_REG_FLAGS] = 0x0a,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  191) 		[BQ27XXX_REG_TTE] = 0x16,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  192) 		[BQ27XXX_REG_TTF] = INVALID_REG_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  193) 		[BQ27XXX_REG_TTES] = 0x1a,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  194) 		[BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  195) 		[BQ27XXX_REG_NAC] = 0x0c,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  196) 		[BQ27XXX_REG_FCC] = 0x12,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  197) 		[BQ27XXX_REG_CYCT] = 0x2a,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  198) 		[BQ27XXX_REG_AE] = INVALID_REG_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  199) 		[BQ27XXX_REG_SOC] = 0x2c,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  200) 		[BQ27XXX_REG_DCAP] = 0x3c,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  201) 		[BQ27XXX_REG_AP] = INVALID_REG_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  202) 		BQ27XXX_DM_REG_ROWS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  203) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  204) #define bq2751x_regs bq27510g3_regs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  205) #define bq2752x_regs bq27510g3_regs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  206) 	bq27500_regs[BQ27XXX_REG_MAX] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  207) 		[BQ27XXX_REG_CTRL] = 0x00,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  208) 		[BQ27XXX_REG_TEMP] = 0x06,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  209) 		[BQ27XXX_REG_INT_TEMP] = INVALID_REG_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  210) 		[BQ27XXX_REG_VOLT] = 0x08,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  211) 		[BQ27XXX_REG_AI] = 0x14,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  212) 		[BQ27XXX_REG_FLAGS] = 0x0a,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  213) 		[BQ27XXX_REG_TTE] = 0x16,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  214) 		[BQ27XXX_REG_TTF] = 0x18,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  215) 		[BQ27XXX_REG_TTES] = 0x1c,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  216) 		[BQ27XXX_REG_TTECP] = 0x26,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  217) 		[BQ27XXX_REG_NAC] = 0x0c,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  218) 		[BQ27XXX_REG_FCC] = 0x12,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  219) 		[BQ27XXX_REG_CYCT] = 0x2a,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  220) 		[BQ27XXX_REG_AE] = 0x22,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  221) 		[BQ27XXX_REG_SOC] = 0x2c,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  222) 		[BQ27XXX_REG_DCAP] = 0x3c,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  223) 		[BQ27XXX_REG_AP] = 0x24,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  224) 		BQ27XXX_DM_REG_ROWS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  225) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  226) #define bq27510g1_regs bq27500_regs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  227) #define bq27510g2_regs bq27500_regs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  228) 	bq27510g3_regs[BQ27XXX_REG_MAX] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  229) 		[BQ27XXX_REG_CTRL] = 0x00,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  230) 		[BQ27XXX_REG_TEMP] = 0x06,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  231) 		[BQ27XXX_REG_INT_TEMP] = 0x28,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  232) 		[BQ27XXX_REG_VOLT] = 0x08,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  233) 		[BQ27XXX_REG_AI] = 0x14,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  234) 		[BQ27XXX_REG_FLAGS] = 0x0a,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  235) 		[BQ27XXX_REG_TTE] = 0x16,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  236) 		[BQ27XXX_REG_TTF] = INVALID_REG_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  237) 		[BQ27XXX_REG_TTES] = 0x1a,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  238) 		[BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  239) 		[BQ27XXX_REG_NAC] = 0x0c,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  240) 		[BQ27XXX_REG_FCC] = 0x12,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  241) 		[BQ27XXX_REG_CYCT] = 0x1e,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  242) 		[BQ27XXX_REG_AE] = INVALID_REG_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  243) 		[BQ27XXX_REG_SOC] = 0x20,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  244) 		[BQ27XXX_REG_DCAP] = 0x2e,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  245) 		[BQ27XXX_REG_AP] = INVALID_REG_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  246) 		BQ27XXX_DM_REG_ROWS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  247) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  248) 	bq27520g1_regs[BQ27XXX_REG_MAX] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  249) 		[BQ27XXX_REG_CTRL] = 0x00,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  250) 		[BQ27XXX_REG_TEMP] = 0x06,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  251) 		[BQ27XXX_REG_INT_TEMP] = INVALID_REG_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  252) 		[BQ27XXX_REG_VOLT] = 0x08,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  253) 		[BQ27XXX_REG_AI] = 0x14,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  254) 		[BQ27XXX_REG_FLAGS] = 0x0a,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  255) 		[BQ27XXX_REG_TTE] = 0x16,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  256) 		[BQ27XXX_REG_TTF] = 0x18,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  257) 		[BQ27XXX_REG_TTES] = 0x1c,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  258) 		[BQ27XXX_REG_TTECP] = 0x26,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  259) 		[BQ27XXX_REG_NAC] = 0x0c,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  260) 		[BQ27XXX_REG_FCC] = 0x12,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  261) 		[BQ27XXX_REG_CYCT] = INVALID_REG_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  262) 		[BQ27XXX_REG_AE] = 0x22,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  263) 		[BQ27XXX_REG_SOC] = 0x2c,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  264) 		[BQ27XXX_REG_DCAP] = 0x3c,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  265) 		[BQ27XXX_REG_AP] = 0x24,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  266) 		BQ27XXX_DM_REG_ROWS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  267) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  268) 	bq27520g2_regs[BQ27XXX_REG_MAX] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  269) 		[BQ27XXX_REG_CTRL] = 0x00,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  270) 		[BQ27XXX_REG_TEMP] = 0x06,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  271) 		[BQ27XXX_REG_INT_TEMP] = 0x36,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  272) 		[BQ27XXX_REG_VOLT] = 0x08,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  273) 		[BQ27XXX_REG_AI] = 0x14,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  274) 		[BQ27XXX_REG_FLAGS] = 0x0a,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  275) 		[BQ27XXX_REG_TTE] = 0x16,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  276) 		[BQ27XXX_REG_TTF] = 0x18,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  277) 		[BQ27XXX_REG_TTES] = 0x1c,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  278) 		[BQ27XXX_REG_TTECP] = 0x26,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  279) 		[BQ27XXX_REG_NAC] = 0x0c,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  280) 		[BQ27XXX_REG_FCC] = 0x12,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  281) 		[BQ27XXX_REG_CYCT] = 0x2a,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  282) 		[BQ27XXX_REG_AE] = 0x22,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  283) 		[BQ27XXX_REG_SOC] = 0x2c,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  284) 		[BQ27XXX_REG_DCAP] = 0x3c,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  285) 		[BQ27XXX_REG_AP] = 0x24,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  286) 		BQ27XXX_DM_REG_ROWS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  287) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  288) 	bq27520g3_regs[BQ27XXX_REG_MAX] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  289) 		[BQ27XXX_REG_CTRL] = 0x00,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  290) 		[BQ27XXX_REG_TEMP] = 0x06,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  291) 		[BQ27XXX_REG_INT_TEMP] = 0x36,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  292) 		[BQ27XXX_REG_VOLT] = 0x08,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  293) 		[BQ27XXX_REG_AI] = 0x14,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  294) 		[BQ27XXX_REG_FLAGS] = 0x0a,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  295) 		[BQ27XXX_REG_TTE] = 0x16,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  296) 		[BQ27XXX_REG_TTF] = INVALID_REG_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  297) 		[BQ27XXX_REG_TTES] = 0x1c,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  298) 		[BQ27XXX_REG_TTECP] = 0x26,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  299) 		[BQ27XXX_REG_NAC] = 0x0c,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  300) 		[BQ27XXX_REG_FCC] = 0x12,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  301) 		[BQ27XXX_REG_CYCT] = 0x2a,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  302) 		[BQ27XXX_REG_AE] = 0x22,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  303) 		[BQ27XXX_REG_SOC] = 0x2c,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  304) 		[BQ27XXX_REG_DCAP] = 0x3c,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  305) 		[BQ27XXX_REG_AP] = 0x24,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  306) 		BQ27XXX_DM_REG_ROWS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  307) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  308) 	bq27520g4_regs[BQ27XXX_REG_MAX] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  309) 		[BQ27XXX_REG_CTRL] = 0x00,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  310) 		[BQ27XXX_REG_TEMP] = 0x06,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  311) 		[BQ27XXX_REG_INT_TEMP] = 0x28,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  312) 		[BQ27XXX_REG_VOLT] = 0x08,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  313) 		[BQ27XXX_REG_AI] = 0x14,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  314) 		[BQ27XXX_REG_FLAGS] = 0x0a,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  315) 		[BQ27XXX_REG_TTE] = 0x16,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  316) 		[BQ27XXX_REG_TTF] = INVALID_REG_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  317) 		[BQ27XXX_REG_TTES] = 0x1c,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  318) 		[BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  319) 		[BQ27XXX_REG_NAC] = 0x0c,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  320) 		[BQ27XXX_REG_FCC] = 0x12,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  321) 		[BQ27XXX_REG_CYCT] = 0x1e,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  322) 		[BQ27XXX_REG_AE] = INVALID_REG_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  323) 		[BQ27XXX_REG_SOC] = 0x20,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  324) 		[BQ27XXX_REG_DCAP] = INVALID_REG_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  325) 		[BQ27XXX_REG_AP] = INVALID_REG_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  326) 		BQ27XXX_DM_REG_ROWS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  327) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  328) 	bq27521_regs[BQ27XXX_REG_MAX] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  329) 		[BQ27XXX_REG_CTRL] = 0x02,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  330) 		[BQ27XXX_REG_TEMP] = 0x0a,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  331) 		[BQ27XXX_REG_INT_TEMP] = INVALID_REG_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  332) 		[BQ27XXX_REG_VOLT] = 0x0c,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  333) 		[BQ27XXX_REG_AI] = 0x0e,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  334) 		[BQ27XXX_REG_FLAGS] = 0x08,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  335) 		[BQ27XXX_REG_TTE] = INVALID_REG_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  336) 		[BQ27XXX_REG_TTF] = INVALID_REG_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  337) 		[BQ27XXX_REG_TTES] = INVALID_REG_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  338) 		[BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  339) 		[BQ27XXX_REG_NAC] = INVALID_REG_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  340) 		[BQ27XXX_REG_FCC] = INVALID_REG_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  341) 		[BQ27XXX_REG_CYCT] = INVALID_REG_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  342) 		[BQ27XXX_REG_AE] = INVALID_REG_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  343) 		[BQ27XXX_REG_SOC] = INVALID_REG_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  344) 		[BQ27XXX_REG_DCAP] = INVALID_REG_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  345) 		[BQ27XXX_REG_AP] = INVALID_REG_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  346) 		[BQ27XXX_DM_CTRL] = INVALID_REG_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  347) 		[BQ27XXX_DM_CLASS] = INVALID_REG_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  348) 		[BQ27XXX_DM_BLOCK] = INVALID_REG_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  349) 		[BQ27XXX_DM_DATA] = INVALID_REG_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  350) 		[BQ27XXX_DM_CKSUM] = INVALID_REG_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  351) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  352) 	bq27530_regs[BQ27XXX_REG_MAX] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  353) 		[BQ27XXX_REG_CTRL] = 0x00,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  354) 		[BQ27XXX_REG_TEMP] = 0x06,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  355) 		[BQ27XXX_REG_INT_TEMP] = 0x32,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  356) 		[BQ27XXX_REG_VOLT] = 0x08,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  357) 		[BQ27XXX_REG_AI] = 0x14,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  358) 		[BQ27XXX_REG_FLAGS] = 0x0a,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  359) 		[BQ27XXX_REG_TTE] = 0x16,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  360) 		[BQ27XXX_REG_TTF] = INVALID_REG_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  361) 		[BQ27XXX_REG_TTES] = INVALID_REG_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  362) 		[BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  363) 		[BQ27XXX_REG_NAC] = 0x0c,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  364) 		[BQ27XXX_REG_FCC] = 0x12,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  365) 		[BQ27XXX_REG_CYCT] = 0x2a,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  366) 		[BQ27XXX_REG_AE] = INVALID_REG_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  367) 		[BQ27XXX_REG_SOC] = 0x2c,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  368) 		[BQ27XXX_REG_DCAP] = INVALID_REG_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  369) 		[BQ27XXX_REG_AP] = 0x24,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  370) 		BQ27XXX_DM_REG_ROWS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  371) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  372) #define bq27531_regs bq27530_regs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  373) 	bq27541_regs[BQ27XXX_REG_MAX] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  374) 		[BQ27XXX_REG_CTRL] = 0x00,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  375) 		[BQ27XXX_REG_TEMP] = 0x06,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  376) 		[BQ27XXX_REG_INT_TEMP] = 0x28,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  377) 		[BQ27XXX_REG_VOLT] = 0x08,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  378) 		[BQ27XXX_REG_AI] = 0x14,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  379) 		[BQ27XXX_REG_FLAGS] = 0x0a,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  380) 		[BQ27XXX_REG_TTE] = 0x16,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  381) 		[BQ27XXX_REG_TTF] = INVALID_REG_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  382) 		[BQ27XXX_REG_TTES] = INVALID_REG_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  383) 		[BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  384) 		[BQ27XXX_REG_NAC] = 0x0c,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  385) 		[BQ27XXX_REG_FCC] = 0x12,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  386) 		[BQ27XXX_REG_CYCT] = 0x2a,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  387) 		[BQ27XXX_REG_AE] = INVALID_REG_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  388) 		[BQ27XXX_REG_SOC] = 0x2c,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  389) 		[BQ27XXX_REG_DCAP] = 0x3c,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  390) 		[BQ27XXX_REG_AP] = 0x24,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  391) 		BQ27XXX_DM_REG_ROWS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  392) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  393) #define bq27542_regs bq27541_regs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  394) #define bq27546_regs bq27541_regs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  395) #define bq27742_regs bq27541_regs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  396) 	bq27545_regs[BQ27XXX_REG_MAX] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  397) 		[BQ27XXX_REG_CTRL] = 0x00,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  398) 		[BQ27XXX_REG_TEMP] = 0x06,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  399) 		[BQ27XXX_REG_INT_TEMP] = 0x28,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  400) 		[BQ27XXX_REG_VOLT] = 0x08,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  401) 		[BQ27XXX_REG_AI] = 0x14,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  402) 		[BQ27XXX_REG_FLAGS] = 0x0a,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  403) 		[BQ27XXX_REG_TTE] = 0x16,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  404) 		[BQ27XXX_REG_TTF] = INVALID_REG_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  405) 		[BQ27XXX_REG_TTES] = INVALID_REG_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  406) 		[BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  407) 		[BQ27XXX_REG_NAC] = 0x0c,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  408) 		[BQ27XXX_REG_FCC] = 0x12,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  409) 		[BQ27XXX_REG_CYCT] = 0x2a,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  410) 		[BQ27XXX_REG_AE] = INVALID_REG_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  411) 		[BQ27XXX_REG_SOC] = 0x2c,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  412) 		[BQ27XXX_REG_DCAP] = INVALID_REG_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  413) 		[BQ27XXX_REG_AP] = 0x24,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  414) 		BQ27XXX_DM_REG_ROWS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  415) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  416) 	bq27421_regs[BQ27XXX_REG_MAX] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  417) 		[BQ27XXX_REG_CTRL] = 0x00,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  418) 		[BQ27XXX_REG_TEMP] = 0x02,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  419) 		[BQ27XXX_REG_INT_TEMP] = 0x1e,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  420) 		[BQ27XXX_REG_VOLT] = 0x04,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  421) 		[BQ27XXX_REG_AI] = 0x10,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  422) 		[BQ27XXX_REG_FLAGS] = 0x06,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  423) 		[BQ27XXX_REG_TTE] = INVALID_REG_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  424) 		[BQ27XXX_REG_TTF] = INVALID_REG_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  425) 		[BQ27XXX_REG_TTES] = INVALID_REG_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  426) 		[BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  427) 		[BQ27XXX_REG_NAC] = 0x08,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  428) 		[BQ27XXX_REG_FCC] = 0x0e,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  429) 		[BQ27XXX_REG_CYCT] = INVALID_REG_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  430) 		[BQ27XXX_REG_AE] = INVALID_REG_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  431) 		[BQ27XXX_REG_SOC] = 0x1c,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  432) 		[BQ27XXX_REG_DCAP] = 0x3c,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  433) 		[BQ27XXX_REG_AP] = 0x18,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  434) 		BQ27XXX_DM_REG_ROWS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  435) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  436) #define bq27411_regs bq27421_regs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  437) #define bq27425_regs bq27421_regs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  438) #define bq27426_regs bq27421_regs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  439) #define bq27441_regs bq27421_regs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  440) #define bq27621_regs bq27421_regs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  441) 	bq27z561_regs[BQ27XXX_REG_MAX] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  442) 		[BQ27XXX_REG_CTRL] = 0x00,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  443) 		[BQ27XXX_REG_TEMP] = 0x06,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  444) 		[BQ27XXX_REG_INT_TEMP] = INVALID_REG_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  445) 		[BQ27XXX_REG_VOLT] = 0x08,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  446) 		[BQ27XXX_REG_AI] = 0x14,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  447) 		[BQ27XXX_REG_FLAGS] = 0x0a,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  448) 		[BQ27XXX_REG_TTE] = 0x16,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  449) 		[BQ27XXX_REG_TTF] = 0x18,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  450) 		[BQ27XXX_REG_TTES] = INVALID_REG_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  451) 		[BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  452) 		[BQ27XXX_REG_NAC] = INVALID_REG_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  453) 		[BQ27XXX_REG_FCC] = 0x12,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  454) 		[BQ27XXX_REG_CYCT] = 0x2a,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  455) 		[BQ27XXX_REG_AE] = 0x22,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  456) 		[BQ27XXX_REG_SOC] = 0x2c,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  457) 		[BQ27XXX_REG_DCAP] = 0x3c,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  458) 		[BQ27XXX_REG_AP] = 0x22,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  459) 		BQ27XXX_DM_REG_ROWS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  460) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  461) 	bq28z610_regs[BQ27XXX_REG_MAX] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  462) 		[BQ27XXX_REG_CTRL] = 0x00,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  463) 		[BQ27XXX_REG_TEMP] = 0x06,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  464) 		[BQ27XXX_REG_INT_TEMP] = INVALID_REG_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  465) 		[BQ27XXX_REG_VOLT] = 0x08,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  466) 		[BQ27XXX_REG_AI] = 0x14,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  467) 		[BQ27XXX_REG_FLAGS] = 0x0a,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  468) 		[BQ27XXX_REG_TTE] = 0x16,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  469) 		[BQ27XXX_REG_TTF] = 0x18,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  470) 		[BQ27XXX_REG_TTES] = INVALID_REG_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  471) 		[BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  472) 		[BQ27XXX_REG_NAC] = INVALID_REG_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  473) 		[BQ27XXX_REG_FCC] = 0x12,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  474) 		[BQ27XXX_REG_CYCT] = 0x2a,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  475) 		[BQ27XXX_REG_AE] = 0x22,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  476) 		[BQ27XXX_REG_SOC] = 0x2c,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  477) 		[BQ27XXX_REG_DCAP] = 0x3c,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  478) 		[BQ27XXX_REG_AP] = 0x22,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  479) 		BQ27XXX_DM_REG_ROWS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  480) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  481) 	bq34z100_regs[BQ27XXX_REG_MAX] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  482) 		[BQ27XXX_REG_CTRL] = 0x00,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  483) 		[BQ27XXX_REG_TEMP] = 0x0c,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  484) 		[BQ27XXX_REG_INT_TEMP] = 0x2a,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  485) 		[BQ27XXX_REG_VOLT] = 0x08,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  486) 		[BQ27XXX_REG_AI] = 0x0a,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  487) 		[BQ27XXX_REG_FLAGS] = 0x0e,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  488) 		[BQ27XXX_REG_TTE] = 0x18,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  489) 		[BQ27XXX_REG_TTF] = 0x1a,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  490) 		[BQ27XXX_REG_TTES] = 0x1e,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  491) 		[BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  492) 		[BQ27XXX_REG_NAC] = INVALID_REG_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  493) 		[BQ27XXX_REG_FCC] = 0x06,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  494) 		[BQ27XXX_REG_CYCT] = 0x2c,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  495) 		[BQ27XXX_REG_AE] = 0x24,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  496) 		[BQ27XXX_REG_SOC] = 0x02,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  497) 		[BQ27XXX_REG_DCAP] = 0x3c,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  498) 		[BQ27XXX_REG_AP] = 0x22,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  499) 		BQ27XXX_DM_REG_ROWS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  500) 	};
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  501) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  502) static enum power_supply_property bq27000_props[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  503) 	POWER_SUPPLY_PROP_STATUS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  504) 	POWER_SUPPLY_PROP_PRESENT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  505) 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  506) 	POWER_SUPPLY_PROP_CURRENT_NOW,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  507) 	POWER_SUPPLY_PROP_CAPACITY,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  508) 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  509) 	POWER_SUPPLY_PROP_TEMP,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  510) 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  511) 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  512) 	POWER_SUPPLY_PROP_TIME_TO_FULL_NOW,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  513) 	POWER_SUPPLY_PROP_TECHNOLOGY,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  514) 	POWER_SUPPLY_PROP_CHARGE_FULL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  515) 	POWER_SUPPLY_PROP_CHARGE_NOW,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  516) 	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  517) 	POWER_SUPPLY_PROP_CYCLE_COUNT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  518) 	POWER_SUPPLY_PROP_ENERGY_NOW,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  519) 	POWER_SUPPLY_PROP_POWER_AVG,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  520) 	POWER_SUPPLY_PROP_HEALTH,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  521) 	POWER_SUPPLY_PROP_MANUFACTURER,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  522) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  523) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  524) static enum power_supply_property bq27010_props[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  525) 	POWER_SUPPLY_PROP_STATUS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  526) 	POWER_SUPPLY_PROP_PRESENT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  527) 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  528) 	POWER_SUPPLY_PROP_CURRENT_NOW,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  529) 	POWER_SUPPLY_PROP_CAPACITY,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  530) 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  531) 	POWER_SUPPLY_PROP_TEMP,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  532) 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  533) 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  534) 	POWER_SUPPLY_PROP_TIME_TO_FULL_NOW,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  535) 	POWER_SUPPLY_PROP_TECHNOLOGY,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  536) 	POWER_SUPPLY_PROP_CHARGE_FULL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  537) 	POWER_SUPPLY_PROP_CHARGE_NOW,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  538) 	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  539) 	POWER_SUPPLY_PROP_CYCLE_COUNT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  540) 	POWER_SUPPLY_PROP_HEALTH,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  541) 	POWER_SUPPLY_PROP_MANUFACTURER,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  542) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  543) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  544) #define bq2750x_props bq27510g3_props
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  545) #define bq2751x_props bq27510g3_props
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  546) #define bq2752x_props bq27510g3_props
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  547) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  548) static enum power_supply_property bq27500_props[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  549) 	POWER_SUPPLY_PROP_STATUS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  550) 	POWER_SUPPLY_PROP_PRESENT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  551) 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  552) 	POWER_SUPPLY_PROP_CURRENT_NOW,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  553) 	POWER_SUPPLY_PROP_CAPACITY,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  554) 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  555) 	POWER_SUPPLY_PROP_TEMP,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  556) 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  557) 	POWER_SUPPLY_PROP_TIME_TO_FULL_NOW,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  558) 	POWER_SUPPLY_PROP_TECHNOLOGY,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  559) 	POWER_SUPPLY_PROP_CHARGE_FULL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  560) 	POWER_SUPPLY_PROP_CHARGE_NOW,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  561) 	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  562) 	POWER_SUPPLY_PROP_CYCLE_COUNT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  563) 	POWER_SUPPLY_PROP_ENERGY_NOW,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  564) 	POWER_SUPPLY_PROP_POWER_AVG,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  565) 	POWER_SUPPLY_PROP_HEALTH,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  566) 	POWER_SUPPLY_PROP_MANUFACTURER,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  567) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  568) #define bq27510g1_props bq27500_props
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  569) #define bq27510g2_props bq27500_props
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  570) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  571) static enum power_supply_property bq27510g3_props[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  572) 	POWER_SUPPLY_PROP_STATUS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  573) 	POWER_SUPPLY_PROP_PRESENT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  574) 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  575) 	POWER_SUPPLY_PROP_CURRENT_NOW,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  576) 	POWER_SUPPLY_PROP_CAPACITY,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  577) 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  578) 	POWER_SUPPLY_PROP_TEMP,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  579) 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  580) 	POWER_SUPPLY_PROP_TECHNOLOGY,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  581) 	POWER_SUPPLY_PROP_CHARGE_FULL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  582) 	POWER_SUPPLY_PROP_CHARGE_NOW,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  583) 	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  584) 	POWER_SUPPLY_PROP_CYCLE_COUNT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  585) 	POWER_SUPPLY_PROP_HEALTH,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  586) 	POWER_SUPPLY_PROP_MANUFACTURER,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  587) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  588) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  589) static enum power_supply_property bq27520g1_props[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  590) 	POWER_SUPPLY_PROP_STATUS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  591) 	POWER_SUPPLY_PROP_PRESENT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  592) 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  593) 	POWER_SUPPLY_PROP_CURRENT_NOW,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  594) 	POWER_SUPPLY_PROP_CAPACITY,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  595) 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  596) 	POWER_SUPPLY_PROP_TEMP,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  597) 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  598) 	POWER_SUPPLY_PROP_TIME_TO_FULL_NOW,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  599) 	POWER_SUPPLY_PROP_TECHNOLOGY,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  600) 	POWER_SUPPLY_PROP_CHARGE_FULL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  601) 	POWER_SUPPLY_PROP_CHARGE_NOW,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  602) 	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  603) 	POWER_SUPPLY_PROP_ENERGY_NOW,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  604) 	POWER_SUPPLY_PROP_POWER_AVG,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  605) 	POWER_SUPPLY_PROP_HEALTH,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  606) 	POWER_SUPPLY_PROP_MANUFACTURER,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  607) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  608) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  609) #define bq27520g2_props bq27500_props
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  610) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  611) static enum power_supply_property bq27520g3_props[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  612) 	POWER_SUPPLY_PROP_STATUS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  613) 	POWER_SUPPLY_PROP_PRESENT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  614) 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  615) 	POWER_SUPPLY_PROP_CURRENT_NOW,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  616) 	POWER_SUPPLY_PROP_CAPACITY,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  617) 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  618) 	POWER_SUPPLY_PROP_TEMP,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  619) 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  620) 	POWER_SUPPLY_PROP_TECHNOLOGY,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  621) 	POWER_SUPPLY_PROP_CHARGE_FULL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  622) 	POWER_SUPPLY_PROP_CHARGE_NOW,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  623) 	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  624) 	POWER_SUPPLY_PROP_CYCLE_COUNT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  625) 	POWER_SUPPLY_PROP_ENERGY_NOW,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  626) 	POWER_SUPPLY_PROP_POWER_AVG,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  627) 	POWER_SUPPLY_PROP_HEALTH,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  628) 	POWER_SUPPLY_PROP_MANUFACTURER,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  629) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  630) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  631) static enum power_supply_property bq27520g4_props[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  632) 	POWER_SUPPLY_PROP_STATUS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  633) 	POWER_SUPPLY_PROP_PRESENT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  634) 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  635) 	POWER_SUPPLY_PROP_CURRENT_NOW,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  636) 	POWER_SUPPLY_PROP_CAPACITY,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  637) 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  638) 	POWER_SUPPLY_PROP_TEMP,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  639) 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  640) 	POWER_SUPPLY_PROP_TECHNOLOGY,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  641) 	POWER_SUPPLY_PROP_CHARGE_FULL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  642) 	POWER_SUPPLY_PROP_CHARGE_NOW,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  643) 	POWER_SUPPLY_PROP_CYCLE_COUNT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  644) 	POWER_SUPPLY_PROP_HEALTH,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  645) 	POWER_SUPPLY_PROP_MANUFACTURER,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  646) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  647) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  648) static enum power_supply_property bq27521_props[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  649) 	POWER_SUPPLY_PROP_STATUS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  650) 	POWER_SUPPLY_PROP_PRESENT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  651) 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  652) 	POWER_SUPPLY_PROP_CURRENT_NOW,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  653) 	POWER_SUPPLY_PROP_TEMP,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  654) 	POWER_SUPPLY_PROP_TECHNOLOGY,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  655) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  656) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  657) static enum power_supply_property bq27530_props[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  658) 	POWER_SUPPLY_PROP_STATUS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  659) 	POWER_SUPPLY_PROP_PRESENT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  660) 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  661) 	POWER_SUPPLY_PROP_CURRENT_NOW,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  662) 	POWER_SUPPLY_PROP_CAPACITY,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  663) 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  664) 	POWER_SUPPLY_PROP_TEMP,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  665) 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  666) 	POWER_SUPPLY_PROP_TECHNOLOGY,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  667) 	POWER_SUPPLY_PROP_CHARGE_FULL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  668) 	POWER_SUPPLY_PROP_CHARGE_NOW,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  669) 	POWER_SUPPLY_PROP_POWER_AVG,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  670) 	POWER_SUPPLY_PROP_HEALTH,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  671) 	POWER_SUPPLY_PROP_CYCLE_COUNT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  672) 	POWER_SUPPLY_PROP_MANUFACTURER,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  673) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  674) #define bq27531_props bq27530_props
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  675) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  676) static enum power_supply_property bq27541_props[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  677) 	POWER_SUPPLY_PROP_STATUS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  678) 	POWER_SUPPLY_PROP_PRESENT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  679) 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  680) 	POWER_SUPPLY_PROP_CURRENT_NOW,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  681) 	POWER_SUPPLY_PROP_CAPACITY,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  682) 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  683) 	POWER_SUPPLY_PROP_TEMP,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  684) 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  685) 	POWER_SUPPLY_PROP_TECHNOLOGY,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  686) 	POWER_SUPPLY_PROP_CHARGE_FULL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  687) 	POWER_SUPPLY_PROP_CHARGE_NOW,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  688) 	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  689) 	POWER_SUPPLY_PROP_CYCLE_COUNT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  690) 	POWER_SUPPLY_PROP_POWER_AVG,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  691) 	POWER_SUPPLY_PROP_HEALTH,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  692) 	POWER_SUPPLY_PROP_MANUFACTURER,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  693) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  694) #define bq27542_props bq27541_props
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  695) #define bq27546_props bq27541_props
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  696) #define bq27742_props bq27541_props
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  697) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  698) static enum power_supply_property bq27545_props[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  699) 	POWER_SUPPLY_PROP_STATUS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  700) 	POWER_SUPPLY_PROP_PRESENT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  701) 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  702) 	POWER_SUPPLY_PROP_CURRENT_NOW,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  703) 	POWER_SUPPLY_PROP_CAPACITY,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  704) 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  705) 	POWER_SUPPLY_PROP_TEMP,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  706) 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  707) 	POWER_SUPPLY_PROP_TECHNOLOGY,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  708) 	POWER_SUPPLY_PROP_CHARGE_FULL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  709) 	POWER_SUPPLY_PROP_CHARGE_NOW,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  710) 	POWER_SUPPLY_PROP_HEALTH,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  711) 	POWER_SUPPLY_PROP_CYCLE_COUNT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  712) 	POWER_SUPPLY_PROP_POWER_AVG,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  713) 	POWER_SUPPLY_PROP_MANUFACTURER,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  714) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  715) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  716) static enum power_supply_property bq27421_props[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  717) 	POWER_SUPPLY_PROP_STATUS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  718) 	POWER_SUPPLY_PROP_PRESENT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  719) 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  720) 	POWER_SUPPLY_PROP_CURRENT_NOW,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  721) 	POWER_SUPPLY_PROP_CAPACITY,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  722) 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  723) 	POWER_SUPPLY_PROP_TEMP,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  724) 	POWER_SUPPLY_PROP_TECHNOLOGY,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  725) 	POWER_SUPPLY_PROP_CHARGE_FULL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  726) 	POWER_SUPPLY_PROP_CHARGE_NOW,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  727) 	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  728) 	POWER_SUPPLY_PROP_MANUFACTURER,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  729) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  730) #define bq27411_props bq27421_props
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  731) #define bq27425_props bq27421_props
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  732) #define bq27426_props bq27421_props
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  733) #define bq27441_props bq27421_props
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  734) #define bq27621_props bq27421_props
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  735) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  736) static enum power_supply_property bq27z561_props[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  737) 	POWER_SUPPLY_PROP_STATUS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  738) 	POWER_SUPPLY_PROP_PRESENT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  739) 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  740) 	POWER_SUPPLY_PROP_CURRENT_NOW,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  741) 	POWER_SUPPLY_PROP_CAPACITY,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  742) 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  743) 	POWER_SUPPLY_PROP_TEMP,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  744) 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  745) 	POWER_SUPPLY_PROP_TIME_TO_FULL_NOW,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  746) 	POWER_SUPPLY_PROP_TECHNOLOGY,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  747) 	POWER_SUPPLY_PROP_CHARGE_FULL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  748) 	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  749) 	POWER_SUPPLY_PROP_CYCLE_COUNT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  750) 	POWER_SUPPLY_PROP_POWER_AVG,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  751) 	POWER_SUPPLY_PROP_HEALTH,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  752) 	POWER_SUPPLY_PROP_MANUFACTURER,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  753) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  754) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  755) static enum power_supply_property bq28z610_props[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  756) 	POWER_SUPPLY_PROP_STATUS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  757) 	POWER_SUPPLY_PROP_PRESENT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  758) 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  759) 	POWER_SUPPLY_PROP_CURRENT_NOW,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  760) 	POWER_SUPPLY_PROP_CAPACITY,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  761) 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  762) 	POWER_SUPPLY_PROP_TEMP,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  763) 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  764) 	POWER_SUPPLY_PROP_TIME_TO_FULL_NOW,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  765) 	POWER_SUPPLY_PROP_TECHNOLOGY,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  766) 	POWER_SUPPLY_PROP_CHARGE_FULL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  767) 	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  768) 	POWER_SUPPLY_PROP_CYCLE_COUNT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  769) 	POWER_SUPPLY_PROP_POWER_AVG,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  770) 	POWER_SUPPLY_PROP_HEALTH,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  771) 	POWER_SUPPLY_PROP_MANUFACTURER,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  772) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  773) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  774) static enum power_supply_property bq34z100_props[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  775) 	POWER_SUPPLY_PROP_STATUS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  776) 	POWER_SUPPLY_PROP_PRESENT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  777) 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  778) 	POWER_SUPPLY_PROP_CURRENT_NOW,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  779) 	POWER_SUPPLY_PROP_CAPACITY,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  780) 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  781) 	POWER_SUPPLY_PROP_TEMP,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  782) 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  783) 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  784) 	POWER_SUPPLY_PROP_TIME_TO_FULL_NOW,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  785) 	POWER_SUPPLY_PROP_TECHNOLOGY,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  786) 	POWER_SUPPLY_PROP_CHARGE_FULL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  787) 	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  788) 	POWER_SUPPLY_PROP_CYCLE_COUNT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  789) 	POWER_SUPPLY_PROP_ENERGY_NOW,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  790) 	POWER_SUPPLY_PROP_POWER_AVG,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  791) 	POWER_SUPPLY_PROP_HEALTH,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  792) 	POWER_SUPPLY_PROP_MANUFACTURER,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  793) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  794) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  795) struct bq27xxx_dm_reg {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  796) 	u8 subclass_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  797) 	u8 offset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  798) 	u8 bytes;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  799) 	u16 min, max;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  800) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  801) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  802) enum bq27xxx_dm_reg_id {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  803) 	BQ27XXX_DM_DESIGN_CAPACITY = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  804) 	BQ27XXX_DM_DESIGN_ENERGY,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  805) 	BQ27XXX_DM_TERMINATE_VOLTAGE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  806) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  807) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  808) #define bq27000_dm_regs 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  809) #define bq27010_dm_regs 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  810) #define bq2750x_dm_regs 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  811) #define bq2751x_dm_regs 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  812) #define bq2752x_dm_regs 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  813) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  814) #if 0 /* not yet tested */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  815) static struct bq27xxx_dm_reg bq27500_dm_regs[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  816) 	[BQ27XXX_DM_DESIGN_CAPACITY]   = { 48, 10, 2,    0, 65535 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  817) 	[BQ27XXX_DM_DESIGN_ENERGY]     = { }, /* missing on chip */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  818) 	[BQ27XXX_DM_TERMINATE_VOLTAGE] = { 80, 48, 2, 1000, 32767 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  819) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  820) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  821) #define bq27500_dm_regs 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  822) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  823) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  824) /* todo create data memory definitions from datasheets and test on chips */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  825) #define bq27510g1_dm_regs 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  826) #define bq27510g2_dm_regs 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  827) #define bq27510g3_dm_regs 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  828) #define bq27520g1_dm_regs 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  829) #define bq27520g2_dm_regs 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  830) #define bq27520g3_dm_regs 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  831) #define bq27520g4_dm_regs 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  832) #define bq27521_dm_regs 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  833) #define bq27530_dm_regs 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  834) #define bq27531_dm_regs 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  835) #define bq27541_dm_regs 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  836) #define bq27542_dm_regs 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  837) #define bq27546_dm_regs 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  838) #define bq27742_dm_regs 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  839) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  840) #if 0 /* not yet tested */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  841) static struct bq27xxx_dm_reg bq27545_dm_regs[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  842) 	[BQ27XXX_DM_DESIGN_CAPACITY]   = { 48, 23, 2,    0, 32767 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  843) 	[BQ27XXX_DM_DESIGN_ENERGY]     = { 48, 25, 2,    0, 32767 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  844) 	[BQ27XXX_DM_TERMINATE_VOLTAGE] = { 80, 67, 2, 2800,  3700 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  845) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  846) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  847) #define bq27545_dm_regs 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  848) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  849) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  850) static struct bq27xxx_dm_reg bq27411_dm_regs[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  851) 	[BQ27XXX_DM_DESIGN_CAPACITY]   = { 82, 10, 2,    0, 32767 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  852) 	[BQ27XXX_DM_DESIGN_ENERGY]     = { 82, 12, 2,    0, 32767 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  853) 	[BQ27XXX_DM_TERMINATE_VOLTAGE] = { 82, 16, 2, 2800,  3700 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  854) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  855) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  856) static struct bq27xxx_dm_reg bq27421_dm_regs[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  857) 	[BQ27XXX_DM_DESIGN_CAPACITY]   = { 82, 10, 2,    0,  8000 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  858) 	[BQ27XXX_DM_DESIGN_ENERGY]     = { 82, 12, 2,    0, 32767 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  859) 	[BQ27XXX_DM_TERMINATE_VOLTAGE] = { 82, 16, 2, 2500,  3700 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  860) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  861) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  862) static struct bq27xxx_dm_reg bq27425_dm_regs[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  863) 	[BQ27XXX_DM_DESIGN_CAPACITY]   = { 82, 12, 2,    0, 32767 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  864) 	[BQ27XXX_DM_DESIGN_ENERGY]     = { 82, 14, 2,    0, 32767 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  865) 	[BQ27XXX_DM_TERMINATE_VOLTAGE] = { 82, 18, 2, 2800,  3700 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  866) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  867) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  868) static struct bq27xxx_dm_reg bq27426_dm_regs[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  869) 	[BQ27XXX_DM_DESIGN_CAPACITY]   = { 82,  6, 2,    0,  8000 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  870) 	[BQ27XXX_DM_DESIGN_ENERGY]     = { 82,  8, 2,    0, 32767 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  871) 	[BQ27XXX_DM_TERMINATE_VOLTAGE] = { 82, 10, 2, 2500,  3700 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  872) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  873) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  874) #if 0 /* not yet tested */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  875) #define bq27441_dm_regs bq27421_dm_regs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  876) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  877) #define bq27441_dm_regs 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  878) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  879) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  880) #if 0 /* not yet tested */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  881) static struct bq27xxx_dm_reg bq27621_dm_regs[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  882) 	[BQ27XXX_DM_DESIGN_CAPACITY]   = { 82, 3, 2,    0,  8000 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  883) 	[BQ27XXX_DM_DESIGN_ENERGY]     = { 82, 5, 2,    0, 32767 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  884) 	[BQ27XXX_DM_TERMINATE_VOLTAGE] = { 82, 9, 2, 2500,  3700 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  885) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  886) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  887) #define bq27621_dm_regs 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  888) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  889) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  890) #define bq27z561_dm_regs 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  891) #define bq28z610_dm_regs 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  892) #define bq34z100_dm_regs 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  893) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  894) #define BQ27XXX_O_ZERO		BIT(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  895) #define BQ27XXX_O_OTDC		BIT(1) /* has OTC/OTD overtemperature flags */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  896) #define BQ27XXX_O_UTOT		BIT(2) /* has OT overtemperature flag */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  897) #define BQ27XXX_O_CFGUP		BIT(3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  898) #define BQ27XXX_O_RAM		BIT(4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  899) #define BQ27Z561_O_BITS		BIT(5)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  900) #define BQ27XXX_O_SOC_SI	BIT(6) /* SoC is single register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  901) #define BQ27XXX_O_HAS_CI	BIT(7) /* has Capacity Inaccurate flag */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  902) #define BQ27XXX_O_MUL_CHEM	BIT(8) /* multiple chemistries supported */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  903) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  904) #define BQ27XXX_DATA(ref, key, opt) {		\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  905) 	.opts = (opt),				\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  906) 	.unseal_key = key,			\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  907) 	.regs  = ref##_regs,			\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  908) 	.dm_regs = ref##_dm_regs,		\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  909) 	.props = ref##_props,			\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  910) 	.props_size = ARRAY_SIZE(ref##_props) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  911) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  912) static struct {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  913) 	u32 opts;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  914) 	u32 unseal_key;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  915) 	u8 *regs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  916) 	struct bq27xxx_dm_reg *dm_regs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  917) 	enum power_supply_property *props;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  918) 	size_t props_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  919) } bq27xxx_chip_data[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  920) 	[BQ27000]   = BQ27XXX_DATA(bq27000,   0         , BQ27XXX_O_ZERO | BQ27XXX_O_SOC_SI | BQ27XXX_O_HAS_CI),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  921) 	[BQ27010]   = BQ27XXX_DATA(bq27010,   0         , BQ27XXX_O_ZERO | BQ27XXX_O_SOC_SI | BQ27XXX_O_HAS_CI),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  922) 	[BQ2750X]   = BQ27XXX_DATA(bq2750x,   0         , BQ27XXX_O_OTDC),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  923) 	[BQ2751X]   = BQ27XXX_DATA(bq2751x,   0         , BQ27XXX_O_OTDC),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  924) 	[BQ2752X]   = BQ27XXX_DATA(bq2752x,   0         , BQ27XXX_O_OTDC),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  925) 	[BQ27500]   = BQ27XXX_DATA(bq27500,   0x04143672, BQ27XXX_O_OTDC),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  926) 	[BQ27510G1] = BQ27XXX_DATA(bq27510g1, 0         , BQ27XXX_O_OTDC),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  927) 	[BQ27510G2] = BQ27XXX_DATA(bq27510g2, 0         , BQ27XXX_O_OTDC),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  928) 	[BQ27510G3] = BQ27XXX_DATA(bq27510g3, 0         , BQ27XXX_O_OTDC),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  929) 	[BQ27520G1] = BQ27XXX_DATA(bq27520g1, 0         , BQ27XXX_O_OTDC),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  930) 	[BQ27520G2] = BQ27XXX_DATA(bq27520g2, 0         , BQ27XXX_O_OTDC),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  931) 	[BQ27520G3] = BQ27XXX_DATA(bq27520g3, 0         , BQ27XXX_O_OTDC),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  932) 	[BQ27520G4] = BQ27XXX_DATA(bq27520g4, 0         , BQ27XXX_O_OTDC),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  933) 	[BQ27521]   = BQ27XXX_DATA(bq27521,   0         , 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  934) 	[BQ27530]   = BQ27XXX_DATA(bq27530,   0         , BQ27XXX_O_UTOT),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  935) 	[BQ27531]   = BQ27XXX_DATA(bq27531,   0         , BQ27XXX_O_UTOT),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  936) 	[BQ27541]   = BQ27XXX_DATA(bq27541,   0         , BQ27XXX_O_OTDC),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  937) 	[BQ27542]   = BQ27XXX_DATA(bq27542,   0         , BQ27XXX_O_OTDC),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  938) 	[BQ27546]   = BQ27XXX_DATA(bq27546,   0         , BQ27XXX_O_OTDC),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  939) 	[BQ27742]   = BQ27XXX_DATA(bq27742,   0         , BQ27XXX_O_OTDC),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  940) 	[BQ27545]   = BQ27XXX_DATA(bq27545,   0x04143672, BQ27XXX_O_OTDC),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  941) 	[BQ27411]   = BQ27XXX_DATA(bq27411,   0x80008000, BQ27XXX_O_UTOT | BQ27XXX_O_CFGUP | BQ27XXX_O_RAM),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  942) 	[BQ27421]   = BQ27XXX_DATA(bq27421,   0x80008000, BQ27XXX_O_UTOT | BQ27XXX_O_CFGUP | BQ27XXX_O_RAM),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  943) 	[BQ27425]   = BQ27XXX_DATA(bq27425,   0x04143672, BQ27XXX_O_UTOT | BQ27XXX_O_CFGUP),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  944) 	[BQ27426]   = BQ27XXX_DATA(bq27426,   0x80008000, BQ27XXX_O_UTOT | BQ27XXX_O_CFGUP | BQ27XXX_O_RAM),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  945) 	[BQ27441]   = BQ27XXX_DATA(bq27441,   0x80008000, BQ27XXX_O_UTOT | BQ27XXX_O_CFGUP | BQ27XXX_O_RAM),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  946) 	[BQ27621]   = BQ27XXX_DATA(bq27621,   0x80008000, BQ27XXX_O_UTOT | BQ27XXX_O_CFGUP | BQ27XXX_O_RAM),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  947) 	[BQ27Z561]  = BQ27XXX_DATA(bq27z561,  0         , BQ27Z561_O_BITS),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  948) 	[BQ28Z610]  = BQ27XXX_DATA(bq28z610,  0         , BQ27Z561_O_BITS),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  949) 	[BQ34Z100]  = BQ27XXX_DATA(bq34z100,  0         , BQ27XXX_O_OTDC | BQ27XXX_O_SOC_SI | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  950) 							  BQ27XXX_O_HAS_CI | BQ27XXX_O_MUL_CHEM),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  951) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  952) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  953) static DEFINE_MUTEX(bq27xxx_list_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  954) static LIST_HEAD(bq27xxx_battery_devices);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  955) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  956) #define BQ27XXX_MSLEEP(i) usleep_range((i)*1000, (i)*1000+500)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  957) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  958) #define BQ27XXX_DM_SZ	32
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  959) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  960) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  961)  * struct bq27xxx_dm_buf - chip data memory buffer
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  962)  * @class: data memory subclass_id
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  963)  * @block: data memory block number
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  964)  * @data: data from/for the block
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  965)  * @has_data: true if data has been filled by read
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  966)  * @dirty: true if data has changed since last read/write
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  967)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  968)  * Encapsulates info required to manage chip data memory blocks.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  969)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  970) struct bq27xxx_dm_buf {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  971) 	u8 class;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  972) 	u8 block;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  973) 	u8 data[BQ27XXX_DM_SZ];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  974) 	bool has_data, dirty;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  975) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  976) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  977) #define BQ27XXX_DM_BUF(di, i) { \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  978) 	.class = (di)->dm_regs[i].subclass_id, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  979) 	.block = (di)->dm_regs[i].offset / BQ27XXX_DM_SZ, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  980) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  981) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  982) static inline u16 *bq27xxx_dm_reg_ptr(struct bq27xxx_dm_buf *buf,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  983) 				      struct bq27xxx_dm_reg *reg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  984) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  985) 	if (buf->class == reg->subclass_id &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  986) 	    buf->block == reg->offset / BQ27XXX_DM_SZ)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  987) 		return (u16 *) (buf->data + reg->offset % BQ27XXX_DM_SZ);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  988) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  989) 	return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  990) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  991) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  992) static const char * const bq27xxx_dm_reg_name[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  993) 	[BQ27XXX_DM_DESIGN_CAPACITY] = "design-capacity",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  994) 	[BQ27XXX_DM_DESIGN_ENERGY] = "design-energy",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  995) 	[BQ27XXX_DM_TERMINATE_VOLTAGE] = "terminate-voltage",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  996) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  997) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  998) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  999) static bool bq27xxx_dt_to_nvm = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1000) module_param_named(dt_monitored_battery_updates_nvm, bq27xxx_dt_to_nvm, bool, 0444);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1001) MODULE_PARM_DESC(dt_monitored_battery_updates_nvm,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1002) 	"Devicetree monitored-battery config updates data memory on NVM/flash chips.\n"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1003) 	"Users must set this =0 when installing a different type of battery!\n"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1004) 	"Default is =1."
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1005) #ifndef CONFIG_BATTERY_BQ27XXX_DT_UPDATES_NVM
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1006) 	"\nSetting this affects future kernel updates, not the current configuration."
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1007) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1008) );
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1009) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1010) static int poll_interval_param_set(const char *val, const struct kernel_param *kp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1011) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1012) 	struct bq27xxx_device_info *di;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1013) 	unsigned int prev_val = *(unsigned int *) kp->arg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1014) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1015) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1016) 	ret = param_set_uint(val, kp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1017) 	if (ret < 0 || prev_val == *(unsigned int *) kp->arg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1018) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1019) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1020) 	mutex_lock(&bq27xxx_list_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1021) 	list_for_each_entry(di, &bq27xxx_battery_devices, list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1022) 		cancel_delayed_work_sync(&di->work);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1023) 		schedule_delayed_work(&di->work, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1024) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1025) 	mutex_unlock(&bq27xxx_list_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1026) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1027) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1028) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1029) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1030) static const struct kernel_param_ops param_ops_poll_interval = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1031) 	.get = param_get_uint,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1032) 	.set = poll_interval_param_set,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1033) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1034) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1035) static unsigned int poll_interval = 360;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1036) module_param_cb(poll_interval, &param_ops_poll_interval, &poll_interval, 0644);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1037) MODULE_PARM_DESC(poll_interval,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1038) 		 "battery poll interval in seconds - 0 disables polling");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1039) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1040) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1041)  * Common code for BQ27xxx devices
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1042)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1043) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1044) static inline int bq27xxx_read(struct bq27xxx_device_info *di, int reg_index,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1045) 			       bool single)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1046) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1047) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1048) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1049) 	if (!di || di->regs[reg_index] == INVALID_REG_ADDR)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1050) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1051) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1052) 	ret = di->bus.read(di, di->regs[reg_index], single);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1053) 	if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1054) 		dev_dbg(di->dev, "failed to read register 0x%02x (index %d)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1055) 			di->regs[reg_index], reg_index);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1056) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1057) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1058) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1059) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1060) static inline int bq27xxx_write(struct bq27xxx_device_info *di, int reg_index,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1061) 				u16 value, bool single)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1062) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1063) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1064) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1065) 	if (!di || di->regs[reg_index] == INVALID_REG_ADDR)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1066) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1067) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1068) 	if (!di->bus.write)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1069) 		return -EPERM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1070) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1071) 	ret = di->bus.write(di, di->regs[reg_index], value, single);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1072) 	if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1073) 		dev_dbg(di->dev, "failed to write register 0x%02x (index %d)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1074) 			di->regs[reg_index], reg_index);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1075) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1076) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1077) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1078) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1079) static inline int bq27xxx_read_block(struct bq27xxx_device_info *di, int reg_index,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1080) 				     u8 *data, int len)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1081) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1082) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1083) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1084) 	if (!di || di->regs[reg_index] == INVALID_REG_ADDR)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1085) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1086) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1087) 	if (!di->bus.read_bulk)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1088) 		return -EPERM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1089) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1090) 	ret = di->bus.read_bulk(di, di->regs[reg_index], data, len);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1091) 	if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1092) 		dev_dbg(di->dev, "failed to read_bulk register 0x%02x (index %d)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1093) 			di->regs[reg_index], reg_index);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1094) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1095) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1096) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1097) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1098) static inline int bq27xxx_write_block(struct bq27xxx_device_info *di, int reg_index,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1099) 				      u8 *data, int len)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1100) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1101) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1102) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1103) 	if (!di || di->regs[reg_index] == INVALID_REG_ADDR)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1104) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1105) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1106) 	if (!di->bus.write_bulk)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1107) 		return -EPERM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1108) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1109) 	ret = di->bus.write_bulk(di, di->regs[reg_index], data, len);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1110) 	if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1111) 		dev_dbg(di->dev, "failed to write_bulk register 0x%02x (index %d)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1112) 			di->regs[reg_index], reg_index);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1113) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1114) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1115) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1116) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1117) static int bq27xxx_battery_seal(struct bq27xxx_device_info *di)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1118) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1119) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1120) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1121) 	ret = bq27xxx_write(di, BQ27XXX_REG_CTRL, BQ27XXX_SEALED, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1122) 	if (ret < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1123) 		dev_err(di->dev, "bus error on seal: %d\n", ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1124) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1125) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1126) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1127) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1128) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1129) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1130) static int bq27xxx_battery_unseal(struct bq27xxx_device_info *di)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1131) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1132) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1133) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1134) 	if (di->unseal_key == 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1135) 		dev_err(di->dev, "unseal failed due to missing key\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1136) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1137) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1138) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1139) 	ret = bq27xxx_write(di, BQ27XXX_REG_CTRL, (u16)(di->unseal_key >> 16), false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1140) 	if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1141) 		goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1142) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1143) 	ret = bq27xxx_write(di, BQ27XXX_REG_CTRL, (u16)di->unseal_key, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1144) 	if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1145) 		goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1146) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1147) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1148) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1149) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1150) 	dev_err(di->dev, "bus error on unseal: %d\n", ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1151) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1152) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1153) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1154) static u8 bq27xxx_battery_checksum_dm_block(struct bq27xxx_dm_buf *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1155) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1156) 	u16 sum = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1157) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1158) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1159) 	for (i = 0; i < BQ27XXX_DM_SZ; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1160) 		sum += buf->data[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1161) 	sum &= 0xff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1162) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1163) 	return 0xff - sum;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1164) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1165) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1166) static int bq27xxx_battery_read_dm_block(struct bq27xxx_device_info *di,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1167) 					 struct bq27xxx_dm_buf *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1168) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1169) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1170) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1171) 	buf->has_data = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1172) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1173) 	ret = bq27xxx_write(di, BQ27XXX_DM_CLASS, buf->class, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1174) 	if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1175) 		goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1176) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1177) 	ret = bq27xxx_write(di, BQ27XXX_DM_BLOCK, buf->block, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1178) 	if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1179) 		goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1180) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1181) 	BQ27XXX_MSLEEP(1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1182) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1183) 	ret = bq27xxx_read_block(di, BQ27XXX_DM_DATA, buf->data, BQ27XXX_DM_SZ);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1184) 	if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1185) 		goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1186) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1187) 	ret = bq27xxx_read(di, BQ27XXX_DM_CKSUM, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1188) 	if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1189) 		goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1190) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1191) 	if ((u8)ret != bq27xxx_battery_checksum_dm_block(buf)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1192) 		ret = -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1193) 		goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1194) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1195) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1196) 	buf->has_data = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1197) 	buf->dirty = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1198) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1199) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1200) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1201) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1202) 	dev_err(di->dev, "bus error reading chip memory: %d\n", ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1203) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1204) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1205) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1206) static void bq27xxx_battery_update_dm_block(struct bq27xxx_device_info *di,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1207) 					    struct bq27xxx_dm_buf *buf,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1208) 					    enum bq27xxx_dm_reg_id reg_id,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1209) 					    unsigned int val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1210) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1211) 	struct bq27xxx_dm_reg *reg = &di->dm_regs[reg_id];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1212) 	const char *str = bq27xxx_dm_reg_name[reg_id];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1213) 	u16 *prev = bq27xxx_dm_reg_ptr(buf, reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1214) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1215) 	if (prev == NULL) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1216) 		dev_warn(di->dev, "buffer does not match %s dm spec\n", str);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1217) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1218) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1219) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1220) 	if (reg->bytes != 2) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1221) 		dev_warn(di->dev, "%s dm spec has unsupported byte size\n", str);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1222) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1223) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1224) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1225) 	if (!buf->has_data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1226) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1227) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1228) 	if (be16_to_cpup(prev) == val) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1229) 		dev_info(di->dev, "%s has %u\n", str, val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1230) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1231) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1232) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1233) #ifdef CONFIG_BATTERY_BQ27XXX_DT_UPDATES_NVM
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1234) 	if (!(di->opts & BQ27XXX_O_RAM) && !bq27xxx_dt_to_nvm) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1235) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1236) 	if (!(di->opts & BQ27XXX_O_RAM)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1237) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1238) 		/* devicetree and NVM differ; defer to NVM */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1239) 		dev_warn(di->dev, "%s has %u; update to %u disallowed "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1240) #ifdef CONFIG_BATTERY_BQ27XXX_DT_UPDATES_NVM
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1241) 			 "by dt_monitored_battery_updates_nvm=0"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1242) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1243) 			 "for flash/NVM data memory"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1244) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1245) 			 "\n", str, be16_to_cpup(prev), val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1246) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1247) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1248) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1249) 	dev_info(di->dev, "update %s to %u\n", str, val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1250) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1251) 	*prev = cpu_to_be16(val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1252) 	buf->dirty = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1253) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1254) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1255) static int bq27xxx_battery_cfgupdate_priv(struct bq27xxx_device_info *di, bool active)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1256) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1257) 	const int limit = 100;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1258) 	u16 cmd = active ? BQ27XXX_SET_CFGUPDATE : BQ27XXX_SOFT_RESET;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1259) 	int ret, try = limit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1260) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1261) 	ret = bq27xxx_write(di, BQ27XXX_REG_CTRL, cmd, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1262) 	if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1263) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1264) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1265) 	do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1266) 		BQ27XXX_MSLEEP(25);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1267) 		ret = bq27xxx_read(di, BQ27XXX_REG_FLAGS, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1268) 		if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1269) 			return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1270) 	} while (!!(ret & BQ27XXX_FLAG_CFGUP) != active && --try);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1271) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1272) 	if (!try && di->chip != BQ27425) { // 425 has a bug
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1273) 		dev_err(di->dev, "timed out waiting for cfgupdate flag %d\n", active);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1274) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1275) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1276) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1277) 	if (limit - try > 3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1278) 		dev_warn(di->dev, "cfgupdate %d, retries %d\n", active, limit - try);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1279) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1280) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1281) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1282) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1283) static inline int bq27xxx_battery_set_cfgupdate(struct bq27xxx_device_info *di)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1284) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1285) 	int ret = bq27xxx_battery_cfgupdate_priv(di, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1286) 	if (ret < 0 && ret != -EINVAL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1287) 		dev_err(di->dev, "bus error on set_cfgupdate: %d\n", ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1288) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1289) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1290) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1291) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1292) static inline int bq27xxx_battery_soft_reset(struct bq27xxx_device_info *di)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1293) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1294) 	int ret = bq27xxx_battery_cfgupdate_priv(di, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1295) 	if (ret < 0 && ret != -EINVAL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1296) 		dev_err(di->dev, "bus error on soft_reset: %d\n", ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1297) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1298) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1299) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1300) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1301) static int bq27xxx_battery_write_dm_block(struct bq27xxx_device_info *di,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1302) 					  struct bq27xxx_dm_buf *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1303) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1304) 	bool cfgup = di->opts & BQ27XXX_O_CFGUP;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1305) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1306) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1307) 	if (!buf->dirty)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1308) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1309) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1310) 	if (cfgup) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1311) 		ret = bq27xxx_battery_set_cfgupdate(di);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1312) 		if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1313) 			return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1314) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1315) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1316) 	ret = bq27xxx_write(di, BQ27XXX_DM_CTRL, 0, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1317) 	if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1318) 		goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1319) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1320) 	ret = bq27xxx_write(di, BQ27XXX_DM_CLASS, buf->class, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1321) 	if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1322) 		goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1323) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1324) 	ret = bq27xxx_write(di, BQ27XXX_DM_BLOCK, buf->block, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1325) 	if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1326) 		goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1327) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1328) 	BQ27XXX_MSLEEP(1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1329) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1330) 	ret = bq27xxx_write_block(di, BQ27XXX_DM_DATA, buf->data, BQ27XXX_DM_SZ);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1331) 	if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1332) 		goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1333) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1334) 	ret = bq27xxx_write(di, BQ27XXX_DM_CKSUM,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1335) 			    bq27xxx_battery_checksum_dm_block(buf), true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1336) 	if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1337) 		goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1338) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1339) 	/* DO NOT read BQ27XXX_DM_CKSUM here to verify it! That may cause NVM
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1340) 	 * corruption on the '425 chip (and perhaps others), which can damage
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1341) 	 * the chip.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1342) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1343) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1344) 	if (cfgup) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1345) 		BQ27XXX_MSLEEP(1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1346) 		ret = bq27xxx_battery_soft_reset(di);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1347) 		if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1348) 			return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1349) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1350) 		BQ27XXX_MSLEEP(100); /* flash DM updates in <100ms */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1351) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1352) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1353) 	buf->dirty = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1354) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1355) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1356) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1357) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1358) 	if (cfgup)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1359) 		bq27xxx_battery_soft_reset(di);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1360) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1361) 	dev_err(di->dev, "bus error writing chip memory: %d\n", ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1362) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1363) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1364) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1365) static void bq27xxx_battery_set_config(struct bq27xxx_device_info *di,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1366) 				       struct power_supply_battery_info *info)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1367) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1368) 	struct bq27xxx_dm_buf bd = BQ27XXX_DM_BUF(di, BQ27XXX_DM_DESIGN_CAPACITY);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1369) 	struct bq27xxx_dm_buf bt = BQ27XXX_DM_BUF(di, BQ27XXX_DM_TERMINATE_VOLTAGE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1370) 	bool updated;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1371) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1372) 	if (bq27xxx_battery_unseal(di) < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1373) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1374) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1375) 	if (info->charge_full_design_uah != -EINVAL &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1376) 	    info->energy_full_design_uwh != -EINVAL) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1377) 		bq27xxx_battery_read_dm_block(di, &bd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1378) 		/* assume design energy & capacity are in same block */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1379) 		bq27xxx_battery_update_dm_block(di, &bd,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1380) 					BQ27XXX_DM_DESIGN_CAPACITY,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1381) 					info->charge_full_design_uah / 1000);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1382) 		bq27xxx_battery_update_dm_block(di, &bd,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1383) 					BQ27XXX_DM_DESIGN_ENERGY,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1384) 					info->energy_full_design_uwh / 1000);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1385) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1386) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1387) 	if (info->voltage_min_design_uv != -EINVAL) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1388) 		bool same = bd.class == bt.class && bd.block == bt.block;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1389) 		if (!same)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1390) 			bq27xxx_battery_read_dm_block(di, &bt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1391) 		bq27xxx_battery_update_dm_block(di, same ? &bd : &bt,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1392) 					BQ27XXX_DM_TERMINATE_VOLTAGE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1393) 					info->voltage_min_design_uv / 1000);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1394) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1395) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1396) 	updated = bd.dirty || bt.dirty;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1397) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1398) 	bq27xxx_battery_write_dm_block(di, &bd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1399) 	bq27xxx_battery_write_dm_block(di, &bt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1400) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1401) 	bq27xxx_battery_seal(di);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1402) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1403) 	if (updated && !(di->opts & BQ27XXX_O_CFGUP)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1404) 		bq27xxx_write(di, BQ27XXX_REG_CTRL, BQ27XXX_RESET, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1405) 		BQ27XXX_MSLEEP(300); /* reset time is not documented */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1406) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1407) 	/* assume bq27xxx_battery_update() is called hereafter */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1408) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1409) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1410) static void bq27xxx_battery_settings(struct bq27xxx_device_info *di)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1411) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1412) 	struct power_supply_battery_info info = {};
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1413) 	unsigned int min, max;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1414) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1415) 	if (power_supply_get_battery_info(di->bat, &info) < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1416) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1417) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1418) 	if (!di->dm_regs) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1419) 		dev_warn(di->dev, "data memory update not supported for chip\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1420) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1421) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1422) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1423) 	if (info.energy_full_design_uwh != info.charge_full_design_uah) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1424) 		if (info.energy_full_design_uwh == -EINVAL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1425) 			dev_warn(di->dev, "missing battery:energy-full-design-microwatt-hours\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1426) 		else if (info.charge_full_design_uah == -EINVAL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1427) 			dev_warn(di->dev, "missing battery:charge-full-design-microamp-hours\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1428) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1429) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1430) 	/* assume min == 0 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1431) 	max = di->dm_regs[BQ27XXX_DM_DESIGN_ENERGY].max;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1432) 	if (info.energy_full_design_uwh > max * 1000) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1433) 		dev_err(di->dev, "invalid battery:energy-full-design-microwatt-hours %d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1434) 			info.energy_full_design_uwh);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1435) 		info.energy_full_design_uwh = -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1436) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1437) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1438) 	/* assume min == 0 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1439) 	max = di->dm_regs[BQ27XXX_DM_DESIGN_CAPACITY].max;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1440) 	if (info.charge_full_design_uah > max * 1000) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1441) 		dev_err(di->dev, "invalid battery:charge-full-design-microamp-hours %d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1442) 			info.charge_full_design_uah);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1443) 		info.charge_full_design_uah = -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1444) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1445) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1446) 	min = di->dm_regs[BQ27XXX_DM_TERMINATE_VOLTAGE].min;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1447) 	max = di->dm_regs[BQ27XXX_DM_TERMINATE_VOLTAGE].max;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1448) 	if ((info.voltage_min_design_uv < min * 1000 ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1449) 	     info.voltage_min_design_uv > max * 1000) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1450) 	     info.voltage_min_design_uv != -EINVAL) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1451) 		dev_err(di->dev, "invalid battery:voltage-min-design-microvolt %d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1452) 			info.voltage_min_design_uv);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1453) 		info.voltage_min_design_uv = -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1454) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1455) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1456) 	if ((info.energy_full_design_uwh != -EINVAL &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1457) 	     info.charge_full_design_uah != -EINVAL) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1458) 	     info.voltage_min_design_uv  != -EINVAL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1459) 		bq27xxx_battery_set_config(di, &info);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1460) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1461) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1462) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1463)  * Return the battery State-of-Charge
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1464)  * Or < 0 if something fails.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1465)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1466) static int bq27xxx_battery_read_soc(struct bq27xxx_device_info *di)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1467) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1468) 	int soc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1469) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1470) 	if (di->opts & BQ27XXX_O_SOC_SI)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1471) 		soc = bq27xxx_read(di, BQ27XXX_REG_SOC, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1472) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1473) 		soc = bq27xxx_read(di, BQ27XXX_REG_SOC, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1474) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1475) 	if (soc < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1476) 		dev_dbg(di->dev, "error reading State-of-Charge\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1477) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1478) 	return soc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1479) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1480) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1481) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1482)  * Return a battery charge value in µAh
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1483)  * Or < 0 if something fails.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1484)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1485) static int bq27xxx_battery_read_charge(struct bq27xxx_device_info *di, u8 reg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1486) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1487) 	int charge;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1488) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1489) 	charge = bq27xxx_read(di, reg, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1490) 	if (charge < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1491) 		dev_dbg(di->dev, "error reading charge register %02x: %d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1492) 			reg, charge);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1493) 		return charge;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1494) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1495) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1496) 	if (di->opts & BQ27XXX_O_ZERO)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1497) 		charge *= BQ27XXX_CURRENT_CONSTANT / BQ27XXX_RS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1498) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1499) 		charge *= 1000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1500) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1501) 	return charge;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1502) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1503) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1504) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1505)  * Return the battery Nominal available capacity in µAh
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1506)  * Or < 0 if something fails.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1507)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1508) static inline int bq27xxx_battery_read_nac(struct bq27xxx_device_info *di)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1509) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1510) 	int flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1511) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1512) 	if (di->opts & BQ27XXX_O_ZERO) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1513) 		flags = bq27xxx_read(di, BQ27XXX_REG_FLAGS, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1514) 		if (flags >= 0 && (flags & BQ27000_FLAG_CI))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1515) 			return -ENODATA;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1516) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1517) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1518) 	return bq27xxx_battery_read_charge(di, BQ27XXX_REG_NAC);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1519) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1520) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1521) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1522)  * Return the battery Full Charge Capacity in µAh
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1523)  * Or < 0 if something fails.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1524)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1525) static inline int bq27xxx_battery_read_fcc(struct bq27xxx_device_info *di)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1526) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1527) 	return bq27xxx_battery_read_charge(di, BQ27XXX_REG_FCC);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1528) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1529) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1530) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1531)  * Return the Design Capacity in µAh
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1532)  * Or < 0 if something fails.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1533)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1534) static int bq27xxx_battery_read_dcap(struct bq27xxx_device_info *di)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1535) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1536) 	int dcap;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1537) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1538) 	if (di->opts & BQ27XXX_O_ZERO)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1539) 		dcap = bq27xxx_read(di, BQ27XXX_REG_DCAP, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1540) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1541) 		dcap = bq27xxx_read(di, BQ27XXX_REG_DCAP, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1542) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1543) 	if (dcap < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1544) 		dev_dbg(di->dev, "error reading initial last measured discharge\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1545) 		return dcap;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1546) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1547) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1548) 	if (di->opts & BQ27XXX_O_ZERO)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1549) 		dcap = (dcap << 8) * BQ27XXX_CURRENT_CONSTANT / BQ27XXX_RS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1550) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1551) 		dcap *= 1000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1552) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1553) 	return dcap;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1554) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1555) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1556) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1557)  * Return the battery Available energy in µWh
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1558)  * Or < 0 if something fails.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1559)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1560) static int bq27xxx_battery_read_energy(struct bq27xxx_device_info *di)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1561) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1562) 	int ae;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1563) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1564) 	ae = bq27xxx_read(di, BQ27XXX_REG_AE, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1565) 	if (ae < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1566) 		dev_dbg(di->dev, "error reading available energy\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1567) 		return ae;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1568) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1569) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1570) 	if (di->opts & BQ27XXX_O_ZERO)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1571) 		ae *= BQ27XXX_POWER_CONSTANT / BQ27XXX_RS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1572) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1573) 		ae *= 1000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1574) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1575) 	return ae;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1576) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1577) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1578) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1579)  * Return the battery temperature in tenths of degree Kelvin
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1580)  * Or < 0 if something fails.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1581)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1582) static int bq27xxx_battery_read_temperature(struct bq27xxx_device_info *di)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1583) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1584) 	int temp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1585) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1586) 	temp = bq27xxx_read(di, BQ27XXX_REG_TEMP, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1587) 	if (temp < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1588) 		dev_err(di->dev, "error reading temperature\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1589) 		return temp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1590) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1591) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1592) 	if (di->opts & BQ27XXX_O_ZERO)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1593) 		temp = 5 * temp / 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1594) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1595) 	return temp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1596) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1597) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1598) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1599)  * Return the battery Cycle count total
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1600)  * Or < 0 if something fails.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1601)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1602) static int bq27xxx_battery_read_cyct(struct bq27xxx_device_info *di)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1603) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1604) 	int cyct;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1605) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1606) 	cyct = bq27xxx_read(di, BQ27XXX_REG_CYCT, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1607) 	if (cyct < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1608) 		dev_err(di->dev, "error reading cycle count total\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1609) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1610) 	return cyct;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1611) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1612) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1613) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1614)  * Read a time register.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1615)  * Return < 0 if something fails.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1616)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1617) static int bq27xxx_battery_read_time(struct bq27xxx_device_info *di, u8 reg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1618) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1619) 	int tval;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1620) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1621) 	tval = bq27xxx_read(di, reg, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1622) 	if (tval < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1623) 		dev_dbg(di->dev, "error reading time register %02x: %d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1624) 			reg, tval);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1625) 		return tval;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1626) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1627) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1628) 	if (tval == 65535)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1629) 		return -ENODATA;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1630) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1631) 	return tval * 60;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1632) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1633) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1634) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1635)  * Returns true if a battery over temperature condition is detected
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1636)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1637) static bool bq27xxx_battery_overtemp(struct bq27xxx_device_info *di, u16 flags)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1638) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1639) 	if (di->opts & BQ27XXX_O_OTDC)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1640) 		return flags & (BQ27XXX_FLAG_OTC | BQ27XXX_FLAG_OTD);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1641)         if (di->opts & BQ27XXX_O_UTOT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1642) 		return flags & BQ27XXX_FLAG_OT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1643) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1644) 	return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1645) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1646) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1647) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1648)  * Returns true if a battery under temperature condition is detected
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1649)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1650) static bool bq27xxx_battery_undertemp(struct bq27xxx_device_info *di, u16 flags)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1651) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1652) 	if (di->opts & BQ27XXX_O_UTOT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1653) 		return flags & BQ27XXX_FLAG_UT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1654) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1655) 	return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1656) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1657) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1658) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1659)  * Returns true if a low state of charge condition is detected
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1660)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1661) static bool bq27xxx_battery_dead(struct bq27xxx_device_info *di, u16 flags)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1662) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1663) 	if (di->opts & BQ27XXX_O_ZERO)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1664) 		return flags & (BQ27000_FLAG_EDV1 | BQ27000_FLAG_EDVF);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1665) 	else if (di->opts & BQ27Z561_O_BITS)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1666) 		return flags & BQ27Z561_FLAG_FDC;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1667) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1668) 		return flags & (BQ27XXX_FLAG_SOC1 | BQ27XXX_FLAG_SOCF);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1669) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1670) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1671) static int bq27xxx_battery_read_health(struct bq27xxx_device_info *di)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1672) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1673) 	/* Unlikely but important to return first */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1674) 	if (unlikely(bq27xxx_battery_overtemp(di, di->cache.flags)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1675) 		return POWER_SUPPLY_HEALTH_OVERHEAT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1676) 	if (unlikely(bq27xxx_battery_undertemp(di, di->cache.flags)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1677) 		return POWER_SUPPLY_HEALTH_COLD;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1678) 	if (unlikely(bq27xxx_battery_dead(di, di->cache.flags)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1679) 		return POWER_SUPPLY_HEALTH_DEAD;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1680) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1681) 	return POWER_SUPPLY_HEALTH_GOOD;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1682) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1683) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1684) void bq27xxx_battery_update(struct bq27xxx_device_info *di)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1685) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1686) 	struct bq27xxx_reg_cache cache = {0, };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1687) 	bool has_ci_flag = di->opts & BQ27XXX_O_HAS_CI;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1688) 	bool has_singe_flag = di->opts & BQ27XXX_O_ZERO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1689) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1690) 	cache.flags = bq27xxx_read(di, BQ27XXX_REG_FLAGS, has_singe_flag);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1691) 	if ((cache.flags & 0xff) == 0xff)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1692) 		cache.flags = -1; /* read error */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1693) 	if (cache.flags >= 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1694) 		cache.temperature = bq27xxx_battery_read_temperature(di);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1695) 		if (has_ci_flag && (cache.flags & BQ27000_FLAG_CI)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1696) 			dev_info_once(di->dev, "battery is not calibrated! ignoring capacity values\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1697) 			cache.capacity = -ENODATA;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1698) 			cache.energy = -ENODATA;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1699) 			cache.time_to_empty = -ENODATA;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1700) 			cache.time_to_empty_avg = -ENODATA;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1701) 			cache.time_to_full = -ENODATA;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1702) 			cache.charge_full = -ENODATA;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1703) 			cache.health = -ENODATA;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1704) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1705) 			if (di->regs[BQ27XXX_REG_TTE] != INVALID_REG_ADDR)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1706) 				cache.time_to_empty = bq27xxx_battery_read_time(di, BQ27XXX_REG_TTE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1707) 			if (di->regs[BQ27XXX_REG_TTECP] != INVALID_REG_ADDR)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1708) 				cache.time_to_empty_avg = bq27xxx_battery_read_time(di, BQ27XXX_REG_TTECP);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1709) 			if (di->regs[BQ27XXX_REG_TTF] != INVALID_REG_ADDR)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1710) 				cache.time_to_full = bq27xxx_battery_read_time(di, BQ27XXX_REG_TTF);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1711) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1712) 			cache.charge_full = bq27xxx_battery_read_fcc(di);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1713) 			cache.capacity = bq27xxx_battery_read_soc(di);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1714) 			if (di->regs[BQ27XXX_REG_AE] != INVALID_REG_ADDR)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1715) 				cache.energy = bq27xxx_battery_read_energy(di);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1716) 			di->cache.flags = cache.flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1717) 			cache.health = bq27xxx_battery_read_health(di);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1718) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1719) 		if (di->regs[BQ27XXX_REG_CYCT] != INVALID_REG_ADDR)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1720) 			cache.cycle_count = bq27xxx_battery_read_cyct(di);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1721) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1722) 		/* We only have to read charge design full once */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1723) 		if (di->charge_design_full <= 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1724) 			di->charge_design_full = bq27xxx_battery_read_dcap(di);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1725) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1726) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1727) 	if ((di->cache.capacity != cache.capacity) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1728) 	    (di->cache.flags != cache.flags))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1729) 		power_supply_changed(di->bat);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1730) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1731) 	if (memcmp(&di->cache, &cache, sizeof(cache)) != 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1732) 		di->cache = cache;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1733) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1734) 	di->last_update = jiffies;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1735) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1736) EXPORT_SYMBOL_GPL(bq27xxx_battery_update);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1737) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1738) static void bq27xxx_battery_poll(struct work_struct *work)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1739) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1740) 	struct bq27xxx_device_info *di =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1741) 			container_of(work, struct bq27xxx_device_info,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1742) 				     work.work);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1743) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1744) 	bq27xxx_battery_update(di);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1745) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1746) 	if (poll_interval > 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1747) 		schedule_delayed_work(&di->work, poll_interval * HZ);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1748) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1749) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1750) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1751)  * Return the battery average current in µA
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1752)  * Note that current can be negative signed as well
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1753)  * Or 0 if something fails.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1754)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1755) static int bq27xxx_battery_current(struct bq27xxx_device_info *di,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1756) 				   union power_supply_propval *val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1757) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1758) 	int curr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1759) 	int flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1760) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1761) 	curr = bq27xxx_read(di, BQ27XXX_REG_AI, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1762) 	if (curr < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1763) 		dev_err(di->dev, "error reading current\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1764) 		return curr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1765) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1766) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1767) 	if (di->opts & BQ27XXX_O_ZERO) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1768) 		flags = bq27xxx_read(di, BQ27XXX_REG_FLAGS, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1769) 		if (flags & BQ27000_FLAG_CHGS) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1770) 			dev_dbg(di->dev, "negative current!\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1771) 			curr = -curr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1772) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1773) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1774) 		val->intval = curr * BQ27XXX_CURRENT_CONSTANT / BQ27XXX_RS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1775) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1776) 		/* Other gauges return signed value */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1777) 		val->intval = (int)((s16)curr) * 1000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1778) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1779) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1780) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1781) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1782) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1783) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1784)  * Get the average power in µW
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1785)  * Return < 0 if something fails.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1786)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1787) static int bq27xxx_battery_pwr_avg(struct bq27xxx_device_info *di,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1788) 				   union power_supply_propval *val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1789) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1790) 	int power;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1791) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1792) 	power = bq27xxx_read(di, BQ27XXX_REG_AP, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1793) 	if (power < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1794) 		dev_err(di->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1795) 			"error reading average power register %02x: %d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1796) 			BQ27XXX_REG_AP, power);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1797) 		return power;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1798) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1799) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1800) 	if (di->opts & BQ27XXX_O_ZERO)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1801) 		val->intval = (power * BQ27XXX_POWER_CONSTANT) / BQ27XXX_RS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1802) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1803) 		/* Other gauges return a signed value in units of 10mW */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1804) 		val->intval = (int)((s16)power) * 10000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1805) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1806) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1807) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1808) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1809) static int bq27xxx_battery_status(struct bq27xxx_device_info *di,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1810) 				  union power_supply_propval *val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1811) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1812) 	int status;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1813) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1814) 	if (di->opts & BQ27XXX_O_ZERO) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1815) 		if (di->cache.flags & BQ27000_FLAG_FC)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1816) 			status = POWER_SUPPLY_STATUS_FULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1817) 		else if (di->cache.flags & BQ27000_FLAG_CHGS)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1818) 			status = POWER_SUPPLY_STATUS_CHARGING;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1819) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1820) 			status = POWER_SUPPLY_STATUS_DISCHARGING;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1821) 	} else if (di->opts & BQ27Z561_O_BITS) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1822) 		if (di->cache.flags & BQ27Z561_FLAG_FC)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1823) 			status = POWER_SUPPLY_STATUS_FULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1824) 		else if (di->cache.flags & BQ27Z561_FLAG_DIS_CH)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1825) 			status = POWER_SUPPLY_STATUS_DISCHARGING;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1826) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1827) 			status = POWER_SUPPLY_STATUS_CHARGING;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1828) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1829) 		if (di->cache.flags & BQ27XXX_FLAG_FC)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1830) 			status = POWER_SUPPLY_STATUS_FULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1831) 		else if (di->cache.flags & BQ27XXX_FLAG_DSC)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1832) 			status = POWER_SUPPLY_STATUS_DISCHARGING;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1833) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1834) 			status = POWER_SUPPLY_STATUS_CHARGING;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1835) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1836) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1837) 	if ((status == POWER_SUPPLY_STATUS_DISCHARGING) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1838) 	    (power_supply_am_i_supplied(di->bat) > 0))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1839) 		status = POWER_SUPPLY_STATUS_NOT_CHARGING;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1840) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1841) 	val->intval = status;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1842) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1843) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1844) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1845) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1846) static int bq27xxx_battery_capacity_level(struct bq27xxx_device_info *di,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1847) 					  union power_supply_propval *val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1848) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1849) 	int level;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1850) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1851) 	if (di->opts & BQ27XXX_O_ZERO) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1852) 		if (di->cache.flags & BQ27000_FLAG_FC)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1853) 			level = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1854) 		else if (di->cache.flags & BQ27000_FLAG_EDV1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1855) 			level = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1856) 		else if (di->cache.flags & BQ27000_FLAG_EDVF)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1857) 			level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1858) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1859) 			level = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1860) 	} else if (di->opts & BQ27Z561_O_BITS) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1861) 		if (di->cache.flags & BQ27Z561_FLAG_FC)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1862) 			level = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1863) 		else if (di->cache.flags & BQ27Z561_FLAG_FDC)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1864) 			level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1865) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1866) 			level = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1867) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1868) 		if (di->cache.flags & BQ27XXX_FLAG_FC)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1869) 			level = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1870) 		else if (di->cache.flags & BQ27XXX_FLAG_SOC1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1871) 			level = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1872) 		else if (di->cache.flags & BQ27XXX_FLAG_SOCF)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1873) 			level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1874) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1875) 			level = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1876) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1877) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1878) 	val->intval = level;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1879) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1880) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1881) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1882) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1883) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1884)  * Return the battery Voltage in millivolts
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1885)  * Or < 0 if something fails.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1886)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1887) static int bq27xxx_battery_voltage(struct bq27xxx_device_info *di,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1888) 				   union power_supply_propval *val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1889) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1890) 	int volt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1891) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1892) 	volt = bq27xxx_read(di, BQ27XXX_REG_VOLT, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1893) 	if (volt < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1894) 		dev_err(di->dev, "error reading voltage\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1895) 		return volt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1896) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1897) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1898) 	val->intval = volt * 1000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1899) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1900) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1901) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1902) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1903) static int bq27xxx_simple_value(int value,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1904) 				union power_supply_propval *val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1905) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1906) 	if (value < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1907) 		return value;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1908) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1909) 	val->intval = value;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1910) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1911) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1912) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1913) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1914) static int bq27xxx_battery_get_property(struct power_supply *psy,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1915) 					enum power_supply_property psp,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1916) 					union power_supply_propval *val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1917) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1918) 	int ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1919) 	struct bq27xxx_device_info *di = power_supply_get_drvdata(psy);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1920) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1921) 	mutex_lock(&di->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1922) 	if (time_is_before_jiffies(di->last_update + 5 * HZ)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1923) 		cancel_delayed_work_sync(&di->work);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1924) 		bq27xxx_battery_poll(&di->work.work);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1925) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1926) 	mutex_unlock(&di->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1927) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1928) 	if (psp != POWER_SUPPLY_PROP_PRESENT && di->cache.flags < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1929) 		return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1930) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1931) 	switch (psp) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1932) 	case POWER_SUPPLY_PROP_STATUS:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1933) 		ret = bq27xxx_battery_status(di, val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1934) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1935) 	case POWER_SUPPLY_PROP_VOLTAGE_NOW:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1936) 		ret = bq27xxx_battery_voltage(di, val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1937) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1938) 	case POWER_SUPPLY_PROP_PRESENT:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1939) 		val->intval = di->cache.flags < 0 ? 0 : 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1940) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1941) 	case POWER_SUPPLY_PROP_CURRENT_NOW:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1942) 		ret = bq27xxx_battery_current(di, val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1943) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1944) 	case POWER_SUPPLY_PROP_CAPACITY:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1945) 		ret = bq27xxx_simple_value(di->cache.capacity, val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1946) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1947) 	case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1948) 		ret = bq27xxx_battery_capacity_level(di, val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1949) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1950) 	case POWER_SUPPLY_PROP_TEMP:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1951) 		ret = bq27xxx_simple_value(di->cache.temperature, val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1952) 		if (ret == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1953) 			val->intval -= 2731; /* convert decidegree k to c */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1954) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1955) 	case POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1956) 		ret = bq27xxx_simple_value(di->cache.time_to_empty, val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1957) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1958) 	case POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1959) 		ret = bq27xxx_simple_value(di->cache.time_to_empty_avg, val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1960) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1961) 	case POWER_SUPPLY_PROP_TIME_TO_FULL_NOW:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1962) 		ret = bq27xxx_simple_value(di->cache.time_to_full, val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1963) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1964) 	case POWER_SUPPLY_PROP_TECHNOLOGY:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1965) 		if (di->opts & BQ27XXX_O_MUL_CHEM)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1966) 			val->intval = POWER_SUPPLY_TECHNOLOGY_UNKNOWN;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1967) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1968) 			val->intval = POWER_SUPPLY_TECHNOLOGY_LION;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1969) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1970) 	case POWER_SUPPLY_PROP_CHARGE_NOW:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1971) 		ret = bq27xxx_simple_value(bq27xxx_battery_read_nac(di), val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1972) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1973) 	case POWER_SUPPLY_PROP_CHARGE_FULL:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1974) 		ret = bq27xxx_simple_value(di->cache.charge_full, val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1975) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1976) 	case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1977) 		ret = bq27xxx_simple_value(di->charge_design_full, val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1978) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1979) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1980) 	 * TODO: Implement these to make registers set from
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1981) 	 * power_supply_battery_info visible in sysfs.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1982) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1983) 	case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1984) 	case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1985) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1986) 	case POWER_SUPPLY_PROP_CYCLE_COUNT:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1987) 		ret = bq27xxx_simple_value(di->cache.cycle_count, val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1988) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1989) 	case POWER_SUPPLY_PROP_ENERGY_NOW:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1990) 		ret = bq27xxx_simple_value(di->cache.energy, val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1991) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1992) 	case POWER_SUPPLY_PROP_POWER_AVG:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1993) 		ret = bq27xxx_battery_pwr_avg(di, val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1994) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1995) 	case POWER_SUPPLY_PROP_HEALTH:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1996) 		ret = bq27xxx_simple_value(di->cache.health, val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1997) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1998) 	case POWER_SUPPLY_PROP_MANUFACTURER:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1999) 		val->strval = BQ27XXX_MANUFACTURER;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2000) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2001) 	default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2002) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2003) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2004) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2005) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2006) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2007) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2008) static void bq27xxx_external_power_changed(struct power_supply *psy)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2009) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2010) 	struct bq27xxx_device_info *di = power_supply_get_drvdata(psy);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2011) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2012) 	cancel_delayed_work_sync(&di->work);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2013) 	schedule_delayed_work(&di->work, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2014) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2015) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2016) int bq27xxx_battery_setup(struct bq27xxx_device_info *di)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2017) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2018) 	struct power_supply_desc *psy_desc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2019) 	struct power_supply_config psy_cfg = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2020) 		.of_node = di->dev->of_node,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2021) 		.drv_data = di,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2022) 	};
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2023) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2024) 	INIT_DELAYED_WORK(&di->work, bq27xxx_battery_poll);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2025) 	mutex_init(&di->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2026) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2027) 	di->regs       = bq27xxx_chip_data[di->chip].regs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2028) 	di->unseal_key = bq27xxx_chip_data[di->chip].unseal_key;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2029) 	di->dm_regs    = bq27xxx_chip_data[di->chip].dm_regs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2030) 	di->opts       = bq27xxx_chip_data[di->chip].opts;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2031) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2032) 	psy_desc = devm_kzalloc(di->dev, sizeof(*psy_desc), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2033) 	if (!psy_desc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2034) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2035) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2036) 	psy_desc->name = di->name;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2037) 	psy_desc->type = POWER_SUPPLY_TYPE_BATTERY;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2038) 	psy_desc->properties = bq27xxx_chip_data[di->chip].props;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2039) 	psy_desc->num_properties = bq27xxx_chip_data[di->chip].props_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2040) 	psy_desc->get_property = bq27xxx_battery_get_property;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2041) 	psy_desc->external_power_changed = bq27xxx_external_power_changed;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2042) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2043) 	di->bat = power_supply_register_no_ws(di->dev, psy_desc, &psy_cfg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2044) 	if (IS_ERR(di->bat))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2045) 		return dev_err_probe(di->dev, PTR_ERR(di->bat),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2046) 				     "failed to register battery\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2047) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2048) 	bq27xxx_battery_settings(di);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2049) 	bq27xxx_battery_update(di);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2050) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2051) 	mutex_lock(&bq27xxx_list_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2052) 	list_add(&di->list, &bq27xxx_battery_devices);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2053) 	mutex_unlock(&bq27xxx_list_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2054) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2055) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2056) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2057) EXPORT_SYMBOL_GPL(bq27xxx_battery_setup);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2058) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2059) void bq27xxx_battery_teardown(struct bq27xxx_device_info *di)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2060) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2061) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2062) 	 * power_supply_unregister call bq27xxx_battery_get_property which
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2063) 	 * call bq27xxx_battery_poll.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2064) 	 * Make sure that bq27xxx_battery_poll will not call
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2065) 	 * schedule_delayed_work again after unregister (which cause OOPS).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2066) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2067) 	poll_interval = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2068) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2069) 	cancel_delayed_work_sync(&di->work);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2070) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2071) 	power_supply_unregister(di->bat);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2072) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2073) 	mutex_lock(&bq27xxx_list_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2074) 	list_del(&di->list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2075) 	mutex_unlock(&bq27xxx_list_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2076) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2077) 	mutex_destroy(&di->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2078) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2079) EXPORT_SYMBOL_GPL(bq27xxx_battery_teardown);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2080) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2081) MODULE_AUTHOR("Rodolfo Giometti <giometti@linux.it>");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2082) MODULE_DESCRIPTION("BQ27xxx battery monitor driver");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2083) MODULE_LICENSE("GPL");