// SPDX-License-Identifier: GPL-2.0
/*
* TI BQ257000 charger driver
* Copyright (c) 2021 Rockchip Electronics Co. Ltd.
*
* Author: shengfeixu <xsf@rock-chips.com>
*/
#include <linux/power/bq25700-charge.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/mfd/core.h>
#include <linux/module.h>
#include <linux/regmap.h>
#include <linux/regulator/driver.h>
#include <linux/of_device.h>
#include <linux/delay.h>
#include <linux/usb/phy.h>
#include <linux/power/rk_usbbc.h>
#include <linux/extcon.h>
#include <linux/delay.h>
#include <linux/power_supply.h>
#include <linux/gpio.h>
#include <linux/of_gpio.h>
static int dbg_enable;
module_param_named(dbg_level, dbg_enable, int, 0644);
#define DBG(args...) \
do { \
if (dbg_enable) { \
pr_info(args); \
} \
} while (0)
#define bq25700_info(fmt, args...) pr_info("bq25700: "fmt, ##args)
#define BQ25700_MANUFACTURER "Texas Instruments"
#define BQ25700_ID 0x59
#define BQ25703_ID 0x58
#define DEFAULT_INPUTVOL ((5000 - 1280) * 1000)
#define MAX_INPUTVOLTAGE 24000000
#define MAX_INPUTCURRENT 6350000
#define MAX_CHARGEVOLTAGE 16800000
#define MAX_CHARGECURRETNT 8128000
#define MAX_OTGVOLTAGE 20800000
#define MIN_OTGVOLTAGE 4280000
#define MAX_OTGCURRENT 6350000
enum bq25700_fields {
EN_LWPWR, WDTWR_ADJ, IDPM_AUTO_DISABLE,
EN_OOA, PWM_FREQ, EN_LEARN, IADP_GAIN, IBAT_GAIN,
EN_LDO, EN_IDPM, CHRG_INHIBIT,/*reg12h*/
CHARGE_CURRENT,/*reg14h*/
MAX_CHARGE_VOLTAGE,/*reg15h*/
AC_STAT, ICO_DONE, IN_VINDPM, IN_IINDPM, IN_FCHRG, IN_PCHRG, IN_OTG,
F_ACOV, F_BATOC, F_ACOC, SYSOVP_STAT, F_LATCHOFF, F_OTG_OVP, F_OTG_OCP,
/*reg20h*/
STAT_COMP, STAT_ICRIT, STAT_INOM, STAT_IDCHG, STAT_VSYS, STAT_BAT_REMOV,
STAT_ADP_REMOV,/*reg21h*/
INPUT_CURRENT_DPM,/*reg22h*/
OUTPUT_INPUT_VOL, OUTPUT_SYS_POWER,/*reg23h*/
OUTPUT_DSG_CUR, OUTPUT_CHG_CUR,/*reg24h*/
OUTPUT_INPUT_CUR, OUTPUT_CMPIN_VOL,/*reg25h*/
OUTPUT_SYS_VOL, OUTPUT_BAT_VOL,/*reg26h*/
EN_IBAT, EN_PROCHOT_LPWR, EN_PSYS, RSNS_RAC, RSNS_RSR,
PSYS_RATIO, CMP_REF, CMP_POL, CMP_DEG, FORCE_LATCHOFF,
EN_SHIP_DCHG, AUTO_WAKEUP_EN, /*reg30h*/
PKPWR_TOVLD_REG, EN_PKPWR_IDPM, EN_PKPWR_VSYS, PKPWER_OVLD_STAT,
PKPWR_RELAX_STAT, PKPWER_TMAX, EN_EXTILIM, EN_ICHG_IDCHG, Q2_OCP,
ACX_OCP, EN_ACOC, ACOC_VTH, EN_BATOC, BATCOC_VTH,/*reg31h*/
EN_HIZ, RESET_REG, RESET_VINDPM, EN_OTG, EN_ICO_MODE, BATFETOFF_HIZ,
PSYS_OTG_IDCHG,/*reg32h*/
ILIM2_VTH, ICRIT_DEG, VSYS_VTH, EN_PROCHOT_EXT, PROCHOT_WIDTH,
PROCHOT_CLEAR, INOM_DEG,/*reg33h*/
IDCHG_VTH, IDCHG_DEG, PROCHOT_PROFILE_COMP, PROCHOT_PROFILE_ICRIT,
PROCHOT_PROFILE_INOM, PROCHOT_PROFILE_IDCHG,
PROCHOT_PROFILE_VSYS, PROCHOT_PROFILE_BATPRES, PROCHOT_PROFILE_ACOK,
/*reg34h*/
ADC_CONV, ADC_START, ADC_FULLSCALE, EN_ADC_CMPIN, EN_ADC_VBUS,
EN_ADC_PSYS, EN_ADC_IIN, EN_ADC_IDCHG, EN_ADC_ICHG, EN_ADC_VSYS,
EN_ADC_VBAT,/*reg35h*/
OTG_VOLTAGE,/*reg3bh*/
OTG_CURRENT,/*reg3ch*/
INPUT_VOLTAGE,/*reg3dh*/
MIN_SYS_VOTAGE,/*reg3eh*/
INPUT_CURRENT,/*reg3fh*/
MANUFACTURE_ID,/*regfeh*/
DEVICE_ID,/*regffh*/
F_MAX_FIELDS
};
enum charger_t {
USB_TYPE_UNKNOWN_CHARGER,
USB_TYPE_NONE_CHARGER,
USB_TYPE_USB_CHARGER,
USB_TYPE_AC_CHARGER,
USB_TYPE_CDP_CHARGER,
DC_TYPE_DC_CHARGER,
DC_TYPE_NONE_CHARGER,
};
enum usb_status_t {
USB_STATUS_NONE,
USB_STATUS_USB,
USB_STATUS_AC,
USB_STATUS_PD,
USB_STATUS_OTG,
};
enum tpyec_port_t {
USB_TYPEC_0,
USB_TYPEC_1,
};
/* initial field values, converted to register values */
struct bq25700_init_data {
u32 ichg; /* charge current */
u32 max_chg_vol; /*max charge voltage*/
u32 input_voltage; /*input voltage*/
u32 input_current; /*input current*/
u32 input_current_sdp;
u32 input_current_dcp;
u32 input_current_cdp;
u32 sys_min_voltage; /*mininum system voltage*/
u32 otg_voltage; /*OTG voltage*/
u32 otg_current; /*OTG current*/
};
struct bq25700_state {
u8 ac_stat;
u8 ico_done;
u8 in_vindpm;
u8 in_iindpm;
u8 in_fchrg;
u8 in_pchrg;
u8 in_otg;
u8 fault_acov;
u8 fault_batoc;
u8 fault_acoc;
u8 sysovp_stat;
u8 fault_latchoff;
u8 fault_otg_ovp;
u8 fault_otg_ocp;
};
struct bq25700_device {
struct i2c_client *client;
struct device *dev;
struct power_supply *supply_charger;
char model_name[I2C_NAME_SIZE];
unsigned int irq;
bool first_time;
bool charger_health_valid;
bool battery_health_valid;
bool battery_status_valid;
int automode;
struct notifier_block nb;
struct bq2570x_platform_data plat_data;
struct device_node *notify_node;
struct workqueue_struct *usb_charger_wq;
struct workqueue_struct *dc_charger_wq;
struct workqueue_struct *finish_sig_wq;
struct delayed_work usb_work;
struct delayed_work host_work;
struct delayed_work discnt_work;
struct delayed_work usb_work1;
struct delayed_work host_work1;
struct delayed_work discnt_work1;
struct delayed_work irq_work;
struct notifier_block cable_cg_nb;
struct notifier_block cable_host_nb;
struct notifier_block cable_cg_nb1;
struct notifier_block cable_host_nb1;
struct extcon_dev *cable_edev;
struct extcon_dev *cable_edev_1;
int typec0_status;
int typec1_status;
struct gpio_desc *typec0_enable_io;
struct gpio_desc *typec1_enable_io;
struct gpio_desc *typec0_discharge_io;
struct gpio_desc *typec1_discharge_io;
struct gpio_desc *otg_mode_en_io;
struct regulator_dev *otg_vbus_reg;
struct regmap *regmap;
struct regmap_field *rmap_fields[F_MAX_FIELDS];
int chip_id;
struct bq25700_init_data init_data;
struct bq25700_state state;
int pd_charge_only;
unsigned int bc_event;
bool usb_bc;
};
static const struct reg_field bq25700_reg_fields[] = {
/*REG12*/
[EN_LWPWR] = REG_FIELD(0x12, 15, 15),
[WDTWR_ADJ] = REG_FIELD(0x12, 13, 14),
[IDPM_AUTO_DISABLE] = REG_FIELD(0x12, 12, 12),
[EN_OOA] = REG_FIELD(0x12, 10, 10),
[PWM_FREQ] = REG_FIELD(0x12, 9, 9),
[EN_LEARN] = REG_FIELD(0x12, 5, 5),
[IADP_GAIN] = REG_FIELD(0x12, 4, 4),
[IBAT_GAIN] = REG_FIELD(0x12, 3, 3),
[EN_LDO] = REG_FIELD(0x12, 2, 2),
[EN_IDPM] = REG_FIELD(0x12, 1, 1),
[CHRG_INHIBIT] = REG_FIELD(0x12, 0, 0),
/*REG0x14*/
[CHARGE_CURRENT] = REG_FIELD(0x14, 6, 12),
/*REG0x15*/
[MAX_CHARGE_VOLTAGE] = REG_FIELD(0x15, 4, 14),
/*REG20*/
[AC_STAT] = REG_FIELD(0x20, 15, 15),
[ICO_DONE] = REG_FIELD(0x20, 14, 14),
[IN_VINDPM] = REG_FIELD(0x20, 12, 12),
[IN_IINDPM] = REG_FIELD(0x20, 11, 11),
[IN_FCHRG] = REG_FIELD(0x20, 10, 10),
[IN_PCHRG] = REG_FIELD(0x20, 9, 9),
[IN_OTG] = REG_FIELD(0x20, 8, 8),
[F_ACOV] = REG_FIELD(0x20, 7, 7),
[F_BATOC] = REG_FIELD(0x20, 6, 6),
[F_ACOC] = REG_FIELD(0x20, 5, 5),
[SYSOVP_STAT] = REG_FIELD(0x20, 4, 4),
[F_LATCHOFF] = REG_FIELD(0x20, 2, 2),
[F_OTG_OVP] = REG_FIELD(0x20, 1, 1),
[F_OTG_OCP] = REG_FIELD(0x20, 0, 0),
/*REG21*/
[STAT_COMP] = REG_FIELD(0x21, 6, 6),
[STAT_ICRIT] = REG_FIELD(0x21, 5, 5),
[STAT_INOM] = REG_FIELD(0x21, 4, 4),
[STAT_IDCHG] = REG_FIELD(0x21, 3, 3),
[STAT_VSYS] = REG_FIELD(0x21, 2, 2),
[STAT_BAT_REMOV] = REG_FIELD(0x21, 1, 1),
[STAT_ADP_REMOV] = REG_FIELD(0x21, 0, 0),
/*REG22*/
[INPUT_CURRENT_DPM] = REG_FIELD(0x22, 8, 14),
/*REG23H*/
[OUTPUT_INPUT_VOL] = REG_FIELD(0x23, 8, 15),
[OUTPUT_SYS_POWER] = REG_FIELD(0x23, 0, 7),
/*REG24H*/
[OUTPUT_DSG_CUR] = REG_FIELD(0x24, 8, 14),
[OUTPUT_CHG_CUR] = REG_FIELD(0x24, 0, 6),
/*REG25H*/
[OUTPUT_INPUT_CUR] = REG_FIELD(0x25, 8, 15),
[OUTPUT_CMPIN_VOL] = REG_FIELD(0x25, 0, 7),
/*REG26H*/
[OUTPUT_SYS_VOL] = REG_FIELD(0x26, 8, 15),
[OUTPUT_BAT_VOL] = REG_FIELD(0x26, 0, 6),
/*REG30*/
[EN_IBAT] = REG_FIELD(0x30, 15, 15),
[EN_PROCHOT_LPWR] = REG_FIELD(0x30, 13, 14),
[EN_PSYS] = REG_FIELD(0x30, 12, 12),
[RSNS_RAC] = REG_FIELD(0x30, 11, 11),
[RSNS_RSR] = REG_FIELD(0x30, 10, 10),
[PSYS_RATIO] = REG_FIELD(0x30, 9, 9),
[CMP_REF] = REG_FIELD(0x30, 7, 7),
[CMP_POL] = REG_FIELD(0x30, 6, 6),
[CMP_DEG] = REG_FIELD(0x30, 4, 5),
[FORCE_LATCHOFF] = REG_FIELD(0x30, 3, 3),
[EN_SHIP_DCHG] = REG_FIELD(0x30, 1, 1),
[AUTO_WAKEUP_EN] = REG_FIELD(0x30, 0, 0),
/*REG31*/
[PKPWR_TOVLD_REG] = REG_FIELD(0x31, 14, 15),
[EN_PKPWR_IDPM] = REG_FIELD(0x31, 13, 13),
[EN_PKPWR_VSYS] = REG_FIELD(0x31, 12, 12),
[PKPWER_OVLD_STAT] = REG_FIELD(0x31, 11, 11),
[PKPWR_RELAX_STAT] = REG_FIELD(0x31, 10, 10),
[PKPWER_TMAX] = REG_FIELD(0x31, 8, 9),
[EN_EXTILIM] = REG_FIELD(0x31, 7, 7),
[EN_ICHG_IDCHG] = REG_FIELD(0x31, 6, 6),
[Q2_OCP] = REG_FIELD(0x31, 5, 5),
[ACX_OCP] = REG_FIELD(0x31, 4, 4),
[EN_ACOC] = REG_FIELD(0x31, 3, 3),
[ACOC_VTH] = REG_FIELD(0x31, 2, 2),
[EN_BATOC] = REG_FIELD(0x31, 1, 1),
[BATCOC_VTH] = REG_FIELD(0x31, 0, 0),
/*REG32*/
[EN_HIZ] = REG_FIELD(0x32, 15, 15),
[RESET_REG] = REG_FIELD(0x32, 14, 14),
[RESET_VINDPM] = REG_FIELD(0x32, 13, 13),
[EN_OTG] = REG_FIELD(0x32, 12, 12),
[EN_ICO_MODE] = REG_FIELD(0x32, 11, 11),
[BATFETOFF_HIZ] = REG_FIELD(0x32, 1, 1),
[PSYS_OTG_IDCHG] = REG_FIELD(0x32, 0, 0),
/*REG33*/
[ILIM2_VTH] = REG_FIELD(0x33, 11, 15),
[ICRIT_DEG] = REG_FIELD(0x33, 9, 10),
[VSYS_VTH] = REG_FIELD(0x33, 6, 7),
[EN_PROCHOT_EXT] = REG_FIELD(0x33, 5, 5),
[PROCHOT_WIDTH] = REG_FIELD(0x33, 3, 4),
[PROCHOT_CLEAR] = REG_FIELD(0x33, 2, 2),
[INOM_DEG] = REG_FIELD(0x33, 1, 1),
/*REG34*/
[IDCHG_VTH] = REG_FIELD(0x34, 10, 15),
[IDCHG_DEG] = REG_FIELD(0x34, 8, 9),
[PROCHOT_PROFILE_COMP] = REG_FIELD(0x34, 6, 6),
[PROCHOT_PROFILE_ICRIT] = REG_FIELD(0x34, 5, 5),
[PROCHOT_PROFILE_INOM] = REG_FIELD(0x34, 4, 4),
[PROCHOT_PROFILE_IDCHG] = REG_FIELD(0x34, 3, 3),
[PROCHOT_PROFILE_VSYS] = REG_FIELD(0x34, 2, 2),
[PROCHOT_PROFILE_BATPRES] = REG_FIELD(0x34, 1, 1),
[PROCHOT_PROFILE_ACOK] = REG_FIELD(0x34, 0, 0),
/*REG35*/
[ADC_CONV] = REG_FIELD(0x35, 15, 15),
[ADC_START] = REG_FIELD(0x35, 14, 14),
[ADC_FULLSCALE] = REG_FIELD(0x35, 13, 13),
[EN_ADC_CMPIN] = REG_FIELD(0x35, 7, 7),
[EN_ADC_VBUS] = REG_FIELD(0x35, 6, 6),
[EN_ADC_PSYS] = REG_FIELD(0x35, 5, 5),
[EN_ADC_IIN] = REG_FIELD(0x35, 4, 4),
[EN_ADC_IDCHG] = REG_FIELD(0x35, 3, 3),
[EN_ADC_ICHG] = REG_FIELD(0x35, 2, 2),
[EN_ADC_VSYS] = REG_FIELD(0x35, 1, 1),
[EN_ADC_VBAT] = REG_FIELD(0x35, 0, 0),
/*REG3B*/
[OTG_VOLTAGE] = REG_FIELD(0x3B, 6, 13),
/*REG3C*/
[OTG_CURRENT] = REG_FIELD(0x3C, 8, 14),
/*REG3D*/
[INPUT_VOLTAGE] = REG_FIELD(0x3D, 6, 13),
/*REG3E*/
[MIN_SYS_VOTAGE] = REG_FIELD(0x3E, 8, 13),
/*REG3F*/
[INPUT_CURRENT] = REG_FIELD(0x3F, 8, 14),
/*REGFE*/
[MANUFACTURE_ID] = REG_FIELD(0xFE, 0, 7),
/*REFFF*/
[DEVICE_ID] = REG_FIELD(0xFF, 0, 7),
};
static const struct reg_field bq25703_reg_fields[] = {
/*REG00*/
[EN_LWPWR] = REG_FIELD(0x00, 15, 15),
[WDTWR_ADJ] = REG_FIELD(0x00, 13, 14),
[IDPM_AUTO_DISABLE] = REG_FIELD(0x00, 12, 12),
[EN_OOA] = REG_FIELD(0x00, 10, 10),
[PWM_FREQ] = REG_FIELD(0x00, 9, 9),
[EN_LEARN] = REG_FIELD(0x00, 5, 5),
[IADP_GAIN] = REG_FIELD(0x00, 4, 4),
[IBAT_GAIN] = REG_FIELD(0x00, 3, 3),
[EN_LDO] = REG_FIELD(0x00, 2, 2),
[EN_IDPM] = REG_FIELD(0x00, 1, 1),
[CHRG_INHIBIT] = REG_FIELD(0x00, 0, 0),
/*REG0x02*/
[CHARGE_CURRENT] = REG_FIELD(0x02, 6, 12),
/*REG0x04*/
[MAX_CHARGE_VOLTAGE] = REG_FIELD(0x04, 4, 14),
/*REG20*/
[AC_STAT] = REG_FIELD(0x20, 15, 15),
[ICO_DONE] = REG_FIELD(0x20, 14, 14),
[IN_VINDPM] = REG_FIELD(0x20, 12, 12),
[IN_IINDPM] = REG_FIELD(0x20, 11, 11),
[IN_FCHRG] = REG_FIELD(0x20, 10, 10),
[IN_PCHRG] = REG_FIELD(0x20, 9, 9),
[IN_OTG] = REG_FIELD(0x20, 8, 8),
[F_ACOV] = REG_FIELD(0x20, 7, 7),
[F_BATOC] = REG_FIELD(0x20, 6, 6),
[F_ACOC] = REG_FIELD(0x20, 5, 5),
[SYSOVP_STAT] = REG_FIELD(0x20, 4, 4),
[F_LATCHOFF] = REG_FIELD(0x20, 2, 2),
[F_OTG_OVP] = REG_FIELD(0x20, 1, 1),
[F_OTG_OCP] = REG_FIELD(0x20, 0, 0),
/*REG22*/
[STAT_COMP] = REG_FIELD(0x22, 6, 6),
[STAT_ICRIT] = REG_FIELD(0x22, 5, 5),
[STAT_INOM] = REG_FIELD(0x22, 4, 4),
[STAT_IDCHG] = REG_FIELD(0x22, 3, 3),
[STAT_VSYS] = REG_FIELD(0x22, 2, 2),
[STAT_BAT_REMOV] = REG_FIELD(0x22, 1, 1),
[STAT_ADP_REMOV] = REG_FIELD(0x22, 0, 0),
/*REG24*/
[INPUT_CURRENT_DPM] = REG_FIELD(0x24, 8, 14),
/*REG26H*/
[OUTPUT_INPUT_VOL] = REG_FIELD(0x26, 8, 15),
[OUTPUT_SYS_POWER] = REG_FIELD(0x26, 0, 7),
/*REG28H*/
[OUTPUT_DSG_CUR] = REG_FIELD(0x28, 8, 14),
[OUTPUT_CHG_CUR] = REG_FIELD(0x28, 0, 6),
/*REG2aH*/
[OUTPUT_INPUT_CUR] = REG_FIELD(0x2a, 8, 15),
[OUTPUT_CMPIN_VOL] = REG_FIELD(0x2a, 0, 7),
/*REG2cH*/
[OUTPUT_SYS_VOL] = REG_FIELD(0x2c, 8, 15),
[OUTPUT_BAT_VOL] = REG_FIELD(0x2c, 0, 6),
/*REG30*/
[EN_IBAT] = REG_FIELD(0x30, 15, 15),
[EN_PROCHOT_LPWR] = REG_FIELD(0x30, 13, 14),
[EN_PSYS] = REG_FIELD(0x30, 12, 12),
[RSNS_RAC] = REG_FIELD(0x30, 11, 11),
[RSNS_RSR] = REG_FIELD(0x30, 10, 10),
[PSYS_RATIO] = REG_FIELD(0x30, 9, 9),
[CMP_REF] = REG_FIELD(0x30, 7, 7),
[CMP_POL] = REG_FIELD(0x30, 6, 6),
[CMP_DEG] = REG_FIELD(0x30, 4, 5),
[FORCE_LATCHOFF] = REG_FIELD(0x30, 3, 3),
[EN_SHIP_DCHG] = REG_FIELD(0x30, 1, 1),
[AUTO_WAKEUP_EN] = REG_FIELD(0x30, 0, 0),
/*REG32*/
[PKPWR_TOVLD_REG] = REG_FIELD(0x32, 14, 15),
[EN_PKPWR_IDPM] = REG_FIELD(0x32, 13, 13),
[EN_PKPWR_VSYS] = REG_FIELD(0x32, 12, 12),
[PKPWER_OVLD_STAT] = REG_FIELD(0x32, 11, 11),
[PKPWR_RELAX_STAT] = REG_FIELD(0x32, 10, 10),
[PKPWER_TMAX] = REG_FIELD(0x32, 8, 9),
[EN_EXTILIM] = REG_FIELD(0x32, 7, 7),
[EN_ICHG_IDCHG] = REG_FIELD(0x32, 6, 6),
[Q2_OCP] = REG_FIELD(0x32, 5, 5),
[ACX_OCP] = REG_FIELD(0x32, 4, 4),
[EN_ACOC] = REG_FIELD(0x32, 3, 3),
[ACOC_VTH] = REG_FIELD(0x32, 2, 2),
[EN_BATOC] = REG_FIELD(0x32, 1, 1),
[BATCOC_VTH] = REG_FIELD(0x32, 0, 0),
/*REG34*/
[EN_HIZ] = REG_FIELD(0x34, 15, 15),
[RESET_REG] = REG_FIELD(0x34, 14, 14),
[RESET_VINDPM] = REG_FIELD(0x34, 13, 13),
[EN_OTG] = REG_FIELD(0x34, 12, 12),
[EN_ICO_MODE] = REG_FIELD(0x34, 11, 11),
[BATFETOFF_HIZ] = REG_FIELD(0x34, 1, 1),
[PSYS_OTG_IDCHG] = REG_FIELD(0x34, 0, 0),
/*REG36*/
[ILIM2_VTH] = REG_FIELD(0x36, 11, 15),
[ICRIT_DEG] = REG_FIELD(0x36, 9, 10),
[VSYS_VTH] = REG_FIELD(0x36, 6, 7),
[EN_PROCHOT_EXT] = REG_FIELD(0x36, 5, 5),
[PROCHOT_WIDTH] = REG_FIELD(0x36, 3, 4),
[PROCHOT_CLEAR] = REG_FIELD(0x36, 2, 2),
[INOM_DEG] = REG_FIELD(0x36, 1, 1),
/*REG38*/
[IDCHG_VTH] = REG_FIELD(0x38, 10, 15),
[IDCHG_DEG] = REG_FIELD(0x38, 8, 9),
[PROCHOT_PROFILE_COMP] = REG_FIELD(0x38, 6, 6),
[PROCHOT_PROFILE_ICRIT] = REG_FIELD(0x38, 5, 5),
[PROCHOT_PROFILE_INOM] = REG_FIELD(0x38, 4, 4),
[PROCHOT_PROFILE_IDCHG] = REG_FIELD(0x38, 3, 3),
[PROCHOT_PROFILE_VSYS] = REG_FIELD(0x38, 2, 2),
[PROCHOT_PROFILE_BATPRES] = REG_FIELD(0x38, 1, 1),
[PROCHOT_PROFILE_ACOK] = REG_FIELD(0x38, 0, 0),
/*REG3a*/
[ADC_CONV] = REG_FIELD(0x3a, 15, 15),
[ADC_START] = REG_FIELD(0x3a, 14, 14),
[ADC_FULLSCALE] = REG_FIELD(0x3a, 13, 13),
[EN_ADC_CMPIN] = REG_FIELD(0x3a, 7, 7),
[EN_ADC_VBUS] = REG_FIELD(0x3a, 6, 6),
[EN_ADC_PSYS] = REG_FIELD(0x3a, 5, 5),
[EN_ADC_IIN] = REG_FIELD(0x3a, 4, 4),
[EN_ADC_IDCHG] = REG_FIELD(0x3a, 3, 3),
[EN_ADC_ICHG] = REG_FIELD(0x3a, 2, 2),
[EN_ADC_VSYS] = REG_FIELD(0x3a, 1, 1),
[EN_ADC_VBAT] = REG_FIELD(0x3a, 0, 0),
/*REG06*/
[OTG_VOLTAGE] = REG_FIELD(0x06, 6, 13),
/*REG08*/
[OTG_CURRENT] = REG_FIELD(0x08, 8, 14),
/*REG0a*/
[INPUT_VOLTAGE] = REG_FIELD(0x0a, 6, 13),
/*REG0C*/
[MIN_SYS_VOTAGE] = REG_FIELD(0x0c, 8, 13),
/*REG0e*/
[INPUT_CURRENT] = REG_FIELD(0x0e, 8, 14),
/*REG2E*/
[MANUFACTURE_ID] = REG_FIELD(0x2E, 0, 7),
/*REF2F*/
[DEVICE_ID] = REG_FIELD(0x2F, 0, 7),
};
/*
* Most of the val -> idx conversions can be computed, given the minimum,
* maximum and the step between values. For the rest of conversions, we use
* lookup tables.
*/
enum bq25700_table_ids {
/* range tables */
TBL_ICHG,
TBL_CHGMAX,
TBL_INPUTVOL,
TBL_INPUTCUR,
TBL_SYSVMIN,
TBL_OTGVOL,
TBL_OTGCUR,
TBL_EXTCON,
};
struct bq25700_range {
u32 min;
u32 max;
u32 step;
};
struct bq25700_lookup {
const u32 *tbl;
u32 size;
};
static const struct bq25700_range sc8886_otg_range = {
.min = 1280000,
.max = 20800000,
.step = 128000,
};
static union {
struct bq25700_range rt;
struct bq25700_lookup lt;
} bq25700_tables[] = {
/* range tables */
[TBL_ICHG] = { .rt = {0, 8128000, 64000} },
/* uV */
[TBL_CHGMAX] = { .rt = {0, 19200000, 16000} },
/* uV max charge voltage*/
[TBL_INPUTVOL] = { .rt = {3200000, 19520000, 64000} },
/* uV input charge voltage*/
[TBL_INPUTCUR] = {.rt = {0, 6350000, 50000} },
/*uA input current*/
[TBL_SYSVMIN] = { .rt = {1024000, 16182000, 256000} },
/* uV min system voltage*/
[TBL_OTGVOL] = {.rt = {4480000, 20800000, 64000} },
/*uV OTG volage*/
[TBL_OTGCUR] = {.rt = {0, 6350000, 50000} },
};
static const struct regmap_range bq25700_readonly_reg_ranges[] = {
regmap_reg_range(0x20, 0x26),
regmap_reg_range(0xFE, 0xFF),
};
static const struct regmap_access_table bq25700_writeable_regs = {
.no_ranges = bq25700_readonly_reg_ranges,
.n_no_ranges = ARRAY_SIZE(bq25700_readonly_reg_ranges),
};
static const struct regmap_range bq25700_volatile_reg_ranges[] = {
regmap_reg_range(0x12, 0x12),
regmap_reg_range(0x14, 0x15),
regmap_reg_range(0x20, 0x26),
regmap_reg_range(0x30, 0x35),
regmap_reg_range(0x3B, 0x3F),
regmap_reg_range(0xFE, 0xFF),
};
static const struct regmap_access_table bq25700_volatile_regs = {
.yes_ranges = bq25700_volatile_reg_ranges,
.n_yes_ranges = ARRAY_SIZE(bq25700_volatile_reg_ranges),
};
static const struct regmap_config bq25700_regmap_config = {
.reg_bits = 8,
.val_bits = 16,
.max_register = 0xFF,
.cache_type = REGCACHE_RBTREE,
.wr_table = &bq25700_writeable_regs,
.volatile_table = &bq25700_volatile_regs,
.val_format_endian = REGMAP_ENDIAN_LITTLE,
};
static const struct regmap_range bq25703_readonly_reg_ranges[] = {
regmap_reg_range(0x20, 0x2F),
};
static const struct regmap_access_table bq25703_writeable_regs = {
.no_ranges = bq25703_readonly_reg_ranges,
.n_no_ranges = ARRAY_SIZE(bq25703_readonly_reg_ranges),
};
static const struct regmap_range bq25703_volatile_reg_ranges[] = {
regmap_reg_range(0x00, 0x0F),
regmap_reg_range(0x20, 0x3B),
};
static const struct regmap_access_table bq25703_volatile_regs = {
.yes_ranges = bq25703_volatile_reg_ranges,
.n_yes_ranges = ARRAY_SIZE(bq25703_volatile_reg_ranges),
};
static const struct regmap_config bq25703_regmap_config = {
.reg_bits = 8,
.val_bits = 16,
.max_register = 0x3B,
.cache_type = REGCACHE_RBTREE,
.wr_table = &bq25703_writeable_regs,
.volatile_table = &bq25703_volatile_regs,
.val_format_endian = REGMAP_ENDIAN_LITTLE,
};
static void bq25700_disable_charge(struct bq25700_device *charger);
static struct bq25700_device *bq25700_charger;
static int bq25700_field_read(struct bq25700_device *charger,
enum bq25700_fields field_id)
{
int ret;
int val;
ret = regmap_field_read(charger->rmap_fields[field_id], &val);
if (ret < 0)
return ret;
return val;
}
static int bq25700_field_write(struct bq25700_device *charger,
enum bq25700_fields field_id, unsigned int val)
{
return regmap_field_write(charger->rmap_fields[field_id], val);
}
static int bq25700_get_chip_state(struct bq25700_device *charger,
struct bq25700_state *state)
{
int i, ret;
struct {
enum bq25700_fields id;
u8 *data;
} state_fields[] = {
{AC_STAT, &state->ac_stat},
{ICO_DONE, &state->ico_done},
{IN_VINDPM, &state->in_vindpm},
{IN_IINDPM, &state->in_iindpm},
{IN_FCHRG, &state->in_fchrg},
{IN_PCHRG, &state->in_pchrg},
{IN_OTG, &state->in_otg},
{F_ACOV, &state->fault_acov},
{F_BATOC, &state->fault_batoc},
{F_ACOC, &state->fault_acoc},
{SYSOVP_STAT, &state->sysovp_stat},
{F_LATCHOFF, &state->fault_latchoff},
{F_OTG_OVP, &state->fault_otg_ovp},
{F_OTG_OCP, &state->fault_otg_ocp},
};
for (i = 0; i < ARRAY_SIZE(state_fields); i++) {
ret = bq25700_field_read(charger, state_fields[i].id);
if (ret < 0)
return ret;
*state_fields[i].data = ret;
}
return 0;
}
static int bq25700_dump_regs(struct bq25700_device *charger)
{
u32 val = 0;
struct bq25700_state state;
int ret = 0;
ret = bq25700_field_write(charger, ADC_START, 1);
if (ret < 0) {
DBG("error: ADC_START\n");
return ret;
}
DBG("\n==================================\n");
regmap_read(charger->regmap, 0x12, &val);
DBG("REG0x12 : 0x%x\n", val);
regmap_read(charger->regmap, 0x14, &val);
DBG("REG0x14 : 0x%x\n", val);
regmap_read(charger->regmap, 0x15, &val);
DBG("REG0x15 : 0x%x\n", val);
regmap_read(charger->regmap, 0x30, &val);
DBG("REG0x30 : 0x%x\n", val);
regmap_read(charger->regmap, 0x31, &val);
DBG("REG0x31 : 0x%x\n", val);
regmap_read(charger->regmap, 0x32, &val);
DBG("REG0x32 : 0x%x\n", val);
regmap_read(charger->regmap, 0x33, &val);
DBG("REG0x33 : 0x%x\n", val);
regmap_read(charger->regmap, 0x34, &val);
DBG("REG0x34 : 0x%x\n", val);
regmap_read(charger->regmap, 0x35, &val);
DBG("REG0x35 : 0x%x\n", val);
regmap_read(charger->regmap, 0x20, &val);
DBG("REG0x20 : 0x%x\n", val);
regmap_read(charger->regmap, 0x21, &val);
DBG("REG0x21 : 0x%x\n", val);
regmap_read(charger->regmap, 0x22, &val);
DBG("REG0x22 : 0x%x\n", val);
regmap_read(charger->regmap, 0x23, &val);
DBG("REG0x23 : 0x%x\n", val);
regmap_read(charger->regmap, 0x24, &val);
DBG("REG0x24 : 0x%x\n", val);
regmap_read(charger->regmap, 0x25, &val);
DBG("REG0x25 : 0x%x\n", val);
regmap_read(charger->regmap, 0x26, &val);
DBG("REG0x26 : 0x%x\n", val);
regmap_read(charger->regmap, 0x3b, &val);
DBG("REG0x3b : 0x%x\n", val);
regmap_read(charger->regmap, 0x3c, &val);
DBG("REG0x3c : 0x%x\n", val);
regmap_read(charger->regmap, 0x3d, &val);
DBG("REG0x3d : 0x%x\n", val);
regmap_read(charger->regmap, 0x3e, &val);
DBG("REG0x3e : 0x%x\n", val);
regmap_read(charger->regmap, 0x3f, &val);
DBG("REG0x3f : 0x%x\n", val);
regmap_read(charger->regmap, 0xfe, &val);
DBG("REG0xfe : 0x%x\n", val);
regmap_read(charger->regmap, 0xff, &val);
DBG("REG0xff : 0x%x\n", val);
DBG("battery charge current: %dmA\n",
bq25700_field_read(charger, OUTPUT_DSG_CUR) * 64);
DBG("battery discharge current: %dmA\n",
bq25700_field_read(charger, OUTPUT_CHG_CUR) * 256);
DBG("VSYS volatge: %dmV\n",
2880 + bq25700_field_read(charger, OUTPUT_SYS_VOL) * 64);
DBG("BAT volatge: %dmV\n",
2880 + bq25700_field_read(charger, OUTPUT_BAT_VOL) * 64);
DBG("SET CHARGE_CURRENT: %dmA\n",
bq25700_field_read(charger, CHARGE_CURRENT) * 64);
DBG("MAX_CHARGE_VOLTAGE: %dmV\n",
bq25700_field_read(charger, MAX_CHARGE_VOLTAGE) * 16);
DBG(" INPUT_VOLTAGE: %dmV\n",
3200 + bq25700_field_read(charger, INPUT_VOLTAGE) * 64);
DBG(" INPUT_CURRENT: %dmA\n",
bq25700_field_read(charger, INPUT_CURRENT) * 50);
DBG(" MIN_SYS_VOTAGE: %dmV\n",
1024 + bq25700_field_read(charger, MIN_SYS_VOTAGE) * 256);
bq25700_get_chip_state(charger, &state);
DBG("status:\n");
DBG("AC_STAT: %d\n", state.ac_stat);
DBG("ICO_DONE: %d\n", state.ico_done);
DBG("IN_VINDPM: %d\n", state.in_vindpm);
DBG("IN_IINDPM: %d\n", state.in_iindpm);
DBG("IN_FCHRG: %d\n", state.in_fchrg);
DBG("IN_PCHRG: %d\n", state.in_pchrg);
DBG("IN_OTG: %d\n", state.in_otg);
DBG("F_ACOV: %d\n", state.fault_acov);
DBG("F_BATOC: %d\n", state.fault_batoc);
DBG("F_ACOC: %d\n", state.fault_acoc);
DBG("SYSOVP_STAT: %d\n", state.sysovp_stat);
DBG("F_LATCHOFF: %d\n", state.fault_latchoff);
DBG("F_OTGOVP: %d\n", state.fault_otg_ovp);
DBG("F_OTGOCP: %d\n", state.fault_otg_ocp);
DBG("\n+++++++++++++++++++++++++++++++++++++++++++++++++\n");
return 0;
}
static int bq25703_dump_regs(struct bq25700_device *charger)
{
int i = 0;
u32 val = 0;
struct bq25700_state state;
for (i = 0; i < 0x10; i += 0x02) {
regmap_read(charger->regmap, i, &val);
DBG("REG0x%x : 0x%x\n", i, val);
}
for (i = 0x20; i < 0x3C; i += 0x02) {
regmap_read(charger->regmap, i, &val);
DBG("REG0x%x : 0x%x\n", i, val);
}
DBG("battery charge current: %dmA\n",
bq25700_field_read(charger, OUTPUT_DSG_CUR) * 64);
DBG("battery discharge current: %dmA\n",
bq25700_field_read(charger, OUTPUT_CHG_CUR) * 256);
DBG("VSYS volatge: %dmV\n",
2880 + bq25700_field_read(charger, OUTPUT_SYS_VOL) * 64);
DBG("BAT volatge: %dmV\n",
2880 + bq25700_field_read(charger, OUTPUT_BAT_VOL) * 64);
DBG("SET CHARGE_CURRENT: %dmA\n",
bq25700_field_read(charger, CHARGE_CURRENT) * 64);
DBG("MAX_CHARGE_VOLTAGE: %dmV\n",
bq25700_field_read(charger, MAX_CHARGE_VOLTAGE) * 16);
DBG(" INPUT_VOLTAGE: %dmV\n",
3200 + bq25700_field_read(charger, INPUT_VOLTAGE) * 64);
DBG(" INPUT_CURRENT: %dmA\n",
bq25700_field_read(charger, INPUT_CURRENT) * 50);
DBG(" MIN_SYS_VOTAGE: %dmV\n",
1024 + bq25700_field_read(charger, MIN_SYS_VOTAGE) * 256);
bq25700_get_chip_state(charger, &state);
DBG("status:\n");
DBG("AC_STAT: %d\n", state.ac_stat);
DBG("ICO_DONE: %d\n", state.ico_done);
DBG("IN_VINDPM: %d\n", state.in_vindpm);
DBG("IN_IINDPM: %d\n", state.in_iindpm);
DBG("IN_FCHRG: %d\n", state.in_fchrg);
DBG("IN_PCHRG: %d\n", state.in_pchrg);
DBG("IN_OTG: %d\n", state.in_otg);
DBG("F_ACOV: %d\n", state.fault_acov);
DBG("F_BATOC: %d\n", state.fault_batoc);
DBG("F_ACOC: %d\n", state.fault_acoc);
DBG("SYSOVP_STAT: %d\n", state.sysovp_stat);
DBG("F_LATCHOFF: %d\n", state.fault_latchoff);
DBG("F_OTGOVP: %d\n", state.fault_otg_ovp);
DBG("F_OTGOCP: %d\n", state.fault_otg_ocp);
return 0;
}
static ssize_t bq25700_charge_info_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct bq25700_device *charger = dev_get_drvdata(dev);
if ((charger->chip_id & 0xff) == BQ25700_ID)
bq25700_dump_regs(charger);
if ((charger->chip_id & 0xff) == BQ25703_ID)
bq25703_dump_regs(charger);
return 0;
}
static struct device_attribute bq25700_charger_attr[] = {
__ATTR(charge_info, 0664, bq25700_charge_info_show, NULL),
};
static void bq25700_init_sysfs(struct bq25700_device *charger)
{
int i, ret;
for (i = 0; i < ARRAY_SIZE(bq25700_charger_attr); i++) {
ret = sysfs_create_file(&charger->dev->kobj,
&bq25700_charger_attr[i].attr);
if (ret)
dev_err(charger->dev, "create charger node(%s) error\n",
bq25700_charger_attr[i].attr.name);
}
}
static u32 bq25700_find_idx(u32 value, enum bq25700_table_ids id)
{
u32 idx;
u32 rtbl_size;
const struct bq25700_range *rtbl = &bq25700_tables[id].rt;
rtbl_size = (rtbl->max - rtbl->min) / rtbl->step + 1;
for (idx = 1;
idx < rtbl_size && (idx * rtbl->step + rtbl->min <= value);
idx++)
;
return idx - 1;
}
void bq25700_charger_set_current(unsigned long event,
int current_value)
{
int idx;
if (!bq25700_charger) {
pr_err("[%s,%d] bq25700_charger is null\n", __func__, __LINE__);
return;
}
switch (event) {
case CHARGER_CURRENT_EVENT:
idx = bq25700_find_idx(current_value, TBL_ICHG);
bq25700_field_write(bq25700_charger, CHARGE_CURRENT, idx);
break;
case INPUT_CURRENT_EVENT:
idx = bq25700_find_idx(current_value, TBL_INPUTCUR);
bq25700_field_write(bq25700_charger, INPUT_CURRENT, idx);
break;
default:
return;
}
}
static int bq25700_fw_read_u32_props(struct bq25700_device *charger)
{
int ret;
u32 property;
int i;
struct bq25700_init_data *init = &charger->init_data;
struct {
char *name;
bool optional;
enum bq25700_table_ids tbl_id;
u32 *conv_data; /* holds converted value from given property */
} props[] = {
/* required properties */
{"ti,charge-current", false, TBL_ICHG,
&init->ichg},
{"ti,max-charge-voltage", false, TBL_CHGMAX,
&init->max_chg_vol},
{"ti,input-current-sdp", false, TBL_INPUTCUR,
&init->input_current_sdp},
{"ti,input-current-dcp", false, TBL_INPUTCUR,
&init->input_current_dcp},
{"ti,input-current-cdp", false, TBL_INPUTCUR,
&init->input_current_cdp},
{"ti,minimum-sys-voltage", false, TBL_SYSVMIN,
&init->sys_min_voltage},
{"ti,otg-voltage", false, TBL_OTGVOL,
&init->otg_voltage},
{"ti,otg-current", false, TBL_OTGCUR,
&init->otg_current},
};
/* initialize data for optional properties */
for (i = 0; i < ARRAY_SIZE(props); i++) {
ret = device_property_read_u32(charger->dev, props[i].name,
&property);
if (ret < 0) {
if (props[i].optional)
continue;
return ret;
}
if ((props[i].tbl_id == TBL_ICHG) &&
(property > MAX_CHARGECURRETNT)) {
dev_err(charger->dev, "ti,charge-current is error\n");
return -ENODEV;
}
if ((props[i].tbl_id == TBL_CHGMAX) &&
(property > MAX_CHARGEVOLTAGE)) {
dev_err(charger->dev, "ti,max-charge-voltage is error\n");
return -ENODEV;
}
if ((props[i].tbl_id == TBL_INPUTCUR) &&
(property > MAX_INPUTCURRENT)) {
dev_err(charger->dev, "ti,input-current is error\n");
return -ENODEV;
}
if (props[i].tbl_id == TBL_OTGVOL) {
if (of_device_is_compatible(charger->dev->of_node,
"southchip,sc8886")) {
bq25700_tables[TBL_OTGVOL].rt = sc8886_otg_range;
if (property < MIN_OTGVOLTAGE) {
dev_err(charger->dev,
"ti,otg-voltage is error");
return -ENODEV;
}
}
if (property > MAX_OTGVOLTAGE) {
dev_err(charger->dev, "ti,otg-voltage is error\n");
return -ENODEV;
};
}
if ((props[i].tbl_id == TBL_OTGCUR) &&
(property > MAX_OTGCURRENT)) {
dev_err(charger->dev, "ti,otg-current is error\n");
return -ENODEV;
}
*props[i].conv_data = bq25700_find_idx(property,
props[i].tbl_id);
DBG("%s, val: %d, tbl_id =%d\n", props[i].name, property,
*props[i].conv_data);
}
return 0;
}
static int bq25700_hw_init(struct bq25700_device *charger)
{
int ret;
int i;
struct bq25700_state state;
const struct {
enum bq25700_fields id;
u32 value;
} init_data[] = {
{CHARGE_CURRENT, charger->init_data.ichg},
{MAX_CHARGE_VOLTAGE, charger->init_data.max_chg_vol},
{MIN_SYS_VOTAGE, charger->init_data.sys_min_voltage},
{OTG_VOLTAGE, charger->init_data.otg_voltage},
{OTG_CURRENT, charger->init_data.otg_current},
};
/* disable watchdog */
ret = bq25700_field_write(charger, WDTWR_ADJ, 0);
if (ret < 0)
return ret;
/* initialize currents/voltages and other parameters */
for (i = 0; i < ARRAY_SIZE(init_data); i++) {
ret = bq25700_field_write(charger, init_data[i].id,
init_data[i].value);
if (ret < 0)
return ret;
}
DBG(" CHARGE_CURRENT: %dmA\n",
bq25700_field_read(charger, CHARGE_CURRENT) * 64);
DBG("MAX_CHARGE_VOLTAGE: %dmV\n",
bq25700_field_read(charger, MAX_CHARGE_VOLTAGE) * 16);
DBG(" INPUT_VOLTAGE: %dmV\n",
3200 + bq25700_field_read(charger, INPUT_VOLTAGE) * 64);
DBG(" INPUT_CURRENT: %dmA\n",
bq25700_field_read(charger, INPUT_CURRENT) * 50);
DBG(" MIN_SYS_VOTAGE: %dmV\n",
1024 + bq25700_field_read(charger, MIN_SYS_VOTAGE) * 256);
/* Configure ADC for continuous conversions. This does not enable it. */
ret = bq25700_field_write(charger, EN_LWPWR, 0);
if (ret < 0) {
DBG("error: EN_LWPWR\n");
return ret;
}
ret = bq25700_field_write(charger, ADC_CONV, 1);
if (ret < 0) {
DBG("error: ADC_CONV\n");
return ret;
}
ret = bq25700_field_write(charger, ADC_START, 1);
if (ret < 0) {
DBG("error: ADC_START\n");
return ret;
}
ret = bq25700_field_write(charger, ADC_FULLSCALE, 1);
if (ret < 0) {
DBG("error: ADC_FULLSCALE\n");
return ret;
}
ret = bq25700_field_write(charger, EN_ADC_CMPIN, 1);
if (ret < 0) {
DBG("error: EN_ADC_CMPIN\n");
return ret;
}
ret = bq25700_field_write(charger, EN_ADC_VBUS, 1);
if (ret < 0) {
DBG("error: EN_ADC_VBUS\n");
return ret;
}
ret = bq25700_field_write(charger, EN_ADC_PSYS, 1);
if (ret < 0) {
DBG("error: EN_ADC_PSYS\n");
return ret;
}
ret = bq25700_field_write(charger, EN_ADC_IIN, 1);
if (ret < 0) {
DBG("error: EN_ADC_IIN\n");
return ret;
}
ret = bq25700_field_write(charger, EN_ADC_IDCHG, 1);
if (ret < 0) {
DBG("error: EN_ADC_IDCHG\n");
return ret;
}
ret = bq25700_field_write(charger, EN_ADC_ICHG, 1);
if (ret < 0) {
DBG("error: EN_ADC_ICHG\n");
return ret;
}
ret = bq25700_field_write(charger, EN_ADC_VSYS, 1);
if (ret < 0) {
DBG("error: EN_ADC_VSYS\n");
return ret;
}
ret = bq25700_field_write(charger, EN_ADC_VBAT, 1);
if (ret < 0) {
DBG("error: EN_ADC_VBAT\n");
return ret;
}
bq25700_get_chip_state(charger, &state);
charger->state = state;
return 0;
}
static int bq25700_fw_probe(struct bq25700_device *charger)
{
int ret;
ret = bq25700_fw_read_u32_props(charger);
if (ret < 0)
return ret;
return 0;
}
static void bq25700_enable_charger(struct bq25700_device *charger,
u32 input_current)
{
bq25700_field_write(charger, INPUT_CURRENT, input_current);
bq25700_field_write(charger, CHARGE_CURRENT, charger->init_data.ichg);
}
static enum power_supply_property bq25700_power_supply_props[] = {
POWER_SUPPLY_PROP_MANUFACTURER,
POWER_SUPPLY_PROP_STATUS,
POWER_SUPPLY_PROP_ONLINE,
POWER_SUPPLY_PROP_HEALTH,
POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT,
POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX,
POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE,
POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX,
POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT_MAX,
POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT,
POWER_SUPPLY_PROP_VOLTAGE_MAX,
POWER_SUPPLY_PROP_CURRENT_MAX,
};
static int bq25700_power_supply_get_property(struct power_supply *psy,
enum power_supply_property psp,
union power_supply_propval *val)
{
int ret;
struct bq25700_device *bq = power_supply_get_drvdata(psy);
struct bq25700_state state;
state = bq->state;
switch (psp) {
case POWER_SUPPLY_PROP_STATUS:
if (!state.ac_stat)
val->intval = POWER_SUPPLY_STATUS_DISCHARGING;
else if (state.in_fchrg == 1 ||
state.in_pchrg == 1)
val->intval = POWER_SUPPLY_STATUS_CHARGING;
else
val->intval = POWER_SUPPLY_STATUS_DISCHARGING;
break;
case POWER_SUPPLY_PROP_MANUFACTURER:
val->strval = BQ25700_MANUFACTURER;
break;
case POWER_SUPPLY_PROP_ONLINE:
val->intval = state.ac_stat;
break;
case POWER_SUPPLY_PROP_HEALTH:
if (!state.fault_acoc &&
!state.fault_acov && !state.fault_batoc)
val->intval = POWER_SUPPLY_HEALTH_GOOD;
else if (state.fault_batoc)
val->intval = POWER_SUPPLY_HEALTH_OVERVOLTAGE;
break;
case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT:
/* read measured value */
ret = bq25700_field_read(bq, OUTPUT_CHG_CUR);
if (ret < 0)
return ret;
/* converted_val = ADC_val * 64mA */
val->intval = ret * 64000;
break;
case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX:
val->intval = bq25700_tables[TBL_ICHG].rt.max;
break;
case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE:
if (!state.ac_stat) {
val->intval = 0;
break;
}
/* read measured value */
ret = bq25700_field_read(bq, OUTPUT_BAT_VOL);
if (ret < 0)
return ret;
/* converted_val = 2.88V + ADC_val * 64mV */
val->intval = 2880000 + ret * 64000;
break;
case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX:
val->intval = bq25700_tables[TBL_CHGMAX].rt.max;
break;
case POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT_MAX:
val->intval = bq25700_tables[TBL_INPUTVOL].rt.max;
break;
case POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT:
val->intval = bq25700_tables[TBL_INPUTCUR].rt.max;
break;
case POWER_SUPPLY_PROP_VOLTAGE_MAX:
ret = bq25700_field_read(bq, MAX_CHARGE_VOLTAGE);
val->intval = ret * 16;
break;
case POWER_SUPPLY_PROP_CURRENT_MAX:
ret = bq25700_field_read(bq, CHARGE_CURRENT);
val->intval = ret * 64;
break;
default:
return -EINVAL;
}
return 0;
}
static char *bq25700_charger_supplied_to[] = {
"charger",
};
static const struct power_supply_desc bq25700_power_supply_desc = {
.name = "bq25700-charger",
.type = POWER_SUPPLY_TYPE_USB,
.properties = bq25700_power_supply_props,
.num_properties = ARRAY_SIZE(bq25700_power_supply_props),
.get_property = bq25700_power_supply_get_property,
};
static int bq25700_power_supply_init(struct bq25700_device *charger)
{
struct power_supply_config psy_cfg = { .drv_data = charger, };
psy_cfg.supplied_to = bq25700_charger_supplied_to;
psy_cfg.num_supplicants = ARRAY_SIZE(bq25700_charger_supplied_to);
psy_cfg.of_node = charger->dev->of_node;
charger->supply_charger =
power_supply_register(charger->dev,
&bq25700_power_supply_desc,
&psy_cfg);
return PTR_ERR_OR_ZERO(charger->supply_charger);
}
static void bq25700_discnt(struct bq25700_device *charger, enum tpyec_port_t port);
static int bq2570x_pd_notifier_call(struct notifier_block *nb,
unsigned long val, void *v)
{
struct bq25700_device *bq =
container_of(nb, struct bq25700_device, nb);
struct power_supply *psy = v;
union power_supply_propval prop;
struct bq25700_state state;
int ret;
int vol_idx, cur_idx, chr_idx;
if (val != PSY_EVENT_PROP_CHANGED)
return NOTIFY_OK;
/* Ignore event if it was not send by notify_node/notify_device */
if (bq->notify_node) {
if (!psy->dev.parent ||
psy->dev.parent->of_node != bq->notify_node)
return NOTIFY_OK;
} else if (bq->plat_data.notify_device) {
if (strcmp(psy->desc->name, bq->plat_data.notify_device) != 0)
return NOTIFY_OK;
}
ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_ONLINE, &prop);
if (ret != 0)
return NOTIFY_OK;
/* online=0: USB out */
if (prop.intval == 0) {
queue_delayed_work(bq->usb_charger_wq, &bq->discnt_work,
msecs_to_jiffies(10));
return NOTIFY_OK;
}
ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_CURRENT_NOW, &prop);
if (ret != 0)
return NOTIFY_OK;
if (prop.intval > 0) {
cur_idx = bq25700_find_idx(prop.intval, TBL_INPUTCUR);
ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_VOLTAGE_NOW,
&prop);
if (ret != 0)
return NOTIFY_OK;
vol_idx = bq25700_find_idx((prop.intval - 1280000 - 3200000), TBL_INPUTVOL);
ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_CURRENT_NOW,
&prop);
if (ret != 0)
return NOTIFY_OK;
chr_idx = bq25700_find_idx(prop.intval, TBL_ICHG);
bq25700_field_write(bq, INPUT_CURRENT, cur_idx);
bq25700_field_write(bq, INPUT_VOLTAGE, vol_idx);
bq25700_field_write(bq, CHARGE_CURRENT, chr_idx);
dev_info(bq->dev, "INPUT_CURRENT:%d, INPUT_VOLTAGE:%d, CHARGE_CURRENT:%d\n",
cur_idx, vol_idx, chr_idx);
bq25700_get_chip_state(bq, &state);
bq->state = state;
power_supply_changed(bq->supply_charger);
}
return NOTIFY_OK;
}
static irqreturn_t bq25700_irq_handler_thread(int irq, void *private)
{
struct bq25700_device *charger = private;
int irq_flag;
struct bq25700_state state;
if (bq25700_field_read(charger, AC_STAT)) {
irq_flag = IRQF_TRIGGER_LOW;
} else {
irq_flag = IRQF_TRIGGER_HIGH;
bq25700_field_write(charger, INPUT_CURRENT,
charger->init_data.input_current_sdp);
bq25700_disable_charge(charger);
bq25700_get_chip_state(charger, &state);
charger->state = state;
power_supply_changed(charger->supply_charger);
charger->typec0_status = USB_STATUS_NONE;
charger->typec1_status = USB_STATUS_NONE;
}
irq_set_irq_type(irq, irq_flag | IRQF_ONESHOT);
return IRQ_HANDLED;
}
static void bq25700_enable_typec0(struct bq25700_device *charger)
{
if (!IS_ERR_OR_NULL(charger->typec0_enable_io))
gpiod_direction_output(charger->typec0_enable_io, 1);
if (!IS_ERR_OR_NULL(charger->typec1_enable_io))
gpiod_direction_output(charger->typec1_enable_io, 0);
}
static void bq25700_enable_typec1(struct bq25700_device *charger)
{
if (!IS_ERR_OR_NULL(charger->typec0_enable_io))
gpiod_direction_output(charger->typec0_enable_io, 0);
if (!IS_ERR_OR_NULL(charger->typec1_enable_io))
gpiod_direction_output(charger->typec1_enable_io, 1);
}
static void bq25700_disable_charge(struct bq25700_device *charger)
{
if (!IS_ERR_OR_NULL(charger->typec0_enable_io))
gpiod_direction_output(charger->typec0_enable_io, 0);
if (!IS_ERR_OR_NULL(charger->typec1_enable_io))
gpiod_direction_output(charger->typec1_enable_io, 0);
}
static void bq25700_typec0_discharge(struct bq25700_device *charger)
{
if (!IS_ERR_OR_NULL(charger->typec0_discharge_io))
gpiod_direction_output(charger->typec0_discharge_io, 1);
msleep(20);
if (!IS_ERR_OR_NULL(charger->typec0_discharge_io))
gpiod_direction_output(charger->typec0_discharge_io, 0);
}
static void bq25700_typec1_discharge(struct bq25700_device *charger)
{
if (!IS_ERR_OR_NULL(charger->typec1_discharge_io))
gpiod_direction_output(charger->typec1_discharge_io, 1);
msleep(20);
if (!IS_ERR_OR_NULL(charger->typec1_discharge_io))
gpiod_direction_output(charger->typec1_discharge_io, 0);
}
static void bq25700_charger_evt_handel(struct bq25700_device *charger,
struct extcon_dev *edev,
enum tpyec_port_t port)
{
struct bq25700_state state;
enum charger_t charger_state = USB_TYPE_UNKNOWN_CHARGER;
if (charger->typec0_status == USB_STATUS_PD ||
charger->typec1_status == USB_STATUS_PD)
return;
/* Determine cable/charger type */
if (extcon_get_state(edev, EXTCON_CHG_USB_SDP) > 0) {
charger_state = USB_TYPE_USB_CHARGER;
bq25700_enable_charger(charger,
charger->init_data.input_current_sdp);
DBG("USB_TYPE_USB_CHARGER\n");
} else if (extcon_get_state(edev, EXTCON_CHG_USB_DCP) > 0) {
charger_state = USB_TYPE_AC_CHARGER;
bq25700_enable_charger(charger,
charger->init_data.input_current_dcp);
DBG("USB_TYPE_AC_CHARGER\n");
} else if (extcon_get_state(edev, EXTCON_CHG_USB_CDP) > 0) {
charger_state = USB_TYPE_CDP_CHARGER;
bq25700_enable_charger(charger,
charger->init_data.input_current_cdp);
DBG("USB_TYPE_CDP_CHARGER\n");
}
if (port == USB_TYPEC_0) {
if (charger_state == USB_TYPE_USB_CHARGER)
charger->typec0_status = USB_STATUS_USB;
else
charger->typec0_status = USB_STATUS_AC;
bq25700_enable_typec0(charger);
} else {
if (charger_state == USB_TYPE_USB_CHARGER)
charger->typec1_status = USB_STATUS_USB;
else
charger->typec1_status = USB_STATUS_AC;
bq25700_enable_typec1(charger);
}
bq25700_get_chip_state(charger, &state);
charger->state = state;
power_supply_changed(charger->supply_charger);
}
static void bq25700_charger_usb_bc_handel(struct bq25700_device *charger)
{
struct bq25700_state state;
switch (charger->bc_event) {
case USB_BC_TYPE_SDP:
bq25700_enable_charger(charger,
charger->init_data.input_current_sdp);
DBG("USB_TYPE_USB_CHARGER\n");
break;
case USB_BC_TYPE_DCP:
bq25700_enable_charger(charger,
charger->init_data.input_current_dcp);
break;
case USB_BC_TYPE_CDP:
bq25700_enable_charger(charger,
charger->init_data.input_current_cdp);
DBG("USB_TYPE_CDP_CHARGER\n");
break;
default:
break;
}
bq25700_get_chip_state(charger, &state);
charger->state = state;
power_supply_changed(charger->supply_charger);
}
static void bq25700_charger_evt_worker(struct work_struct *work)
{
struct bq25700_device *charger = container_of(work,
struct bq25700_device, usb_work.work);
struct extcon_dev *edev = charger->cable_edev;
if (charger->usb_bc == 0)
bq25700_charger_evt_handel(charger, edev, USB_TYPEC_0);
else
bq25700_charger_usb_bc_handel(charger);
}
static void bq25700_charger_evt_worker1(struct work_struct *work)
{
struct bq25700_device *charger = container_of(work,
struct bq25700_device, usb_work1.work);
struct extcon_dev *edev = charger->cable_edev_1;
bq25700_charger_evt_handel(charger, edev, USB_TYPEC_1);
}
static int bq25700_charger_evt_notifier(struct notifier_block *nb,
unsigned long event,
void *ptr)
{
struct bq25700_device *charger =
container_of(nb, struct bq25700_device, cable_cg_nb);
charger->bc_event = event;
queue_delayed_work(charger->usb_charger_wq, &charger->usb_work,
msecs_to_jiffies(10));
return NOTIFY_DONE;
}
static int bq25700_charger_evt_notifier1(struct notifier_block *nb,
unsigned long event,
void *ptr)
{
struct bq25700_device *charger =
container_of(nb, struct bq25700_device, cable_cg_nb1);
queue_delayed_work(charger->usb_charger_wq, &charger->usb_work1,
msecs_to_jiffies(10));
return NOTIFY_DONE;
}
static void bq25700_set_otg_vbus(struct bq25700_device *charger, bool enable)
{
DBG("OTG %s\n", enable ? "enable" : "disable");
if (!IS_ERR_OR_NULL(charger->otg_mode_en_io))
gpiod_direction_output(charger->otg_mode_en_io, enable);
bq25700_field_write(charger, EN_OTG, enable);
}
static void bq25700_host_evt_worker(struct work_struct *work)
{
struct bq25700_device *charger =
container_of(work, struct bq25700_device, host_work.work);
struct extcon_dev *edev = charger->cable_edev;
if (extcon_get_state(edev, EXTCON_USB_VBUS_EN) > 0)
bq25700_set_otg_vbus(charger, true);
else if (extcon_get_state(edev, EXTCON_USB_VBUS_EN) == 0)
bq25700_set_otg_vbus(charger, false);
}
static void bq25700_host_evt_worker1(struct work_struct *work)
{
struct bq25700_device *charger =
container_of(work, struct bq25700_device, host_work1.work);
struct extcon_dev *edev = charger->cable_edev_1;
if (extcon_get_state(edev, EXTCON_USB_VBUS_EN) > 0)
bq25700_set_otg_vbus(charger, true);
else if (extcon_get_state(edev, EXTCON_USB_VBUS_EN) == 0)
bq25700_set_otg_vbus(charger, false);
}
static int bq25700_host_evt_notifier(struct notifier_block *nb,
unsigned long event, void *ptr)
{
struct bq25700_device *charger =
container_of(nb, struct bq25700_device, cable_host_nb);
queue_delayed_work(charger->usb_charger_wq, &charger->host_work,
msecs_to_jiffies(10));
return NOTIFY_DONE;
}
static int bq25700_host_evt_notifier1(struct notifier_block *nb,
unsigned long event, void *ptr)
{
struct bq25700_device *charger =
container_of(nb, struct bq25700_device, cable_host_nb1);
queue_delayed_work(charger->usb_charger_wq, &charger->host_work1,
msecs_to_jiffies(10));
return NOTIFY_DONE;
}
static void bq25700_discnt(struct bq25700_device *charger,
enum tpyec_port_t port)
{
int vol_idx;
struct bq25700_state state;
if (bq25700_field_read(charger, AC_STAT) == 0) {
bq25700_disable_charge(charger);
if (port == USB_TYPEC_0) {
bq25700_typec0_discharge(charger);
charger->typec0_status = USB_STATUS_NONE;
} else {
bq25700_typec1_discharge(charger);
charger->typec1_status = USB_STATUS_NONE;
}
vol_idx = bq25700_find_idx(DEFAULT_INPUTVOL, TBL_INPUTVOL);
bq25700_field_write(charger, INPUT_VOLTAGE, vol_idx);
bq25700_field_write(charger, INPUT_CURRENT,
charger->init_data.input_current_sdp);
bq25700_get_chip_state(charger, &state);
charger->state = state;
power_supply_changed(charger->supply_charger);
}
}
static void bq25700_discnt_evt_worker(struct work_struct *work)
{
struct bq25700_device *charger = container_of(work,
struct bq25700_device,
discnt_work.work);
bq25700_discnt(charger, USB_TYPEC_0);
}
static int bq25700_register_cg_extcon(struct bq25700_device *charger,
struct extcon_dev *edev,
struct notifier_block *able_cg_nb)
{
int ret;
ret = extcon_register_notifier(edev,
EXTCON_CHG_USB_SDP,
able_cg_nb);
if (ret < 0) {
dev_err(charger->dev, "failed to register notifier for SDP\n");
return -1;
}
ret = extcon_register_notifier(edev,
EXTCON_CHG_USB_DCP,
able_cg_nb);
if (ret < 0) {
dev_err(charger->dev, "failed to register notifier for DCP\n");
return -1;
}
ret = extcon_register_notifier(edev,
EXTCON_CHG_USB_CDP,
able_cg_nb);
if (ret < 0) {
dev_err(charger->dev, "failed to register notifier for CDP\n");
return -1;
}
return 0;
}
static int bq25700_register_cg_nb(struct bq25700_device *charger)
{
enum bc_port_type bc_type;
int ret;
if (charger->usb_bc == 0) {
if (charger->cable_edev) {
/* Register chargers */
INIT_DELAYED_WORK(&charger->usb_work,
bq25700_charger_evt_worker);
charger->cable_cg_nb.notifier_call =
bq25700_charger_evt_notifier;
bq25700_register_cg_extcon(charger, charger->cable_edev,
&charger->cable_cg_nb);
}
if (charger->cable_edev_1) {
INIT_DELAYED_WORK(&charger->usb_work1,
bq25700_charger_evt_worker1);
charger->cable_cg_nb1.notifier_call =
bq25700_charger_evt_notifier1;
bq25700_register_cg_extcon(charger,
charger->cable_edev_1,
&charger->cable_cg_nb1);
}
} else {
INIT_DELAYED_WORK(&charger->usb_work,
bq25700_charger_evt_worker);
charger->cable_cg_nb.notifier_call =
bq25700_charger_evt_notifier;
ret = rk_bc_detect_notifier_register(&charger->cable_cg_nb,
&bc_type);
if (ret) {
dev_err(charger->dev, "failed to register notifier for bc\n");
return -EINVAL;
}
}
return 0;
}
static int bq25700_register_pd_nb(struct bq25700_device *charger)
{
struct power_supply *notify_psy = NULL;
int vol_idx, cur_idx;
int ret;
union power_supply_propval prop;
if (charger->notify_node || charger->plat_data.notify_device) {
INIT_DELAYED_WORK(&charger->discnt_work,
bq25700_discnt_evt_worker);
charger->nb.notifier_call = bq2570x_pd_notifier_call;
ret = power_supply_reg_notifier(&charger->nb);
if (ret) {
dev_err(charger->dev, "failed to reg notifier: %d\n", ret);
return ret;
}
charger->automode = 1;
dev_info(charger->dev, "automode supported, waiting for events\n");
} else {
charger->automode = -1;
dev_info(charger->dev, "automode not supported\n");
}
if (charger->nb.notifier_call) {
if (charger->dev->of_node) {
notify_psy = power_supply_get_by_phandle(charger->dev->of_node,
"ti,usb-charger-detection");
if (IS_ERR_OR_NULL(notify_psy)) {
dev_info(charger->dev, "bq25700 notify_psy is error\n");
notify_psy = NULL;
}
} else if (charger->plat_data.notify_device) {
notify_psy = power_supply_get_by_name(
charger->plat_data.notify_device);
}
}
if (notify_psy) {
ret = power_supply_get_property(notify_psy,
POWER_SUPPLY_PROP_CURRENT_MAX, &prop);
if (ret != 0)
return ret;
ret = power_supply_get_property(notify_psy,
POWER_SUPPLY_PROP_VOLTAGE_MAX, &prop);
if (ret != 0)
return ret;
cur_idx = bq25700_find_idx(prop.intval, TBL_INPUTCUR);
vol_idx = bq25700_find_idx((prop.intval - 1280000 - 3200000), TBL_INPUTVOL);
bq25700_field_write(charger, INPUT_CURRENT, cur_idx);
bq25700_field_write(charger, INPUT_VOLTAGE, vol_idx);
bq25700_field_write(charger, CHARGE_CURRENT,
charger->init_data.ichg);
dev_info(charger->dev, "INPUT_CURRENT:%d, INPUT_VOLTAGE:%d, CHARGE_CURRENT:%d\n",
cur_idx, vol_idx, charger->init_data.ichg);
}
return 0;
}
static int bq25700_register_host_nb(struct bq25700_device *charger)
{
int ret;
/* Register host */
if (charger->cable_edev) {
INIT_DELAYED_WORK(&charger->host_work, bq25700_host_evt_worker);
charger->cable_host_nb.notifier_call =
bq25700_host_evt_notifier;
ret = extcon_register_notifier(charger->cable_edev,
EXTCON_USB_VBUS_EN,
&charger->cable_host_nb);
if (ret < 0) {
dev_err(charger->dev,
"failed to register notifier for HOST\n");
return -1;
}
}
if (charger->cable_edev_1) {
INIT_DELAYED_WORK(&charger->host_work1,
bq25700_host_evt_worker1);
charger->cable_host_nb1.notifier_call =
bq25700_host_evt_notifier1;
ret = extcon_register_notifier(charger->cable_edev_1,
EXTCON_USB_VBUS_EN,
&charger->cable_host_nb1);
if (ret < 0) {
dev_err(charger->dev,
"failed to register notifier for HOST\n");
return -1;
}
}
return 0;
}
static int bq25700_otg_vbus_enable(struct regulator_dev *dev)
{
struct bq25700_device *charger = rdev_get_drvdata(dev);
bq25700_set_otg_vbus(charger, true);
return 0;
}
static int bq25700_otg_vbus_disable(struct regulator_dev *dev)
{
struct bq25700_device *charger = rdev_get_drvdata(dev);
bq25700_set_otg_vbus(charger, false);
return 0;
}
static int bq25700_otg_vbus_is_enabled(struct regulator_dev *dev)
{
struct bq25700_device *charger = rdev_get_drvdata(dev);
u8 val;
int gpio_status = 1;
val = bq25700_field_read(charger, EN_OTG);
if (!IS_ERR_OR_NULL(charger->otg_mode_en_io))
gpio_status = gpiod_get_value(charger->otg_mode_en_io);
return val && gpio_status ? 1 : 0;
}
static const struct regulator_ops bq25700_otg_vbus_ops = {
.enable = bq25700_otg_vbus_enable,
.disable = bq25700_otg_vbus_disable,
.is_enabled = bq25700_otg_vbus_is_enabled,
};
static const struct regulator_desc bq25700_otg_vbus_desc = {
.name = "otg-vbus",
.of_match = "otg-vbus",
.regulators_node = of_match_ptr("regulators"),
.owner = THIS_MODULE,
.ops = &bq25700_otg_vbus_ops,
.type = REGULATOR_VOLTAGE,
.fixed_uV = 5000000,
.n_voltages = 1,
};
static int bq25700_register_otg_vbus_regulator(struct bq25700_device *charger)
{
struct device_node *np;
struct regulator_config config = { };
np = of_get_child_by_name(charger->dev->of_node, "regulators");
if (!np) {
dev_warn(charger->dev, "cannot find regulators node\n");
return -ENXIO;
}
config.dev = charger->dev;
config.driver_data = charger;
charger->otg_vbus_reg = devm_regulator_register(charger->dev,
&bq25700_otg_vbus_desc,
&config);
if (IS_ERR(charger->otg_vbus_reg))
return PTR_ERR(charger->otg_vbus_reg);
return 0;
}
static long bq25700_init_usb(struct bq25700_device *charger)
{
struct extcon_dev *edev, *edev1;
struct device *dev = charger->dev;
charger->usb_charger_wq = alloc_ordered_workqueue("%s",
WQ_MEM_RECLAIM |
WQ_FREEZABLE,
"bq25700-usb-wq");
/* type-C */
edev = extcon_get_edev_by_phandle(dev, 0);
if (IS_ERR(edev)) {
if (PTR_ERR(edev) != -EPROBE_DEFER)
dev_err(dev, "Invalid or missing extcon dev0\n");
charger->cable_edev = NULL;
} else {
charger->cable_edev = edev;
}
edev1 = extcon_get_edev_by_phandle(dev, 1);
if (IS_ERR(edev1)) {
if (PTR_ERR(edev1) != -EPROBE_DEFER)
dev_err(dev, "Invalid or missing extcon dev1\n");
charger->cable_edev_1 = NULL;
} else {
charger->cable_edev_1 = edev1;
}
/*set power_on input current*/
bq25700_field_write(charger, INPUT_CURRENT,
charger->init_data.input_current_sdp);
if (!charger->pd_charge_only)
bq25700_register_cg_nb(charger);
if (bq25700_register_otg_vbus_regulator(charger) < 0) {
dev_warn(charger->dev,
"Cannot register otg vbus regulator\n");
charger->otg_vbus_reg = NULL;
bq25700_register_host_nb(charger);
}
bq25700_register_pd_nb(charger);
if (charger->cable_edev) {
if (!charger->otg_vbus_reg)
schedule_delayed_work(&charger->host_work, 0);
if (!charger->pd_charge_only)
schedule_delayed_work(&charger->usb_work, 0);
}
if (charger->cable_edev_1) {
if (!charger->otg_vbus_reg)
schedule_delayed_work(&charger->host_work1, 0);
if (!charger->pd_charge_only)
schedule_delayed_work(&charger->usb_work1, 0);
}
return 0;
}
static int bq25700_parse_dt(struct bq25700_device *charger)
{
int ret;
struct device_node *np = charger->dev->of_node;
struct device_node *temp_np = NULL;
charger->typec0_enable_io = devm_gpiod_get_optional(charger->dev,
"typec0-enable",
GPIOD_IN);
if (!IS_ERR_OR_NULL(charger->typec0_enable_io))
gpiod_direction_output(charger->typec0_enable_io, 0);
charger->typec1_enable_io = devm_gpiod_get_optional(charger->dev,
"typec1-enable",
GPIOD_IN);
if (!IS_ERR_OR_NULL(charger->typec1_enable_io))
gpiod_direction_output(charger->typec1_enable_io, 0);
charger->typec0_discharge_io =
devm_gpiod_get_optional(charger->dev, "typec0-discharge",
GPIOD_IN);
charger->typec1_discharge_io =
devm_gpiod_get_optional(charger->dev, "typec1-discharge",
GPIOD_IN);
charger->otg_mode_en_io = devm_gpiod_get_optional(charger->dev,
"otg-mode-en",
GPIOD_IN);
if (!IS_ERR_OR_NULL(charger->otg_mode_en_io))
gpiod_direction_output(charger->otg_mode_en_io, 0);
ret = of_property_read_u32(np, "pd-charge-only",
&charger->pd_charge_only);
if (ret < 0)
dev_err(charger->dev, "pd-charge-only!\n");
temp_np = of_find_node_by_name(NULL, "usb_bc");
if (!temp_np)
charger->usb_bc = 0;
else
charger->usb_bc = 1;
of_node_put(temp_np);
if (np)
charger->notify_node = of_parse_phandle(np,
"ti,usb-charger-detection", 0);
return 0;
}
static int bq25700_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct i2c_adapter *adapter = to_i2c_adapter(client->dev.parent);
struct device *dev = &client->dev;
struct bq25700_device *charger;
struct device_node *charger_np;
int ret = 0;
u32 i = 0;
int irq_flag;
if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_WORD_DATA))
return -EIO;
charger = devm_kzalloc(&client->dev, sizeof(*charger), GFP_KERNEL);
if (!charger)
return -EINVAL;
charger->client = client;
charger->dev = dev;
charger_np = of_find_compatible_node(NULL, NULL, "ti,bq25700");
if (!charger_np)
charger_np = of_find_compatible_node(NULL, NULL, "southchip,sc8885");
if (charger_np) {
charger->regmap = devm_regmap_init_i2c(client,
&bq25700_regmap_config);
if (IS_ERR(charger->regmap)) {
dev_err(&client->dev, "Failed to initialize regmap\n");
return -EINVAL;
}
for (i = 0; i < ARRAY_SIZE(bq25700_reg_fields); i++) {
const struct reg_field *reg_fields = bq25700_reg_fields;
charger->rmap_fields[i] =
devm_regmap_field_alloc(dev,
charger->regmap,
reg_fields[i]);
if (IS_ERR(charger->rmap_fields[i])) {
dev_err(dev, "cannot allocate regmap field\n");
return PTR_ERR(charger->rmap_fields[i]);
}
}
} else {
charger->regmap = devm_regmap_init_i2c(client,
&bq25703_regmap_config);
if (IS_ERR(charger->regmap)) {
dev_err(&client->dev, "Failed to initialize regmap\n");
return -EINVAL;
}
for (i = 0; i < ARRAY_SIZE(bq25703_reg_fields); i++) {
const struct reg_field *reg_fields = bq25703_reg_fields;
charger->rmap_fields[i] =
devm_regmap_field_alloc(dev,
charger->regmap,
reg_fields[i]);
if (IS_ERR(charger->rmap_fields[i])) {
dev_err(dev, "cannot allocate regmap field\n");
return PTR_ERR(charger->rmap_fields[i]);
}
}
}
i2c_set_clientdata(client, charger);
/*read chip id. Confirm whether to support the chip*/
charger->chip_id = bq25700_field_read(charger, DEVICE_ID);
if (charger->chip_id < 0) {
dev_err(dev, "Cannot read chip ID.\n");
return charger->chip_id;
}
if (!dev->platform_data) {
ret = bq25700_fw_probe(charger);
if (ret < 0) {
dev_err(dev, "Cannot read device properties.\n");
return ret;
}
} else {
return -ENODEV;
}
/*
* Make sure battery online, otherwise, writing INPUT_CURRENT and
* CHARGE_CURRENT would make system power off
*/
if (of_parse_phandle(charger->dev->of_node, "ti,battery", 0)) {
if (IS_ERR_OR_NULL(power_supply_get_by_phandle(
charger->dev->of_node,
"ti,battery"))) {
dev_info(charger->dev, "No battery found\n");
return -EPROBE_DEFER;
}
dev_info(charger->dev, "Battery found\n");
}
ret = bq25700_hw_init(charger);
if (ret < 0) {
dev_err(dev, "Cannot initialize the chip.\n");
return ret;
}
bq25700_parse_dt(charger);
bq25700_init_sysfs(charger);
bq25700_power_supply_init(charger);
bq25700_init_usb(charger);
if (client->irq < 0) {
dev_err(dev, "No irq resource found.\n");
return client->irq;
}
if (bq25700_field_read(charger, AC_STAT))
irq_flag = IRQF_TRIGGER_LOW;
else
irq_flag = IRQF_TRIGGER_HIGH;
device_init_wakeup(dev, 1);
ret = devm_request_threaded_irq(dev, client->irq, NULL,
bq25700_irq_handler_thread,
irq_flag | IRQF_ONESHOT,
"bq25700_irq", charger);
if (ret)
goto irq_fail;
enable_irq_wake(client->irq);
bq25700_charger = charger;
irq_fail:
return ret;
}
static void bq25700_shutdown(struct i2c_client *client)
{
int vol_idx;
struct bq25700_device *charger = i2c_get_clientdata(client);
vol_idx = bq25700_find_idx(DEFAULT_INPUTVOL, TBL_INPUTVOL);
bq25700_field_write(charger, INPUT_VOLTAGE, vol_idx);
bq25700_field_write(charger, INPUT_CURRENT,
charger->init_data.input_current_sdp);
if (!bq25700_field_read(charger, AC_STAT))
bq25700_field_write(charger, EN_LWPWR, 1);
}
#ifdef CONFIG_PM_SLEEP
static int bq25700_pm_suspend(struct device *dev)
{
struct bq25700_device *charger = dev_get_drvdata(dev);
if (!bq25700_field_read(charger, AC_STAT))
bq25700_field_write(charger, EN_LWPWR, 1);
return 0;
}
static int bq25700_pm_resume(struct device *dev)
{
struct bq25700_device *charger = dev_get_drvdata(dev);
bq25700_field_write(charger, EN_LWPWR, 0);
return 0;
}
#endif
static SIMPLE_DEV_PM_OPS(bq25700_pm_ops, bq25700_pm_suspend, bq25700_pm_resume);
static const struct i2c_device_id bq25700_i2c_ids[] = {
{ "bq25700"},
{ },
};
MODULE_DEVICE_TABLE(i2c, bq25700_i2c_ids);
#ifdef CONFIG_OF
static const struct of_device_id bq25700_of_match[] = {
{ .compatible = "ti,bq25700", },
{ .compatible = "ti,bq25703", },
{ .compatible = "southchip,sc8885", },
{ .compatible = "southchip,sc8886", },
{ },
};
MODULE_DEVICE_TABLE(of, bq25700_of_match);
#else
static const struct of_device_id bq25700_of_match[] = {
{ },
};
#endif
static struct i2c_driver bq25700_driver = {
.probe = bq25700_probe,
.shutdown = bq25700_shutdown,
.id_table = bq25700_i2c_ids,
.driver = {
.name = "bq25700-charger",
.pm = &bq25700_pm_ops,
.of_match_table = of_match_ptr(bq25700_of_match),
},
};
module_i2c_driver(bq25700_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("shengfeixu <xsf@rock-chips.com>");
MODULE_DESCRIPTION("TI bq25700 Charger Driver");