^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1) // SPDX-License-Identifier: GPL-2.0-only
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3) * ROHM BD99954 charger driver
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5) * Copyright (C) 2020 Rohm Semiconductors
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6) * Originally written by:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7) * Mikko Mutanen <mikko.mutanen@fi.rohmeurope.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 8) * Markus Laine <markus.laine@fi.rohmeurope.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 9) * Bugs added by:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 10) * Matti Vaittinen <matti.vaittinen@fi.rohmeurope.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 11) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 12)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 13) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 14) * The battery charging profile of BD99954.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 15) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 16) * Curve (1) represents charging current.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 17) * Curve (2) represents battery voltage.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 18) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 19) * The BD99954 data sheet divides charging to three phases.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 20) * a) Trickle-charge with constant current (8).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 21) * b) pre-charge with constant current (6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 22) * c) fast-charge, first with constant current (5) phase. After
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 23) * the battery voltage has reached target level (4) we have constant
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 24) * voltage phase until charging current has dropped to termination
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 25) * level (7)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 26) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 27) * V ^ ^ I
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 28) * . .
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 29) * . .
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 30) *(4)` `.` ` ` ` ` ` ` ` ` ` ` ` ` ` ----------------------------.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 31) * . :/ .
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 32) * . o----+/:/ ` ` ` ` ` ` ` ` ` ` ` ` `.` ` (5)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 33) * . + :: + .
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 34) * . + /- -- .
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 35) * . +`/- + .
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 36) * . o/- -: .
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 37) * . .s. +` .
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 38) * . .--+ `/ .
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 39) * . ..`` + .: .
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 40) * . -` + -- .
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 41) * . (2) ...`` + :- .
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 42) * . ...`` + -: .
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 43) *(3)` `.`."" ` ` ` `+-------- ` ` ` ` ` ` `.:` ` ` ` ` ` ` ` ` .` ` (6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 44) * . + `:. .
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 45) * . + -: .
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 46) * . + -:. .
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 47) * . + .--. .
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 48) * . (1) + `.+` ` ` `.` ` (7)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 49) * -..............` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` + ` ` ` .` ` (8)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 50) * . + -
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 51) * -------------------------------------------------+++++++++-->
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 52) * | trickle | pre | fast |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 53) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 54) * Details of DT properties for different limits can be found from BD99954
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 55) * device tree binding documentation.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 56) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 57)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 58) #include <linux/delay.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 59) #include <linux/gpio/consumer.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 60) #include <linux/interrupt.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 61) #include <linux/i2c.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 62) #include <linux/kernel.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 63) #include <linux/linear_range.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 64) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 65) #include <linux/mod_devicetable.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 66) #include <linux/power_supply.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 67) #include <linux/property.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 68) #include <linux/regmap.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 69) #include <linux/types.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 70)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 71) #include "bd99954-charger.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 72)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 73) struct battery_data {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 74) u16 precharge_current; /* Trickle-charge Current */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 75) u16 fc_reg_voltage; /* Fast Charging Regulation Voltage */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 76) u16 voltage_min;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 77) u16 voltage_max;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 78) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 79)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 80) /* Initial field values, converted to initial register values */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 81) struct bd9995x_init_data {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 82) u16 vsysreg_set; /* VSYS Regulation Setting */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 83) u16 ibus_lim_set; /* VBUS input current limitation */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 84) u16 icc_lim_set; /* VCC/VACP Input Current Limit Setting */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 85) u16 itrich_set; /* Trickle-charge Current Setting */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 86) u16 iprech_set; /* Pre-Charge Current Setting */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 87) u16 ichg_set; /* Fast-Charge constant current */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 88) u16 vfastchg_reg_set1; /* Fast Charging Regulation Voltage */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 89) u16 vprechg_th_set; /* Pre-charge Voltage Threshold Setting */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 90) u16 vrechg_set; /* Re-charge Battery Voltage Setting */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 91) u16 vbatovp_set; /* Battery Over Voltage Threshold Setting */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 92) u16 iterm_set; /* Charging termination current */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 93) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 94)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 95) struct bd9995x_state {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 96) u8 online;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 97) u16 chgstm_status;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 98) u16 vbat_vsys_status;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 99) u16 vbus_vcc_status;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) struct bd9995x_device {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) struct i2c_client *client;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) struct device *dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) struct power_supply *charger;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) struct regmap *rmap;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) struct regmap_field *rmap_fields[F_MAX_FIELDS];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) int chip_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) int chip_rev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) struct bd9995x_init_data init_data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) struct bd9995x_state state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) struct mutex lock; /* Protect state data */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) static const struct regmap_range bd9995x_readonly_reg_ranges[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) regmap_reg_range(CHGSTM_STATUS, SEL_ILIM_VAL),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) regmap_reg_range(IOUT_DACIN_VAL, IOUT_DACIN_VAL),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) regmap_reg_range(VCC_UCD_STATUS, VCC_IDD_STATUS),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) regmap_reg_range(VBUS_UCD_STATUS, VBUS_IDD_STATUS),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) regmap_reg_range(CHIP_ID, CHIP_REV),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) regmap_reg_range(SYSTEM_STATUS, SYSTEM_STATUS),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) regmap_reg_range(IBATP_VAL, VBAT_AVE_VAL),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) regmap_reg_range(VTH_VAL, EXTIADP_AVE_VAL),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) static const struct regmap_access_table bd9995x_writeable_regs = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) .no_ranges = bd9995x_readonly_reg_ranges,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) .n_no_ranges = ARRAY_SIZE(bd9995x_readonly_reg_ranges),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) static const struct regmap_range bd9995x_volatile_reg_ranges[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) regmap_reg_range(CHGSTM_STATUS, WDT_STATUS),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) regmap_reg_range(VCC_UCD_STATUS, VCC_IDD_STATUS),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) regmap_reg_range(VBUS_UCD_STATUS, VBUS_IDD_STATUS),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) regmap_reg_range(INT0_STATUS, INT7_STATUS),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) regmap_reg_range(SYSTEM_STATUS, SYSTEM_CTRL_SET),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) regmap_reg_range(IBATP_VAL, EXTIADP_AVE_VAL), /* Measurement regs */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) static const struct regmap_access_table bd9995x_volatile_regs = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) .yes_ranges = bd9995x_volatile_reg_ranges,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) .n_yes_ranges = ARRAY_SIZE(bd9995x_volatile_reg_ranges),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) static const struct regmap_range_cfg regmap_range_cfg[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) .selector_reg = MAP_SET,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) .selector_mask = 0xFFFF,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) .selector_shift = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) .window_start = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) .window_len = 0x100,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) .range_min = 0 * 0x100,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) .range_max = 3 * 0x100,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) static const struct regmap_config bd9995x_regmap_config = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) .reg_bits = 8,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) .val_bits = 16,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) .reg_stride = 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) .max_register = 3 * 0x100,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) .cache_type = REGCACHE_RBTREE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) .ranges = regmap_range_cfg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) .num_ranges = ARRAY_SIZE(regmap_range_cfg),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) .val_format_endian = REGMAP_ENDIAN_LITTLE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) .wr_table = &bd9995x_writeable_regs,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) .volatile_table = &bd9995x_volatile_regs,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) enum bd9995x_chrg_fault {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) CHRG_FAULT_NORMAL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) CHRG_FAULT_INPUT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) CHRG_FAULT_THERMAL_SHUTDOWN,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) CHRG_FAULT_TIMER_EXPIRED,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) static int bd9995x_get_prop_batt_health(struct bd9995x_device *bd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) int ret, tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) ret = regmap_field_read(bd->rmap_fields[F_BATTEMP], &tmp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) return POWER_SUPPLY_HEALTH_UNKNOWN;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) /* TODO: Check these against datasheet page 34 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) switch (tmp) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) case ROOM:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) return POWER_SUPPLY_HEALTH_GOOD;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) case HOT1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) case HOT2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) case HOT3:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) return POWER_SUPPLY_HEALTH_OVERHEAT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) case COLD1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) case COLD2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) return POWER_SUPPLY_HEALTH_COLD;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) case TEMP_DIS:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) case BATT_OPEN:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) return POWER_SUPPLY_HEALTH_UNKNOWN;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) static int bd9995x_get_prop_charge_type(struct bd9995x_device *bd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) int ret, tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) ret = regmap_field_read(bd->rmap_fields[F_CHGSTM_STATE], &tmp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) return POWER_SUPPLY_CHARGE_TYPE_UNKNOWN;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) switch (tmp) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) case CHGSTM_TRICKLE_CHARGE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) case CHGSTM_PRE_CHARGE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) return POWER_SUPPLY_CHARGE_TYPE_TRICKLE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) case CHGSTM_FAST_CHARGE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) return POWER_SUPPLY_CHARGE_TYPE_FAST;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) case CHGSTM_TOP_OFF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) case CHGSTM_DONE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) case CHGSTM_SUSPEND:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) return POWER_SUPPLY_CHARGE_TYPE_NONE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) default: /* Rest of the states are error related, no charging */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) return POWER_SUPPLY_CHARGE_TYPE_NONE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) static bool bd9995x_get_prop_batt_present(struct bd9995x_device *bd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) int ret, tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) ret = regmap_field_read(bd->rmap_fields[F_BATTEMP], &tmp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) return tmp != BATT_OPEN;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) static int bd9995x_get_prop_batt_voltage(struct bd9995x_device *bd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) int ret, tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) ret = regmap_field_read(bd->rmap_fields[F_VBAT_VAL], &tmp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) tmp = min(tmp, 19200);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) return tmp * 1000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) static int bd9995x_get_prop_batt_current(struct bd9995x_device *bd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) int ret, tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) ret = regmap_field_read(bd->rmap_fields[F_IBATP_VAL], &tmp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) return tmp * 1000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) #define DEFAULT_BATTERY_TEMPERATURE 250
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) static int bd9995x_get_prop_batt_temp(struct bd9995x_device *bd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) int ret, tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) ret = regmap_field_read(bd->rmap_fields[F_THERM_VAL], &tmp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) return DEFAULT_BATTERY_TEMPERATURE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) return (200 - tmp) * 10;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) static int bd9995x_power_supply_get_property(struct power_supply *psy,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) enum power_supply_property psp,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) union power_supply_propval *val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) int ret, tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) struct bd9995x_device *bd = power_supply_get_drvdata(psy);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) struct bd9995x_state state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) mutex_lock(&bd->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) state = bd->state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) mutex_unlock(&bd->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) switch (psp) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) case POWER_SUPPLY_PROP_STATUS:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) switch (state.chgstm_status) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) case CHGSTM_TRICKLE_CHARGE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) case CHGSTM_PRE_CHARGE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) case CHGSTM_FAST_CHARGE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) case CHGSTM_TOP_OFF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) val->intval = POWER_SUPPLY_STATUS_CHARGING;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) case CHGSTM_DONE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) val->intval = POWER_SUPPLY_STATUS_FULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) case CHGSTM_SUSPEND:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) case CHGSTM_TEMPERATURE_ERROR_1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) case CHGSTM_TEMPERATURE_ERROR_2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) case CHGSTM_TEMPERATURE_ERROR_3:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) case CHGSTM_TEMPERATURE_ERROR_4:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) case CHGSTM_TEMPERATURE_ERROR_5:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) case CHGSTM_TEMPERATURE_ERROR_6:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) case CHGSTM_TEMPERATURE_ERROR_7:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) case CHGSTM_THERMAL_SHUT_DOWN_1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) case CHGSTM_THERMAL_SHUT_DOWN_2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) case CHGSTM_THERMAL_SHUT_DOWN_3:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) case CHGSTM_THERMAL_SHUT_DOWN_4:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) case CHGSTM_THERMAL_SHUT_DOWN_5:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) case CHGSTM_THERMAL_SHUT_DOWN_6:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) case CHGSTM_THERMAL_SHUT_DOWN_7:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) case CHGSTM_BATTERY_ERROR:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) val->intval = POWER_SUPPLY_STATUS_NOT_CHARGING;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) val->intval = POWER_SUPPLY_STATUS_UNKNOWN;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) case POWER_SUPPLY_PROP_MANUFACTURER:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) val->strval = BD9995X_MANUFACTURER;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) case POWER_SUPPLY_PROP_ONLINE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) val->intval = state.online;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) ret = regmap_field_read(bd->rmap_fields[F_IBATP_VAL], &tmp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) val->intval = tmp * 1000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) case POWER_SUPPLY_PROP_CHARGE_AVG:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) ret = regmap_field_read(bd->rmap_fields[F_IBATP_AVE_VAL], &tmp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350) val->intval = tmp * 1000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) * Currently the DT uses this property to give the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) * target current for fast-charging constant current phase.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) * I think it is correct in a sense.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) * Yet, this prop we read and return here is the programmed
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) * safety limit for combined input currents. This feels
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) * also correct in a sense.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) * However, this results a mismatch to DT value and value
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) * read from sysfs.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) ret = regmap_field_read(bd->rmap_fields[F_SEL_ILIM_VAL], &tmp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) val->intval = tmp * 1000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373) if (!state.online) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374) val->intval = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378) ret = regmap_field_read(bd->rmap_fields[F_VFASTCHG_REG_SET1],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379) &tmp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384) * The actual range : 2560 to 19200 mV. No matter what the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) * register says
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387) val->intval = clamp_val(tmp << 4, 2560, 19200);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388) val->intval *= 1000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391) case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392) ret = regmap_field_read(bd->rmap_fields[F_ITERM_SET], &tmp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393) if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395) /* Start step is 64 mA */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396) val->intval = tmp << 6;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397) /* Maximum is 1024 mA - no matter what register says */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398) val->intval = min(val->intval, 1024);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399) val->intval *= 1000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402) /* Battery properties which we access through charger */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403) case POWER_SUPPLY_PROP_PRESENT:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404) val->intval = bd9995x_get_prop_batt_present(bd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407) case POWER_SUPPLY_PROP_VOLTAGE_NOW:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408) val->intval = bd9995x_get_prop_batt_voltage(bd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411) case POWER_SUPPLY_PROP_CURRENT_NOW:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412) val->intval = bd9995x_get_prop_batt_current(bd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415) case POWER_SUPPLY_PROP_CHARGE_TYPE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416) val->intval = bd9995x_get_prop_charge_type(bd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419) case POWER_SUPPLY_PROP_HEALTH:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420) val->intval = bd9995x_get_prop_batt_health(bd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423) case POWER_SUPPLY_PROP_TEMP:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424) val->intval = bd9995x_get_prop_batt_temp(bd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 426)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 427) case POWER_SUPPLY_PROP_TECHNOLOGY:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 428) val->intval = POWER_SUPPLY_TECHNOLOGY_LION;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 429) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 430)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 431) case POWER_SUPPLY_PROP_MODEL_NAME:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 432) val->strval = "bd99954";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 433) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 434)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 435) default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 436) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 437)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 438) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 439)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 440) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 441) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 442)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 443) static int bd9995x_get_chip_state(struct bd9995x_device *bd,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 444) struct bd9995x_state *state)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 445) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 446) int i, ret, tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 447) struct {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 448) struct regmap_field *id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 449) u16 *data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 450) } state_fields[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 451) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 452) bd->rmap_fields[F_CHGSTM_STATE], &state->chgstm_status,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 453) }, {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 454) bd->rmap_fields[F_VBAT_VSYS_STATUS],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 455) &state->vbat_vsys_status,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 456) }, {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 457) bd->rmap_fields[F_VBUS_VCC_STATUS],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 458) &state->vbus_vcc_status,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 459) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 460) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 461)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 462)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 463) for (i = 0; i < ARRAY_SIZE(state_fields); i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 464) ret = regmap_field_read(state_fields[i].id, &tmp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 465) if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 466) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 467)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 468) *state_fields[i].data = tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 469) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 470)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 471) if (state->vbus_vcc_status & STATUS_VCC_DET ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 472) state->vbus_vcc_status & STATUS_VBUS_DET)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 473) state->online = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 474) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 475) state->online = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 476)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 477) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 478) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 479)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 480) static irqreturn_t bd9995x_irq_handler_thread(int irq, void *private)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 481) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 482) struct bd9995x_device *bd = private;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 483) int ret, status, mask, i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 484) unsigned long tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 485) struct bd9995x_state state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 486)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 487) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 488) * The bd9995x does not seem to generate big amount of interrupts.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 489) * The logic regarding which interrupts can cause relevant
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 490) * status changes seem to be pretty complex.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 491) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 492) * So lets implement really simple and hopefully bullet-proof handler:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 493) * It does not really matter which IRQ we handle, we just go and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 494) * re-read all interesting statuses + give the framework a nudge.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 495) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 496) * Other option would be building a _complex_ and error prone logic
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 497) * trying to decide what could have been changed (resulting this IRQ
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 498) * we are now handling). During the normal operation the BD99954 does
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 499) * not seem to be generating much of interrupts so benefit from such
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 500) * logic would probably be minimal.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 501) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 502)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 503) ret = regmap_read(bd->rmap, INT0_STATUS, &status);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 504) if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 505) dev_err(bd->dev, "Failed to read IRQ status\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 506) return IRQ_NONE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 507) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 508)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 509) ret = regmap_field_read(bd->rmap_fields[F_INT0_SET], &mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 510) if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 511) dev_err(bd->dev, "Failed to read IRQ mask\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 512) return IRQ_NONE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 513) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 514)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 515) /* Handle only IRQs that are not masked */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 516) status &= mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 517) tmp = status;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 518)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 519) /* Lowest bit does not represent any sub-registers */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 520) tmp >>= 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 521)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 522) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 523) * Mask and ack IRQs we will handle (+ the idiot bit)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 524) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 525) ret = regmap_field_write(bd->rmap_fields[F_INT0_SET], 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 526) if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 527) dev_err(bd->dev, "Failed to mask F_INT0\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 528) return IRQ_NONE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 529) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 530)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 531) ret = regmap_write(bd->rmap, INT0_STATUS, status);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 532) if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 533) dev_err(bd->dev, "Failed to ack F_INT0\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 534) goto err_umask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 535) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 536)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 537) for_each_set_bit(i, &tmp, 7) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 538) int sub_status, sub_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 539) int sub_status_reg[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 540) INT1_STATUS, INT2_STATUS, INT3_STATUS, INT4_STATUS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 541) INT5_STATUS, INT6_STATUS, INT7_STATUS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 542) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 543) struct regmap_field *sub_mask_f[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 544) bd->rmap_fields[F_INT1_SET],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 545) bd->rmap_fields[F_INT2_SET],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 546) bd->rmap_fields[F_INT3_SET],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 547) bd->rmap_fields[F_INT4_SET],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 548) bd->rmap_fields[F_INT5_SET],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 549) bd->rmap_fields[F_INT6_SET],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 550) bd->rmap_fields[F_INT7_SET],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 551) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 552)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 553) /* Clear sub IRQs */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 554) ret = regmap_read(bd->rmap, sub_status_reg[i], &sub_status);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 555) if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 556) dev_err(bd->dev, "Failed to read IRQ sub-status\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 557) goto err_umask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 558) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 559)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 560) ret = regmap_field_read(sub_mask_f[i], &sub_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 561) if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 562) dev_err(bd->dev, "Failed to read IRQ sub-mask\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 563) goto err_umask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 564) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 565)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 566) /* Ack active sub-statuses */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 567) sub_status &= sub_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 568)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 569) ret = regmap_write(bd->rmap, sub_status_reg[i], sub_status);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 570) if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 571) dev_err(bd->dev, "Failed to ack sub-IRQ\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 572) goto err_umask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 573) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 574) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 575)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 576) ret = regmap_field_write(bd->rmap_fields[F_INT0_SET], mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 577) if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 578) /* May as well retry once */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 579) goto err_umask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 580)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 581) /* Read whole chip state */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 582) ret = bd9995x_get_chip_state(bd, &state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 583) if (ret < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 584) dev_err(bd->dev, "Failed to read chip state\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 585) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 586) mutex_lock(&bd->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 587) bd->state = state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 588) mutex_unlock(&bd->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 589)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 590) power_supply_changed(bd->charger);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 591) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 592)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 593) return IRQ_HANDLED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 594)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 595) err_umask:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 596) ret = regmap_field_write(bd->rmap_fields[F_INT0_SET], mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 597) if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 598) dev_err(bd->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 599) "Failed to un-mask F_INT0 - IRQ permanently disabled\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 600)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 601) return IRQ_NONE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 602) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 603)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 604) static int __bd9995x_chip_reset(struct bd9995x_device *bd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 605) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 606) int ret, state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 607) int rst_check_counter = 10;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 608) u16 tmp = ALLRST | OTPLD;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 609)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 610) ret = regmap_raw_write(bd->rmap, SYSTEM_CTRL_SET, &tmp, 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 611) if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 612) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 613)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 614) do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 615) ret = regmap_field_read(bd->rmap_fields[F_OTPLD_STATE], &state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 616) if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 617) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 618)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 619) msleep(10);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 620) } while (state == 0 && --rst_check_counter);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 621)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 622) if (!rst_check_counter) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 623) dev_err(bd->dev, "chip reset not completed\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 624) return -ETIMEDOUT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 625) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 626)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 627) tmp = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 628) ret = regmap_raw_write(bd->rmap, SYSTEM_CTRL_SET, &tmp, 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 629)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 630) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 631) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 632)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 633) static int bd9995x_hw_init(struct bd9995x_device *bd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 634) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 635) int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 636) int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 637) struct bd9995x_state state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 638) struct bd9995x_init_data *id = &bd->init_data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 639)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 640) const struct {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 641) enum bd9995x_fields id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 642) u16 value;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 643) } init_data[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 644) /* Enable the charging trigger after SDP charger attached */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 645) {F_SDP_CHG_TRIG_EN, 1},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 646) /* Enable charging trigger after SDP charger attached */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 647) {F_SDP_CHG_TRIG, 1},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 648) /* Disable charging trigger by BC1.2 detection */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 649) {F_VBUS_BC_DISEN, 1},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 650) /* Disable charging trigger by BC1.2 detection */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 651) {F_VCC_BC_DISEN, 1},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 652) /* Disable automatic limitation of the input current */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 653) {F_ILIM_AUTO_DISEN, 1},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 654) /* Select current limitation when SDP charger attached*/
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 655) {F_SDP_500_SEL, 1},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 656) /* Select current limitation when DCP charger attached */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 657) {F_DCP_2500_SEL, 1},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 658) {F_VSYSREG_SET, id->vsysreg_set},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 659) /* Activate USB charging and DC/DC converter */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 660) {F_USB_SUS, 0},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 661) /* DCDC clock: 1200 kHz*/
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 662) {F_DCDC_CLK_SEL, 3},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 663) /* Enable charging */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 664) {F_CHG_EN, 1},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 665) /* Disable Input current Limit setting voltage measurement */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 666) {F_EXTIADPEN, 0},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 667) /* Disable input current limiting */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 668) {F_VSYS_PRIORITY, 1},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 669) {F_IBUS_LIM_SET, id->ibus_lim_set},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 670) {F_ICC_LIM_SET, id->icc_lim_set},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 671) /* Charge Termination Current Setting to 0*/
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 672) {F_ITERM_SET, id->iterm_set},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 673) /* Trickle-charge Current Setting */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 674) {F_ITRICH_SET, id->itrich_set},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 675) /* Pre-charge Current setting */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 676) {F_IPRECH_SET, id->iprech_set},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 677) /* Fast Charge Current for constant current phase */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 678) {F_ICHG_SET, id->ichg_set},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 679) /* Fast Charge Voltage Regulation Setting */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 680) {F_VFASTCHG_REG_SET1, id->vfastchg_reg_set1},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 681) /* Set Pre-charge Voltage Threshold for trickle charging. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 682) {F_VPRECHG_TH_SET, id->vprechg_th_set},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 683) {F_VRECHG_SET, id->vrechg_set},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 684) {F_VBATOVP_SET, id->vbatovp_set},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 685) /* Reverse buck boost voltage Setting */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 686) {F_VRBOOST_SET, 0},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 687) /* Disable fast-charging watchdog */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 688) {F_WDT_FST, 0},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 689) /* Disable pre-charging watchdog */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 690) {F_WDT_PRE, 0},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 691) /* Power save off */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 692) {F_POWER_SAVE_MODE, 0},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 693) {F_INT1_SET, INT1_ALL},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 694) {F_INT2_SET, INT2_ALL},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 695) {F_INT3_SET, INT3_ALL},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 696) {F_INT4_SET, INT4_ALL},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 697) {F_INT5_SET, INT5_ALL},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 698) {F_INT6_SET, INT6_ALL},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 699) {F_INT7_SET, INT7_ALL},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 700) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 701)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 702) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 703) * Currently we initialize charger to a known state at startup.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 704) * If we want to allow for example the boot code to initialize
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 705) * charger we should get rid of this.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 706) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 707) ret = __bd9995x_chip_reset(bd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 708) if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 709) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 710)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 711) /* Initialize currents/voltages and other parameters */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 712) for (i = 0; i < ARRAY_SIZE(init_data); i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 713) ret = regmap_field_write(bd->rmap_fields[init_data[i].id],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 714) init_data[i].value);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 715) if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 716) dev_err(bd->dev, "failed to initialize charger (%d)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 717) ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 718) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 719) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 720) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 721)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 722) ret = bd9995x_get_chip_state(bd, &state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 723) if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 724) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 725)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 726) mutex_lock(&bd->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 727) bd->state = state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 728) mutex_unlock(&bd->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 729)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 730) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 731) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 732)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 733) static enum power_supply_property bd9995x_power_supply_props[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 734) POWER_SUPPLY_PROP_MANUFACTURER,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 735) POWER_SUPPLY_PROP_STATUS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 736) POWER_SUPPLY_PROP_ONLINE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 737) POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 738) POWER_SUPPLY_PROP_CHARGE_AVG,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 739) POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 740) POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 741) POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 742) /* Battery props we access through charger */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 743) POWER_SUPPLY_PROP_PRESENT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 744) POWER_SUPPLY_PROP_VOLTAGE_NOW,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 745) POWER_SUPPLY_PROP_CURRENT_NOW,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 746) POWER_SUPPLY_PROP_CHARGE_TYPE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 747) POWER_SUPPLY_PROP_HEALTH,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 748) POWER_SUPPLY_PROP_TEMP,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 749) POWER_SUPPLY_PROP_TECHNOLOGY,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 750) POWER_SUPPLY_PROP_MODEL_NAME,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 751) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 752)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 753) static const struct power_supply_desc bd9995x_power_supply_desc = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 754) .name = "bd9995x-charger",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 755) .type = POWER_SUPPLY_TYPE_USB,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 756) .properties = bd9995x_power_supply_props,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 757) .num_properties = ARRAY_SIZE(bd9995x_power_supply_props),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 758) .get_property = bd9995x_power_supply_get_property,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 759) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 760)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 761) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 762) * Limit configurations for vbus-input-current and vcc-vacp-input-current
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 763) * Minimum limit is 0 uA. Max is 511 * 32000 uA = 16352000 uA. This is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 764) * configured by writing a register so that each increment in register
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 765) * value equals to 32000 uA limit increment.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 766) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 767) * Eg, value 0x0 is limit 0, value 0x1 is limit 32000, ...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 768) * Describe the setting in linear_range table.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 769) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 770) static const struct linear_range input_current_limit_ranges[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 771) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 772) .min = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 773) .step = 32000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 774) .min_sel = 0x0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 775) .max_sel = 0x1ff,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 776) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 777) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 778)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 779) /* Possible trickle, pre-charging and termination current values */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 780) static const struct linear_range charging_current_ranges[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 781) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 782) .min = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 783) .step = 64000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 784) .min_sel = 0x0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 785) .max_sel = 0x10,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 786) }, {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 787) .min = 1024000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 788) .step = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 789) .min_sel = 0x11,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 790) .max_sel = 0x1f,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 791) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 792) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 793)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 794) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 795) * Fast charging voltage regulation, starting re-charging limit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 796) * and battery over voltage protection have same possible values
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 797) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 798) static const struct linear_range charge_voltage_regulation_ranges[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 799) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 800) .min = 2560000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 801) .step = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 802) .min_sel = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 803) .max_sel = 0xA0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 804) }, {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 805) .min = 2560000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 806) .step = 16000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 807) .min_sel = 0xA0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 808) .max_sel = 0x4B0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 809) }, {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 810) .min = 19200000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 811) .step = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 812) .min_sel = 0x4B0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 813) .max_sel = 0x7FF,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 814) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 815) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 816)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 817) /* Possible VSYS voltage regulation values */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 818) static const struct linear_range vsys_voltage_regulation_ranges[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 819) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 820) .min = 2560000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 821) .step = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 822) .min_sel = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 823) .max_sel = 0x28,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 824) }, {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 825) .min = 2560000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 826) .step = 64000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 827) .min_sel = 0x28,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 828) .max_sel = 0x12C,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 829) }, {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 830) .min = 19200000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 831) .step = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 832) .min_sel = 0x12C,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 833) .max_sel = 0x1FF,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 834) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 835) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 836)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 837) /* Possible settings for switching from trickle to pre-charging limits */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 838) static const struct linear_range trickle_to_pre_threshold_ranges[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 839) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 840) .min = 2048000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 841) .step = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 842) .min_sel = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 843) .max_sel = 0x20,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 844) }, {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 845) .min = 2048000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 846) .step = 64000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 847) .min_sel = 0x20,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 848) .max_sel = 0x12C,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 849) }, {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 850) .min = 19200000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 851) .step = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 852) .min_sel = 0x12C,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 853) .max_sel = 0x1FF
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 854) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 855) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 856)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 857) /* Possible current values for fast-charging constant current phase */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 858) static const struct linear_range fast_charge_current_ranges[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 859) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 860) .min = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 861) .step = 64000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 862) .min_sel = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 863) .max_sel = 0xFF,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 864) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 865) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 866)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 867) struct battery_init {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 868) const char *name;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 869) int *info_data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 870) const struct linear_range *range;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 871) int ranges;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 872) u16 *data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 873) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 874)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 875) struct dt_init {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 876) char *prop;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 877) const struct linear_range *range;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 878) int ranges;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 879) u16 *data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 880) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 881)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 882) static int bd9995x_fw_probe(struct bd9995x_device *bd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 883) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 884) int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 885) struct power_supply_battery_info info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 886) u32 property;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 887) int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 888) int regval;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 889) bool found;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 890) struct bd9995x_init_data *init = &bd->init_data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 891) struct battery_init battery_inits[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 892) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 893) .name = "trickle-charging current",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 894) .info_data = &info.tricklecharge_current_ua,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 895) .range = &charging_current_ranges[0],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 896) .ranges = 2,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 897) .data = &init->itrich_set,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 898) }, {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 899) .name = "pre-charging current",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 900) .info_data = &info.precharge_current_ua,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 901) .range = &charging_current_ranges[0],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 902) .ranges = 2,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 903) .data = &init->iprech_set,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 904) }, {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 905) .name = "pre-to-trickle charge voltage threshold",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 906) .info_data = &info.precharge_voltage_max_uv,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 907) .range = &trickle_to_pre_threshold_ranges[0],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 908) .ranges = 2,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 909) .data = &init->vprechg_th_set,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 910) }, {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 911) .name = "charging termination current",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 912) .info_data = &info.charge_term_current_ua,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 913) .range = &charging_current_ranges[0],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 914) .ranges = 2,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 915) .data = &init->iterm_set,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 916) }, {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 917) .name = "charging re-start voltage",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 918) .info_data = &info.charge_restart_voltage_uv,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 919) .range = &charge_voltage_regulation_ranges[0],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 920) .ranges = 2,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 921) .data = &init->vrechg_set,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 922) }, {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 923) .name = "battery overvoltage limit",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 924) .info_data = &info.overvoltage_limit_uv,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 925) .range = &charge_voltage_regulation_ranges[0],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 926) .ranges = 2,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 927) .data = &init->vbatovp_set,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 928) }, {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 929) .name = "fast-charging max current",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 930) .info_data = &info.constant_charge_current_max_ua,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 931) .range = &fast_charge_current_ranges[0],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 932) .ranges = 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 933) .data = &init->ichg_set,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 934) }, {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 935) .name = "fast-charging voltage",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 936) .info_data = &info.constant_charge_voltage_max_uv,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 937) .range = &charge_voltage_regulation_ranges[0],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 938) .ranges = 2,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 939) .data = &init->vfastchg_reg_set1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 940) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 941) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 942) struct dt_init props[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 943) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 944) .prop = "rohm,vsys-regulation-microvolt",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 945) .range = &vsys_voltage_regulation_ranges[0],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 946) .ranges = 2,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 947) .data = &init->vsysreg_set,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 948) }, {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 949) .prop = "rohm,vbus-input-current-limit-microamp",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 950) .range = &input_current_limit_ranges[0],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 951) .ranges = 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 952) .data = &init->ibus_lim_set,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 953) }, {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 954) .prop = "rohm,vcc-input-current-limit-microamp",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 955) .range = &input_current_limit_ranges[0],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 956) .ranges = 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 957) .data = &init->icc_lim_set,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 958) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 959) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 960)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 961) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 962) * The power_supply_get_battery_info() does not support getting values
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 963) * from ACPI. Let's fix it if ACPI is required here.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 964) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 965) ret = power_supply_get_battery_info(bd->charger, &info);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 966) if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 967) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 968)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 969) for (i = 0; i < ARRAY_SIZE(battery_inits); i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 970) int val = *battery_inits[i].info_data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 971) const struct linear_range *range = battery_inits[i].range;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 972) int ranges = battery_inits[i].ranges;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 973)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 974) if (val == -EINVAL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 975) continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 976)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 977) ret = linear_range_get_selector_low_array(range, ranges, val,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 978) ®val, &found);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 979) if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 980) dev_err(bd->dev, "Unsupported value for %s\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 981) battery_inits[i].name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 982)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 983) power_supply_put_battery_info(bd->charger, &info);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 984) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 985) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 986) if (!found) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 987) dev_warn(bd->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 988) "Unsupported value for %s - using smaller\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 989) battery_inits[i].name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 990) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 991) *(battery_inits[i].data) = regval;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 992) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 993)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 994) power_supply_put_battery_info(bd->charger, &info);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 995)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 996) for (i = 0; i < ARRAY_SIZE(props); i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 997) ret = device_property_read_u32(bd->dev, props[i].prop,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 998) &property);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 999) if (ret < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1000) dev_err(bd->dev, "failed to read %s", props[i].prop);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1001)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1002) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1003) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1004)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1005) ret = linear_range_get_selector_low_array(props[i].range,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1006) props[i].ranges,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1007) property, ®val,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1008) &found);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1009) if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1010) dev_err(bd->dev, "Unsupported value for '%s'\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1011) props[i].prop);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1012)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1013) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1014) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1015)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1016) if (!found) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1017) dev_warn(bd->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1018) "Unsupported value for '%s' - using smaller\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1019) props[i].prop);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1020) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1021)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1022) *(props[i].data) = regval;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1023) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1024)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1025) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1026) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1027)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1028) static void bd9995x_chip_reset(void *bd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1029) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1030) __bd9995x_chip_reset(bd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1031) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1032)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1033) static int bd9995x_probe(struct i2c_client *client)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1034) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1035) struct device *dev = &client->dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1036) struct bd9995x_device *bd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1037) struct power_supply_config psy_cfg = {};
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1038) int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1039) int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1040)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1041) bd = devm_kzalloc(dev, sizeof(*bd), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1042) if (!bd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1043) return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1044)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1045) bd->client = client;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1046) bd->dev = dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1047) psy_cfg.drv_data = bd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1048) psy_cfg.of_node = dev->of_node;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1049)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1050) mutex_init(&bd->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1051)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1052) bd->rmap = devm_regmap_init_i2c(client, &bd9995x_regmap_config);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1053) if (IS_ERR(bd->rmap)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1054) dev_err(dev, "Failed to setup register access via i2c\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1055) return PTR_ERR(bd->rmap);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1056) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1057)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1058) for (i = 0; i < ARRAY_SIZE(bd9995x_reg_fields); i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1059) const struct reg_field *reg_fields = bd9995x_reg_fields;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1060)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1061) bd->rmap_fields[i] = devm_regmap_field_alloc(dev, bd->rmap,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1062) reg_fields[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1063) if (IS_ERR(bd->rmap_fields[i])) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1064) dev_err(dev, "cannot allocate regmap field\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1065) return PTR_ERR(bd->rmap_fields[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1066) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1067) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1068)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1069) i2c_set_clientdata(client, bd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1070)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1071) ret = regmap_field_read(bd->rmap_fields[F_CHIP_ID], &bd->chip_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1072) if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1073) dev_err(dev, "Cannot read chip ID.\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1074) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1075) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1076)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1077) if (bd->chip_id != BD99954_ID) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1078) dev_err(dev, "Chip with ID=0x%x, not supported!\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1079) bd->chip_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1080) return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1081) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1082)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1083) ret = regmap_field_read(bd->rmap_fields[F_CHIP_REV], &bd->chip_rev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1084) if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1085) dev_err(dev, "Cannot read revision.\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1086) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1087) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1088)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1089) dev_info(bd->dev, "Found BD99954 chip rev %d\n", bd->chip_rev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1090)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1091) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1092) * We need to init the psy before we can call
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1093) * power_supply_get_battery_info() for it
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1094) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1095) bd->charger = devm_power_supply_register(bd->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1096) &bd9995x_power_supply_desc,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1097) &psy_cfg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1098) if (IS_ERR(bd->charger)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1099) dev_err(dev, "Failed to register power supply\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1100) return PTR_ERR(bd->charger);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1101) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1102)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1103) ret = bd9995x_fw_probe(bd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1104) if (ret < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1105) dev_err(dev, "Cannot read device properties.\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1106) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1107) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1108)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1109) ret = bd9995x_hw_init(bd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1110) if (ret < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1111) dev_err(dev, "Cannot initialize the chip.\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1112) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1113) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1114)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1115) ret = devm_add_action_or_reset(dev, bd9995x_chip_reset, bd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1116) if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1117) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1118)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1119) return devm_request_threaded_irq(dev, client->irq, NULL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1120) bd9995x_irq_handler_thread,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1121) IRQF_TRIGGER_LOW | IRQF_ONESHOT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1122) BD9995X_IRQ_PIN, bd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1123) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1124)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1125) static const struct of_device_id bd9995x_of_match[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1126) { .compatible = "rohm,bd99954", },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1127) { }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1128) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1129) MODULE_DEVICE_TABLE(of, bd9995x_of_match);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1130)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1131) static struct i2c_driver bd9995x_driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1132) .driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1133) .name = "bd9995x-charger",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1134) .of_match_table = bd9995x_of_match,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1135) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1136) .probe_new = bd9995x_probe,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1137) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1138) module_i2c_driver(bd9995x_driver);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1139)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1140) MODULE_AUTHOR("Laine Markus <markus.laine@fi.rohmeurope.com>");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1141) MODULE_DESCRIPTION("ROHM BD99954 charger driver");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1142) MODULE_LICENSE("GPL");