Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) // SPDX-License-Identifier: GPL-2.0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3)  * Copyright (c) 2018 Rockchip Electronics Co. Ltd.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5)  * Author: Wyon Bi <bivvy.bi@rock-chips.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8) #include <linux/kernel.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9) #include <linux/clk.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10) #include <linux/iopoll.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11) #include <linux/clk-provider.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12) #include <linux/delay.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13) #include <linux/init.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15) #include <linux/of_device.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16) #include <linux/platform_device.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17) #include <linux/reset.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18) #include <linux/phy/phy.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19) #include <linux/pm_runtime.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20) #include <linux/mfd/syscon.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22) #define PSEC_PER_SEC	1000000000000LL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24) #define UPDATE(x, h, l)	(((x) << (l)) & GENMASK((h), (l)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27)  * The offset address[7:0] is distributed two parts, one from the bit7 to bit5
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28)  * is the first address, the other from the bit4 to bit0 is the second address.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29)  * when you configure the registers, you must set both of them. The Clock Lane
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30)  * and Data Lane use the same registers with the same second address, but the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31)  * first address is different.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33) #define FIRST_ADDRESS(x)		(((x) & 0x7) << 5)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34) #define SECOND_ADDRESS(x)		(((x) & 0x1f) << 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35) #define PHY_REG(first, second)		(FIRST_ADDRESS(first) | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36) 					 SECOND_ADDRESS(second))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38) /* Analog Register Part: reg00 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39) #define BANDGAP_POWER_MASK			BIT(7)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40) #define BANDGAP_POWER_DOWN			BIT(7)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41) #define BANDGAP_POWER_ON			0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42) #define LANE_EN_MASK				GENMASK(6, 2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43) #define LANE_EN_CK				BIT(6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44) #define LANE_EN_3				BIT(5)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45) #define LANE_EN_2				BIT(4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46) #define LANE_EN_1				BIT(3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47) #define LANE_EN_0				BIT(2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48) #define POWER_WORK_MASK				GENMASK(1, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49) #define POWER_WORK_ENABLE			UPDATE(1, 1, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50) #define POWER_WORK_DISABLE			UPDATE(2, 1, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51) /* Analog Register Part: reg01 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52) #define REG_SYNCRST_MASK			BIT(2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53) #define REG_SYNCRST_RESET			BIT(2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54) #define REG_SYNCRST_NORMAL			0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55) #define REG_LDOPD_MASK				BIT(1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56) #define REG_LDOPD_POWER_DOWN			BIT(1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57) #define REG_LDOPD_POWER_ON			0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58) #define REG_PLLPD_MASK				BIT(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59) #define REG_PLLPD_POWER_DOWN			BIT(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60) #define REG_PLLPD_POWER_ON			0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61) /* Analog Register Part: reg03 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62) #define REG_FBDIV_HI_MASK			BIT(5)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63) #define REG_FBDIV_HI(x)				UPDATE(x, 5, 5)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64) #define REG_PREDIV_MASK				GENMASK(4, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65) #define REG_PREDIV(x)				UPDATE(x, 4, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66) /* Analog Register Part: reg04 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67) #define REG_FBDIV_LO_MASK			GENMASK(7, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68) #define REG_FBDIV_LO(x)				UPDATE(x, 7, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69) /* Analog Register Part: reg05 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70) #define SAMPLE_CLOCK_PHASE_MASK			GENMASK(6, 4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71) #define SAMPLE_CLOCK_PHASE(x)			UPDATE(x, 6, 4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72) #define CLOCK_LANE_SKEW_PHASE_MASK		GENMASK(2, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73) #define CLOCK_LANE_SKEW_PHASE(x)		UPDATE(x, 2, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74) /* Analog Register Part: reg06 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75) #define DATA_LANE_3_SKEW_PHASE_MASK		GENMASK(6, 4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76) #define DATA_LANE_3_SKEW_PHASE(x)		UPDATE(x, 6, 4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77) #define DATA_LANE_2_SKEW_PHASE_MASK		GENMASK(2, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78) #define DATA_LANE_2_SKEW_PHASE(x)		UPDATE(x, 2, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79) /* Analog Register Part: reg07 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80) #define DATA_LANE_1_SKEW_PHASE_MASK		GENMASK(6, 4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81) #define DATA_LANE_1_SKEW_PHASE(x)		UPDATE(x, 6, 4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82) #define DATA_LANE_0_SKEW_PHASE_MASK		GENMASK(2, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83) #define DATA_LANE_0_SKEW_PHASE(x)		UPDATE(x, 2, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84) /* Analog Register Part: reg08 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85) #define SAMPLE_CLOCK_DIRECTION_MASK		BIT(4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86) #define SAMPLE_CLOCK_DIRECTION_REVERSE		BIT(4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87) #define SAMPLE_CLOCK_DIRECTION_FORWARD		0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88) #define LOWFRE_EN_MASK				BIT(5)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89) #define PLL_OUTPUT_FREQUENCY_DIV_BY_1		0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90) #define PLL_OUTPUT_FREQUENCY_DIV_BY_2		1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91) /* Analog Register Part: reg1e */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92) #define PLL_MODE_SEL_MASK			GENMASK(6, 5)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93) #define PLL_MODE_SEL_LVDS_MODE			0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94) #define PLL_MODE_SEL_MIPI_MODE			BIT(5)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95) /* Digital Register Part: reg00 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96) #define REG_DIG_RSTN_MASK			BIT(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97) #define REG_DIG_RSTN_NORMAL			BIT(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98) #define REG_DIG_RSTN_RESET			0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99) /* Digital Register Part: reg01 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) #define INVERT_TXCLKESC_MASK			BIT(1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) #define INVERT_TXCLKESC_ENABLE			BIT(1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) #define INVERT_TXCLKESC_DISABLE			0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) #define INVERT_TXBYTECLKHS_MASK			BIT(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) #define INVERT_TXBYTECLKHS_ENABLE		BIT(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) #define INVERT_TXBYTECLKHS_DISABLE		0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg05 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) #define T_LPX_CNT_MASK				GENMASK(5, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) #define T_LPX_CNT(x)				UPDATE(x, 5, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg06 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) #define T_HS_PREPARE_CNT_MASK			GENMASK(6, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) #define T_HS_PREPARE_CNT(x)			UPDATE(x, 6, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg07 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) #define T_HS_ZERO_CNT_MASK			GENMASK(5, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) #define T_HS_ZERO_CNT(x)			UPDATE(x, 5, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg08 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) #define T_HS_TRAIL_CNT_MASK			GENMASK(6, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) #define T_HS_TRAIL_CNT(x)			UPDATE(x, 6, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg09 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) #define T_HS_EXIT_CNT_MASK			GENMASK(4, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) #define T_HS_EXIT_CNT(x)			UPDATE(x, 4, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0a */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) #define T_CLK_POST_CNT_MASK			GENMASK(3, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) #define T_CLK_POST_CNT(x)			UPDATE(x, 3, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0c */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) #define LPDT_TX_PPI_SYNC_MASK			BIT(2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) #define LPDT_TX_PPI_SYNC_ENABLE			BIT(2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) #define LPDT_TX_PPI_SYNC_DISABLE		0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) #define T_WAKEUP_CNT_HI_MASK			GENMASK(1, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) #define T_WAKEUP_CNT_HI(x)			UPDATE(x, 1, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0d */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) #define T_WAKEUP_CNT_LO_MASK			GENMASK(7, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) #define T_WAKEUP_CNT_LO(x)			UPDATE(x, 7, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0e */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) #define T_CLK_PRE_CNT_MASK			GENMASK(3, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) #define T_CLK_PRE_CNT(x)			UPDATE(x, 3, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg10 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) #define T_TA_GO_CNT_MASK			GENMASK(5, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) #define T_TA_GO_CNT(x)				UPDATE(x, 5, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg11 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) #define T_TA_SURE_CNT_MASK			GENMASK(5, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) #define T_TA_SURE_CNT(x)			UPDATE(x, 5, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg12 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) #define T_TA_WAIT_CNT_MASK			GENMASK(5, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) #define T_TA_WAIT_CNT(x)			UPDATE(x, 5, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) /* LVDS Register Part: reg00 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) #define LVDS_DIGITAL_INTERNAL_RESET_MASK	BIT(2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) #define LVDS_DIGITAL_INTERNAL_RESET_DISABLE	BIT(2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) #define LVDS_DIGITAL_INTERNAL_RESET_ENABLE	0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) /* LVDS Register Part: reg01 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) #define LVDS_DIGITAL_INTERNAL_ENABLE_MASK	BIT(7)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) #define LVDS_DIGITAL_INTERNAL_ENABLE		BIT(7)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) #define LVDS_DIGITAL_INTERNAL_DISABLE		0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) /* LVDS Register Part: reg03 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) #define MODE_ENABLE_MASK			GENMASK(2, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) #define TTL_MODE_ENABLE				BIT(2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) #define LVDS_MODE_ENABLE			BIT(1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) #define MIPI_MODE_ENABLE			BIT(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) /* LVDS Register Part: reg0b */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) #define LVDS_LANE_EN_MASK			GENMASK(7, 3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) #define LVDS_DATA_LANE0_EN			BIT(7)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) #define LVDS_DATA_LANE1_EN			BIT(6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) #define LVDS_DATA_LANE2_EN			BIT(5)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) #define LVDS_DATA_LANE3_EN			BIT(4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) #define LVDS_CLK_LANE_EN			BIT(3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) #define LVDS_PLL_POWER_MASK			BIT(2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) #define LVDS_PLL_POWER_OFF			BIT(2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) #define LVDS_PLL_POWER_ON			0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) #define LVDS_BANDGAP_POWER_MASK			BIT(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) #define LVDS_BANDGAP_POWER_DOWN			BIT(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) #define LVDS_BANDGAP_POWER_ON			0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) #define DSI_PHY_RSTZ		0xa0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) #define PHY_ENABLECLK		BIT(2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) #define DSI_PHY_STATUS		0xb0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) #define PHY_LOCK		BIT(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) struct mipi_dphy_timing {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) 	unsigned int clkmiss;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) 	unsigned int clkpost;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) 	unsigned int clkpre;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) 	unsigned int clkprepare;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) 	unsigned int clksettle;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) 	unsigned int clktermen;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) 	unsigned int clktrail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) 	unsigned int clkzero;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) 	unsigned int dtermen;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) 	unsigned int eot;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) 	unsigned int hsexit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) 	unsigned int hsprepare;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) 	unsigned int hszero;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) 	unsigned int hssettle;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) 	unsigned int hsskip;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) 	unsigned int hstrail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) 	unsigned int init;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) 	unsigned int lpx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) 	unsigned int taget;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) 	unsigned int tago;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) 	unsigned int tasure;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) 	unsigned int wakeup;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) struct inno_video_phy {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) 	struct device *dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) 	struct clk *ref_clk;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) 	struct clk *pclk_phy;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) 	struct clk *pclk_host;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) 	void __iomem *phy_base;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) 	void __iomem *host_base;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) 	struct reset_control *rst;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) 	struct {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) 		struct clk_hw hw;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) 		u8 prediv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) 		u16 fbdiv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) 		unsigned long rate;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) 	} pll;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) enum {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) 	REGISTER_PART_ANALOG,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) 	REGISTER_PART_DIGITAL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) 	REGISTER_PART_CLOCK_LANE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) 	REGISTER_PART_DATA0_LANE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) 	REGISTER_PART_DATA1_LANE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) 	REGISTER_PART_DATA2_LANE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) 	REGISTER_PART_DATA3_LANE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) 	REGISTER_PART_LVDS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) static inline struct inno_video_phy *hw_to_inno(struct clk_hw *hw)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) 	return container_of(hw, struct inno_video_phy, pll.hw);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) static void phy_update_bits(struct inno_video_phy *inno,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) 			    u8 first, u8 second, u8 mask, u8 val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) 	u32 reg = PHY_REG(first, second) << 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) 	unsigned int tmp, orig;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) 	orig = readl(inno->phy_base + reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) 	tmp = orig & ~mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) 	tmp |= val & mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) 	writel(tmp, inno->phy_base + reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) static void host_update_bits(struct inno_video_phy *inno,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) 			     u32 reg, u32 mask, u32 val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) 	unsigned int tmp, orig;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) 	orig = readl(inno->host_base + reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) 	tmp = orig & ~mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) 	tmp |= val & mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) 	writel(tmp, inno->host_base + reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) static void mipi_dphy_timing_get_default(struct mipi_dphy_timing *timing,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) 					 unsigned long period)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) 	/* Global Operation Timing Parameters */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) 	timing->clkmiss = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) 	timing->clkpost = 70000 + 52 * period;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) 	timing->clkpre = 8 * period;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) 	timing->clkprepare = 65000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) 	timing->clksettle = 95000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) 	timing->clktermen = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) 	timing->clktrail = 80000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) 	timing->clkzero = 260000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) 	timing->dtermen = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) 	timing->eot = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) 	timing->hsexit = 120000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) 	timing->hsprepare = 65000 + 4 * period;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) 	timing->hszero = 145000 + 6 * period;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) 	timing->hssettle = 85000 + 6 * period;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) 	timing->hsskip = 40000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) 	timing->hstrail = max(8 * period, 60000 + 4 * period);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) 	timing->init = 100000000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) 	timing->lpx = 60000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) 	timing->taget = 5 * timing->lpx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) 	timing->tago = 4 * timing->lpx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) 	timing->tasure = 2 * timing->lpx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) 	timing->wakeup = 1000000000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) static void inno_video_phy_mipi_mode_enable(struct inno_video_phy *inno)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) 	struct mipi_dphy_timing gotp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) 	const struct {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) 		unsigned long rate;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) 		u8 hs_prepare;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) 		u8 clk_lane_hs_zero;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) 		u8 data_lane_hs_zero;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) 		u8 hs_trail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) 	} timings[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) 		{ 110000000, 0x20, 0x16, 0x02, 0x22},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) 		{ 150000000, 0x06, 0x16, 0x03, 0x45},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) 		{ 200000000, 0x18, 0x17, 0x04, 0x0b},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) 		{ 250000000, 0x05, 0x17, 0x05, 0x16},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) 		{ 300000000, 0x51, 0x18, 0x06, 0x2c},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) 		{ 400000000, 0x64, 0x19, 0x07, 0x33},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) 		{ 500000000, 0x20, 0x1b, 0x07, 0x4e},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) 		{ 600000000, 0x6a, 0x1d, 0x08, 0x3a},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) 		{ 700000000, 0x3e, 0x1e, 0x08, 0x6a},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) 		{ 800000000, 0x21, 0x1f, 0x09, 0x29},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) 		{1000000000, 0x09, 0x20, 0x09, 0x27},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) 	};
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) 	u32 t_txbyteclkhs, t_txclkesc, ui;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) 	u32 txbyteclkhs, txclkesc, esc_clk_div;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) 	u32 hs_exit, clk_post, clk_pre, wakeup, lpx, ta_go, ta_sure, ta_wait;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) 	u32 hs_prepare, hs_trail, hs_zero, clk_lane_hs_zero, data_lane_hs_zero;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) 	unsigned int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) 	/* Select MIPI mode */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) 	phy_update_bits(inno, REGISTER_PART_LVDS, 0x03,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) 			MODE_ENABLE_MASK, MIPI_MODE_ENABLE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) 	/* Configure PLL */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) 			REG_PREDIV_MASK, REG_PREDIV(inno->pll.prediv));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) 			REG_FBDIV_HI_MASK, REG_FBDIV_HI(inno->pll.fbdiv >> 8));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x04,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) 			REG_FBDIV_LO_MASK, REG_FBDIV_LO(inno->pll.fbdiv));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) 	/* Enable PLL and LDO */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) 			REG_LDOPD_MASK | REG_PLLPD_MASK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) 			REG_LDOPD_POWER_ON | REG_PLLPD_POWER_ON);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) 	/* Reset analog */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) 			REG_SYNCRST_MASK, REG_SYNCRST_RESET);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) 	udelay(1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) 			REG_SYNCRST_MASK, REG_SYNCRST_NORMAL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) 	/* Reset digital */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) 	phy_update_bits(inno, REGISTER_PART_DIGITAL, 0x00,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) 			REG_DIG_RSTN_MASK, REG_DIG_RSTN_RESET);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) 	udelay(1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) 	phy_update_bits(inno, REGISTER_PART_DIGITAL, 0x00,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) 			REG_DIG_RSTN_MASK, REG_DIG_RSTN_NORMAL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) 	txbyteclkhs = inno->pll.rate / 8;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) 	t_txbyteclkhs = div_u64(PSEC_PER_SEC, txbyteclkhs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) 	esc_clk_div = DIV_ROUND_UP(txbyteclkhs, 20000000);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) 	txclkesc = txbyteclkhs / esc_clk_div;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) 	t_txclkesc = div_u64(PSEC_PER_SEC, txclkesc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) 	ui = div_u64(PSEC_PER_SEC, inno->pll.rate);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350) 	memset(&gotp, 0, sizeof(gotp));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) 	mipi_dphy_timing_get_default(&gotp, ui);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) 	 * The value of counter for HS Ths-exit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) 	 * Ths-exit = Tpin_txbyteclkhs * value
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) 	hs_exit = DIV_ROUND_UP(gotp.hsexit, t_txbyteclkhs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) 	 * The value of counter for HS Tclk-post
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) 	 * Tclk-post = Tpin_txbyteclkhs * value
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) 	clk_post = DIV_ROUND_UP(gotp.clkpost, t_txbyteclkhs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) 	 * The value of counter for HS Tclk-pre
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) 	 * Tclk-pre = Tpin_txbyteclkhs * value
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) 	clk_pre = DIV_ROUND_UP(gotp.clkpre, t_txbyteclkhs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) 	 * The value of counter for HS Tlpx Time
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371) 	 * Tlpx = Tpin_txbyteclkhs * (2 + value)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373) 	lpx = DIV_ROUND_UP(gotp.lpx, t_txbyteclkhs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374) 	if (lpx >= 2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) 		lpx -= 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378) 	 * The value of counter for HS Tta-go
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379) 	 * Tta-go for turnaround
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) 	 * Tta-go = Ttxclkesc * value
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382) 	ta_go = DIV_ROUND_UP(gotp.tago, t_txclkesc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384) 	 * The value of counter for HS Tta-sure
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) 	 * Tta-sure for turnaround
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) 	 * Tta-sure = Ttxclkesc * value
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388) 	ta_sure = DIV_ROUND_UP(gotp.tasure, t_txclkesc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390) 	 * The value of counter for HS Tta-wait
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391) 	 * Tta-wait for turnaround
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392) 	 * Tta-wait = Ttxclkesc * value
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394) 	ta_wait = DIV_ROUND_UP(gotp.taget, t_txclkesc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396) 	for (i = 0; i < ARRAY_SIZE(timings); i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397) 		if (inno->pll.rate <= timings[i].rate)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400) 	if (i == ARRAY_SIZE(timings))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401) 		--i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403) 	hs_prepare = timings[i].hs_prepare;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404) 	hs_trail = timings[i].hs_trail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405) 	clk_lane_hs_zero = timings[i].clk_lane_hs_zero;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406) 	data_lane_hs_zero = timings[i].data_lane_hs_zero;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407) 	wakeup = 0x3ff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409) 	for (i = REGISTER_PART_CLOCK_LANE; i <= REGISTER_PART_DATA3_LANE; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410) 		if (i == REGISTER_PART_CLOCK_LANE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411) 			hs_zero = clk_lane_hs_zero;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413) 			hs_zero = data_lane_hs_zero;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415) 		phy_update_bits(inno, i, 0x05, T_LPX_CNT_MASK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416) 				T_LPX_CNT(lpx));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417) 		phy_update_bits(inno, i, 0x06, T_HS_PREPARE_CNT_MASK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418) 				T_HS_PREPARE_CNT(hs_prepare));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419) 		phy_update_bits(inno, i, 0x07, T_HS_ZERO_CNT_MASK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420) 				T_HS_ZERO_CNT(hs_zero));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421) 		phy_update_bits(inno, i, 0x08, T_HS_TRAIL_CNT_MASK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422) 				T_HS_TRAIL_CNT(hs_trail));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423) 		phy_update_bits(inno, i, 0x09, T_HS_EXIT_CNT_MASK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424) 				T_HS_EXIT_CNT(hs_exit));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425) 		phy_update_bits(inno, i, 0x0a, T_CLK_POST_CNT_MASK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 426) 				T_CLK_POST_CNT(clk_post));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 427) 		phy_update_bits(inno, i, 0x0e, T_CLK_PRE_CNT_MASK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 428) 				T_CLK_PRE_CNT(clk_pre));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 429) 		phy_update_bits(inno, i, 0x0c, T_WAKEUP_CNT_HI_MASK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 430) 				T_WAKEUP_CNT_HI(wakeup >> 8));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 431) 		phy_update_bits(inno, i, 0x0d, T_WAKEUP_CNT_LO_MASK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 432) 				T_WAKEUP_CNT_LO(wakeup));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 433) 		phy_update_bits(inno, i, 0x10, T_TA_GO_CNT_MASK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 434) 				T_TA_GO_CNT(ta_go));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 435) 		phy_update_bits(inno, i, 0x11, T_TA_SURE_CNT_MASK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 436) 				T_TA_SURE_CNT(ta_sure));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 437) 		phy_update_bits(inno, i, 0x12, T_TA_WAIT_CNT_MASK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 438) 				T_TA_WAIT_CNT(ta_wait));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 439) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 440) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 441) 	/* Enable all lanes on analog part */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 442) 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 443) 			LANE_EN_MASK, LANE_EN_CK | LANE_EN_3 | LANE_EN_2 |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 444) 			LANE_EN_1 | LANE_EN_0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 445) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 446) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 447) static void inno_video_phy_lvds_mode_enable(struct inno_video_phy *inno)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 448) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 449) 	u8 prediv = 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 450) 	u16 fbdiv = 28;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 451) 	u32 val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 452) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 453) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 454) 	/* Sample clock reverse direction */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 455) 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x08,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 456) 			SAMPLE_CLOCK_DIRECTION_MASK | LOWFRE_EN_MASK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 457) 			SAMPLE_CLOCK_DIRECTION_REVERSE |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 458) 			PLL_OUTPUT_FREQUENCY_DIV_BY_1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 459) 	/* Select LVDS mode */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 460) 	phy_update_bits(inno, REGISTER_PART_LVDS, 0x03,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 461) 			MODE_ENABLE_MASK, LVDS_MODE_ENABLE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 462) 	/* Configure PLL */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 463) 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 464) 			REG_PREDIV_MASK, REG_PREDIV(prediv));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 465) 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 466) 			REG_FBDIV_HI_MASK, REG_FBDIV_HI(fbdiv >> 8));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 467) 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x04,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 468) 			REG_FBDIV_LO_MASK, REG_FBDIV_LO(fbdiv));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 469) 	phy_update_bits(inno, REGISTER_PART_LVDS, 0x08, 0xff, 0xfc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 470) 	/* Enable PLL and Bandgap */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 471) 	phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 472) 			LVDS_PLL_POWER_MASK | LVDS_BANDGAP_POWER_MASK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 473) 			LVDS_PLL_POWER_ON | LVDS_BANDGAP_POWER_ON);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 474) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 475) 	ret = readl_relaxed_poll_timeout(inno->host_base + DSI_PHY_STATUS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 476) 					 val, val & PHY_LOCK, 50, 10000);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 477) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 478) 		dev_err(inno->dev, "PLL is not lock\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 479) 	/* Select PLL mode */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 480) 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x1e,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 481) 			PLL_MODE_SEL_MASK, PLL_MODE_SEL_LVDS_MODE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 482) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 483) 	/* Reset LVDS digital logic */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 484) 	phy_update_bits(inno, REGISTER_PART_LVDS, 0x00,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 485) 			LVDS_DIGITAL_INTERNAL_RESET_MASK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 486) 			LVDS_DIGITAL_INTERNAL_RESET_ENABLE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 487) 	udelay(1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 488) 	phy_update_bits(inno, REGISTER_PART_LVDS, 0x00,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 489) 			LVDS_DIGITAL_INTERNAL_RESET_MASK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 490) 			LVDS_DIGITAL_INTERNAL_RESET_DISABLE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 491) 	/* Enable LVDS digital logic */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 492) 	phy_update_bits(inno, REGISTER_PART_LVDS, 0x01,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 493) 			LVDS_DIGITAL_INTERNAL_ENABLE_MASK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 494) 			LVDS_DIGITAL_INTERNAL_ENABLE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 495) 	/* Enable LVDS analog driver */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 496) 	phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 497) 			LVDS_LANE_EN_MASK, LVDS_CLK_LANE_EN |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 498) 			LVDS_DATA_LANE0_EN | LVDS_DATA_LANE1_EN |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 499) 			LVDS_DATA_LANE2_EN | LVDS_DATA_LANE3_EN);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 500) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 501) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 502) static void inno_video_phy_ttl_mode_enable(struct inno_video_phy *inno)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 503) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 504) 	/* Select TTL mode */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 505) 	phy_update_bits(inno, REGISTER_PART_LVDS, 0x03,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 506) 			MODE_ENABLE_MASK, TTL_MODE_ENABLE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 507) 	/* Reset digital logic */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 508) 	phy_update_bits(inno, REGISTER_PART_LVDS, 0x00,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 509) 			LVDS_DIGITAL_INTERNAL_RESET_MASK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 510) 			LVDS_DIGITAL_INTERNAL_RESET_ENABLE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 511) 	udelay(1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 512) 	phy_update_bits(inno, REGISTER_PART_LVDS, 0x00,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 513) 			LVDS_DIGITAL_INTERNAL_RESET_MASK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 514) 			LVDS_DIGITAL_INTERNAL_RESET_DISABLE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 515) 	/* Enable digital logic */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 516) 	phy_update_bits(inno, REGISTER_PART_LVDS, 0x01,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 517) 			LVDS_DIGITAL_INTERNAL_ENABLE_MASK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 518) 			LVDS_DIGITAL_INTERNAL_ENABLE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 519) 	/* Enable analog driver */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 520) 	phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 521) 			LVDS_LANE_EN_MASK, LVDS_CLK_LANE_EN |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 522) 			LVDS_DATA_LANE0_EN | LVDS_DATA_LANE1_EN |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 523) 			LVDS_DATA_LANE2_EN | LVDS_DATA_LANE3_EN);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 524) 	/* Enable for clk lane in TTL mode */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 525) 	host_update_bits(inno, DSI_PHY_RSTZ, PHY_ENABLECLK, PHY_ENABLECLK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 526) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 527) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 528) static int inno_video_phy_power_on(struct phy *phy)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 529) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 530) 	struct inno_video_phy *inno = phy_get_drvdata(phy);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 531) 	enum phy_mode mode = phy_get_mode(phy);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 532) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 533) 	clk_prepare_enable(inno->pclk_host);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 534) 	clk_prepare_enable(inno->pclk_phy);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 535) 	pm_runtime_get_sync(inno->dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 536) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 537) 	/* Bandgap power on */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 538) 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 539) 			BANDGAP_POWER_MASK, BANDGAP_POWER_ON);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 540) 	/* Enable power work */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 541) 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 542) 			POWER_WORK_MASK, POWER_WORK_ENABLE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 543) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 544) 	switch (mode) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 545) 	case PHY_MODE_MIPI_DPHY:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 546) 		inno_video_phy_mipi_mode_enable(inno);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 547) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 548) 	case PHY_MODE_LVDS:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 549) 		inno_video_phy_lvds_mode_enable(inno);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 550) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 551) 	default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 552) 		inno_video_phy_ttl_mode_enable(inno);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 553) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 554) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 555) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 556) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 557) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 558) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 559) static int inno_video_phy_power_off(struct phy *phy)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 560) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 561) 	struct inno_video_phy *inno = phy_get_drvdata(phy);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 562) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 563) 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00, LANE_EN_MASK, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 564) 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 565) 			REG_LDOPD_MASK | REG_PLLPD_MASK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 566) 			REG_LDOPD_POWER_DOWN | REG_PLLPD_POWER_DOWN);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 567) 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 568) 			POWER_WORK_MASK, POWER_WORK_DISABLE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 569) 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 570) 			BANDGAP_POWER_MASK, BANDGAP_POWER_DOWN);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 571) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 572) 	phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b, LVDS_LANE_EN_MASK, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 573) 	phy_update_bits(inno, REGISTER_PART_LVDS, 0x01,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 574) 			LVDS_DIGITAL_INTERNAL_ENABLE_MASK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 575) 			LVDS_DIGITAL_INTERNAL_DISABLE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 576) 	phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 577) 			LVDS_PLL_POWER_MASK | LVDS_BANDGAP_POWER_MASK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 578) 			LVDS_PLL_POWER_OFF | LVDS_BANDGAP_POWER_DOWN);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 579) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 580) 	pm_runtime_put(inno->dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 581) 	clk_disable_unprepare(inno->pclk_phy);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 582) 	clk_disable_unprepare(inno->pclk_host);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 583) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 584) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 585) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 586) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 587) static int inno_video_phy_set_mode(struct phy *phy, enum phy_mode mode)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 588) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 589) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 590) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 591) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 592) static const struct phy_ops inno_video_phy_ops = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 593) 	.set_mode = inno_video_phy_set_mode,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 594) 	.power_on = inno_video_phy_power_on,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 595) 	.power_off = inno_video_phy_power_off,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 596) 	.owner = THIS_MODULE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 597) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 598) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 599) static unsigned long inno_video_phy_pll_round_rate(struct inno_video_phy *inno,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 600) 						   unsigned long prate,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 601) 						   unsigned long rate,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 602) 						   u8 *prediv, u16 *fbdiv)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 603) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 604) 	unsigned long best_freq = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 605) 	unsigned long fref, fout;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 606) 	u8 min_prediv, max_prediv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 607) 	u8 _prediv, best_prediv = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 608) 	u16 _fbdiv, best_fbdiv = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 609) 	u32 min_delta = UINT_MAX;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 610) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 611) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 612) 	 * The PLL output frequency can be calculated using a simple formula:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 613) 	 * PLL_Output_Frequency = (FREF / PREDIV * FBDIV) / 2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 614) 	 * PLL_Output_Frequency: it is equal to DDR-Clock-Frequency * 2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 615) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 616) 	fref = prate / 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 617) 	if (rate > 1000000000UL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 618) 		fout = 1000000000UL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 619) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 620) 		fout = rate;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 621) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 622) 	/* 5Mhz < Fref / prediv < 40MHz */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 623) 	min_prediv = DIV_ROUND_UP(fref, 40000000);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 624) 	max_prediv = fref / 5000000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 625) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 626) 	for (_prediv = min_prediv; _prediv <= max_prediv; _prediv++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 627) 		u64 tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 628) 		u32 delta;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 629) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 630) 		tmp = (u64)fout * _prediv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 631) 		do_div(tmp, fref);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 632) 		_fbdiv = tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 633) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 634) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 635) 		 * The all possible settings of feedback divider are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 636) 		 * 12, 13, 14, 16, ~ 511
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 637) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 638) 		if (_fbdiv == 15)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 639) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 640) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 641) 		if (_fbdiv < 12 || _fbdiv > 511)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 642) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 643) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 644) 		tmp = (u64)_fbdiv * fref;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 645) 		do_div(tmp, _prediv);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 646) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 647) 		delta = abs(fout - tmp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 648) 		if (!delta) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 649) 			best_prediv = _prediv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 650) 			best_fbdiv = _fbdiv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 651) 			best_freq = tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 652) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 653) 		} else if (delta < min_delta) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 654) 			best_prediv = _prediv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 655) 			best_fbdiv = _fbdiv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 656) 			best_freq = tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 657) 			min_delta = delta;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 658) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 659) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 660) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 661) 	if (best_freq) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 662) 		*prediv = best_prediv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 663) 		*fbdiv = best_fbdiv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 664) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 665) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 666) 	return best_freq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 667) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 668) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 669) static long inno_video_phy_pll_clk_round_rate(struct clk_hw *hw,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 670) 					      unsigned long rate,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 671) 					      unsigned long *prate)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 672) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 673) 	struct inno_video_phy *inno = hw_to_inno(hw);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 674) 	unsigned long fin = *prate;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 675) 	unsigned long fout;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 676) 	u16 fbdiv = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 677) 	u8 prediv = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 678) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 679) 	fout = inno_video_phy_pll_round_rate(inno, fin, rate,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 680) 					     &prediv, &fbdiv);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 681) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 682) 	dev_dbg(inno->dev, "fin=%lu, fout=%lu, prediv=%u, fbdiv=%u\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 683) 		*prate, fout, prediv, fbdiv);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 684) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 685) 	inno->pll.prediv = prediv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 686) 	inno->pll.fbdiv = fbdiv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 687) 	inno->pll.rate = fout;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 688) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 689) 	return fout;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 690) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 691) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 692) static int inno_video_phy_pll_clk_set_rate(struct clk_hw *hw,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 693) 					   unsigned long rate,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 694) 					   unsigned long parent_rate)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 695) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 696) 	struct inno_video_phy *inno = hw_to_inno(hw);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 697) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 698) 	inno->pll.rate = rate;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 699) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 700) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 701) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 702) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 703) static unsigned long
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 704) inno_video_phy_pll_clk_recalc_rate(struct clk_hw *hw, unsigned long prate)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 705) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 706) 	struct inno_video_phy *inno = hw_to_inno(hw);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 707) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 708) 	return inno->pll.rate;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 709) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 710) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 711) static const struct clk_ops inno_video_phy_pll_clk_ops = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 712) 	.round_rate = inno_video_phy_pll_clk_round_rate,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 713) 	.set_rate = inno_video_phy_pll_clk_set_rate,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 714) 	.recalc_rate = inno_video_phy_pll_clk_recalc_rate,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 715) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 716) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 717) static int inno_video_phy_pll_register(struct inno_video_phy *inno)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 718) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 719) 	struct device *dev = inno->dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 720) 	struct clk *clk;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 721) 	const char *parent_name;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 722) 	struct clk_init_data init = {};
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 723) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 724) 	static int phy_pll_num;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 725) 	char pll_name[20] = "video_phy_pll_";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 726) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 727) 	parent_name = __clk_get_name(inno->ref_clk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 728) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 729) 	strcat(pll_name, phy_pll_num++ ? "1" : "0");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 730) 	init.name = pll_name;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 731) 	init.ops = &inno_video_phy_pll_clk_ops;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 732) 	init.parent_names = &parent_name;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 733) 	init.num_parents = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 734) 	init.flags = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 735) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 736) 	inno->pll.hw.init = &init;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 737) 	clk = devm_clk_register(dev, &inno->pll.hw);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 738) 	if (IS_ERR(clk)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 739) 		ret = PTR_ERR(clk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 740) 		dev_err(dev, "failed to register PLL: %d\n", ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 741) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 742) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 743) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 744) 	return of_clk_add_provider(dev->of_node, of_clk_src_simple_get, clk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 745) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 746) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 747) static void inno_video_phy_pll_unregister(struct inno_video_phy *inno)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 748) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 749) 	struct device *dev = inno->dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 750) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 751) 	of_clk_del_provider(dev->of_node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 752) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 753) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 754) static int inno_video_phy_probe(struct platform_device *pdev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 755) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 756) 	struct device *dev = &pdev->dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 757) 	struct inno_video_phy *inno;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 758) 	struct phy_provider *phy_provider;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 759) 	struct phy *phy;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 760) 	struct resource *res;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 761) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 762) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 763) 	inno = devm_kzalloc(dev, sizeof(*inno), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 764) 	if (!inno)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 765) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 766) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 767) 	inno->dev = dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 768) 	platform_set_drvdata(pdev, inno);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 769) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 770) 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 771) 	if (!res) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 772) 		dev_err(dev, "invalid phy resource\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 773) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 774) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 775) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 776) 	inno->phy_base = devm_ioremap(dev, res->start, resource_size(res));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 777) 	if (!inno->phy_base)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 778) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 779) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 780) 	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 781) 	if (!res) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 782) 		dev_err(dev, "invalid host resource\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 783) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 784) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 785) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 786) 	inno->host_base = devm_ioremap(dev, res->start, resource_size(res));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 787) 	if (!inno->host_base)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 788) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 789) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 790) 	inno->ref_clk = devm_clk_get(dev, "ref");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 791) 	if (IS_ERR(inno->ref_clk)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 792) 		ret = PTR_ERR(inno->ref_clk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 793) 		dev_err(dev, "failed to get ref clock: %d\n", ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 794) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 795) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 796) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 797) 	inno->pclk_phy = devm_clk_get(dev, "pclk_phy");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 798) 	if (IS_ERR(inno->pclk_phy)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 799) 		ret = PTR_ERR(inno->pclk_phy);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 800) 		dev_err(dev, "failed to get phy pclk: %d\n", ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 801) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 802) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 803) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 804) 	inno->pclk_host = devm_clk_get(dev, "pclk_host");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 805) 	if (IS_ERR(inno->pclk_host)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 806) 		ret = PTR_ERR(inno->pclk_host);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 807) 		dev_err(dev, "failed to get host pclk: %d\n", ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 808) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 809) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 810) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 811) 	inno->rst = devm_reset_control_get(dev, "rst");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 812) 	if (IS_ERR(inno->rst)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 813) 		ret = PTR_ERR(inno->rst);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 814) 		dev_err(dev, "failed to get system reset control: %d\n", ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 815) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 816) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 817) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 818) 	phy = devm_phy_create(dev, NULL, &inno_video_phy_ops);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 819) 	if (IS_ERR(phy)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 820) 		ret = PTR_ERR(phy);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 821) 		dev_err(dev, "failed to create phy: %d\n", ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 822) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 823) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 824) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 825) 	phy_set_drvdata(phy, inno);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 826) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 827) 	phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 828) 	if (IS_ERR(phy_provider)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 829) 		ret = PTR_ERR(phy_provider);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 830) 		dev_err(dev, "failed to register phy provider: %d\n", ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 831) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 832) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 833) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 834) 	ret = inno_video_phy_pll_register(inno);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 835) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 836) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 837) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 838) 	pm_runtime_enable(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 839) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 840) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 841) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 842) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 843) static int inno_video_phy_remove(struct platform_device *pdev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 844) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 845) 	struct inno_video_phy *inno = platform_get_drvdata(pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 846) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 847) 	pm_runtime_disable(inno->dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 848) 	inno_video_phy_pll_unregister(inno);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 849) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 850) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 851) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 852) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 853) static const struct of_device_id inno_video_phy_of_match[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 854) 	{ .compatible = "rockchip,px30-video-phy", },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 855) 	{ .compatible = "rockchip,rk3128-video-phy", },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 856) 	{ .compatible = "rockchip,rk3368-video-phy", },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 857) 	{ .compatible = "rockchip,rk3568-video-phy", },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 858) 	{}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 859) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 860) MODULE_DEVICE_TABLE(of, inno_video_phy_of_match);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 861) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 862) static struct platform_driver inno_video_phy_driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 863) 	.driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 864) 		.name = "inno-video-combo-phy",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 865) 		.of_match_table	= of_match_ptr(inno_video_phy_of_match),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 866) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 867) 	.probe = inno_video_phy_probe,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 868) 	.remove = inno_video_phy_remove,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 869) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 870) module_platform_driver(inno_video_phy_driver);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 871) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 872) MODULE_AUTHOR("Wyon Bi <bivvy.bi@rock-chips.com>");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 873) MODULE_DESCRIPTION("Innosilicon MIPI/LVDS/TTL Video Combo PHY driver");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 874) MODULE_LICENSE("GPL v2");