Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2)  * Copyright (c) 2017 Rockchip Electronics Co. Ltd.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4)  * This program is free software; you can redistribute it and/or modify
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5)  * it under the terms of the GNU General Public License as published by
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6)  * the Free Software Foundation; either version 2 of the License, or
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7)  * (at your option) any later version.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9)  * This program is distributed in the hope that it will be useful,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10)  * but WITHOUT ANY WARRANTY; without even the implied warranty of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11)  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12)  * GNU General Public License for more details.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15) #include <linux/kernel.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16) #include <linux/clk.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17) #include <linux/clk-provider.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18) #include <linux/delay.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19) #include <linux/init.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21) #include <linux/of_device.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22) #include <linux/platform_device.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23) #include <linux/regmap.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24) #include <linux/reset.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25) #include <linux/phy/phy.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26) #include <linux/pm_runtime.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27) #include <linux/mfd/syscon.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29) #define UPDATE(x, h, l)	(((x) << (l)) & GENMASK((h), (l)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32)  * The offset address[7:0] is distributed two parts, one from the bit7 to bit5
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33)  * is the first address, the other from the bit4 to bit0 is the second address.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34)  * when you configure the registers, you must set both of them. The Clock Lane
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35)  * and Data Lane use the same registers with the same second address, but the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36)  * first address is different.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38) #define FIRST_ADDRESS(x)		(((x) & 0x7) << 5)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39) #define SECOND_ADDRESS(x)		(((x) & 0x1f) << 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40) #define INNO_PHY_REG(first, second)	(FIRST_ADDRESS(first) | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41) 					 SECOND_ADDRESS(second))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43) /* Analog Register Part: reg00 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44) #define BANDGAP_POWER_MASK		BIT(7)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45) #define BANDGAP_POWER_DOWN		BIT(7)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46) #define BANDGAP_POWER_ON		0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47) #define LANE_EN_MASK			GENMASK(6, 2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48) #define LANE_EN_CK			BIT(6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49) #define LANE_EN_3			BIT(5)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50) #define LANE_EN_2			BIT(4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51) #define LANE_EN_1			BIT(3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52) #define LANE_EN_0			BIT(2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53) #define POWER_WORK_MASK			GENMASK(1, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54) #define POWER_WORK_ENABLE		UPDATE(1, 1, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55) #define POWER_WORK_DISABLE		UPDATE(2, 1, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56) /* Analog Register Part: reg01 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57) #define REG_SYNCRST_MASK		BIT(2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58) #define REG_SYNCRST_RESET		BIT(2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59) #define REG_SYNCRST_NORMAL		0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60) #define REG_LDOPD_MASK			BIT(1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61) #define REG_LDOPD_POWER_DOWN		BIT(1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62) #define REG_LDOPD_POWER_ON		0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63) #define REG_PLLPD_MASK			BIT(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64) #define REG_PLLPD_POWER_DOWN		BIT(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65) #define REG_PLLPD_POWER_ON		0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66) /* Analog Register Part: reg03 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67) #define REG_FBDIV_HI_MASK		BIT(5)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68) #define REG_FBDIV_HI(x)			UPDATE(x, 5, 5)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69) #define REG_PREDIV_MASK			GENMASK(4, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70) #define REG_PREDIV(x)			UPDATE(x, 4, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71) /* Analog Register Part: reg04 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72) #define REG_FBDIV_LO_MASK		GENMASK(7, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73) #define REG_FBDIV_LO(x)			UPDATE(x, 7, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74) /* Analog Register Part: reg05 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75) #define CLK_LANE_SKEW_PHASE_SET_MASK	GENMASK(2, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76) #define CLK_LANE_SKEW_PHASE_SET(x)	UPDATE(x, 2, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77) /* Analog Register Part: reg06 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78) #define LDO_OUTPUT_SET_HI_MASK		BIT(7)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79) #define LDO_OUTPUT_SET_HI(x)		UPDATE(x, 7, 7)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80) #define LANE_3_SKEW_PHASE_SET_MASK	GENMASK(6, 4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81) #define LANE_3_SKEW_PHASE_SET(x)	UPDATE(x, 6, 4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82) #define LDO_OUTPUT_SET_LO_MASK		BIT(3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83) #define LDO_OUTPUT_SET_LO(x)		UPDATE(x, 3, 3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84) #define LANE_2_SKEW_PHASE_SET_MASK	GENMASK(2, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85) #define LANE_2_SKEW_PHASE_SET(x)	UPDATE(x, 2, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86) /* Analog Register Part: reg07 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87) #define PRE_EMPHASIS_RANGE_SET_HI_MASK	BIT(7)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88) #define PRE_EMPHASIS_RANGE_SET_HI(x)	UPDATE(x, 7, 7)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89) #define LANE_1_SKEW_PHASE_SET_MASK	GENMASK(6, 4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90) #define LANE_1_SKEW_PHASE_SET(x)	UPDATE(x, 6, 4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91) #define PRE_EMPHASIS_RANGE_SET_LO_MASK	BIT(3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92) #define PRE_EMPHASIS_RANGE_SET_LO(x)	UPDATE(x, 3, 3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93) #define LANE_0_SKEW_PHASE_SET_MASK	GENMASK(2, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94) #define LANE_0_SKEW_PHASE_SET(x)	UPDATE(x, 2, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95) /* Analog Register Part: reg08 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96) #define PRE_EMPHASIS_ENABLE_MASK	BIT(7)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97) #define PRE_EMPHASIS_ENABLE		BIT(7)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98) #define PRE_EMPHASIS_DISABLE		0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99) #define PLL_POST_DIV_ENABLE_MASK	BIT(5)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) #define PLL_POST_DIV_ENABLE		BIT(5)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) #define PLL_POST_DIV_DISABLE		0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) #define DATA_LANE_VOD_RANGE_SET_MASK	GENMASK(3, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) #define DATA_LANE_VOD_RANGE_SET(x)	UPDATE(x, 3, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) /* Analog Register Part: reg0b */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) #define CLOCK_LANE_VOD_RANGE_SET_MASK	GENMASK(3, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) #define CLOCK_LANE_VOD_RANGE_SET(x)	UPDATE(x, 3, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) #define VOD_MIN_RANGE			0x1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) #define VOD_MID_RANGE			0x3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) #define VOD_BIG_RANGE			0x7
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) #define VOD_MAX_RANGE			0xf
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) /* Analog Register Part: reg11 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) #define DATA_SAMPLE_PHASE_SET_MASK	GENMASK(7, 6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) #define DATA_SAMPLE_PHASE_SET(x)	UPDATE(x, 7, 6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) /* Digital Register Part: reg00 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) #define REG_DIG_RSTN_MASK		BIT(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) #define REG_DIG_RSTN_NORMAL		BIT(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) #define REG_DIG_RSTN_RESET		0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) /* Digital Register Part: reg01 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) #define INV_PIN_TXCLKESC_0_ENABLE_MASK	BIT(1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) #define INV_PIN_TXCLKESC_0_ENABLE	BIT(1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) #define INV_PIN_TXCLKESC_0_DISABLE	0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) #define INV_PIN_TXBYTECLKHS_ENABLE_MASK	BIT(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) #define INV_PIN_TXBYTECLKHS_ENABLE	BIT(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) #define INV_PIN_TXBYTECLKHS_DISABLE	0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg00 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) #define DIFF_SIGNAL_SWAP_ENABLE_MASK	BIT(4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) #define DIFF_SIGNAL_SWAP_ENABLE		BIT(4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) #define DIFF_SIGNAL_SWAP_DISABLE	0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg05 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) #define T_LPX_CNT_MASK			GENMASK(5, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) #define T_LPX_CNT(x)			UPDATE(x, 5, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg06 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) #define T_HS_ZERO_CNT_HI_MASK		BIT(7)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) #define T_HS_ZERO_CNT_HI(x)		UPDATE(x, 7, 7)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) #define T_HS_PREPARE_CNT_MASK		GENMASK(6, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) #define T_HS_PREPARE_CNT(x)		UPDATE(x, 6, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg07 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) #define T_HS_ZERO_CNT_LO_MASK		GENMASK(5, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) #define T_HS_ZERO_CNT_LO(x)		UPDATE(x, 5, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg08 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) #define T_HS_TRAIL_CNT_MASK		GENMASK(6, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) #define T_HS_TRAIL_CNT(x)		UPDATE(x, 6, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg09 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) #define T_HS_EXIT_CNT_LO_MASK		GENMASK(4, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) #define T_HS_EXIT_CNT_LO(x)		UPDATE(x, 4, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0a */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) #define T_CLK_POST_CNT_LO_MASK		GENMASK(3, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) #define T_CLK_POST_CNT_LO(x)		UPDATE(x, 3, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0c */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) #define LPDT_TX_PPI_SYNC_ENABLE_MASK	BIT(2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) #define LPDT_TX_PPI_SYNC_ENABLE		BIT(2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) #define LPDT_TX_PPI_SYNC_DISABLE	0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) #define T_WAKEUP_CNT_HI_MASK		GENMASK(1, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) #define T_WAKEUP_CNT_HI(x)		UPDATE(x, 1, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0d */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) #define T_WAKEUP_CNT_LO_MASK		GENMASK(7, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) #define T_WAKEUP_CNT_LO(x)		UPDATE(x, 7, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0e */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) #define T_CLK_PRE_CNT_MASK		GENMASK(3, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) #define T_CLK_PRE_CNT(x)		UPDATE(x, 3, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg10 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) #define T_CLK_POST_HI_MASK		GENMASK(7, 6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) #define T_CLK_POST_HI(x)		UPDATE(x, 7, 6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) #define T_TA_GO_CNT_MASK		GENMASK(5, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) #define T_TA_GO_CNT(x)			UPDATE(x, 5, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg11 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) #define T_HS_EXIT_CNT_HI_MASK		BIT(6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) #define T_HS_EXIT_CNT_HI(x)		UPDATE(x, 6, 6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) #define T_TA_SURE_CNT_MASK		GENMASK(5, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) #define T_TA_SURE_CNT(x)		UPDATE(x, 5, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg12 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) #define T_TA_WAIT_CNT_MASK		GENMASK(5, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) #define T_TA_WAIT_CNT(x)		UPDATE(x, 5, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) #define PSEC_PER_NSEC	1000L
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) #define PSECS_PER_SEC	1000000000000LL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) enum inno_video_phy_functions {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) 	INNO_PHY_PADCTL_FUNC_MIPI,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) 	INNO_PHY_PADCTL_FUNC_LVDS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) 	INNO_PHY_PADCTL_FUNC_TTL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) 	INNO_PHY_PADCTL_FUNC_IDLE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) struct mipi_dphy_timing {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) 	unsigned int clkmiss;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) 	unsigned int clkpost;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) 	unsigned int clkpre;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) 	unsigned int clkprepare;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) 	unsigned int clksettle;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) 	unsigned int clktermen;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) 	unsigned int clktrail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) 	unsigned int clkzero;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) 	unsigned int dtermen;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) 	unsigned int eot;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) 	unsigned int hsexit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) 	unsigned int hsprepare;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) 	unsigned int hszero;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) 	unsigned int hssettle;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) 	unsigned int hsskip;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) 	unsigned int hstrail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) 	unsigned int init;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) 	unsigned int lpx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) 	unsigned int taget;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) 	unsigned int tago;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) 	unsigned int tasure;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) 	unsigned int wakeup;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) struct inno_mipi_dphy_timing {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) 	unsigned int max_lane_mbps;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) 	u8 lpx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) 	u8 hs_prepare;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) 	u8 clk_lane_hs_zero;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) 	u8 data_lane_hs_zero;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) 	u8 hs_trail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) struct inno_mipi_dphy {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) 	struct device *dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) 	struct clk *ref_clk;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) 	struct clk *pclk;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) 	struct regmap *regmap;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) 	struct reset_control *rst;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) 	struct regmap *grf;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) 	unsigned int lanes;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) 	unsigned long lane_rate;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) 	struct {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) 		struct clk_hw hw;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) 		u8 prediv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) 		u16 fbdiv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) 	} pll;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) enum {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) 	REGISTER_PART_ANALOG,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) 	REGISTER_PART_DIGITAL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) 	REGISTER_PART_CLOCK_LANE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) 	REGISTER_PART_DATA0_LANE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) 	REGISTER_PART_DATA1_LANE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) 	REGISTER_PART_DATA2_LANE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) 	REGISTER_PART_DATA3_LANE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) static const
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) struct inno_mipi_dphy_timing inno_mipi_dphy_timing_table[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) 	{ 110, 0x02, 0x7f, 0x16, 0x02, 0x02},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) 	{ 150, 0x02, 0x7f, 0x16, 0x03, 0x02},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) 	{ 200, 0x02, 0x7f, 0x17, 0x04, 0x02},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) 	{ 250, 0x02, 0x7f, 0x17, 0x05, 0x04},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) 	{ 300, 0x02, 0x7f, 0x18, 0x06, 0x04},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) 	{ 400, 0x03, 0x7e, 0x19, 0x07, 0x04},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) 	{ 500, 0x03, 0x7c, 0x1b, 0x07, 0x08},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) 	{ 600, 0x03, 0x70, 0x1d, 0x08, 0x10},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) 	{ 700, 0x05, 0x40, 0x1e, 0x08, 0x30},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) 	{ 800, 0x05, 0x02, 0x1f, 0x09, 0x30},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) 	{1000, 0x05, 0x08, 0x20, 0x09, 0x30},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) 	{1200, 0x06, 0x03, 0x32, 0x14, 0x0f},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) 	{1400, 0x09, 0x03, 0x32, 0x14, 0x0f},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) 	{1600, 0x0d, 0x42, 0x36, 0x0e, 0x0f},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) 	{1800, 0x0e, 0x47, 0x7a, 0x0e, 0x0f},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) 	{2000, 0x11, 0x64, 0x7a, 0x0e, 0x0b},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) 	{2200, 0x13, 0x64, 0x7e, 0x15, 0x0b},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) 	{2400, 0x13, 0x33, 0x7f, 0x15, 0x6a},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) 	{2500, 0x15, 0x54, 0x7f, 0x15, 0x6a},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) static inline struct inno_mipi_dphy *hw_to_inno(struct clk_hw *hw)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) 	return container_of(hw, struct inno_mipi_dphy, pll.hw);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) static void inno_update_bits(struct inno_mipi_dphy *inno, u8 first, u8 second,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) 			     u8 mask, u8 val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) 	u32 reg = INNO_PHY_REG(first, second) << 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) 	regmap_update_bits(inno->regmap, reg, mask, val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) static void inno_mipi_dphy_reset(struct inno_mipi_dphy *inno)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) 	/* Reset analog */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) 	inno_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) 			 REG_SYNCRST_MASK, REG_SYNCRST_RESET);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) 	udelay(1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) 	inno_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) 			 REG_SYNCRST_MASK, REG_SYNCRST_NORMAL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) 	/* Reset digital */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) 	inno_update_bits(inno, REGISTER_PART_DIGITAL, 0x00,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) 			 REG_DIG_RSTN_MASK, REG_DIG_RSTN_RESET);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) 	udelay(1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) 	inno_update_bits(inno, REGISTER_PART_DIGITAL, 0x00,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) 			 REG_DIG_RSTN_MASK, REG_DIG_RSTN_NORMAL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) static void inno_mipi_dphy_power_work_enable(struct inno_mipi_dphy *inno)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) 	inno_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) 			 POWER_WORK_MASK, POWER_WORK_ENABLE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) static void inno_mipi_dphy_power_work_disable(struct inno_mipi_dphy *inno)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) 	inno_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) 			 POWER_WORK_MASK, POWER_WORK_DISABLE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) static void inno_mipi_dphy_bandgap_power_enable(struct inno_mipi_dphy *inno)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) 	inno_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) 			 BANDGAP_POWER_MASK, BANDGAP_POWER_ON);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) static void inno_mipi_dphy_bandgap_power_disable(struct inno_mipi_dphy *inno)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) 	inno_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) 			 BANDGAP_POWER_MASK, BANDGAP_POWER_DOWN);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) static void inno_mipi_dphy_lane_enable(struct inno_mipi_dphy *inno)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) 	u8 val = LANE_EN_CK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) 	switch (inno->lanes) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) 	case 1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) 		val |= LANE_EN_0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) 	case 2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) 		val |= LANE_EN_1 | LANE_EN_0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) 	case 3:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) 		val |= LANE_EN_2 | LANE_EN_1 | LANE_EN_0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) 	case 4:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) 	default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) 		val |= LANE_EN_3 | LANE_EN_2 | LANE_EN_1 | LANE_EN_0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) 	inno_update_bits(inno, REGISTER_PART_ANALOG, 0x00, LANE_EN_MASK, val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) static void inno_mipi_dphy_lane_disable(struct inno_mipi_dphy *inno)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) 	inno_update_bits(inno, REGISTER_PART_ANALOG, 0x00, LANE_EN_MASK, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) static void inno_mipi_dphy_pll_enable(struct inno_mipi_dphy *inno)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) 	inno_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) 			 REG_PREDIV_MASK, REG_PREDIV(inno->pll.prediv));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) 	inno_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) 			 REG_FBDIV_HI_MASK, REG_FBDIV_HI(inno->pll.fbdiv >> 8));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) 	inno_update_bits(inno, REGISTER_PART_ANALOG, 0x04,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358) 			 REG_FBDIV_LO_MASK, REG_FBDIV_LO(inno->pll.fbdiv));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) 	inno_update_bits(inno, REGISTER_PART_ANALOG, 0x08,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) 			 PLL_POST_DIV_ENABLE_MASK, PLL_POST_DIV_ENABLE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) 	inno_update_bits(inno, REGISTER_PART_ANALOG, 0x0b,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) 			 CLOCK_LANE_VOD_RANGE_SET_MASK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) 			 CLOCK_LANE_VOD_RANGE_SET(VOD_MAX_RANGE));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) 	inno_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) 			 REG_LDOPD_MASK | REG_PLLPD_MASK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) 			 REG_LDOPD_POWER_ON | REG_PLLPD_POWER_ON);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) static void inno_mipi_dphy_pll_disable(struct inno_mipi_dphy *inno)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371) 	inno_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) 			 REG_LDOPD_MASK | REG_PLLPD_MASK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373) 			 REG_LDOPD_POWER_DOWN | REG_PLLPD_POWER_DOWN);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376) static void mipi_dphy_timing_get_default(struct mipi_dphy_timing *timing,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) 					 unsigned long period)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379) 	/* Global Operation Timing Parameters */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) 	timing->clkmiss = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382) 	 * The D-PHY spec define the clk post min time is 60ns + 52UI and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383) 	 * no define max time, so we set 200 + 52UI leave move margin.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) 	timing->clkpost = 200 + 52 * period / PSEC_PER_NSEC;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) 	timing->clkpre = 8 * period / PSEC_PER_NSEC;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387) 	timing->clkprepare = 65;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388) 	timing->clksettle = 95;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) 	timing->clktermen = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390) 	timing->clktrail = 80;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391) 	timing->clkzero = 260;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392) 	timing->dtermen = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393) 	timing->eot = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394) 	timing->hsexit = 120;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395) 	timing->hsprepare = 65 + 4 * period / PSEC_PER_NSEC;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396) 	timing->hszero = 145 + 6 * period / PSEC_PER_NSEC;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397) 	timing->hssettle = 85 + 6 * period / PSEC_PER_NSEC;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398) 	timing->hsskip = 40;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399) 	timing->hstrail = max(8 * period / PSEC_PER_NSEC,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400) 			      60 + 4 * period / PSEC_PER_NSEC);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401) 	timing->init = 100000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402) 	timing->lpx = 60;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403) 	timing->taget = 5 * timing->lpx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404) 	timing->tago = 4 * timing->lpx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405) 	timing->tasure = 2 * timing->lpx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406) 	timing->wakeup = 1000000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409) static const struct inno_mipi_dphy_timing *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410) inno_mipi_dphy_get_timing(struct inno_mipi_dphy *inno)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412) 	const struct inno_mipi_dphy_timing *timings;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413) 	unsigned int num_timings;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414) 	unsigned int lane_mbps = inno->lane_rate / USEC_PER_SEC;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415) 	unsigned int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417) 	timings = inno_mipi_dphy_timing_table;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418) 	num_timings = ARRAY_SIZE(inno_mipi_dphy_timing_table);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420) 	for (i = 0; i < num_timings; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421) 		if (lane_mbps <= timings[i].max_lane_mbps)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424) 	if (i == num_timings)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425) 		--i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 426) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 427) 	return &timings[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 428) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 429) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 430) static void inno_mipi_dphy_timing_init(struct inno_mipi_dphy *inno)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 431) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 432) 	struct mipi_dphy_timing gotp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 433) 	const struct inno_mipi_dphy_timing *timing;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 434) 	unsigned long txbyteclk, txclkesc, ui, sys_clk;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 435) 	unsigned int esc_clk_div;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 436) 	u32 hs_exit, clk_post, clk_pre, wakeup, lpx, ta_go, ta_sure, ta_wait;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 437) 	u32 hs_prepare, hs_trail, hs_zero;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 438) 	unsigned int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 439) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 440) 	memset(&gotp, 0, sizeof(gotp));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 441) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 442) 	txbyteclk = inno->lane_rate / 8;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 443) 	sys_clk = clk_get_rate(inno->pclk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 444) 	esc_clk_div = DIV_ROUND_UP(txbyteclk, 20000000);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 445) 	txclkesc = txbyteclk / esc_clk_div;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 446) 	ui = DIV_ROUND_CLOSEST_ULL(PSECS_PER_SEC, inno->lane_rate);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 447) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 448) 	dev_dbg(inno->dev, "txbyteclk=%ld, ui=%ld, sys_clk=%ld\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 449) 		txbyteclk, ui, sys_clk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 450) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 451) 	mipi_dphy_timing_get_default(&gotp, ui);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 452) 	timing = inno_mipi_dphy_get_timing(inno);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 453) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 454) 	hs_exit = DIV_ROUND_UP(gotp.hsexit * txbyteclk, NSEC_PER_SEC);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 455) 	clk_post = DIV_ROUND_UP(gotp.clkpost * txbyteclk, NSEC_PER_SEC);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 456) 	clk_pre = DIV_ROUND_UP(gotp.clkpre * txbyteclk, NSEC_PER_SEC);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 457) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 458) 	wakeup = DIV_ROUND_UP(gotp.wakeup * sys_clk, NSEC_PER_SEC);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 459) 	if (wakeup > 0x3ff)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 460) 		wakeup = 0x3ff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 461) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 462) 	ta_go = DIV_ROUND_UP(gotp.tago * txclkesc, NSEC_PER_SEC);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 463) 	ta_sure = DIV_ROUND_UP(gotp.tasure * txclkesc, NSEC_PER_SEC);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 464) 	ta_wait = DIV_ROUND_UP(gotp.taget * txclkesc, NSEC_PER_SEC);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 465) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 466) 	lpx = timing->lpx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 467) 	hs_prepare = timing->hs_prepare;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 468) 	hs_trail = timing->hs_trail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 469) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 470) 	for (i = REGISTER_PART_CLOCK_LANE; i <= REGISTER_PART_DATA3_LANE; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 471) 		if (i == REGISTER_PART_CLOCK_LANE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 472) 			hs_zero = timing->clk_lane_hs_zero;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 473) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 474) 			hs_zero = timing->data_lane_hs_zero;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 475) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 476) 		dev_dbg(inno->dev, "lpx=%x\n", lpx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 477) 		dev_dbg(inno->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 478) 			"hs_trail=%x, hs_exit=%x, hs_prepare=%x, hs_zero=%x\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 479) 			hs_trail, hs_exit, hs_prepare, hs_zero);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 480) 		dev_dbg(inno->dev, "clk_pre=%x, clk_post=%x\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 481) 			clk_pre, clk_post);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 482) 		dev_dbg(inno->dev, "ta_go=%x, ta_sure=%x, ta_wait=%x\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 483) 			ta_go, ta_sure, ta_wait);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 484) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 485) 		inno_update_bits(inno, i, 0x05, T_LPX_CNT_MASK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 486) 				 T_LPX_CNT(lpx));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 487) 		inno_update_bits(inno, i, 0x06, T_HS_PREPARE_CNT_MASK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 488) 				 T_HS_PREPARE_CNT(hs_prepare));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 489) 		inno_update_bits(inno, i, 0x06, T_HS_ZERO_CNT_HI_MASK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 490) 				 T_HS_ZERO_CNT_HI(hs_zero >> 6));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 491) 		inno_update_bits(inno, i, 0x07, T_HS_ZERO_CNT_LO_MASK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 492) 				 T_HS_ZERO_CNT_LO(hs_zero));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 493) 		inno_update_bits(inno, i, 0x08, T_HS_TRAIL_CNT_MASK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 494) 				 T_HS_TRAIL_CNT(hs_trail));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 495) 		inno_update_bits(inno, i, 0x11, T_HS_EXIT_CNT_HI_MASK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 496) 				 T_HS_EXIT_CNT_HI(hs_exit >> 5));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 497) 		inno_update_bits(inno, i, 0x09, T_HS_EXIT_CNT_LO_MASK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 498) 				 T_HS_EXIT_CNT_LO(hs_exit));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 499) 		inno_update_bits(inno, i, 0x10, T_CLK_POST_HI_MASK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 500) 				 T_CLK_POST_HI(clk_post >> 4));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 501) 		inno_update_bits(inno, i, 0x0a, T_CLK_POST_CNT_LO_MASK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 502) 				 T_CLK_POST_CNT_LO(clk_post));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 503) 		inno_update_bits(inno, i, 0x0e, T_CLK_PRE_CNT_MASK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 504) 				 T_CLK_PRE_CNT(clk_pre));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 505) 		inno_update_bits(inno, i, 0x0c, T_WAKEUP_CNT_HI_MASK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 506) 				 T_WAKEUP_CNT_HI(wakeup >> 8));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 507) 		inno_update_bits(inno, i, 0x0d, T_WAKEUP_CNT_LO_MASK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 508) 				 T_WAKEUP_CNT_LO(wakeup));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 509) 		inno_update_bits(inno, i, 0x10, T_TA_GO_CNT_MASK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 510) 				 T_TA_GO_CNT(ta_go));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 511) 		inno_update_bits(inno, i, 0x11, T_TA_SURE_CNT_MASK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 512) 				 T_TA_SURE_CNT(ta_sure));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 513) 		inno_update_bits(inno, i, 0x12, T_TA_WAIT_CNT_MASK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 514) 				 T_TA_WAIT_CNT(ta_wait));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 515) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 516) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 517) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 518) static unsigned long inno_mipi_dphy_pll_round_rate(struct inno_mipi_dphy *inno,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 519) 						   unsigned long prate,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 520) 						   unsigned long rate,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 521) 						   u8 *prediv, u16 *fbdiv)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 522) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 523) 	const struct inno_mipi_dphy_timing *timings;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 524) 	unsigned int num_timings;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 525) 	unsigned long best_freq = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 526) 	unsigned int fin, fout, max_fout;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 527) 	u8 min_prediv, max_prediv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 528) 	u8 _prediv, best_prediv = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 529) 	u16 _fbdiv, best_fbdiv = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 530) 	u32 min_delta = UINT_MAX;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 531) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 532) 	timings = inno_mipi_dphy_timing_table;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 533) 	num_timings = ARRAY_SIZE(inno_mipi_dphy_timing_table);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 534) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 535) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 536) 	 * The PLL output frequency can be calculated using a simple formula:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 537) 	 * PLL_Output_Frequency = (FREF / PREDIV * FBDIV) / 2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 538) 	 * PLL_Output_Frequency: it is equal to DDR-Clock-Frequency * 2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 539) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 540) 	fin = prate / USEC_PER_SEC;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 541) 	fout = 2 * (rate / USEC_PER_SEC);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 542) 	max_fout = 2 * timings[num_timings - 1].max_lane_mbps;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 543) 	if (fout > max_fout)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 544) 		fout = max_fout;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 545) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 546) 	/* constraint: 5Mhz < Fref / prediv < 40MHz */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 547) 	min_prediv = DIV_ROUND_UP(fin, 40);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 548) 	max_prediv = fin / 5;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 549) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 550) 	for (_prediv = min_prediv; _prediv <= max_prediv; _prediv++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 551) 		u32 delta, tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 552) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 553) 		_fbdiv = fout * _prediv / fin;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 554) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 555) 		 * The all possible settings of feedback divider are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 556) 		 * 12, 13, 14, 16, ~ 511
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 557) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 558) 		if ((_fbdiv == 15) || (_fbdiv < 12) || (_fbdiv > 511))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 559) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 560) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 561) 		tmp = _fbdiv * fin / _prediv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 562) 		delta = abs(fout - tmp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 563) 		if (delta < min_delta) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 564) 			best_prediv = _prediv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 565) 			best_fbdiv = _fbdiv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 566) 			min_delta = delta;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 567) 			best_freq = tmp * USEC_PER_SEC;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 568) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 569) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 570) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 571) 	if (best_freq) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 572) 		*prediv = best_prediv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 573) 		*fbdiv = best_fbdiv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 574) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 575) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 576) 	return best_freq / 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 577) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 578) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 579) static int inno_mipi_dphy_power_on(struct phy *phy)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 580) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 581) 	struct inno_mipi_dphy *inno = phy_get_drvdata(phy);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 582) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 583) 	clk_prepare_enable(inno->pclk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 584) 	pm_runtime_get_sync(inno->dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 585) 	inno_mipi_dphy_bandgap_power_enable(inno);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 586) 	inno_mipi_dphy_power_work_enable(inno);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 587) 	inno_mipi_dphy_pll_enable(inno);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 588) 	inno_mipi_dphy_lane_enable(inno);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 589) 	inno_mipi_dphy_reset(inno);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 590) 	inno_mipi_dphy_timing_init(inno);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 591) 	udelay(1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 592) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 593) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 594) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 595) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 596) static int inno_mipi_dphy_power_off(struct phy *phy)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 597) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 598) 	struct inno_mipi_dphy *inno = phy_get_drvdata(phy);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 599) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 600) 	inno_mipi_dphy_lane_disable(inno);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 601) 	inno_mipi_dphy_pll_disable(inno);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 602) 	inno_mipi_dphy_power_work_disable(inno);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 603) 	inno_mipi_dphy_bandgap_power_disable(inno);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 604) 	pm_runtime_put(inno->dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 605) 	clk_disable_unprepare(inno->pclk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 606) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 607) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 608) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 609) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 610) static const struct phy_ops inno_mipi_dphy_ops = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 611) 	.power_on  = inno_mipi_dphy_power_on,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 612) 	.power_off = inno_mipi_dphy_power_off,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 613) 	.owner	   = THIS_MODULE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 614) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 615) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 616) static long inno_mipi_dphy_pll_clk_round_rate(struct clk_hw *hw,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 617) 					      unsigned long rate,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 618) 					      unsigned long *prate)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 619) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 620) 	struct inno_mipi_dphy *inno = hw_to_inno(hw);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 621) 	unsigned long fin = *prate;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 622) 	unsigned long fout;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 623) 	u16 fbdiv = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 624) 	u8 prediv = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 625) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 626) 	fout = inno_mipi_dphy_pll_round_rate(inno, fin, rate,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 627) 					     &prediv, &fbdiv);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 628) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 629) 	dev_dbg(inno->dev, "%s: fin=%lu, req_rate=%lu\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 630) 		__func__, *prate, rate);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 631) 	dev_dbg(inno->dev, "%s: fout=%lu, prediv=%u, fbdiv=%u\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 632) 		__func__, fout, prediv, fbdiv);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 633) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 634) 	inno->pll.prediv = prediv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 635) 	inno->pll.fbdiv = fbdiv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 636) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 637) 	return fout;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 638) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 639) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 640) static int inno_mipi_dphy_pll_clk_set_rate(struct clk_hw *hw,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 641) 					   unsigned long rate,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 642) 					   unsigned long parent_rate)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 643) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 644) 	struct inno_mipi_dphy *inno = hw_to_inno(hw);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 645) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 646) 	dev_dbg(inno->dev, "%s: rate: %lu Hz\n", __func__, rate);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 647) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 648) 	inno->lane_rate = rate;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 649) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 650) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 651) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 652) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 653) static unsigned long
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 654) inno_mipi_dphy_pll_clk_recalc_rate(struct clk_hw *hw, unsigned long prate)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 655) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 656) 	struct inno_mipi_dphy *inno = hw_to_inno(hw);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 657) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 658) 	dev_dbg(inno->dev, "%s: rate: %lu Hz\n", __func__, inno->lane_rate);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 659) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 660) 	return inno->lane_rate;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 661) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 662) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 663) static const struct clk_ops inno_mipi_dphy_pll_clk_ops = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 664) 	.round_rate = inno_mipi_dphy_pll_clk_round_rate,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 665) 	.set_rate = inno_mipi_dphy_pll_clk_set_rate,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 666) 	.recalc_rate = inno_mipi_dphy_pll_clk_recalc_rate,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 667) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 668) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 669) static int inno_mipi_dphy_pll_register(struct inno_mipi_dphy *inno)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 670) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 671) 	struct device *dev = inno->dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 672) 	struct device_node *np = dev->of_node;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 673) 	struct clk *clk;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 674) 	const char *parent_name;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 675) 	struct clk_init_data init = {};
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 676) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 677) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 678) 	parent_name = __clk_get_name(inno->ref_clk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 679) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 680) 	ret = of_property_read_string(np, "clock-output-names", &init.name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 681) 	if (ret < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 682) 		dev_err(dev, "Missing clock-output-names property: %d\n", ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 683) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 684) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 685) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 686) 	init.ops = &inno_mipi_dphy_pll_clk_ops;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 687) 	init.parent_names = (const char * const *)&parent_name;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 688) 	init.num_parents = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 689) 	init.flags = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 690) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 691) 	inno->pll.hw.init = &init;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 692) 	clk = devm_clk_register(dev, &inno->pll.hw);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 693) 	if (IS_ERR(clk)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 694) 		ret = PTR_ERR(clk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 695) 		dev_err(dev, "failed to register PLL: %d\n", ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 696) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 697) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 698) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 699) 	return of_clk_add_provider(np, of_clk_src_simple_get, clk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 700) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 701) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 702) static void inno_mipi_dphy_pll_unregister(struct inno_mipi_dphy *inno)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 703) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 704) 	of_clk_del_provider(inno->dev->of_node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 705) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 706) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 707) static int inno_mipi_dphy_parse_dt(struct inno_mipi_dphy *inno)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 708) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 709) 	struct device *dev = inno->dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 710) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 711) 	if (of_property_read_u32(dev->of_node, "inno,lanes", &inno->lanes))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 712) 		inno->lanes = 4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 713) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 714) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 715) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 716) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 717) static const struct regmap_config inno_mipi_dphy_regmap_config = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 718) 	.reg_bits = 32,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 719) 	.val_bits = 32,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 720) 	.reg_stride = 4,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 721) 	.max_register = 0x3ac,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 722) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 723) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 724) static int inno_mipi_dphy_probe(struct platform_device *pdev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 725) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 726) 	struct device *dev = &pdev->dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 727) 	struct inno_mipi_dphy *inno;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 728) 	struct phy_provider *phy_provider;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 729) 	struct phy *phy;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 730) 	struct resource *res;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 731) 	void __iomem *regs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 732) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 733) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 734) 	inno = devm_kzalloc(dev, sizeof(*inno), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 735) 	if (!inno)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 736) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 737) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 738) 	inno->dev = dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 739) 	platform_set_drvdata(pdev, inno);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 740) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 741) 	ret = inno_mipi_dphy_parse_dt(inno);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 742) 	if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 743) 		dev_err(dev, "failed to parse DT\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 744) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 745) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 746) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 747) 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 748) 	regs = devm_ioremap_resource(dev, res);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 749) 	if (IS_ERR(regs))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 750) 		return PTR_ERR(regs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 751) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 752) 	inno->regmap = devm_regmap_init_mmio(dev, regs,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 753) 					     &inno_mipi_dphy_regmap_config);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 754) 	if (IS_ERR(inno->regmap)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 755) 		ret = PTR_ERR(inno->regmap);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 756) 		dev_err(dev, "failed to init regmap: %d\n", ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 757) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 758) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 759) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 760) 	inno->ref_clk = devm_clk_get(dev, "ref");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 761) 	if (IS_ERR(inno->ref_clk)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 762) 		dev_err(dev, "failed to get reference clock\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 763) 		return PTR_ERR(inno->ref_clk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 764) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 765) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 766) 	inno->pclk = devm_clk_get(dev, "pclk");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 767) 	if (IS_ERR(inno->pclk)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 768) 		dev_err(dev, "failed to get pclk\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 769) 		return PTR_ERR(inno->pclk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 770) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 771) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 772) 	inno->rst = devm_reset_control_get(dev, "apb");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 773) 	if (IS_ERR(inno->rst)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 774) 		dev_err(dev, "failed to get system reset control\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 775) 		return PTR_ERR(inno->rst);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 776) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 777) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 778) 	inno->grf = syscon_regmap_lookup_by_phandle(dev->of_node,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 779) 						    "rockchip,grf");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 780) 	if (IS_ERR(inno->grf)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 781) 		dev_err(dev, "failed to get grf regmap\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 782) 		return PTR_ERR(inno->grf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 783) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 784) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 785) 	phy = devm_phy_create(dev, NULL, &inno_mipi_dphy_ops);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 786) 	if (IS_ERR(phy)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 787) 		dev_err(dev, "failed to create MIPI D-PHY\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 788) 		return PTR_ERR(phy);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 789) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 790) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 791) 	phy_set_drvdata(phy, inno);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 792) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 793) 	phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 794) 	if (IS_ERR(phy_provider)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 795) 		dev_err(dev, "failed to register phy provider\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 796) 		return PTR_ERR(phy_provider);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 797) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 798) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 799) 	ret = inno_mipi_dphy_pll_register(inno);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 800) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 801) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 802) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 803) 	pm_runtime_enable(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 804) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 805) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 806) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 807) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 808) static int inno_mipi_dphy_remove(struct platform_device *pdev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 809) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 810) 	struct inno_mipi_dphy *inno = platform_get_drvdata(pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 811) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 812) 	inno_mipi_dphy_pll_unregister(inno);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 813) 	pm_runtime_disable(inno->dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 814) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 815) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 816) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 817) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 818) static const struct of_device_id inno_mipi_dphy_of_match[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 819) 	{ .compatible = "rockchip,rk1808-mipi-dphy", },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 820) 	{ .compatible = "rockchip,rk3568-mipi-dphy", },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 821) 	{ .compatible = "rockchip,rv1126-mipi-dphy", },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 822) 	{}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 823) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 824) MODULE_DEVICE_TABLE(of, inno_mipi_dphy_of_match);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 825) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 826) static struct platform_driver inno_mipi_dphy_driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 827) 	.driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 828) 		.name = "inno-mipi-dphy",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 829) 		.of_match_table	= of_match_ptr(inno_mipi_dphy_of_match),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 830) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 831) 	.probe	= inno_mipi_dphy_probe,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 832) 	.remove = inno_mipi_dphy_remove,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 833) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 834) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 835) #ifdef CONFIG_ROCKCHIP_THUNDER_BOOT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 836) static int __init inno_mipi_dphy_driver_init(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 837) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 838) 	return platform_driver_register(&inno_mipi_dphy_driver);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 839) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 840) fs_initcall(inno_mipi_dphy_driver_init);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 841) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 842) static void __exit inno_mipi_dphy_driver_exit(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 843) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 844) 	platform_driver_unregister(&inno_mipi_dphy_driver);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 845) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 846) module_exit(inno_mipi_dphy_driver_exit);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 847) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 848) module_platform_driver(inno_mipi_dphy_driver);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 849) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 850) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 851) MODULE_AUTHOR("Wyon Bi <bivvy.bi@rock-chips.com>");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 852) MODULE_DESCRIPTION("Innosilicon MIPI D-PHY Driver");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 853) MODULE_LICENSE("GPL v2");