^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1) // SPDX-License-Identifier: GPL-2.0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3) * Copyright (c) 2009-2018, Linux Foundation. All rights reserved.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4) * Copyright (c) 2018-2020, Linaro Limited
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7) #include <linux/clk.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 8) #include <linux/delay.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 9) #include <linux/io.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 10) #include <linux/kernel.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 11) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 12) #include <linux/of.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 13) #include <linux/of_graph.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 14) #include <linux/phy/phy.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 15) #include <linux/platform_device.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 16) #include <linux/regulator/consumer.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 17) #include <linux/reset.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 18) #include <linux/slab.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 19)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 20) /* PHY register and bit definitions */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 21) #define PHY_CTRL_COMMON0 0x078
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 22) #define SIDDQ BIT(2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 23) #define PHY_IRQ_CMD 0x0d0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 24) #define PHY_INTR_MASK0 0x0d4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 25) #define PHY_INTR_CLEAR0 0x0dc
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 26) #define DPDM_MASK 0x1e
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 27) #define DP_1_0 BIT(4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 28) #define DP_0_1 BIT(3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 29) #define DM_1_0 BIT(2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 30) #define DM_0_1 BIT(1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 31)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 32) enum hsphy_voltage {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 33) VOL_NONE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 34) VOL_MIN,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 35) VOL_MAX,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 36) VOL_NUM,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 37) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 38)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 39) enum hsphy_vreg {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 40) VDD,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 41) VDDA_1P8,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 42) VDDA_3P3,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 43) VREG_NUM,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 44) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 45)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 46) struct hsphy_init_seq {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 47) int offset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 48) int val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 49) int delay;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 50) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 51)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 52) struct hsphy_data {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 53) const struct hsphy_init_seq *init_seq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 54) unsigned int init_seq_num;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 55) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 56)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 57) struct hsphy_priv {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 58) void __iomem *base;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 59) struct clk_bulk_data *clks;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 60) int num_clks;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 61) struct reset_control *phy_reset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 62) struct reset_control *por_reset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 63) struct regulator_bulk_data vregs[VREG_NUM];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 64) const struct hsphy_data *data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 65) enum phy_mode mode;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 66) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 67)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 68) static int qcom_snps_hsphy_set_mode(struct phy *phy, enum phy_mode mode,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 69) int submode)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 70) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 71) struct hsphy_priv *priv = phy_get_drvdata(phy);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 72)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 73) priv->mode = PHY_MODE_INVALID;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 74)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 75) if (mode > 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 76) priv->mode = mode;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 77)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 78) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 79) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 80)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 81) static void qcom_snps_hsphy_enable_hv_interrupts(struct hsphy_priv *priv)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 82) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 83) u32 val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 84)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 85) /* Clear any existing interrupts before enabling the interrupts */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 86) val = readb(priv->base + PHY_INTR_CLEAR0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 87) val |= DPDM_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 88) writeb(val, priv->base + PHY_INTR_CLEAR0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 89)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 90) writeb(0x0, priv->base + PHY_IRQ_CMD);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 91) usleep_range(200, 220);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 92) writeb(0x1, priv->base + PHY_IRQ_CMD);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 93)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 94) /* Make sure the interrupts are cleared */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 95) usleep_range(200, 220);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 96)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 97) val = readb(priv->base + PHY_INTR_MASK0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 98) switch (priv->mode) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 99) case PHY_MODE_USB_HOST_HS:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) case PHY_MODE_USB_HOST_FS:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) case PHY_MODE_USB_DEVICE_HS:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) case PHY_MODE_USB_DEVICE_FS:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) val |= DP_1_0 | DM_0_1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) case PHY_MODE_USB_HOST_LS:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) case PHY_MODE_USB_DEVICE_LS:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) val |= DP_0_1 | DM_1_0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) /* No device connected */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) val |= DP_0_1 | DM_0_1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) writeb(val, priv->base + PHY_INTR_MASK0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) static void qcom_snps_hsphy_disable_hv_interrupts(struct hsphy_priv *priv)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) u32 val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) val = readb(priv->base + PHY_INTR_MASK0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) val &= ~DPDM_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) writeb(val, priv->base + PHY_INTR_MASK0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) /* Clear any pending interrupts */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) val = readb(priv->base + PHY_INTR_CLEAR0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) val |= DPDM_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) writeb(val, priv->base + PHY_INTR_CLEAR0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) writeb(0x0, priv->base + PHY_IRQ_CMD);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) usleep_range(200, 220);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) writeb(0x1, priv->base + PHY_IRQ_CMD);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) usleep_range(200, 220);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) static void qcom_snps_hsphy_enter_retention(struct hsphy_priv *priv)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) u32 val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) val = readb(priv->base + PHY_CTRL_COMMON0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) val |= SIDDQ;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) writeb(val, priv->base + PHY_CTRL_COMMON0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) static void qcom_snps_hsphy_exit_retention(struct hsphy_priv *priv)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) u32 val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) val = readb(priv->base + PHY_CTRL_COMMON0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) val &= ~SIDDQ;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) writeb(val, priv->base + PHY_CTRL_COMMON0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) static int qcom_snps_hsphy_power_on(struct phy *phy)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) struct hsphy_priv *priv = phy_get_drvdata(phy);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) ret = regulator_bulk_enable(VREG_NUM, priv->vregs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) qcom_snps_hsphy_disable_hv_interrupts(priv);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) qcom_snps_hsphy_exit_retention(priv);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) static int qcom_snps_hsphy_power_off(struct phy *phy)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) struct hsphy_priv *priv = phy_get_drvdata(phy);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) qcom_snps_hsphy_enter_retention(priv);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) qcom_snps_hsphy_enable_hv_interrupts(priv);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) regulator_bulk_disable(VREG_NUM, priv->vregs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) static int qcom_snps_hsphy_reset(struct hsphy_priv *priv)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) ret = reset_control_assert(priv->phy_reset);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) usleep_range(10, 15);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) ret = reset_control_deassert(priv->phy_reset);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) usleep_range(80, 100);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) static void qcom_snps_hsphy_init_sequence(struct hsphy_priv *priv)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) const struct hsphy_data *data = priv->data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) const struct hsphy_init_seq *seq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) /* Device match data is optional. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) if (!data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) seq = data->init_seq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) for (i = 0; i < data->init_seq_num; i++, seq++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) writeb(seq->val, priv->base + seq->offset);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) if (seq->delay)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) usleep_range(seq->delay, seq->delay + 10);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) static int qcom_snps_hsphy_por_reset(struct hsphy_priv *priv)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) ret = reset_control_assert(priv->por_reset);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) * The Femto PHY is POR reset in the following scenarios.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) * 1. After overriding the parameter registers.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) * 2. Low power mode exit from PHY retention.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) * Ensure that SIDDQ is cleared before bringing the PHY
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) * out of reset.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) qcom_snps_hsphy_exit_retention(priv);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) * As per databook, 10 usec delay is required between
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) * PHY POR assert and de-assert.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) usleep_range(10, 20);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) ret = reset_control_deassert(priv->por_reset);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) * As per databook, it takes 75 usec for PHY to stabilize
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) * after the reset.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) usleep_range(80, 100);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) static int qcom_snps_hsphy_init(struct phy *phy)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) struct hsphy_priv *priv = phy_get_drvdata(phy);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) ret = clk_bulk_prepare_enable(priv->num_clks, priv->clks);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) ret = qcom_snps_hsphy_reset(priv);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) goto disable_clocks;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) qcom_snps_hsphy_init_sequence(priv);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) ret = qcom_snps_hsphy_por_reset(priv);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) goto disable_clocks;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) disable_clocks:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) clk_bulk_disable_unprepare(priv->num_clks, priv->clks);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) static int qcom_snps_hsphy_exit(struct phy *phy)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) struct hsphy_priv *priv = phy_get_drvdata(phy);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) clk_bulk_disable_unprepare(priv->num_clks, priv->clks);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) static const struct phy_ops qcom_snps_hsphy_ops = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) .init = qcom_snps_hsphy_init,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) .exit = qcom_snps_hsphy_exit,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) .power_on = qcom_snps_hsphy_power_on,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) .power_off = qcom_snps_hsphy_power_off,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) .set_mode = qcom_snps_hsphy_set_mode,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) .owner = THIS_MODULE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) static const char * const qcom_snps_hsphy_clks[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) "ref",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) "ahb",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) "sleep",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) static int qcom_snps_hsphy_probe(struct platform_device *pdev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) struct device *dev = &pdev->dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) struct phy_provider *provider;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) struct hsphy_priv *priv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) struct phy *phy;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) if (!priv)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) priv->base = devm_platform_ioremap_resource(pdev, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) if (IS_ERR(priv->base))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) return PTR_ERR(priv->base);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) priv->num_clks = ARRAY_SIZE(qcom_snps_hsphy_clks);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) priv->clks = devm_kcalloc(dev, priv->num_clks, sizeof(*priv->clks),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) if (!priv->clks)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) for (i = 0; i < priv->num_clks; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) priv->clks[i].id = qcom_snps_hsphy_clks[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) ret = devm_clk_bulk_get(dev, priv->num_clks, priv->clks);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) priv->phy_reset = devm_reset_control_get_exclusive(dev, "phy");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) if (IS_ERR(priv->phy_reset))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) return PTR_ERR(priv->phy_reset);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) priv->por_reset = devm_reset_control_get_exclusive(dev, "por");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) if (IS_ERR(priv->por_reset))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) return PTR_ERR(priv->por_reset);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) priv->vregs[VDD].supply = "vdd";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) priv->vregs[VDDA_1P8].supply = "vdda1p8";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) priv->vregs[VDDA_3P3].supply = "vdda3p3";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) ret = devm_regulator_bulk_get(dev, VREG_NUM, priv->vregs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) /* Get device match data */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) priv->data = device_get_match_data(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) phy = devm_phy_create(dev, dev->of_node, &qcom_snps_hsphy_ops);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) if (IS_ERR(phy))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) return PTR_ERR(phy);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) phy_set_drvdata(phy, priv);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) if (IS_ERR(provider))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) return PTR_ERR(provider);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) ret = regulator_set_load(priv->vregs[VDDA_1P8].consumer, 19000);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) ret = regulator_set_load(priv->vregs[VDDA_3P3].consumer, 16000);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371) goto unset_1p8_load;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) unset_1p8_load:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376) regulator_set_load(priv->vregs[VDDA_1P8].consumer, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382) * The macro is used to define an initialization sequence. Each tuple
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383) * is meant to program 'value' into phy register at 'offset' with 'delay'
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384) * in us followed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) #define HSPHY_INIT_CFG(o, v, d) { .offset = o, .val = v, .delay = d, }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388) static const struct hsphy_init_seq init_seq_femtophy[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) HSPHY_INIT_CFG(0xc0, 0x01, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390) HSPHY_INIT_CFG(0xe8, 0x0d, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391) HSPHY_INIT_CFG(0x74, 0x12, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392) HSPHY_INIT_CFG(0x98, 0x63, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393) HSPHY_INIT_CFG(0x9c, 0x03, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394) HSPHY_INIT_CFG(0xa0, 0x1d, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395) HSPHY_INIT_CFG(0xa4, 0x03, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396) HSPHY_INIT_CFG(0x8c, 0x23, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397) HSPHY_INIT_CFG(0x78, 0x08, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398) HSPHY_INIT_CFG(0x7c, 0xdc, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399) HSPHY_INIT_CFG(0x90, 0xe0, 20),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400) HSPHY_INIT_CFG(0x74, 0x10, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401) HSPHY_INIT_CFG(0x90, 0x60, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404) static const struct hsphy_data hsphy_data_femtophy = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405) .init_seq = init_seq_femtophy,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406) .init_seq_num = ARRAY_SIZE(init_seq_femtophy),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409) static const struct of_device_id qcom_snps_hsphy_match[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410) { .compatible = "qcom,usb-hs-28nm-femtophy", .data = &hsphy_data_femtophy, },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411) { },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413) MODULE_DEVICE_TABLE(of, qcom_snps_hsphy_match);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415) static struct platform_driver qcom_snps_hsphy_driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416) .probe = qcom_snps_hsphy_probe,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417) .driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418) .name = "qcom,usb-hs-28nm-phy",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419) .of_match_table = qcom_snps_hsphy_match,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422) module_platform_driver(qcom_snps_hsphy_driver);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424) MODULE_DESCRIPTION("Qualcomm 28nm Hi-Speed USB PHY driver");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425) MODULE_LICENSE("GPL v2");