Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags   |
// SPDX-License-Identifier: GPL-2.0
/*
* NVM Express device driver
* Copyright (c) 2011-2014, Intel Corporation.
*/
#include <linux/blkdev.h>
#include <linux/blk-mq.h>
#include <linux/compat.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/hdreg.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/pr.h>
#include <linux/ptrace.h>
#include <linux/nvme_ioctl.h>
#include <linux/pm_qos.h>
#include <asm/unaligned.h>
#include "nvme.h"
#include "fabrics.h"
#define CREATE_TRACE_POINTS
#include "trace.h"
#define NVME_MINORS (1U << MINORBITS)
unsigned int admin_timeout = 60;
module_param(admin_timeout, uint, 0644);
MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
EXPORT_SYMBOL_GPL(admin_timeout);
unsigned int nvme_io_timeout = 30;
module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
EXPORT_SYMBOL_GPL(nvme_io_timeout);
static unsigned char shutdown_timeout = 5;
module_param(shutdown_timeout, byte, 0644);
MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
static u8 nvme_max_retries = 5;
module_param_named(max_retries, nvme_max_retries, byte, 0644);
MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
static unsigned long default_ps_max_latency_us = 100000;
module_param(default_ps_max_latency_us, ulong, 0644);
MODULE_PARM_DESC(default_ps_max_latency_us,
<------><------> "max power saving latency for new devices; use PM QOS to change per device");
static bool force_apst;
module_param(force_apst, bool, 0644);
MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
static bool streams;
module_param(streams, bool, 0644);
MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
/*
* nvme_wq - hosts nvme related works that are not reset or delete
* nvme_reset_wq - hosts nvme reset works
* nvme_delete_wq - hosts nvme delete works
*
* nvme_wq will host works such as scan, aen handling, fw activation,
* keep-alive, periodic reconnects etc. nvme_reset_wq
* runs reset works which also flush works hosted on nvme_wq for
* serialization purposes. nvme_delete_wq host controller deletion
* works which flush reset works for serialization.
*/
struct workqueue_struct *nvme_wq;
EXPORT_SYMBOL_GPL(nvme_wq);
struct workqueue_struct *nvme_reset_wq;
EXPORT_SYMBOL_GPL(nvme_reset_wq);
struct workqueue_struct *nvme_delete_wq;
EXPORT_SYMBOL_GPL(nvme_delete_wq);
static LIST_HEAD(nvme_subsystems);
static DEFINE_MUTEX(nvme_subsystems_lock);
static DEFINE_IDA(nvme_instance_ida);
static dev_t nvme_chr_devt;
static struct class *nvme_class;
static struct class *nvme_subsys_class;
static void nvme_put_subsystem(struct nvme_subsystem *subsys);
static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
<------><------><------><------><------> unsigned nsid);
static void nvme_update_bdev_size(struct gendisk *disk)
{
<------>struct block_device *bdev = bdget_disk(disk, 0);
<------>if (bdev) {
<------><------>bd_set_nr_sectors(bdev, get_capacity(disk));
<------><------>bdput(bdev);
<------>}
}
/*
* Prepare a queue for teardown.
*
* This must forcibly unquiesce queues to avoid blocking dispatch, and only set
* the capacity to 0 after that to avoid blocking dispatchers that may be
* holding bd_butex. This will end buffered writers dirtying pages that can't
* be synced.
*/
static void nvme_set_queue_dying(struct nvme_ns *ns)
{
<------>if (test_and_set_bit(NVME_NS_DEAD, &ns->flags))
<------><------>return;
<------>blk_set_queue_dying(ns->queue);
<------>blk_mq_unquiesce_queue(ns->queue);
<------>set_capacity(ns->disk, 0);
<------>nvme_update_bdev_size(ns->disk);
}
static void nvme_queue_scan(struct nvme_ctrl *ctrl)
{
<------>/*
<------> * Only new queue scan work when admin and IO queues are both alive
<------> */
<------>if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
<------><------>queue_work(nvme_wq, &ctrl->scan_work);
}
/*
* Use this function to proceed with scheduling reset_work for a controller
* that had previously been set to the resetting state. This is intended for
* code paths that can't be interrupted by other reset attempts. A hot removal
* may prevent this from succeeding.
*/
int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
{
<------>if (ctrl->state != NVME_CTRL_RESETTING)
<------><------>return -EBUSY;
<------>if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
<------><------>return -EBUSY;
<------>return 0;
}
EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
{
<------>if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
<------><------>return -EBUSY;
<------>if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
<------><------>return -EBUSY;
<------>return 0;
}
EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
{
<------>int ret;
<------>ret = nvme_reset_ctrl(ctrl);
<------>if (!ret) {
<------><------>flush_work(&ctrl->reset_work);
<------><------>if (ctrl->state != NVME_CTRL_LIVE)
<------><------><------>ret = -ENETRESET;
<------>}
<------>return ret;
}
EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync);
static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
{
<------>dev_info(ctrl->device,
<------><------> "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
<------>flush_work(&ctrl->reset_work);
<------>nvme_stop_ctrl(ctrl);
<------>nvme_remove_namespaces(ctrl);
<------>ctrl->ops->delete_ctrl(ctrl);
<------>nvme_uninit_ctrl(ctrl);
}
static void nvme_delete_ctrl_work(struct work_struct *work)
{
<------>struct nvme_ctrl *ctrl =
<------><------>container_of(work, struct nvme_ctrl, delete_work);
<------>nvme_do_delete_ctrl(ctrl);
}
int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
{
<------>if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
<------><------>return -EBUSY;
<------>if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
<------><------>return -EBUSY;
<------>return 0;
}
EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
{
<------>/*
<------> * Keep a reference until nvme_do_delete_ctrl() complete,
<------> * since ->delete_ctrl can free the controller.
<------> */
<------>nvme_get_ctrl(ctrl);
<------>if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
<------><------>nvme_do_delete_ctrl(ctrl);
<------>nvme_put_ctrl(ctrl);
}
static blk_status_t nvme_error_status(u16 status)
{
<------>switch (status & 0x7ff) {
<------>case NVME_SC_SUCCESS:
<------><------>return BLK_STS_OK;
<------>case NVME_SC_CAP_EXCEEDED:
<------><------>return BLK_STS_NOSPC;
<------>case NVME_SC_LBA_RANGE:
<------>case NVME_SC_CMD_INTERRUPTED:
<------>case NVME_SC_NS_NOT_READY:
<------><------>return BLK_STS_TARGET;
<------>case NVME_SC_BAD_ATTRIBUTES:
<------>case NVME_SC_ONCS_NOT_SUPPORTED:
<------>case NVME_SC_INVALID_OPCODE:
<------>case NVME_SC_INVALID_FIELD:
<------>case NVME_SC_INVALID_NS:
<------><------>return BLK_STS_NOTSUPP;
<------>case NVME_SC_WRITE_FAULT:
<------>case NVME_SC_READ_ERROR:
<------>case NVME_SC_UNWRITTEN_BLOCK:
<------>case NVME_SC_ACCESS_DENIED:
<------>case NVME_SC_READ_ONLY:
<------>case NVME_SC_COMPARE_FAILED:
<------><------>return BLK_STS_MEDIUM;
<------>case NVME_SC_GUARD_CHECK:
<------>case NVME_SC_APPTAG_CHECK:
<------>case NVME_SC_REFTAG_CHECK:
<------>case NVME_SC_INVALID_PI:
<------><------>return BLK_STS_PROTECTION;
<------>case NVME_SC_RESERVATION_CONFLICT:
<------><------>return BLK_STS_NEXUS;
<------>case NVME_SC_HOST_PATH_ERROR:
<------><------>return BLK_STS_TRANSPORT;
<------>case NVME_SC_ZONE_TOO_MANY_ACTIVE:
<------><------>return BLK_STS_ZONE_ACTIVE_RESOURCE;
<------>case NVME_SC_ZONE_TOO_MANY_OPEN:
<------><------>return BLK_STS_ZONE_OPEN_RESOURCE;
<------>default:
<------><------>return BLK_STS_IOERR;
<------>}
}
static void nvme_retry_req(struct request *req)
{
<------>struct nvme_ns *ns = req->q->queuedata;
<------>unsigned long delay = 0;
<------>u16 crd;
<------>/* The mask and shift result must be <= 3 */
<------>crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
<------>if (ns && crd)
<------><------>delay = ns->ctrl->crdt[crd - 1] * 100;
<------>nvme_req(req)->retries++;
<------>blk_mq_requeue_request(req, false);
<------>blk_mq_delay_kick_requeue_list(req->q, delay);
}
enum nvme_disposition {
<------>COMPLETE,
<------>RETRY,
<------>FAILOVER,
};
static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
{
<------>if (likely(nvme_req(req)->status == 0))
<------><------>return COMPLETE;
<------>if (blk_noretry_request(req) ||
<------> (nvme_req(req)->status & NVME_SC_DNR) ||
<------> nvme_req(req)->retries >= nvme_max_retries)
<------><------>return COMPLETE;
<------>if (req->cmd_flags & REQ_NVME_MPATH) {
<------><------>if (nvme_is_path_error(nvme_req(req)->status) ||
<------><------> blk_queue_dying(req->q))
<------><------><------>return FAILOVER;
<------>} else {
<------><------>if (blk_queue_dying(req->q))
<------><------><------>return COMPLETE;
<------>}
<------>return RETRY;
}
static inline void nvme_end_req(struct request *req)
{
<------>blk_status_t status = nvme_error_status(nvme_req(req)->status);
<------>if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
<------> req_op(req) == REQ_OP_ZONE_APPEND)
<------><------>req->__sector = nvme_lba_to_sect(req->q->queuedata,
<------><------><------>le64_to_cpu(nvme_req(req)->result.u64));
<------>nvme_trace_bio_complete(req, status);
<------>blk_mq_end_request(req, status);
}
void nvme_complete_rq(struct request *req)
{
<------>trace_nvme_complete_rq(req);
<------>nvme_cleanup_cmd(req);
<------>if (nvme_req(req)->ctrl->kas)
<------><------>nvme_req(req)->ctrl->comp_seen = true;
<------>switch (nvme_decide_disposition(req)) {
<------>case COMPLETE:
<------><------>nvme_end_req(req);
<------><------>return;
<------>case RETRY:
<------><------>nvme_retry_req(req);
<------><------>return;
<------>case FAILOVER:
<------><------>nvme_failover_req(req);
<------><------>return;
<------>}
}
EXPORT_SYMBOL_GPL(nvme_complete_rq);
bool nvme_cancel_request(struct request *req, void *data, bool reserved)
{
<------>dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
<------><------><------><------>"Cancelling I/O %d", req->tag);
<------>/* don't abort one completed request */
<------>if (blk_mq_request_completed(req))
<------><------>return true;
<------>nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
<------>nvme_req(req)->flags |= NVME_REQ_CANCELLED;
<------>blk_mq_complete_request(req);
<------>return true;
}
EXPORT_SYMBOL_GPL(nvme_cancel_request);
void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
{
<------>if (ctrl->tagset) {
<------><------>blk_mq_tagset_busy_iter(ctrl->tagset,
<------><------><------><------>nvme_cancel_request, ctrl);
<------><------>blk_mq_tagset_wait_completed_request(ctrl->tagset);
<------>}
}
EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
{
<------>if (ctrl->admin_tagset) {
<------><------>blk_mq_tagset_busy_iter(ctrl->admin_tagset,
<------><------><------><------>nvme_cancel_request, ctrl);
<------><------>blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
<------>}
}
EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
<------><------>enum nvme_ctrl_state new_state)
{
<------>enum nvme_ctrl_state old_state;
<------>unsigned long flags;
<------>bool changed = false;
<------>spin_lock_irqsave(&ctrl->lock, flags);
<------>old_state = ctrl->state;
<------>switch (new_state) {
<------>case NVME_CTRL_LIVE:
<------><------>switch (old_state) {
<------><------>case NVME_CTRL_NEW:
<------><------>case NVME_CTRL_RESETTING:
<------><------>case NVME_CTRL_CONNECTING:
<------><------><------>changed = true;
<------><------><------>fallthrough;
<------><------>default:
<------><------><------>break;
<------><------>}
<------><------>break;
<------>case NVME_CTRL_RESETTING:
<------><------>switch (old_state) {
<------><------>case NVME_CTRL_NEW:
<------><------>case NVME_CTRL_LIVE:
<------><------><------>changed = true;
<------><------><------>fallthrough;
<------><------>default:
<------><------><------>break;
<------><------>}
<------><------>break;
<------>case NVME_CTRL_CONNECTING:
<------><------>switch (old_state) {
<------><------>case NVME_CTRL_NEW:
<------><------>case NVME_CTRL_RESETTING:
<------><------><------>changed = true;
<------><------><------>fallthrough;
<------><------>default:
<------><------><------>break;
<------><------>}
<------><------>break;
<------>case NVME_CTRL_DELETING:
<------><------>switch (old_state) {
<------><------>case NVME_CTRL_LIVE:
<------><------>case NVME_CTRL_RESETTING:
<------><------>case NVME_CTRL_CONNECTING:
<------><------><------>changed = true;
<------><------><------>fallthrough;
<------><------>default:
<------><------><------>break;
<------><------>}
<------><------>break;
<------>case NVME_CTRL_DELETING_NOIO:
<------><------>switch (old_state) {
<------><------>case NVME_CTRL_DELETING:
<------><------>case NVME_CTRL_DEAD:
<------><------><------>changed = true;
<------><------><------>fallthrough;
<------><------>default:
<------><------><------>break;
<------><------>}
<------><------>break;
<------>case NVME_CTRL_DEAD:
<------><------>switch (old_state) {
<------><------>case NVME_CTRL_DELETING:
<------><------><------>changed = true;
<------><------><------>fallthrough;
<------><------>default:
<------><------><------>break;
<------><------>}
<------><------>break;
<------>default:
<------><------>break;
<------>}
<------>if (changed) {
<------><------>ctrl->state = new_state;
<------><------>wake_up_all(&ctrl->state_wq);
<------>}
<------>spin_unlock_irqrestore(&ctrl->lock, flags);
<------>if (changed && ctrl->state == NVME_CTRL_LIVE)
<------><------>nvme_kick_requeue_lists(ctrl);
<------>return changed;
}
EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
/*
* Returns true for sink states that can't ever transition back to live.
*/
static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
{
<------>switch (ctrl->state) {
<------>case NVME_CTRL_NEW:
<------>case NVME_CTRL_LIVE:
<------>case NVME_CTRL_RESETTING:
<------>case NVME_CTRL_CONNECTING:
<------><------>return false;
<------>case NVME_CTRL_DELETING:
<------>case NVME_CTRL_DELETING_NOIO:
<------>case NVME_CTRL_DEAD:
<------><------>return true;
<------>default:
<------><------>WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
<------><------>return true;
<------>}
}
/*
* Waits for the controller state to be resetting, or returns false if it is
* not possible to ever transition to that state.
*/
bool nvme_wait_reset(struct nvme_ctrl *ctrl)
{
<------>wait_event(ctrl->state_wq,
<------><------> nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
<------><------> nvme_state_terminal(ctrl));
<------>return ctrl->state == NVME_CTRL_RESETTING;
}
EXPORT_SYMBOL_GPL(nvme_wait_reset);
static void nvme_free_ns_head(struct kref *ref)
{
<------>struct nvme_ns_head *head =
<------><------>container_of(ref, struct nvme_ns_head, ref);
<------>nvme_mpath_remove_disk(head);
<------>ida_simple_remove(&head->subsys->ns_ida, head->instance);
<------>cleanup_srcu_struct(&head->srcu);
<------>nvme_put_subsystem(head->subsys);
<------>kfree(head);
}
static void nvme_put_ns_head(struct nvme_ns_head *head)
{
<------>kref_put(&head->ref, nvme_free_ns_head);
}
static void nvme_free_ns(struct kref *kref)
{
<------>struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
<------>if (ns->ndev)
<------><------>nvme_nvm_unregister(ns);
<------>put_disk(ns->disk);
<------>nvme_put_ns_head(ns->head);
<------>nvme_put_ctrl(ns->ctrl);
<------>kfree(ns);
}
void nvme_put_ns(struct nvme_ns *ns)
{
<------>kref_put(&ns->kref, nvme_free_ns);
}
EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
static inline void nvme_clear_nvme_request(struct request *req)
{
<------>if (!(req->rq_flags & RQF_DONTPREP)) {
<------><------>nvme_req(req)->retries = 0;
<------><------>nvme_req(req)->flags = 0;
<------><------>req->rq_flags |= RQF_DONTPREP;
<------>}
}
struct request *nvme_alloc_request(struct request_queue *q,
<------><------>struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
{
<------>unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
<------>struct request *req;
<------>if (qid == NVME_QID_ANY) {
<------><------>req = blk_mq_alloc_request(q, op, flags);
<------>} else {
<------><------>req = blk_mq_alloc_request_hctx(q, op, flags,
<------><------><------><------>qid ? qid - 1 : 0);
<------>}
<------>if (IS_ERR(req))
<------><------>return req;
<------>req->cmd_flags |= REQ_FAILFAST_DRIVER;
<------>nvme_clear_nvme_request(req);
<------>nvme_req(req)->cmd = cmd;
<------>return req;
}
EXPORT_SYMBOL_GPL(nvme_alloc_request);
static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
{
<------>struct nvme_command c;
<------>memset(&c, 0, sizeof(c));
<------>c.directive.opcode = nvme_admin_directive_send;
<------>c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
<------>c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
<------>c.directive.dtype = NVME_DIR_IDENTIFY;
<------>c.directive.tdtype = NVME_DIR_STREAMS;
<------>c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
<------>return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
}
static int nvme_disable_streams(struct nvme_ctrl *ctrl)
{
<------>return nvme_toggle_streams(ctrl, false);
}
static int nvme_enable_streams(struct nvme_ctrl *ctrl)
{
<------>return nvme_toggle_streams(ctrl, true);
}
static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
<------><------><------><------> struct streams_directive_params *s, u32 nsid)
{
<------>struct nvme_command c;
<------>memset(&c, 0, sizeof(c));
<------>memset(s, 0, sizeof(*s));
<------>c.directive.opcode = nvme_admin_directive_recv;
<------>c.directive.nsid = cpu_to_le32(nsid);
<------>c.directive.numd = cpu_to_le32(nvme_bytes_to_numd(sizeof(*s)));
<------>c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
<------>c.directive.dtype = NVME_DIR_STREAMS;
<------>return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
}
static int nvme_configure_directives(struct nvme_ctrl *ctrl)
{
<------>struct streams_directive_params s;
<------>int ret;
<------>if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
<------><------>return 0;
<------>if (!streams)
<------><------>return 0;
<------>ret = nvme_enable_streams(ctrl);
<------>if (ret)
<------><------>return ret;
<------>ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
<------>if (ret)
<------><------>goto out_disable_stream;
<------>ctrl->nssa = le16_to_cpu(s.nssa);
<------>if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
<------><------>dev_info(ctrl->device, "too few streams (%u) available\n",
<------><------><------><------><------>ctrl->nssa);
<------><------>goto out_disable_stream;
<------>}
<------>ctrl->nr_streams = min_t(u16, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
<------>dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
<------>return 0;
out_disable_stream:
<------>nvme_disable_streams(ctrl);
<------>return ret;
}
/*
* Check if 'req' has a write hint associated with it. If it does, assign
* a valid namespace stream to the write.
*/
static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
<------><------><------><------> struct request *req, u16 *control,
<------><------><------><------> u32 *dsmgmt)
{
<------>enum rw_hint streamid = req->write_hint;
<------>if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
<------><------>streamid = 0;
<------>else {
<------><------>streamid--;
<------><------>if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
<------><------><------>return;
<------><------>*control |= NVME_RW_DTYPE_STREAMS;
<------><------>*dsmgmt |= streamid << 16;
<------>}
<------>if (streamid < ARRAY_SIZE(req->q->write_hints))
<------><------>req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
}
static void nvme_setup_passthrough(struct request *req,
<------><------>struct nvme_command *cmd)
{
<------>memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
<------>/* passthru commands should let the driver set the SGL flags */
<------>cmd->common.flags &= ~NVME_CMD_SGL_ALL;
}
static inline void nvme_setup_flush(struct nvme_ns *ns,
<------><------>struct nvme_command *cmnd)
{
<------>cmnd->common.opcode = nvme_cmd_flush;
<------>cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
}
static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
<------><------>struct nvme_command *cmnd)
{
<------>unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
<------>struct nvme_dsm_range *range;
<------>struct bio *bio;
<------>/*
<------> * Some devices do not consider the DSM 'Number of Ranges' field when
<------> * determining how much data to DMA. Always allocate memory for maximum
<------> * number of segments to prevent device reading beyond end of buffer.
<------> */
<------>static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
<------>range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
<------>if (!range) {
<------><------>/*
<------><------> * If we fail allocation our range, fallback to the controller
<------><------> * discard page. If that's also busy, it's safe to return
<------><------> * busy, as we know we can make progress once that's freed.
<------><------> */
<------><------>if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
<------><------><------>return BLK_STS_RESOURCE;
<------><------>range = page_address(ns->ctrl->discard_page);
<------>}
<------>__rq_for_each_bio(bio, req) {
<------><------>u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
<------><------>u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
<------><------>if (n < segments) {
<------><------><------>range[n].cattr = cpu_to_le32(0);
<------><------><------>range[n].nlb = cpu_to_le32(nlb);
<------><------><------>range[n].slba = cpu_to_le64(slba);
<------><------>}
<------><------>n++;
<------>}
<------>if (WARN_ON_ONCE(n != segments)) {
<------><------>if (virt_to_page(range) == ns->ctrl->discard_page)
<------><------><------>clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
<------><------>else
<------><------><------>kfree(range);
<------><------>return BLK_STS_IOERR;
<------>}
<------>cmnd->dsm.opcode = nvme_cmd_dsm;
<------>cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
<------>cmnd->dsm.nr = cpu_to_le32(segments - 1);
<------>cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
<------>req->special_vec.bv_page = virt_to_page(range);
<------>req->special_vec.bv_offset = offset_in_page(range);
<------>req->special_vec.bv_len = alloc_size;
<------>req->rq_flags |= RQF_SPECIAL_PAYLOAD;
<------>return BLK_STS_OK;
}
static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
<------><------>struct request *req, struct nvme_command *cmnd)
{
<------>if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
<------><------>return nvme_setup_discard(ns, req, cmnd);
<------>cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
<------>cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
<------>cmnd->write_zeroes.slba =
<------><------>cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
<------>cmnd->write_zeroes.length =
<------><------>cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
<------>if (nvme_ns_has_pi(ns))
<------><------>cmnd->write_zeroes.control = cpu_to_le16(NVME_RW_PRINFO_PRACT);
<------>else
<------><------>cmnd->write_zeroes.control = 0;
<------>return BLK_STS_OK;
}
static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
<------><------>struct request *req, struct nvme_command *cmnd,
<------><------>enum nvme_opcode op)
{
<------>struct nvme_ctrl *ctrl = ns->ctrl;
<------>u16 control = 0;
<------>u32 dsmgmt = 0;
<------>if (req->cmd_flags & REQ_FUA)
<------><------>control |= NVME_RW_FUA;
<------>if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
<------><------>control |= NVME_RW_LR;
<------>if (req->cmd_flags & REQ_RAHEAD)
<------><------>dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
<------>cmnd->rw.opcode = op;
<------>cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
<------>cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
<------>cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
<------>if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
<------><------>nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
<------>if (ns->ms) {
<------><------>/*
<------><------> * If formated with metadata, the block layer always provides a
<------><------> * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else
<------><------> * we enable the PRACT bit for protection information or set the
<------><------> * namespace capacity to zero to prevent any I/O.
<------><------> */
<------><------>if (!blk_integrity_rq(req)) {
<------><------><------>if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
<------><------><------><------>return BLK_STS_NOTSUPP;
<------><------><------>control |= NVME_RW_PRINFO_PRACT;
<------><------>}
<------><------>switch (ns->pi_type) {
<------><------>case NVME_NS_DPS_PI_TYPE3:
<------><------><------>control |= NVME_RW_PRINFO_PRCHK_GUARD;
<------><------><------>break;
<------><------>case NVME_NS_DPS_PI_TYPE1:
<------><------>case NVME_NS_DPS_PI_TYPE2:
<------><------><------>control |= NVME_RW_PRINFO_PRCHK_GUARD |
<------><------><------><------><------>NVME_RW_PRINFO_PRCHK_REF;
<------><------><------>if (op == nvme_cmd_zone_append)
<------><------><------><------>control |= NVME_RW_APPEND_PIREMAP;
<------><------><------>cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
<------><------><------>break;
<------><------>}
<------>}
<------>cmnd->rw.control = cpu_to_le16(control);
<------>cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
<------>return 0;
}
void nvme_cleanup_cmd(struct request *req)
{
<------>if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
<------><------>struct nvme_ns *ns = req->rq_disk->private_data;
<------><------>struct page *page = req->special_vec.bv_page;
<------><------>if (page == ns->ctrl->discard_page)
<------><------><------>clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
<------><------>else
<------><------><------>kfree(page_address(page) + req->special_vec.bv_offset);
<------>}
}
EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
<------><------>struct nvme_command *cmd)
{
<------>struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
<------>blk_status_t ret = BLK_STS_OK;
<------>nvme_clear_nvme_request(req);
<------>memset(cmd, 0, sizeof(*cmd));
<------>switch (req_op(req)) {
<------>case REQ_OP_DRV_IN:
<------>case REQ_OP_DRV_OUT:
<------><------>nvme_setup_passthrough(req, cmd);
<------><------>break;
<------>case REQ_OP_FLUSH:
<------><------>nvme_setup_flush(ns, cmd);
<------><------>break;
<------>case REQ_OP_ZONE_RESET_ALL:
<------>case REQ_OP_ZONE_RESET:
<------><------>ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
<------><------>break;
<------>case REQ_OP_ZONE_OPEN:
<------><------>ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
<------><------>break;
<------>case REQ_OP_ZONE_CLOSE:
<------><------>ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
<------><------>break;
<------>case REQ_OP_ZONE_FINISH:
<------><------>ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
<------><------>break;
<------>case REQ_OP_WRITE_ZEROES:
<------><------>ret = nvme_setup_write_zeroes(ns, req, cmd);
<------><------>break;
<------>case REQ_OP_DISCARD:
<------><------>ret = nvme_setup_discard(ns, req, cmd);
<------><------>break;
<------>case REQ_OP_READ:
<------><------>ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
<------><------>break;
<------>case REQ_OP_WRITE:
<------><------>ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
<------><------>break;
<------>case REQ_OP_ZONE_APPEND:
<------><------>ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
<------><------>break;
<------>default:
<------><------>WARN_ON_ONCE(1);
<------><------>return BLK_STS_IOERR;
<------>}
<------>if (!(ctrl->quirks & NVME_QUIRK_SKIP_CID_GEN))
<------><------>nvme_req(req)->genctr++;
<------>cmd->common.command_id = nvme_cid(req);
<------>trace_nvme_setup_cmd(req, cmd);
<------>return ret;
}
EXPORT_SYMBOL_GPL(nvme_setup_cmd);
static void nvme_end_sync_rq(struct request *rq, blk_status_t error)
{
<------>struct completion *waiting = rq->end_io_data;
<------>rq->end_io_data = NULL;
<------>complete(waiting);
}
static void nvme_execute_rq_polled(struct request_queue *q,
<------><------>struct gendisk *bd_disk, struct request *rq, int at_head)
{
<------>DECLARE_COMPLETION_ONSTACK(wait);
<------>WARN_ON_ONCE(!test_bit(QUEUE_FLAG_POLL, &q->queue_flags));
<------>rq->cmd_flags |= REQ_HIPRI;
<------>rq->end_io_data = &wait;
<------>blk_execute_rq_nowait(q, bd_disk, rq, at_head, nvme_end_sync_rq);
<------>while (!completion_done(&wait)) {
<------><------>blk_poll(q, request_to_qc_t(rq->mq_hctx, rq), true);
<------><------>cond_resched();
<------>}
}
/*
* Returns 0 on success. If the result is negative, it's a Linux error code;
* if the result is positive, it's an NVM Express status code
*/
int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
<------><------>union nvme_result *result, void *buffer, unsigned bufflen,
<------><------>unsigned timeout, int qid, int at_head,
<------><------>blk_mq_req_flags_t flags, bool poll)
{
<------>struct request *req;
<------>int ret;
<------>req = nvme_alloc_request(q, cmd, flags, qid);
<------>if (IS_ERR(req))
<------><------>return PTR_ERR(req);
<------>req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
<------>if (buffer && bufflen) {
<------><------>ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
<------><------>if (ret)
<------><------><------>goto out;
<------>}
<------>if (poll)
<------><------>nvme_execute_rq_polled(req->q, NULL, req, at_head);
<------>else
<------><------>blk_execute_rq(req->q, NULL, req, at_head);
<------>if (result)
<------><------>*result = nvme_req(req)->result;
<------>if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
<------><------>ret = -EINTR;
<------>else
<------><------>ret = nvme_req(req)->status;
out:
<------>blk_mq_free_request(req);
<------>return ret;
}
EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
<------><------>void *buffer, unsigned bufflen)
{
<------>return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
<------><------><------>NVME_QID_ANY, 0, 0, false);
}
EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
<------><------>unsigned len, u32 seed, bool write)
{
<------>struct bio_integrity_payload *bip;
<------>int ret = -ENOMEM;
<------>void *buf;
<------>buf = kmalloc(len, GFP_KERNEL);
<------>if (!buf)
<------><------>goto out;
<------>ret = -EFAULT;
<------>if (write && copy_from_user(buf, ubuf, len))
<------><------>goto out_free_meta;
<------>bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
<------>if (IS_ERR(bip)) {
<------><------>ret = PTR_ERR(bip);
<------><------>goto out_free_meta;
<------>}
<------>bip->bip_iter.bi_size = len;
<------>bip->bip_iter.bi_sector = seed;
<------>ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
<------><------><------>offset_in_page(buf));
<------>if (ret == len)
<------><------>return buf;
<------>ret = -ENOMEM;
out_free_meta:
<------>kfree(buf);
out:
<------>return ERR_PTR(ret);
}
static u32 nvme_known_admin_effects(u8 opcode)
{
<------>switch (opcode) {
<------>case nvme_admin_format_nvm:
<------><------>return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_NCC |
<------><------><------>NVME_CMD_EFFECTS_CSE_MASK;
<------>case nvme_admin_sanitize_nvm:
<------><------>return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK;
<------>default:
<------><------>break;
<------>}
<------>return 0;
}
u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
{
<------>u32 effects = 0;
<------>if (ns) {
<------><------>if (ns->head->effects)
<------><------><------>effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
<------><------>if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
<------><------><------>dev_warn(ctrl->device,
<------><------><------><------> "IO command:%02x has unhandled effects:%08x\n",
<------><------><------><------> opcode, effects);
<------><------>return 0;
<------>}
<------>if (ctrl->effects)
<------><------>effects = le32_to_cpu(ctrl->effects->acs[opcode]);
<------>effects |= nvme_known_admin_effects(opcode);
<------>return effects;
}
EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
<------><------><------> u8 opcode)
{
<------>u32 effects = nvme_command_effects(ctrl, ns, opcode);
<------>/*
<------> * For simplicity, IO to all namespaces is quiesced even if the command
<------> * effects say only one namespace is affected.
<------> */
<------>if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
<------><------>mutex_lock(&ctrl->scan_lock);
<------><------>mutex_lock(&ctrl->subsys->lock);
<------><------>nvme_mpath_start_freeze(ctrl->subsys);
<------><------>nvme_mpath_wait_freeze(ctrl->subsys);
<------><------>nvme_start_freeze(ctrl);
<------><------>nvme_wait_freeze(ctrl);
<------>}
<------>return effects;
}
static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
{
<------>if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
<------><------>nvme_unfreeze(ctrl);
<------><------>nvme_mpath_unfreeze(ctrl->subsys);
<------><------>mutex_unlock(&ctrl->subsys->lock);
<------><------>nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
<------><------>mutex_unlock(&ctrl->scan_lock);
<------>}
<------>if (effects & NVME_CMD_EFFECTS_CCC)
<------><------>nvme_init_identify(ctrl);
<------>if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
<------><------>nvme_queue_scan(ctrl);
<------><------>flush_work(&ctrl->scan_work);
<------>}
}
void nvme_execute_passthru_rq(struct request *rq)
{
<------>struct nvme_command *cmd = nvme_req(rq)->cmd;
<------>struct nvme_ctrl *ctrl = nvme_req(rq)->ctrl;
<------>struct nvme_ns *ns = rq->q->queuedata;
<------>struct gendisk *disk = ns ? ns->disk : NULL;
<------>u32 effects;
<------>effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode);
<------>blk_execute_rq(rq->q, disk, rq, 0);
<------>nvme_passthru_end(ctrl, effects);
}
EXPORT_SYMBOL_NS_GPL(nvme_execute_passthru_rq, NVME_TARGET_PASSTHRU);
static int nvme_submit_user_cmd(struct request_queue *q,
<------><------>struct nvme_command *cmd, void __user *ubuffer,
<------><------>unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
<------><------>u32 meta_seed, u64 *result, unsigned timeout)
{
<------>bool write = nvme_is_write(cmd);
<------>struct nvme_ns *ns = q->queuedata;
<------>struct gendisk *disk = ns ? ns->disk : NULL;
<------>struct request *req;
<------>struct bio *bio = NULL;
<------>void *meta = NULL;
<------>int ret;
<------>req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
<------>if (IS_ERR(req))
<------><------>return PTR_ERR(req);
<------>req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
<------>nvme_req(req)->flags |= NVME_REQ_USERCMD;
<------>if (ubuffer && bufflen) {
<------><------>ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
<------><------><------><------>GFP_KERNEL);
<------><------>if (ret)
<------><------><------>goto out;
<------><------>bio = req->bio;
<------><------>bio->bi_disk = disk;
<------><------>if (disk && meta_buffer && meta_len) {
<------><------><------>meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
<------><------><------><------><------>meta_seed, write);
<------><------><------>if (IS_ERR(meta)) {
<------><------><------><------>ret = PTR_ERR(meta);
<------><------><------><------>goto out_unmap;
<------><------><------>}
<------><------><------>req->cmd_flags |= REQ_INTEGRITY;
<------><------>}
<------>}
<------>nvme_execute_passthru_rq(req);
<------>if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
<------><------>ret = -EINTR;
<------>else
<------><------>ret = nvme_req(req)->status;
<------>if (result)
<------><------>*result = le64_to_cpu(nvme_req(req)->result.u64);
<------>if (meta && !ret && !write) {
<------><------>if (copy_to_user(meta_buffer, meta, meta_len))
<------><------><------>ret = -EFAULT;
<------>}
<------>kfree(meta);
out_unmap:
<------>if (bio)
<------><------>blk_rq_unmap_user(bio);
out:
<------>blk_mq_free_request(req);
<------>return ret;
}
static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
{
<------>struct nvme_ctrl *ctrl = rq->end_io_data;
<------>unsigned long flags;
<------>bool startka = false;
<------>blk_mq_free_request(rq);
<------>if (status) {
<------><------>dev_err(ctrl->device,
<------><------><------>"failed nvme_keep_alive_end_io error=%d\n",
<------><------><------><------>status);
<------><------>return;
<------>}
<------>ctrl->comp_seen = false;
<------>spin_lock_irqsave(&ctrl->lock, flags);
<------>if (ctrl->state == NVME_CTRL_LIVE ||
<------> ctrl->state == NVME_CTRL_CONNECTING)
<------><------>startka = true;
<------>spin_unlock_irqrestore(&ctrl->lock, flags);
<------>if (startka)
<------><------>queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
}
static int nvme_keep_alive(struct nvme_ctrl *ctrl)
{
<------>struct request *rq;
<------>rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, BLK_MQ_REQ_RESERVED,
<------><------><------>NVME_QID_ANY);
<------>if (IS_ERR(rq))
<------><------>return PTR_ERR(rq);
<------>rq->timeout = ctrl->kato * HZ;
<------>rq->end_io_data = ctrl;
<------>blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
<------>return 0;
}
static void nvme_keep_alive_work(struct work_struct *work)
{
<------>struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
<------><------><------>struct nvme_ctrl, ka_work);
<------>bool comp_seen = ctrl->comp_seen;
<------>if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
<------><------>dev_dbg(ctrl->device,
<------><------><------>"reschedule traffic based keep-alive timer\n");
<------><------>ctrl->comp_seen = false;
<------><------>queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
<------><------>return;
<------>}
<------>if (nvme_keep_alive(ctrl)) {
<------><------>/* allocation failure, reset the controller */
<------><------>dev_err(ctrl->device, "keep-alive failed\n");
<------><------>nvme_reset_ctrl(ctrl);
<------><------>return;
<------>}
}
static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
{
<------>if (unlikely(ctrl->kato == 0))
<------><------>return;
<------>queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ);
}
void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
{
<------>if (unlikely(ctrl->kato == 0))
<------><------>return;
<------>cancel_delayed_work_sync(&ctrl->ka_work);
}
EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
/*
* In NVMe 1.0 the CNS field was just a binary controller or namespace
* flag, thus sending any new CNS opcodes has a big chance of not working.
* Qemu unfortunately had that bug after reporting a 1.1 version compliance
* (but not for any later version).
*/
static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
{
<------>if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
<------><------>return ctrl->vs < NVME_VS(1, 2, 0);
<------>return ctrl->vs < NVME_VS(1, 1, 0);
}
static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
{
<------>struct nvme_command c = { };
<------>int error;
<------>/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
<------>c.identify.opcode = nvme_admin_identify;
<------>c.identify.cns = NVME_ID_CNS_CTRL;
<------>*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
<------>if (!*id)
<------><------>return -ENOMEM;
<------>error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
<------><------><------>sizeof(struct nvme_id_ctrl));
<------>if (error)
<------><------>kfree(*id);
<------>return error;
}
static bool nvme_multi_css(struct nvme_ctrl *ctrl)
{
<------>return (ctrl->ctrl_config & NVME_CC_CSS_MASK) == NVME_CC_CSS_CSI;
}
static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
<------><------>struct nvme_ns_id_desc *cur, bool *csi_seen)
{
<------>const char *warn_str = "ctrl returned bogus length:";
<------>void *data = cur;
<------>switch (cur->nidt) {
<------>case NVME_NIDT_EUI64:
<------><------>if (cur->nidl != NVME_NIDT_EUI64_LEN) {
<------><------><------>dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
<------><------><------><------> warn_str, cur->nidl);
<------><------><------>return -1;
<------><------>}
<------><------>memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
<------><------>return NVME_NIDT_EUI64_LEN;
<------>case NVME_NIDT_NGUID:
<------><------>if (cur->nidl != NVME_NIDT_NGUID_LEN) {
<------><------><------>dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
<------><------><------><------> warn_str, cur->nidl);
<------><------><------>return -1;
<------><------>}
<------><------>memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
<------><------>return NVME_NIDT_NGUID_LEN;
<------>case NVME_NIDT_UUID:
<------><------>if (cur->nidl != NVME_NIDT_UUID_LEN) {
<------><------><------>dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
<------><------><------><------> warn_str, cur->nidl);
<------><------><------>return -1;
<------><------>}
<------><------>uuid_copy(&ids->uuid, data + sizeof(*cur));
<------><------>return NVME_NIDT_UUID_LEN;
<------>case NVME_NIDT_CSI:
<------><------>if (cur->nidl != NVME_NIDT_CSI_LEN) {
<------><------><------>dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
<------><------><------><------> warn_str, cur->nidl);
<------><------><------>return -1;
<------><------>}
<------><------>memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
<------><------>*csi_seen = true;
<------><------>return NVME_NIDT_CSI_LEN;
<------>default:
<------><------>/* Skip unknown types */
<------><------>return cur->nidl;
<------>}
}
static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
<------><------>struct nvme_ns_ids *ids)
{
<------>struct nvme_command c = { };
<------>bool csi_seen = false;
<------>int status, pos, len;
<------>void *data;
<------>if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
<------><------>return 0;
<------>if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
<------><------>return 0;
<------>c.identify.opcode = nvme_admin_identify;
<------>c.identify.nsid = cpu_to_le32(nsid);
<------>c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
<------>data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
<------>if (!data)
<------><------>return -ENOMEM;
<------>status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
<------><------><------><------> NVME_IDENTIFY_DATA_SIZE);
<------>if (status) {
<------><------>dev_warn(ctrl->device,
<------><------><------>"Identify Descriptors failed (%d)\n", status);
<------><------>goto free_data;
<------>}
<------>for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
<------><------>struct nvme_ns_id_desc *cur = data + pos;
<------><------>if (cur->nidl == 0)
<------><------><------>break;
<------><------>len = nvme_process_ns_desc(ctrl, ids, cur, &csi_seen);
<------><------>if (len < 0)
<------><------><------>break;
<------><------>len += sizeof(*cur);
<------>}
<------>if (nvme_multi_css(ctrl) && !csi_seen) {
<------><------>dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
<------><------><------> nsid);
<------><------>status = -EINVAL;
<------>}
free_data:
<------>kfree(data);
<------>return status;
}
static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
<------><------><------>struct nvme_ns_ids *ids, struct nvme_id_ns **id)
{
<------>struct nvme_command c = { };
<------>int error;
<------>/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
<------>c.identify.opcode = nvme_admin_identify;
<------>c.identify.nsid = cpu_to_le32(nsid);
<------>c.identify.cns = NVME_ID_CNS_NS;
<------>*id = kmalloc(sizeof(**id), GFP_KERNEL);
<------>if (!*id)
<------><------>return -ENOMEM;
<------>error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
<------>if (error) {
<------><------>dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
<------><------>goto out_free_id;
<------>}
<------>error = NVME_SC_INVALID_NS | NVME_SC_DNR;
<------>if ((*id)->ncap == 0) /* namespace not allocated or attached */
<------><------>goto out_free_id;
<------>if (ctrl->vs >= NVME_VS(1, 1, 0) &&
<------> !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
<------><------>memcpy(ids->eui64, (*id)->eui64, sizeof(ids->eui64));
<------>if (ctrl->vs >= NVME_VS(1, 2, 0) &&
<------> !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
<------><------>memcpy(ids->nguid, (*id)->nguid, sizeof(ids->nguid));
<------>return 0;
out_free_id:
<------>kfree(*id);
<------>return error;
}
static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
<------><------>unsigned int dword11, void *buffer, size_t buflen, u32 *result)
{
<------>union nvme_result res = { 0 };
<------>struct nvme_command c;
<------>int ret;
<------>memset(&c, 0, sizeof(c));
<------>c.features.opcode = op;
<------>c.features.fid = cpu_to_le32(fid);
<------>c.features.dword11 = cpu_to_le32(dword11);
<------>ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
<------><------><------>buffer, buflen, 0, NVME_QID_ANY, 0, 0, false);
<------>if (ret >= 0 && result)
<------><------>*result = le32_to_cpu(res.u32);
<------>return ret;
}
int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
<------><------> unsigned int dword11, void *buffer, size_t buflen,
<------><------> u32 *result)
{
<------>return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
<------><------><------> buflen, result);
}
EXPORT_SYMBOL_GPL(nvme_set_features);
int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
<------><------> unsigned int dword11, void *buffer, size_t buflen,
<------><------> u32 *result)
{
<------>return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
<------><------><------> buflen, result);
}
EXPORT_SYMBOL_GPL(nvme_get_features);
int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
{
<------>u32 q_count = (*count - 1) | ((*count - 1) << 16);
<------>u32 result;
<------>int status, nr_io_queues;
<------>status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
<------><------><------>&result);
<------>if (status < 0)
<------><------>return status;
<------>/*
<------> * Degraded controllers might return an error when setting the queue
<------> * count. We still want to be able to bring them online and offer
<------> * access to the admin queue, as that might be only way to fix them up.
<------> */
<------>if (status > 0) {
<------><------>dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
<------><------>*count = 0;
<------>} else {
<------><------>nr_io_queues = min(result & 0xffff, result >> 16) + 1;
<------><------>*count = min(*count, nr_io_queues);
<------>}
<------>return 0;
}
EXPORT_SYMBOL_GPL(nvme_set_queue_count);
#define NVME_AEN_SUPPORTED \
<------>(NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
<------> NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
static void nvme_enable_aen(struct nvme_ctrl *ctrl)
{
<------>u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
<------>int status;
<------>if (!supported_aens)
<------><------>return;
<------>status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
<------><------><------>NULL, 0, &result);
<------>if (status)
<------><------>dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
<------><------><------> supported_aens);
<------>queue_work(nvme_wq, &ctrl->async_event_work);
}
/*
* Convert integer values from ioctl structures to user pointers, silently
* ignoring the upper bits in the compat case to match behaviour of 32-bit
* kernels.
*/
static void __user *nvme_to_user_ptr(uintptr_t ptrval)
{
<------>if (in_compat_syscall())
<------><------>ptrval = (compat_uptr_t)ptrval;
<------>return (void __user *)ptrval;
}
static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
{
<------>struct nvme_user_io io;
<------>struct nvme_command c;
<------>unsigned length, meta_len;
<------>void __user *metadata;
<------>if (copy_from_user(&io, uio, sizeof(io)))
<------><------>return -EFAULT;
<------>if (io.flags)
<------><------>return -EINVAL;
<------>switch (io.opcode) {
<------>case nvme_cmd_write:
<------>case nvme_cmd_read:
<------>case nvme_cmd_compare:
<------><------>break;
<------>default:
<------><------>return -EINVAL;
<------>}
<------>length = (io.nblocks + 1) << ns->lba_shift;
<------>if ((io.control & NVME_RW_PRINFO_PRACT) &&
<------> ns->ms == sizeof(struct t10_pi_tuple)) {
<------><------>/*
<------><------> * Protection information is stripped/inserted by the
<------><------> * controller.
<------><------> */
<------><------>if (nvme_to_user_ptr(io.metadata))
<------><------><------>return -EINVAL;
<------><------>meta_len = 0;
<------><------>metadata = NULL;
<------>} else {
<------><------>meta_len = (io.nblocks + 1) * ns->ms;
<------><------>metadata = nvme_to_user_ptr(io.metadata);
<------>}
<------>if (ns->features & NVME_NS_EXT_LBAS) {
<------><------>length += meta_len;
<------><------>meta_len = 0;
<------>} else if (meta_len) {
<------><------>if ((io.metadata & 3) || !io.metadata)
<------><------><------>return -EINVAL;
<------>}
<------>memset(&c, 0, sizeof(c));
<------>c.rw.opcode = io.opcode;
<------>c.rw.flags = io.flags;
<------>c.rw.nsid = cpu_to_le32(ns->head->ns_id);
<------>c.rw.slba = cpu_to_le64(io.slba);
<------>c.rw.length = cpu_to_le16(io.nblocks);
<------>c.rw.control = cpu_to_le16(io.control);
<------>c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
<------>c.rw.reftag = cpu_to_le32(io.reftag);
<------>c.rw.apptag = cpu_to_le16(io.apptag);
<------>c.rw.appmask = cpu_to_le16(io.appmask);
<------>return nvme_submit_user_cmd(ns->queue, &c,
<------><------><------>nvme_to_user_ptr(io.addr), length,
<------><------><------>metadata, meta_len, lower_32_bits(io.slba), NULL, 0);
}
static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
<------><------><------>struct nvme_passthru_cmd __user *ucmd)
{
<------>struct nvme_passthru_cmd cmd;
<------>struct nvme_command c;
<------>unsigned timeout = 0;
<------>u64 result;
<------>int status;
<------>if (!capable(CAP_SYS_ADMIN))
<------><------>return -EACCES;
<------>if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
<------><------>return -EFAULT;
<------>if (cmd.flags)
<------><------>return -EINVAL;
<------>memset(&c, 0, sizeof(c));
<------>c.common.opcode = cmd.opcode;
<------>c.common.flags = cmd.flags;
<------>c.common.nsid = cpu_to_le32(cmd.nsid);
<------>c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
<------>c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
<------>c.common.cdw10 = cpu_to_le32(cmd.cdw10);
<------>c.common.cdw11 = cpu_to_le32(cmd.cdw11);
<------>c.common.cdw12 = cpu_to_le32(cmd.cdw12);
<------>c.common.cdw13 = cpu_to_le32(cmd.cdw13);
<------>c.common.cdw14 = cpu_to_le32(cmd.cdw14);
<------>c.common.cdw15 = cpu_to_le32(cmd.cdw15);
<------>if (cmd.timeout_ms)
<------><------>timeout = msecs_to_jiffies(cmd.timeout_ms);
<------>status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
<------><------><------>nvme_to_user_ptr(cmd.addr), cmd.data_len,
<------><------><------>nvme_to_user_ptr(cmd.metadata), cmd.metadata_len,
<------><------><------>0, &result, timeout);
<------>if (status >= 0) {
<------><------>if (put_user(result, &ucmd->result))
<------><------><------>return -EFAULT;
<------>}
<------>return status;
}
static int nvme_user_cmd64(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
<------><------><------>struct nvme_passthru_cmd64 __user *ucmd)
{
<------>struct nvme_passthru_cmd64 cmd;
<------>struct nvme_command c;
<------>unsigned timeout = 0;
<------>int status;
<------>if (!capable(CAP_SYS_ADMIN))
<------><------>return -EACCES;
<------>if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
<------><------>return -EFAULT;
<------>if (cmd.flags)
<------><------>return -EINVAL;
<------>memset(&c, 0, sizeof(c));
<------>c.common.opcode = cmd.opcode;
<------>c.common.flags = cmd.flags;
<------>c.common.nsid = cpu_to_le32(cmd.nsid);
<------>c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
<------>c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
<------>c.common.cdw10 = cpu_to_le32(cmd.cdw10);
<------>c.common.cdw11 = cpu_to_le32(cmd.cdw11);
<------>c.common.cdw12 = cpu_to_le32(cmd.cdw12);
<------>c.common.cdw13 = cpu_to_le32(cmd.cdw13);
<------>c.common.cdw14 = cpu_to_le32(cmd.cdw14);
<------>c.common.cdw15 = cpu_to_le32(cmd.cdw15);
<------>if (cmd.timeout_ms)
<------><------>timeout = msecs_to_jiffies(cmd.timeout_ms);
<------>status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
<------><------><------>nvme_to_user_ptr(cmd.addr), cmd.data_len,
<------><------><------>nvme_to_user_ptr(cmd.metadata), cmd.metadata_len,
<------><------><------>0, &cmd.result, timeout);
<------>if (status >= 0) {
<------><------>if (put_user(cmd.result, &ucmd->result))
<------><------><------>return -EFAULT;
<------>}
<------>return status;
}
/*
* Issue ioctl requests on the first available path. Note that unlike normal
* block layer requests we will not retry failed request on another controller.
*/
struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
<------><------>struct nvme_ns_head **head, int *srcu_idx)
{
#ifdef CONFIG_NVME_MULTIPATH
<------>if (disk->fops == &nvme_ns_head_ops) {
<------><------>struct nvme_ns *ns;
<------><------>*head = disk->private_data;
<------><------>*srcu_idx = srcu_read_lock(&(*head)->srcu);
<------><------>ns = nvme_find_path(*head);
<------><------>if (!ns)
<------><------><------>srcu_read_unlock(&(*head)->srcu, *srcu_idx);
<------><------>return ns;
<------>}
#endif
<------>*head = NULL;
<------>*srcu_idx = -1;
<------>return disk->private_data;
}
void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
{
<------>if (head)
<------><------>srcu_read_unlock(&head->srcu, idx);
}
static bool is_ctrl_ioctl(unsigned int cmd)
{
<------>if (cmd == NVME_IOCTL_ADMIN_CMD || cmd == NVME_IOCTL_ADMIN64_CMD)
<------><------>return true;
<------>if (is_sed_ioctl(cmd))
<------><------>return true;
<------>return false;
}
static int nvme_handle_ctrl_ioctl(struct nvme_ns *ns, unsigned int cmd,
<------><------><------><------> void __user *argp,
<------><------><------><------> struct nvme_ns_head *head,
<------><------><------><------> int srcu_idx)
{
<------>struct nvme_ctrl *ctrl = ns->ctrl;
<------>int ret;
<------>nvme_get_ctrl(ns->ctrl);
<------>nvme_put_ns_from_disk(head, srcu_idx);
<------>switch (cmd) {
<------>case NVME_IOCTL_ADMIN_CMD:
<------><------>ret = nvme_user_cmd(ctrl, NULL, argp);
<------><------>break;
<------>case NVME_IOCTL_ADMIN64_CMD:
<------><------>ret = nvme_user_cmd64(ctrl, NULL, argp);
<------><------>break;
<------>default:
<------><------>ret = sed_ioctl(ctrl->opal_dev, cmd, argp);
<------><------>break;
<------>}
<------>nvme_put_ctrl(ctrl);
<------>return ret;
}
static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
<------><------>unsigned int cmd, unsigned long arg)
{
<------>struct nvme_ns_head *head = NULL;
<------>void __user *argp = (void __user *)arg;
<------>struct nvme_ns *ns;
<------>int srcu_idx, ret;
<------>ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
<------>if (unlikely(!ns))
<------><------>return -EWOULDBLOCK;
<------>/*
<------> * Handle ioctls that apply to the controller instead of the namespace
<------> * seperately and drop the ns SRCU reference early. This avoids a
<------> * deadlock when deleting namespaces using the passthrough interface.
<------> */
<------>if (is_ctrl_ioctl(cmd))
<------><------>return nvme_handle_ctrl_ioctl(ns, cmd, argp, head, srcu_idx);
<------>switch (cmd) {
<------>case NVME_IOCTL_ID:
<------><------>force_successful_syscall_return();
<------><------>ret = ns->head->ns_id;
<------><------>break;
<------>case NVME_IOCTL_IO_CMD:
<------><------>ret = nvme_user_cmd(ns->ctrl, ns, argp);
<------><------>break;
<------>case NVME_IOCTL_SUBMIT_IO:
<------><------>ret = nvme_submit_io(ns, argp);
<------><------>break;
<------>case NVME_IOCTL_IO64_CMD:
<------><------>ret = nvme_user_cmd64(ns->ctrl, ns, argp);
<------><------>break;
<------>default:
<------><------>if (ns->ndev)
<------><------><------>ret = nvme_nvm_ioctl(ns, cmd, arg);
<------><------>else
<------><------><------>ret = -ENOTTY;
<------>}
<------>nvme_put_ns_from_disk(head, srcu_idx);
<------>return ret;
}
#ifdef CONFIG_COMPAT
struct nvme_user_io32 {
<------>__u8 opcode;
<------>__u8 flags;
<------>__u16 control;
<------>__u16 nblocks;
<------>__u16 rsvd;
<------>__u64 metadata;
<------>__u64 addr;
<------>__u64 slba;
<------>__u32 dsmgmt;
<------>__u32 reftag;
<------>__u16 apptag;
<------>__u16 appmask;
} __attribute__((__packed__));
#define NVME_IOCTL_SUBMIT_IO32 _IOW('N', 0x42, struct nvme_user_io32)
static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
<------><------>unsigned int cmd, unsigned long arg)
{
<------>/*
<------> * Corresponds to the difference of NVME_IOCTL_SUBMIT_IO
<------> * between 32 bit programs and 64 bit kernel.
<------> * The cause is that the results of sizeof(struct nvme_user_io),
<------> * which is used to define NVME_IOCTL_SUBMIT_IO,
<------> * are not same between 32 bit compiler and 64 bit compiler.
<------> * NVME_IOCTL_SUBMIT_IO32 is for 64 bit kernel handling
<------> * NVME_IOCTL_SUBMIT_IO issued from 32 bit programs.
<------> * Other IOCTL numbers are same between 32 bit and 64 bit.
<------> * So there is nothing to do regarding to other IOCTL numbers.
<------> */
<------>if (cmd == NVME_IOCTL_SUBMIT_IO32)
<------><------>return nvme_ioctl(bdev, mode, NVME_IOCTL_SUBMIT_IO, arg);
<------>return nvme_ioctl(bdev, mode, cmd, arg);
}
#else
#define nvme_compat_ioctl NULL
#endif /* CONFIG_COMPAT */
static int nvme_open(struct block_device *bdev, fmode_t mode)
{
<------>struct nvme_ns *ns = bdev->bd_disk->private_data;
#ifdef CONFIG_NVME_MULTIPATH
<------>/* should never be called due to GENHD_FL_HIDDEN */
<------>if (WARN_ON_ONCE(ns->head->disk))
<------><------>goto fail;
#endif
<------>if (!kref_get_unless_zero(&ns->kref))
<------><------>goto fail;
<------>if (!try_module_get(ns->ctrl->ops->module))
<------><------>goto fail_put_ns;
<------>return 0;
fail_put_ns:
<------>nvme_put_ns(ns);
fail:
<------>return -ENXIO;
}
static void nvme_release(struct gendisk *disk, fmode_t mode)
{
<------>struct nvme_ns *ns = disk->private_data;
<------>module_put(ns->ctrl->ops->module);
<------>nvme_put_ns(ns);
}
static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
{
<------>/* some standard values */
<------>geo->heads = 1 << 6;
<------>geo->sectors = 1 << 5;
<------>geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
<------>return 0;
}
#ifdef CONFIG_BLK_DEV_INTEGRITY
static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
<------><------><------><------>u32 max_integrity_segments)
{
<------>struct blk_integrity integrity;
<------>memset(&integrity, 0, sizeof(integrity));
<------>switch (pi_type) {
<------>case NVME_NS_DPS_PI_TYPE3:
<------><------>integrity.profile = &t10_pi_type3_crc;
<------><------>integrity.tag_size = sizeof(u16) + sizeof(u32);
<------><------>integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
<------><------>break;
<------>case NVME_NS_DPS_PI_TYPE1:
<------>case NVME_NS_DPS_PI_TYPE2:
<------><------>integrity.profile = &t10_pi_type1_crc;
<------><------>integrity.tag_size = sizeof(u16);
<------><------>integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
<------><------>break;
<------>default:
<------><------>integrity.profile = NULL;
<------><------>break;
<------>}
<------>integrity.tuple_size = ms;
<------>blk_integrity_register(disk, &integrity);
<------>blk_queue_max_integrity_segments(disk->queue, max_integrity_segments);
}
#else
static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type,
<------><------><------><------>u32 max_integrity_segments)
{
}
#endif /* CONFIG_BLK_DEV_INTEGRITY */
static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
{
<------>struct nvme_ctrl *ctrl = ns->ctrl;
<------>struct request_queue *queue = disk->queue;
<------>u32 size = queue_logical_block_size(queue);
<------>if (!(ctrl->oncs & NVME_CTRL_ONCS_DSM)) {
<------><------>blk_queue_flag_clear(QUEUE_FLAG_DISCARD, queue);
<------><------>return;
<------>}
<------>if (ctrl->nr_streams && ns->sws && ns->sgs)
<------><------>size *= ns->sws * ns->sgs;
<------>BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
<------><------><------>NVME_DSM_MAX_RANGES);
<------>queue->limits.discard_alignment = 0;
<------>queue->limits.discard_granularity = size;
<------>/* If discard is already enabled, don't reset queue limits */
<------>if (blk_queue_flag_test_and_set(QUEUE_FLAG_DISCARD, queue))
<------><------>return;
<------>blk_queue_max_discard_sectors(queue, UINT_MAX);
<------>blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
<------>if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
<------><------>blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
}
/*
* Even though NVMe spec explicitly states that MDTS is not applicable to the
* write-zeroes, we are cautious and limit the size to the controllers
* max_hw_sectors value, which is based on the MDTS field and possibly other
* limiting factors.
*/
static void nvme_config_write_zeroes(struct request_queue *q,
<------><------>struct nvme_ctrl *ctrl)
{
<------>if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
<------> !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
<------><------>blk_queue_max_write_zeroes_sectors(q, ctrl->max_hw_sectors);
}
static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
{
<------>return !uuid_is_null(&ids->uuid) ||
<------><------>memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
<------><------>memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
}
static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
{
<------>return uuid_equal(&a->uuid, &b->uuid) &&
<------><------>memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
<------><------>memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
<------><------>a->csi == b->csi;
}
static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
<------><------><------><------> u32 *phys_bs, u32 *io_opt)
{
<------>struct streams_directive_params s;
<------>int ret;
<------>if (!ctrl->nr_streams)
<------><------>return 0;
<------>ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
<------>if (ret)
<------><------>return ret;
<------>ns->sws = le32_to_cpu(s.sws);
<------>ns->sgs = le16_to_cpu(s.sgs);
<------>if (ns->sws) {
<------><------>*phys_bs = ns->sws * (1 << ns->lba_shift);
<------><------>if (ns->sgs)
<------><------><------>*io_opt = *phys_bs * ns->sgs;
<------>}
<------>return 0;
}
static int nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id)
{
<------>struct nvme_ctrl *ctrl = ns->ctrl;
<------>/*
<------> * The PI implementation requires the metadata size to be equal to the
<------> * t10 pi tuple size.
<------> */
<------>ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
<------>if (ns->ms == sizeof(struct t10_pi_tuple))
<------><------>ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
<------>else
<------><------>ns->pi_type = 0;
<------>ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
<------>if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
<------><------>return 0;
<------>if (ctrl->ops->flags & NVME_F_FABRICS) {
<------><------>/*
<------><------> * The NVMe over Fabrics specification only supports metadata as
<------><------> * part of the extended data LBA. We rely on HCA/HBA support to
<------><------> * remap the separate metadata buffer from the block layer.
<------><------> */
<------><------>if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
<------><------><------>return -EINVAL;
<------><------>if (ctrl->max_integrity_segments)
<------><------><------>ns->features |=
<------><------><------><------>(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
<------>} else {
<------><------>/*
<------><------> * For PCIe controllers, we can't easily remap the separate
<------><------> * metadata buffer from the block layer and thus require a
<------><------> * separate metadata buffer for block layer metadata/PI support.
<------><------> * We allow extended LBAs for the passthrough interface, though.
<------><------> */
<------><------>if (id->flbas & NVME_NS_FLBAS_META_EXT)
<------><------><------>ns->features |= NVME_NS_EXT_LBAS;
<------><------>else
<------><------><------>ns->features |= NVME_NS_METADATA_SUPPORTED;
<------>}
<------>return 0;
}
static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
<------><------>struct request_queue *q)
{
<------>bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT;
<------>if (ctrl->max_hw_sectors) {
<------><------>u32 max_segments =
<------><------><------>(ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1;
<------><------>max_segments = min_not_zero(max_segments, ctrl->max_segments);
<------><------>blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
<------><------>blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
<------>}
<------>blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1);
<------>blk_queue_dma_alignment(q, 7);
<------>blk_queue_write_cache(q, vwc, vwc);
}
static void nvme_update_disk_info(struct gendisk *disk,
<------><------>struct nvme_ns *ns, struct nvme_id_ns *id)
{
<------>sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
<------>unsigned short bs = 1 << ns->lba_shift;
<------>u32 atomic_bs, phys_bs, io_opt = 0;
<------>/*
<------> * The block layer can't support LBA sizes larger than the page size
<------> * yet, so catch this early and don't allow block I/O.
<------> */
<------>if (ns->lba_shift > PAGE_SHIFT) {
<------><------>capacity = 0;
<------><------>bs = (1 << 9);
<------>}
<------>blk_integrity_unregister(disk);
<------>atomic_bs = phys_bs = bs;
<------>nvme_setup_streams_ns(ns->ctrl, ns, &phys_bs, &io_opt);
<------>if (id->nabo == 0) {
<------><------>/*
<------><------> * Bit 1 indicates whether NAWUPF is defined for this namespace
<------><------> * and whether it should be used instead of AWUPF. If NAWUPF ==
<------><------> * 0 then AWUPF must be used instead.
<------><------> */
<------><------>if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
<------><------><------>atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
<------><------>else
<------><------><------>atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
<------>}
<------>if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
<------><------>/* NPWG = Namespace Preferred Write Granularity */
<------><------>phys_bs = bs * (1 + le16_to_cpu(id->npwg));
<------><------>/* NOWS = Namespace Optimal Write Size */
<------><------>io_opt = bs * (1 + le16_to_cpu(id->nows));
<------>}
<------>blk_queue_logical_block_size(disk->queue, bs);
<------>/*
<------> * Linux filesystems assume writing a single physical block is
<------> * an atomic operation. Hence limit the physical block size to the
<------> * value of the Atomic Write Unit Power Fail parameter.
<------> */
<------>blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
<------>blk_queue_io_min(disk->queue, phys_bs);
<------>blk_queue_io_opt(disk->queue, io_opt);
<------>/*
<------> * Register a metadata profile for PI, or the plain non-integrity NVMe
<------> * metadata masquerading as Type 0 if supported, otherwise reject block
<------> * I/O to namespaces with metadata except when the namespace supports
<------> * PI, as it can strip/insert in that case.
<------> */
<------>if (ns->ms) {
<------><------>if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
<------><------> (ns->features & NVME_NS_METADATA_SUPPORTED))
<------><------><------>nvme_init_integrity(disk, ns->ms, ns->pi_type,
<------><------><------><------><------> ns->ctrl->max_integrity_segments);
<------><------>else if (!nvme_ns_has_pi(ns))
<------><------><------>capacity = 0;
<------>}
<------>set_capacity_revalidate_and_notify(disk, capacity, false);
<------>nvme_config_discard(disk, ns);
<------>nvme_config_write_zeroes(disk->queue, ns->ctrl);
<------>if (id->nsattr & NVME_NS_ATTR_RO)
<------><------>set_disk_ro(disk, true);
}
static inline bool nvme_first_scan(struct gendisk *disk)
{
<------>/* nvme_alloc_ns() scans the disk prior to adding it */
<------>return !(disk->flags & GENHD_FL_UP);
}
static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id)
{
<------>struct nvme_ctrl *ctrl = ns->ctrl;
<------>u32 iob;
<------>if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
<------> is_power_of_2(ctrl->max_hw_sectors))
<------><------>iob = ctrl->max_hw_sectors;
<------>else
<------><------>iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob));
<------>if (!iob)
<------><------>return;
<------>if (!is_power_of_2(iob)) {
<------><------>if (nvme_first_scan(ns->disk))
<------><------><------>pr_warn("%s: ignoring unaligned IO boundary:%u\n",
<------><------><------><------>ns->disk->disk_name, iob);
<------><------>return;
<------>}
<------>if (blk_queue_is_zoned(ns->disk->queue)) {
<------><------>if (nvme_first_scan(ns->disk))
<------><------><------>pr_warn("%s: ignoring zoned namespace IO boundary\n",
<------><------><------><------>ns->disk->disk_name);
<------><------>return;
<------>}
<------>blk_queue_chunk_sectors(ns->queue, iob);
}
static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_id_ns *id)
{
<------>unsigned lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
<------>int ret;
<------>blk_mq_freeze_queue(ns->disk->queue);
<------>ns->lba_shift = id->lbaf[lbaf].ds;
<------>nvme_set_queue_limits(ns->ctrl, ns->queue);
<------>if (ns->head->ids.csi == NVME_CSI_ZNS) {
<------><------>ret = nvme_update_zone_info(ns, lbaf);
<------><------>if (ret)
<------><------><------>goto out_unfreeze;
<------>}
<------>ret = nvme_configure_metadata(ns, id);
<------>if (ret)
<------><------>goto out_unfreeze;
<------>nvme_set_chunk_sectors(ns, id);
<------>nvme_update_disk_info(ns->disk, ns, id);
<------>blk_mq_unfreeze_queue(ns->disk->queue);
<------>if (blk_queue_is_zoned(ns->queue)) {
<------><------>ret = nvme_revalidate_zones(ns);
<------><------>if (ret && !nvme_first_scan(ns->disk))
<------><------><------>return ret;
<------>}
#ifdef CONFIG_NVME_MULTIPATH
<------>if (ns->head->disk) {
<------><------>blk_mq_freeze_queue(ns->head->disk->queue);
<------><------>nvme_update_disk_info(ns->head->disk, ns, id);
<------><------>blk_stack_limits(&ns->head->disk->queue->limits,
<------><------><------><------> &ns->queue->limits, 0);
<------><------>blk_queue_update_readahead(ns->head->disk->queue);
<------><------>nvme_update_bdev_size(ns->head->disk);
<------><------>blk_mq_unfreeze_queue(ns->head->disk->queue);
<------>}
#endif
<------>return 0;
out_unfreeze:
<------>blk_mq_unfreeze_queue(ns->disk->queue);
<------>return ret;
}
static char nvme_pr_type(enum pr_type type)
{
<------>switch (type) {
<------>case PR_WRITE_EXCLUSIVE:
<------><------>return 1;
<------>case PR_EXCLUSIVE_ACCESS:
<------><------>return 2;
<------>case PR_WRITE_EXCLUSIVE_REG_ONLY:
<------><------>return 3;
<------>case PR_EXCLUSIVE_ACCESS_REG_ONLY:
<------><------>return 4;
<------>case PR_WRITE_EXCLUSIVE_ALL_REGS:
<------><------>return 5;
<------>case PR_EXCLUSIVE_ACCESS_ALL_REGS:
<------><------>return 6;
<------>default:
<------><------>return 0;
<------>}
};
static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
<------><------><------><------>u64 key, u64 sa_key, u8 op)
{
<------>struct nvme_ns_head *head = NULL;
<------>struct nvme_ns *ns;
<------>struct nvme_command c;
<------>int srcu_idx, ret;
<------>u8 data[16] = { 0, };
<------>ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
<------>if (unlikely(!ns))
<------><------>return -EWOULDBLOCK;
<------>put_unaligned_le64(key, &data[0]);
<------>put_unaligned_le64(sa_key, &data[8]);
<------>memset(&c, 0, sizeof(c));
<------>c.common.opcode = op;
<------>c.common.nsid = cpu_to_le32(ns->head->ns_id);
<------>c.common.cdw10 = cpu_to_le32(cdw10);
<------>ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
<------>nvme_put_ns_from_disk(head, srcu_idx);
<------>return ret;
}
static int nvme_pr_register(struct block_device *bdev, u64 old,
<------><------>u64 new, unsigned flags)
{
<------>u32 cdw10;
<------>if (flags & ~PR_FL_IGNORE_KEY)
<------><------>return -EOPNOTSUPP;
<------>cdw10 = old ? 2 : 0;
<------>cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
<------>cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
<------>return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
}
static int nvme_pr_reserve(struct block_device *bdev, u64 key,
<------><------>enum pr_type type, unsigned flags)
{
<------>u32 cdw10;
<------>if (flags & ~PR_FL_IGNORE_KEY)
<------><------>return -EOPNOTSUPP;
<------>cdw10 = nvme_pr_type(type) << 8;
<------>cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
<------>return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
}
static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
<------><------>enum pr_type type, bool abort)
{
<------>u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
<------>return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
}
static int nvme_pr_clear(struct block_device *bdev, u64 key)
{
<------>u32 cdw10 = 1 | (key ? 1 << 3 : 0);
<------>return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
}
static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
{
<------>u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 1 << 3 : 0);
<------>return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
}
static const struct pr_ops nvme_pr_ops = {
<------>.pr_register = nvme_pr_register,
<------>.pr_reserve = nvme_pr_reserve,
<------>.pr_release = nvme_pr_release,
<------>.pr_preempt = nvme_pr_preempt,
<------>.pr_clear = nvme_pr_clear,
};
#ifdef CONFIG_BLK_SED_OPAL
int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
<------><------>bool send)
{
<------>struct nvme_ctrl *ctrl = data;
<------>struct nvme_command cmd;
<------>memset(&cmd, 0, sizeof(cmd));
<------>if (send)
<------><------>cmd.common.opcode = nvme_admin_security_send;
<------>else
<------><------>cmd.common.opcode = nvme_admin_security_recv;
<------>cmd.common.nsid = 0;
<------>cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
<------>cmd.common.cdw11 = cpu_to_le32(len);
<------>return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
<------><------><------><------> ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0, false);
}
EXPORT_SYMBOL_GPL(nvme_sec_submit);
#endif /* CONFIG_BLK_SED_OPAL */
static const struct block_device_operations nvme_fops = {
<------>.owner = THIS_MODULE,
<------>.ioctl = nvme_ioctl,
<------>.compat_ioctl = nvme_compat_ioctl,
<------>.open = nvme_open,
<------>.release = nvme_release,
<------>.getgeo = nvme_getgeo,
<------>.report_zones = nvme_report_zones,
<------>.pr_ops = &nvme_pr_ops,
};
#ifdef CONFIG_NVME_MULTIPATH
static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
{
<------>struct nvme_ns_head *head = bdev->bd_disk->private_data;
<------>if (!kref_get_unless_zero(&head->ref))
<------><------>return -ENXIO;
<------>return 0;
}
static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
{
<------>nvme_put_ns_head(disk->private_data);
}
const struct block_device_operations nvme_ns_head_ops = {
<------>.owner = THIS_MODULE,
<------>.submit_bio = nvme_ns_head_submit_bio,
<------>.open = nvme_ns_head_open,
<------>.release = nvme_ns_head_release,
<------>.ioctl = nvme_ioctl,
<------>.compat_ioctl = nvme_compat_ioctl,
<------>.getgeo = nvme_getgeo,
<------>.report_zones = nvme_report_zones,
<------>.pr_ops = &nvme_pr_ops,
};
#endif /* CONFIG_NVME_MULTIPATH */
static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
{
<------>unsigned long timeout =
<------><------>((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
<------>u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
<------>int ret;
<------>while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
<------><------>if (csts == ~0)
<------><------><------>return -ENODEV;
<------><------>if ((csts & NVME_CSTS_RDY) == bit)
<------><------><------>break;
<------><------>usleep_range(1000, 2000);
<------><------>if (fatal_signal_pending(current))
<------><------><------>return -EINTR;
<------><------>if (time_after(jiffies, timeout)) {
<------><------><------>dev_err(ctrl->device,
<------><------><------><------>"Device not ready; aborting %s, CSTS=0x%x\n",
<------><------><------><------>enabled ? "initialisation" : "reset", csts);
<------><------><------>return -ENODEV;
<------><------>}
<------>}
<------>return ret;
}
/*
* If the device has been passed off to us in an enabled state, just clear
* the enabled bit. The spec says we should set the 'shutdown notification
* bits', but doing so may cause the device to complete commands to the
* admin queue ... and we don't know what memory that might be pointing at!
*/
int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
{
<------>int ret;
<------>ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
<------>ctrl->ctrl_config &= ~NVME_CC_ENABLE;
<------>ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
<------>if (ret)
<------><------>return ret;
<------>if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
<------><------>msleep(NVME_QUIRK_DELAY_AMOUNT);
<------>return nvme_wait_ready(ctrl, ctrl->cap, false);
}
EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
{
<------>unsigned dev_page_min;
<------>int ret;
<------>ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
<------>if (ret) {
<------><------>dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
<------><------>return ret;
<------>}
<------>dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
<------>if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
<------><------>dev_err(ctrl->device,
<------><------><------>"Minimum device page size %u too large for host (%u)\n",
<------><------><------>1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
<------><------>return -ENODEV;
<------>}
<------>if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
<------><------>ctrl->ctrl_config = NVME_CC_CSS_CSI;
<------>else
<------><------>ctrl->ctrl_config = NVME_CC_CSS_NVM;
<------>ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
<------>ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
<------>ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
<------>ctrl->ctrl_config |= NVME_CC_ENABLE;
<------>ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
<------>if (ret)
<------><------>return ret;
<------>return nvme_wait_ready(ctrl, ctrl->cap, true);
}
EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
{
<------>unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
<------>u32 csts;
<------>int ret;
<------>ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
<------>ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
<------>ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
<------>if (ret)
<------><------>return ret;
<------>while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
<------><------>if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
<------><------><------>break;
<------><------>msleep(100);
<------><------>if (fatal_signal_pending(current))
<------><------><------>return -EINTR;
<------><------>if (time_after(jiffies, timeout)) {
<------><------><------>dev_err(ctrl->device,
<------><------><------><------>"Device shutdown incomplete; abort shutdown\n");
<------><------><------>return -ENODEV;
<------><------>}
<------>}
<------>return ret;
}
EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
{
<------>__le64 ts;
<------>int ret;
<------>if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
<------><------>return 0;
<------>ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
<------>ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
<------><------><------>NULL);
<------>if (ret)
<------><------>dev_warn_once(ctrl->device,
<------><------><------>"could not set timestamp (%d)\n", ret);
<------>return ret;
}
static int nvme_configure_acre(struct nvme_ctrl *ctrl)
{
<------>struct nvme_feat_host_behavior *host;
<------>int ret;
<------>/* Don't bother enabling the feature if retry delay is not reported */
<------>if (!ctrl->crdt[0])
<------><------>return 0;
<------>host = kzalloc(sizeof(*host), GFP_KERNEL);
<------>if (!host)
<------><------>return 0;
<------>host->acre = NVME_ENABLE_ACRE;
<------>ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
<------><------><------><------>host, sizeof(*host), NULL);
<------>kfree(host);
<------>return ret;
}
static int nvme_configure_apst(struct nvme_ctrl *ctrl)
{
<------>/*
<------> * APST (Autonomous Power State Transition) lets us program a
<------> * table of power state transitions that the controller will
<------> * perform automatically. We configure it with a simple
<------> * heuristic: we are willing to spend at most 2% of the time
<------> * transitioning between power states. Therefore, when running
<------> * in any given state, we will enter the next lower-power
<------> * non-operational state after waiting 50 * (enlat + exlat)
<------> * microseconds, as long as that state's exit latency is under
<------> * the requested maximum latency.
<------> *
<------> * We will not autonomously enter any non-operational state for
<------> * which the total latency exceeds ps_max_latency_us. Users
<------> * can set ps_max_latency_us to zero to turn off APST.
<------> */
<------>unsigned apste;
<------>struct nvme_feat_auto_pst *table;
<------>u64 max_lat_us = 0;
<------>int max_ps = -1;
<------>int ret;
<------>/*
<------> * If APST isn't supported or if we haven't been initialized yet,
<------> * then don't do anything.
<------> */
<------>if (!ctrl->apsta)
<------><------>return 0;
<------>if (ctrl->npss > 31) {
<------><------>dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
<------><------>return 0;
<------>}
<------>table = kzalloc(sizeof(*table), GFP_KERNEL);
<------>if (!table)
<------><------>return 0;
<------>if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
<------><------>/* Turn off APST. */
<------><------>apste = 0;
<------><------>dev_dbg(ctrl->device, "APST disabled\n");
<------>} else {
<------><------>__le64 target = cpu_to_le64(0);
<------><------>int state;
<------><------>/*
<------><------> * Walk through all states from lowest- to highest-power.
<------><------> * According to the spec, lower-numbered states use more
<------><------> * power. NPSS, despite the name, is the index of the
<------><------> * lowest-power state, not the number of states.
<------><------> */
<------><------>for (state = (int)ctrl->npss; state >= 0; state--) {
<------><------><------>u64 total_latency_us, exit_latency_us, transition_ms;
<------><------><------>if (target)
<------><------><------><------>table->entries[state] = target;
<------><------><------>/*
<------><------><------> * Don't allow transitions to the deepest state
<------><------><------> * if it's quirked off.
<------><------><------> */
<------><------><------>if (state == ctrl->npss &&
<------><------><------> (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
<------><------><------><------>continue;
<------><------><------>/*
<------><------><------> * Is this state a useful non-operational state for
<------><------><------> * higher-power states to autonomously transition to?
<------><------><------> */
<------><------><------>if (!(ctrl->psd[state].flags &
<------><------><------> NVME_PS_FLAGS_NON_OP_STATE))
<------><------><------><------>continue;
<------><------><------>exit_latency_us =
<------><------><------><------>(u64)le32_to_cpu(ctrl->psd[state].exit_lat);
<------><------><------>if (exit_latency_us > ctrl->ps_max_latency_us)
<------><------><------><------>continue;
<------><------><------>total_latency_us =
<------><------><------><------>exit_latency_us +
<------><------><------><------>le32_to_cpu(ctrl->psd[state].entry_lat);
<------><------><------>/*
<------><------><------> * This state is good. Use it as the APST idle
<------><------><------> * target for higher power states.
<------><------><------> */
<------><------><------>transition_ms = total_latency_us + 19;
<------><------><------>do_div(transition_ms, 20);
<------><------><------>if (transition_ms > (1 << 24) - 1)
<------><------><------><------>transition_ms = (1 << 24) - 1;
<------><------><------>target = cpu_to_le64((state << 3) |
<------><------><------><------><------> (transition_ms << 8));
<------><------><------>if (max_ps == -1)
<------><------><------><------>max_ps = state;
<------><------><------>if (total_latency_us > max_lat_us)
<------><------><------><------>max_lat_us = total_latency_us;
<------><------>}
<------><------>apste = 1;
<------><------>if (max_ps == -1) {
<------><------><------>dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
<------><------>} else {
<------><------><------>dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
<------><------><------><------>max_ps, max_lat_us, (int)sizeof(*table), table);
<------><------>}
<------>}
<------>ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
<------><------><------><------>table, sizeof(*table), NULL);
<------>if (ret)
<------><------>dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
<------>kfree(table);
<------>return ret;
}
static void nvme_set_latency_tolerance(struct device *dev, s32 val)
{
<------>struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
<------>u64 latency;
<------>switch (val) {
<------>case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
<------>case PM_QOS_LATENCY_ANY:
<------><------>latency = U64_MAX;
<------><------>break;
<------>default:
<------><------>latency = val;
<------>}
<------>if (ctrl->ps_max_latency_us != latency) {
<------><------>ctrl->ps_max_latency_us = latency;
<------><------>if (ctrl->state == NVME_CTRL_LIVE)
<------><------><------>nvme_configure_apst(ctrl);
<------>}
}
struct nvme_core_quirk_entry {
<------>/*
<------> * NVMe model and firmware strings are padded with spaces. For
<------> * simplicity, strings in the quirk table are padded with NULLs
<------> * instead.
<------> */
<------>u16 vid;
<------>const char *mn;
<------>const char *fr;
<------>unsigned long quirks;
};
static const struct nvme_core_quirk_entry core_quirks[] = {
<------>{
<------><------>/*
<------><------> * This Toshiba device seems to die using any APST states. See:
<------><------> * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
<------><------> */
<------><------>.vid = 0x1179,
<------><------>.mn = "THNSF5256GPUK TOSHIBA",
<------><------>.quirks = NVME_QUIRK_NO_APST,
<------>},
<------>{
<------><------>/*
<------><------> * This LiteON CL1-3D*-Q11 firmware version has a race
<------><------> * condition associated with actions related to suspend to idle
<------><------> * LiteON has resolved the problem in future firmware
<------><------> */
<------><------>.vid = 0x14a4,
<------><------>.fr = "22301111",
<------><------>.quirks = NVME_QUIRK_SIMPLE_SUSPEND,
<------>}
};
/* match is null-terminated but idstr is space-padded. */
static bool string_matches(const char *idstr, const char *match, size_t len)
{
<------>size_t matchlen;
<------>if (!match)
<------><------>return true;
<------>matchlen = strlen(match);
<------>WARN_ON_ONCE(matchlen > len);
<------>if (memcmp(idstr, match, matchlen))
<------><------>return false;
<------>for (; matchlen < len; matchlen++)
<------><------>if (idstr[matchlen] != ' ')
<------><------><------>return false;
<------>return true;
}
static bool quirk_matches(const struct nvme_id_ctrl *id,
<------><------><------> const struct nvme_core_quirk_entry *q)
{
<------>return q->vid == le16_to_cpu(id->vid) &&
<------><------>string_matches(id->mn, q->mn, sizeof(id->mn)) &&
<------><------>string_matches(id->fr, q->fr, sizeof(id->fr));
}
static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
<------><------>struct nvme_id_ctrl *id)
{
<------>size_t nqnlen;
<------>int off;
<------>if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
<------><------>nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
<------><------>if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
<------><------><------>strlcpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
<------><------><------>return;
<------><------>}
<------><------>if (ctrl->vs >= NVME_VS(1, 2, 1))
<------><------><------>dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
<------>}
<------>/* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
<------>off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
<------><------><------>"nqn.2014.08.org.nvmexpress:%04x%04x",
<------><------><------>le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
<------>memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
<------>off += sizeof(id->sn);
<------>memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
<------>off += sizeof(id->mn);
<------>memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
}
static void nvme_release_subsystem(struct device *dev)
{
<------>struct nvme_subsystem *subsys =
<------><------>container_of(dev, struct nvme_subsystem, dev);
<------>if (subsys->instance >= 0)
<------><------>ida_simple_remove(&nvme_instance_ida, subsys->instance);
<------>kfree(subsys);
}
static void nvme_destroy_subsystem(struct kref *ref)
{
<------>struct nvme_subsystem *subsys =
<------><------><------>container_of(ref, struct nvme_subsystem, ref);
<------>mutex_lock(&nvme_subsystems_lock);
<------>list_del(&subsys->entry);
<------>mutex_unlock(&nvme_subsystems_lock);
<------>ida_destroy(&subsys->ns_ida);
<------>device_del(&subsys->dev);
<------>put_device(&subsys->dev);
}
static void nvme_put_subsystem(struct nvme_subsystem *subsys)
{
<------>kref_put(&subsys->ref, nvme_destroy_subsystem);
}
static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
{
<------>struct nvme_subsystem *subsys;
<------>lockdep_assert_held(&nvme_subsystems_lock);
<------>/*
<------> * Fail matches for discovery subsystems. This results
<------> * in each discovery controller bound to a unique subsystem.
<------> * This avoids issues with validating controller values
<------> * that can only be true when there is a single unique subsystem.
<------> * There may be multiple and completely independent entities
<------> * that provide discovery controllers.
<------> */
<------>if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
<------><------>return NULL;
<------>list_for_each_entry(subsys, &nvme_subsystems, entry) {
<------><------>if (strcmp(subsys->subnqn, subsysnqn))
<------><------><------>continue;
<------><------>if (!kref_get_unless_zero(&subsys->ref))
<------><------><------>continue;
<------><------>return subsys;
<------>}
<------>return NULL;
}
#define SUBSYS_ATTR_RO(_name, _mode, _show) \
<------>struct device_attribute subsys_attr_##_name = \
<------><------>__ATTR(_name, _mode, _show, NULL)
static ssize_t nvme_subsys_show_nqn(struct device *dev,
<------><------><------><------> struct device_attribute *attr,
<------><------><------><------> char *buf)
{
<------>struct nvme_subsystem *subsys =
<------><------>container_of(dev, struct nvme_subsystem, dev);
<------>return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn);
}
static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
#define nvme_subsys_show_str_function(field) \
static ssize_t subsys_##field##_show(struct device *dev, \
<------><------><------> struct device_attribute *attr, char *buf) \
{ \
<------>struct nvme_subsystem *subsys = \
<------><------>container_of(dev, struct nvme_subsystem, dev); \
<------>return sprintf(buf, "%.*s\n", \
<------><------> (int)sizeof(subsys->field), subsys->field); \
} \
static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
nvme_subsys_show_str_function(model);
nvme_subsys_show_str_function(serial);
nvme_subsys_show_str_function(firmware_rev);
static struct attribute *nvme_subsys_attrs[] = {
<------>&subsys_attr_model.attr,
<------>&subsys_attr_serial.attr,
<------>&subsys_attr_firmware_rev.attr,
<------>&subsys_attr_subsysnqn.attr,
#ifdef CONFIG_NVME_MULTIPATH
<------>&subsys_attr_iopolicy.attr,
#endif
<------>NULL,
};
static struct attribute_group nvme_subsys_attrs_group = {
<------>.attrs = nvme_subsys_attrs,
};
static const struct attribute_group *nvme_subsys_attrs_groups[] = {
<------>&nvme_subsys_attrs_group,
<------>NULL,
};
static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
{
<------>return ctrl->opts && ctrl->opts->discovery_nqn;
}
static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
<------><------>struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
{
<------>struct nvme_ctrl *tmp;
<------>lockdep_assert_held(&nvme_subsystems_lock);
<------>list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
<------><------>if (nvme_state_terminal(tmp))
<------><------><------>continue;
<------><------>if (tmp->cntlid == ctrl->cntlid) {
<------><------><------>dev_err(ctrl->device,
<------><------><------><------>"Duplicate cntlid %u with %s, rejecting\n",
<------><------><------><------>ctrl->cntlid, dev_name(tmp->device));
<------><------><------>return false;
<------><------>}
<------><------>if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
<------><------> nvme_discovery_ctrl(ctrl))
<------><------><------>continue;
<------><------>dev_err(ctrl->device,
<------><------><------>"Subsystem does not support multiple controllers\n");
<------><------>return false;
<------>}
<------>return true;
}
static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
{
<------>struct nvme_subsystem *subsys, *found;
<------>int ret;
<------>subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
<------>if (!subsys)
<------><------>return -ENOMEM;
<------>subsys->instance = -1;
<------>mutex_init(&subsys->lock);
<------>kref_init(&subsys->ref);
<------>INIT_LIST_HEAD(&subsys->ctrls);
<------>INIT_LIST_HEAD(&subsys->nsheads);
<------>nvme_init_subnqn(subsys, ctrl, id);
<------>memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
<------>memcpy(subsys->model, id->mn, sizeof(subsys->model));
<------>memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
<------>subsys->vendor_id = le16_to_cpu(id->vid);
<------>subsys->cmic = id->cmic;
<------>subsys->awupf = le16_to_cpu(id->awupf);
#ifdef CONFIG_NVME_MULTIPATH
<------>subsys->iopolicy = NVME_IOPOLICY_NUMA;
#endif
<------>subsys->dev.class = nvme_subsys_class;
<------>subsys->dev.release = nvme_release_subsystem;
<------>subsys->dev.groups = nvme_subsys_attrs_groups;
<------>dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
<------>device_initialize(&subsys->dev);
<------>mutex_lock(&nvme_subsystems_lock);
<------>found = __nvme_find_get_subsystem(subsys->subnqn);
<------>if (found) {
<------><------>put_device(&subsys->dev);
<------><------>subsys = found;
<------><------>if (!nvme_validate_cntlid(subsys, ctrl, id)) {
<------><------><------>ret = -EINVAL;
<------><------><------>goto out_put_subsystem;
<------><------>}
<------>} else {
<------><------>ret = device_add(&subsys->dev);
<------><------>if (ret) {
<------><------><------>dev_err(ctrl->device,
<------><------><------><------>"failed to register subsystem device.\n");
<------><------><------>put_device(&subsys->dev);
<------><------><------>goto out_unlock;
<------><------>}
<------><------>ida_init(&subsys->ns_ida);
<------><------>list_add_tail(&subsys->entry, &nvme_subsystems);
<------>}
<------>ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
<------><------><------><------>dev_name(ctrl->device));
<------>if (ret) {
<------><------>dev_err(ctrl->device,
<------><------><------>"failed to create sysfs link from subsystem.\n");
<------><------>goto out_put_subsystem;
<------>}
<------>if (!found)
<------><------>subsys->instance = ctrl->instance;
<------>ctrl->subsys = subsys;
<------>list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
<------>mutex_unlock(&nvme_subsystems_lock);
<------>return 0;
out_put_subsystem:
<------>nvme_put_subsystem(subsys);
out_unlock:
<------>mutex_unlock(&nvme_subsystems_lock);
<------>return ret;
}
int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
<------><------>void *log, size_t size, u64 offset)
{
<------>struct nvme_command c = { };
<------>u32 dwlen = nvme_bytes_to_numd(size);
<------>c.get_log_page.opcode = nvme_admin_get_log_page;
<------>c.get_log_page.nsid = cpu_to_le32(nsid);
<------>c.get_log_page.lid = log_page;
<------>c.get_log_page.lsp = lsp;
<------>c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
<------>c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
<------>c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
<------>c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
<------>c.get_log_page.csi = csi;
<------>return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
}
static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
<------><------><------><------>struct nvme_effects_log **log)
{
<------>struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi);
<------>int ret;
<------>if (cel)
<------><------>goto out;
<------>cel = kzalloc(sizeof(*cel), GFP_KERNEL);
<------>if (!cel)
<------><------>return -ENOMEM;
<------>ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
<------><------><------>cel, sizeof(*cel), 0);
<------>if (ret) {
<------><------>kfree(cel);
<------><------>return ret;
<------>}
<------>xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
out:
<------>*log = cel;
<------>return 0;
}
/*
* Initialize the cached copies of the Identify data and various controller
* register in our nvme_ctrl structure. This should be called as soon as
* the admin queue is fully up and running.
*/
int nvme_init_identify(struct nvme_ctrl *ctrl)
{
<------>struct nvme_id_ctrl *id;
<------>int ret, page_shift;
<------>u32 max_hw_sectors;
<------>bool prev_apst_enabled;
<------>ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
<------>if (ret) {
<------><------>dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
<------><------>return ret;
<------>}
<------>page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12;
<------>ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
<------>if (ctrl->vs >= NVME_VS(1, 1, 0))
<------><------>ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
<------>ret = nvme_identify_ctrl(ctrl, &id);
<------>if (ret) {
<------><------>dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
<------><------>return -EIO;
<------>}
<------>if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
<------><------>ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
<------><------>if (ret < 0)
<------><------><------>goto out_free;
<------>}
<------>if (!(ctrl->ops->flags & NVME_F_FABRICS))
<------><------>ctrl->cntlid = le16_to_cpu(id->cntlid);
<------>if (!ctrl->identified) {
<------><------>int i;
<------><------>ret = nvme_init_subsystem(ctrl, id);
<------><------>if (ret)
<------><------><------>goto out_free;
<------><------>/*
<------><------> * Check for quirks. Quirk can depend on firmware version,
<------><------> * so, in principle, the set of quirks present can change
<------><------> * across a reset. As a possible future enhancement, we
<------><------> * could re-scan for quirks every time we reinitialize
<------><------> * the device, but we'd have to make sure that the driver
<------><------> * behaves intelligently if the quirks change.
<------><------> */
<------><------>for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
<------><------><------>if (quirk_matches(id, &core_quirks[i]))
<------><------><------><------>ctrl->quirks |= core_quirks[i].quirks;
<------><------>}
<------>}
<------>if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
<------><------>dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
<------><------>ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
<------>}
<------>ctrl->crdt[0] = le16_to_cpu(id->crdt1);
<------>ctrl->crdt[1] = le16_to_cpu(id->crdt2);
<------>ctrl->crdt[2] = le16_to_cpu(id->crdt3);
<------>ctrl->oacs = le16_to_cpu(id->oacs);
<------>ctrl->oncs = le16_to_cpu(id->oncs);
<------>ctrl->mtfa = le16_to_cpu(id->mtfa);
<------>ctrl->oaes = le32_to_cpu(id->oaes);
<------>ctrl->wctemp = le16_to_cpu(id->wctemp);
<------>ctrl->cctemp = le16_to_cpu(id->cctemp);
<------>atomic_set(&ctrl->abort_limit, id->acl + 1);
<------>ctrl->vwc = id->vwc;
<------>if (id->mdts)
<------><------>max_hw_sectors = 1 << (id->mdts + page_shift - 9);
<------>else
<------><------>max_hw_sectors = UINT_MAX;
<------>ctrl->max_hw_sectors =
<------><------>min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
<------>nvme_set_queue_limits(ctrl, ctrl->admin_q);
<------>ctrl->sgls = le32_to_cpu(id->sgls);
<------>ctrl->kas = le16_to_cpu(id->kas);
<------>ctrl->max_namespaces = le32_to_cpu(id->mnan);
<------>ctrl->ctratt = le32_to_cpu(id->ctratt);
<------>if (id->rtd3e) {
<------><------>/* us -> s */
<------><------>u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
<------><------>ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
<------><------><------><------><------><------> shutdown_timeout, 60);
<------><------>if (ctrl->shutdown_timeout != shutdown_timeout)
<------><------><------>dev_info(ctrl->device,
<------><------><------><------> "Shutdown timeout set to %u seconds\n",
<------><------><------><------> ctrl->shutdown_timeout);
<------>} else
<------><------>ctrl->shutdown_timeout = shutdown_timeout;
<------>ctrl->npss = id->npss;
<------>ctrl->apsta = id->apsta;
<------>prev_apst_enabled = ctrl->apst_enabled;
<------>if (ctrl->quirks & NVME_QUIRK_NO_APST) {
<------><------>if (force_apst && id->apsta) {
<------><------><------>dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
<------><------><------>ctrl->apst_enabled = true;
<------><------>} else {
<------><------><------>ctrl->apst_enabled = false;
<------><------>}
<------>} else {
<------><------>ctrl->apst_enabled = id->apsta;
<------>}
<------>memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
<------>if (ctrl->ops->flags & NVME_F_FABRICS) {
<------><------>ctrl->icdoff = le16_to_cpu(id->icdoff);
<------><------>ctrl->ioccsz = le32_to_cpu(id->ioccsz);
<------><------>ctrl->iorcsz = le32_to_cpu(id->iorcsz);
<------><------>ctrl->maxcmd = le16_to_cpu(id->maxcmd);
<------><------>/*
<------><------> * In fabrics we need to verify the cntlid matches the
<------><------> * admin connect
<------><------> */
<------><------>if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
<------><------><------>dev_err(ctrl->device,
<------><------><------><------>"Mismatching cntlid: Connect %u vs Identify "
<------><------><------><------>"%u, rejecting\n",
<------><------><------><------>ctrl->cntlid, le16_to_cpu(id->cntlid));
<------><------><------>ret = -EINVAL;
<------><------><------>goto out_free;
<------><------>}
<------><------>if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
<------><------><------>dev_err(ctrl->device,
<------><------><------><------>"keep-alive support is mandatory for fabrics\n");
<------><------><------>ret = -EINVAL;
<------><------><------>goto out_free;
<------><------>}
<------>} else {
<------><------>ctrl->hmpre = le32_to_cpu(id->hmpre);
<------><------>ctrl->hmmin = le32_to_cpu(id->hmmin);
<------><------>ctrl->hmminds = le32_to_cpu(id->hmminds);
<------><------>ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
<------>}
<------>ret = nvme_mpath_init_identify(ctrl, id);
<------>kfree(id);
<------>if (ret < 0)
<------><------>return ret;
<------>if (ctrl->apst_enabled && !prev_apst_enabled)
<------><------>dev_pm_qos_expose_latency_tolerance(ctrl->device);
<------>else if (!ctrl->apst_enabled && prev_apst_enabled)
<------><------>dev_pm_qos_hide_latency_tolerance(ctrl->device);
<------>ret = nvme_configure_apst(ctrl);
<------>if (ret < 0)
<------><------>return ret;
<------>
<------>ret = nvme_configure_timestamp(ctrl);
<------>if (ret < 0)
<------><------>return ret;
<------>ret = nvme_configure_directives(ctrl);
<------>if (ret < 0)
<------><------>return ret;
<------>ret = nvme_configure_acre(ctrl);
<------>if (ret < 0)
<------><------>return ret;
<------>if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
<------><------>ret = nvme_hwmon_init(ctrl);
<------><------>if (ret < 0)
<------><------><------>return ret;
<------>}
<------>ctrl->identified = true;
<------>return 0;
out_free:
<------>kfree(id);
<------>return ret;
}
EXPORT_SYMBOL_GPL(nvme_init_identify);
static int nvme_dev_open(struct inode *inode, struct file *file)
{
<------>struct nvme_ctrl *ctrl =
<------><------>container_of(inode->i_cdev, struct nvme_ctrl, cdev);
<------>switch (ctrl->state) {
<------>case NVME_CTRL_LIVE:
<------><------>break;
<------>default:
<------><------>return -EWOULDBLOCK;
<------>}
<------>nvme_get_ctrl(ctrl);
<------>if (!try_module_get(ctrl->ops->module)) {
<------><------>nvme_put_ctrl(ctrl);
<------><------>return -EINVAL;
<------>}
<------>file->private_data = ctrl;
<------>return 0;
}
static int nvme_dev_release(struct inode *inode, struct file *file)
{
<------>struct nvme_ctrl *ctrl =
<------><------>container_of(inode->i_cdev, struct nvme_ctrl, cdev);
<------>module_put(ctrl->ops->module);
<------>nvme_put_ctrl(ctrl);
<------>return 0;
}
static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
{
<------>struct nvme_ns *ns;
<------>int ret;
<------>down_read(&ctrl->namespaces_rwsem);
<------>if (list_empty(&ctrl->namespaces)) {
<------><------>ret = -ENOTTY;
<------><------>goto out_unlock;
<------>}
<------>ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
<------>if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
<------><------>dev_warn(ctrl->device,
<------><------><------>"NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
<------><------>ret = -EINVAL;
<------><------>goto out_unlock;
<------>}
<------>dev_warn(ctrl->device,
<------><------>"using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
<------>kref_get(&ns->kref);
<------>up_read(&ctrl->namespaces_rwsem);
<------>ret = nvme_user_cmd(ctrl, ns, argp);
<------>nvme_put_ns(ns);
<------>return ret;
out_unlock:
<------>up_read(&ctrl->namespaces_rwsem);
<------>return ret;
}
static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
<------><------>unsigned long arg)
{
<------>struct nvme_ctrl *ctrl = file->private_data;
<------>void __user *argp = (void __user *)arg;
<------>switch (cmd) {
<------>case NVME_IOCTL_ADMIN_CMD:
<------><------>return nvme_user_cmd(ctrl, NULL, argp);
<------>case NVME_IOCTL_ADMIN64_CMD:
<------><------>return nvme_user_cmd64(ctrl, NULL, argp);
<------>case NVME_IOCTL_IO_CMD:
<------><------>return nvme_dev_user_cmd(ctrl, argp);
<------>case NVME_IOCTL_RESET:
<------><------>dev_warn(ctrl->device, "resetting controller\n");
<------><------>return nvme_reset_ctrl_sync(ctrl);
<------>case NVME_IOCTL_SUBSYS_RESET:
<------><------>return nvme_reset_subsystem(ctrl);
<------>case NVME_IOCTL_RESCAN:
<------><------>nvme_queue_scan(ctrl);
<------><------>return 0;
<------>default:
<------><------>return -ENOTTY;
<------>}
}
static const struct file_operations nvme_dev_fops = {
<------>.owner = THIS_MODULE,
<------>.open = nvme_dev_open,
<------>.release = nvme_dev_release,
<------>.unlocked_ioctl = nvme_dev_ioctl,
<------>.compat_ioctl = compat_ptr_ioctl,
};
static ssize_t nvme_sysfs_reset(struct device *dev,
<------><------><------><------>struct device_attribute *attr, const char *buf,
<------><------><------><------>size_t count)
{
<------>struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
<------>int ret;
<------>ret = nvme_reset_ctrl_sync(ctrl);
<------>if (ret < 0)
<------><------>return ret;
<------>return count;
}
static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
static ssize_t nvme_sysfs_rescan(struct device *dev,
<------><------><------><------>struct device_attribute *attr, const char *buf,
<------><------><------><------>size_t count)
{
<------>struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
<------>nvme_queue_scan(ctrl);
<------>return count;
}
static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
{
<------>struct gendisk *disk = dev_to_disk(dev);
<------>if (disk->fops == &nvme_fops)
<------><------>return nvme_get_ns_from_dev(dev)->head;
<------>else
<------><------>return disk->private_data;
}
static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
<------><------>char *buf)
{
<------>struct nvme_ns_head *head = dev_to_ns_head(dev);
<------>struct nvme_ns_ids *ids = &head->ids;
<------>struct nvme_subsystem *subsys = head->subsys;
<------>int serial_len = sizeof(subsys->serial);
<------>int model_len = sizeof(subsys->model);
<------>if (!uuid_is_null(&ids->uuid))
<------><------>return sprintf(buf, "uuid.%pU\n", &ids->uuid);
<------>if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
<------><------>return sprintf(buf, "eui.%16phN\n", ids->nguid);
<------>if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
<------><------>return sprintf(buf, "eui.%8phN\n", ids->eui64);
<------>while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
<------><------><------><------> subsys->serial[serial_len - 1] == '\0'))
<------><------>serial_len--;
<------>while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
<------><------><------><------> subsys->model[model_len - 1] == '\0'))
<------><------>model_len--;
<------>return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
<------><------>serial_len, subsys->serial, model_len, subsys->model,
<------><------>head->ns_id);
}
static DEVICE_ATTR_RO(wwid);
static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
<------><------>char *buf)
{
<------>return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
}
static DEVICE_ATTR_RO(nguid);
static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
<------><------>char *buf)
{
<------>struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
<------>/* For backward compatibility expose the NGUID to userspace if
<------> * we have no UUID set
<------> */
<------>if (uuid_is_null(&ids->uuid)) {
<------><------>printk_ratelimited(KERN_WARNING
<------><------><------><------> "No UUID available providing old NGUID\n");
<------><------>return sprintf(buf, "%pU\n", ids->nguid);
<------>}
<------>return sprintf(buf, "%pU\n", &ids->uuid);
}
static DEVICE_ATTR_RO(uuid);
static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
<------><------>char *buf)
{
<------>return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
}
static DEVICE_ATTR_RO(eui);
static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
<------><------>char *buf)
{
<------>return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
}
static DEVICE_ATTR_RO(nsid);
static struct attribute *nvme_ns_id_attrs[] = {
<------>&dev_attr_wwid.attr,
<------>&dev_attr_uuid.attr,
<------>&dev_attr_nguid.attr,
<------>&dev_attr_eui.attr,
<------>&dev_attr_nsid.attr,
#ifdef CONFIG_NVME_MULTIPATH
<------>&dev_attr_ana_grpid.attr,
<------>&dev_attr_ana_state.attr,
#endif
<------>NULL,
};
static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
<------><------>struct attribute *a, int n)
{
<------>struct device *dev = container_of(kobj, struct device, kobj);
<------>struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
<------>if (a == &dev_attr_uuid.attr) {
<------><------>if (uuid_is_null(&ids->uuid) &&
<------><------> !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
<------><------><------>return 0;
<------>}
<------>if (a == &dev_attr_nguid.attr) {
<------><------>if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
<------><------><------>return 0;
<------>}
<------>if (a == &dev_attr_eui.attr) {
<------><------>if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
<------><------><------>return 0;
<------>}
#ifdef CONFIG_NVME_MULTIPATH
<------>if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
<------><------>if (dev_to_disk(dev)->fops != &nvme_fops) /* per-path attr */
<------><------><------>return 0;
<------><------>if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
<------><------><------>return 0;
<------>}
#endif
<------>return a->mode;
}
static const struct attribute_group nvme_ns_id_attr_group = {
<------>.attrs = nvme_ns_id_attrs,
<------>.is_visible = nvme_ns_id_attrs_are_visible,
};
const struct attribute_group *nvme_ns_id_attr_groups[] = {
<------>&nvme_ns_id_attr_group,
#ifdef CONFIG_NVM
<------>&nvme_nvm_attr_group,
#endif
<------>NULL,
};
#define nvme_show_str_function(field) \
static ssize_t field##_show(struct device *dev, \
<------><------><------> struct device_attribute *attr, char *buf) \
{ \
struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
return sprintf(buf, "%.*s\n", \
<------><------>(int)sizeof(ctrl->subsys->field), ctrl->subsys->field); \
} \
static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
nvme_show_str_function(model);
nvme_show_str_function(serial);
nvme_show_str_function(firmware_rev);
#define nvme_show_int_function(field) \
static ssize_t field##_show(struct device *dev, \
<------><------><------> struct device_attribute *attr, char *buf) \
{ \
struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
return sprintf(buf, "%d\n", ctrl->field); \
} \
static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
nvme_show_int_function(cntlid);
nvme_show_int_function(numa_node);
nvme_show_int_function(queue_count);
nvme_show_int_function(sqsize);
static ssize_t nvme_sysfs_delete(struct device *dev,
<------><------><------><------>struct device_attribute *attr, const char *buf,
<------><------><------><------>size_t count)
{
<------>struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
<------>if (device_remove_file_self(dev, attr))
<------><------>nvme_delete_ctrl_sync(ctrl);
<------>return count;
}
static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
static ssize_t nvme_sysfs_show_transport(struct device *dev,
<------><------><------><------><------> struct device_attribute *attr,
<------><------><------><------><------> char *buf)
{
<------>struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
<------>return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
}
static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
static ssize_t nvme_sysfs_show_state(struct device *dev,
<------><------><------><------> struct device_attribute *attr,
<------><------><------><------> char *buf)
{
<------>struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
<------>static const char *const state_name[] = {
<------><------>[NVME_CTRL_NEW] = "new",
<------><------>[NVME_CTRL_LIVE] = "live",
<------><------>[NVME_CTRL_RESETTING] = "resetting",
<------><------>[NVME_CTRL_CONNECTING] = "connecting",
<------><------>[NVME_CTRL_DELETING] = "deleting",
<------><------>[NVME_CTRL_DELETING_NOIO]= "deleting (no IO)",
<------><------>[NVME_CTRL_DEAD] = "dead",
<------>};
<------>if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
<------> state_name[ctrl->state])
<------><------>return sprintf(buf, "%s\n", state_name[ctrl->state]);
<------>return sprintf(buf, "unknown state\n");
}
static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
<------><------><------><------><------> struct device_attribute *attr,
<------><------><------><------><------> char *buf)
{
<------>struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
<------>return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn);
}
static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
static ssize_t nvme_sysfs_show_hostnqn(struct device *dev,
<------><------><------><------><------>struct device_attribute *attr,
<------><------><------><------><------>char *buf)
{
<------>struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
<------>return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->opts->host->nqn);
}
static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL);
static ssize_t nvme_sysfs_show_hostid(struct device *dev,
<------><------><------><------><------>struct device_attribute *attr,
<------><------><------><------><------>char *buf)
{
<------>struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
<------>return snprintf(buf, PAGE_SIZE, "%pU\n", &ctrl->opts->host->id);
}
static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL);
static ssize_t nvme_sysfs_show_address(struct device *dev,
<------><------><------><------><------> struct device_attribute *attr,
<------><------><------><------><------> char *buf)
{
<------>struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
<------>return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
}
static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev,
<------><------>struct device_attribute *attr, char *buf)
{
<------>struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
<------>struct nvmf_ctrl_options *opts = ctrl->opts;
<------>if (ctrl->opts->max_reconnects == -1)
<------><------>return sprintf(buf, "off\n");
<------>return sprintf(buf, "%d\n",
<------><------><------>opts->max_reconnects * opts->reconnect_delay);
}
static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev,
<------><------>struct device_attribute *attr, const char *buf, size_t count)
{
<------>struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
<------>struct nvmf_ctrl_options *opts = ctrl->opts;
<------>int ctrl_loss_tmo, err;
<------>err = kstrtoint(buf, 10, &ctrl_loss_tmo);
<------>if (err)
<------><------>return -EINVAL;
<------>else if (ctrl_loss_tmo < 0)
<------><------>opts->max_reconnects = -1;
<------>else
<------><------>opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
<------><------><------><------><------><------>opts->reconnect_delay);
<------>return count;
}
static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR,
<------>nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store);
static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev,
<------><------>struct device_attribute *attr, char *buf)
{
<------>struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
<------>if (ctrl->opts->reconnect_delay == -1)
<------><------>return sprintf(buf, "off\n");
<------>return sprintf(buf, "%d\n", ctrl->opts->reconnect_delay);
}
static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev,
<------><------>struct device_attribute *attr, const char *buf, size_t count)
{
<------>struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
<------>unsigned int v;
<------>int err;
<------>err = kstrtou32(buf, 10, &v);
<------>if (err)
<------><------>return err;
<------>ctrl->opts->reconnect_delay = v;
<------>return count;
}
static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR,
<------>nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store);
static struct attribute *nvme_dev_attrs[] = {
<------>&dev_attr_reset_controller.attr,
<------>&dev_attr_rescan_controller.attr,
<------>&dev_attr_model.attr,
<------>&dev_attr_serial.attr,
<------>&dev_attr_firmware_rev.attr,
<------>&dev_attr_cntlid.attr,
<------>&dev_attr_delete_controller.attr,
<------>&dev_attr_transport.attr,
<------>&dev_attr_subsysnqn.attr,
<------>&dev_attr_address.attr,
<------>&dev_attr_state.attr,
<------>&dev_attr_numa_node.attr,
<------>&dev_attr_queue_count.attr,
<------>&dev_attr_sqsize.attr,
<------>&dev_attr_hostnqn.attr,
<------>&dev_attr_hostid.attr,
<------>&dev_attr_ctrl_loss_tmo.attr,
<------>&dev_attr_reconnect_delay.attr,
<------>NULL
};
static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
<------><------>struct attribute *a, int n)
{
<------>struct device *dev = container_of(kobj, struct device, kobj);
<------>struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
<------>if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
<------><------>return 0;
<------>if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
<------><------>return 0;
<------>if (a == &dev_attr_hostnqn.attr && !ctrl->opts)
<------><------>return 0;
<------>if (a == &dev_attr_hostid.attr && !ctrl->opts)
<------><------>return 0;
<------>if (a == &dev_attr_ctrl_loss_tmo.attr && !ctrl->opts)
<------><------>return 0;
<------>if (a == &dev_attr_reconnect_delay.attr && !ctrl->opts)
<------><------>return 0;
<------>return a->mode;
}
static struct attribute_group nvme_dev_attrs_group = {
<------>.attrs = nvme_dev_attrs,
<------>.is_visible = nvme_dev_attrs_are_visible,
};
static const struct attribute_group *nvme_dev_attr_groups[] = {
<------>&nvme_dev_attrs_group,
<------>NULL,
};
static struct nvme_ns_head *nvme_find_ns_head(struct nvme_subsystem *subsys,
<------><------>unsigned nsid)
{
<------>struct nvme_ns_head *h;
<------>lockdep_assert_held(&subsys->lock);
<------>list_for_each_entry(h, &subsys->nsheads, entry) {
<------><------>if (h->ns_id == nsid && kref_get_unless_zero(&h->ref))
<------><------><------>return h;
<------>}
<------>return NULL;
}
static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys,
<------><------>struct nvme_ns_ids *ids)
{
<------>struct nvme_ns_head *h;
<------>lockdep_assert_held(&subsys->lock);
<------>list_for_each_entry(h, &subsys->nsheads, entry) {
<------><------>if (nvme_ns_ids_valid(ids) && nvme_ns_ids_equal(ids, &h->ids))
<------><------><------>return -EINVAL;
<------>}
<------>return 0;
}
static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
<------><------>unsigned nsid, struct nvme_ns_ids *ids)
{
<------>struct nvme_ns_head *head;
<------>size_t size = sizeof(*head);
<------>int ret = -ENOMEM;
#ifdef CONFIG_NVME_MULTIPATH
<------>size += num_possible_nodes() * sizeof(struct nvme_ns *);
#endif
<------>head = kzalloc(size, GFP_KERNEL);
<------>if (!head)
<------><------>goto out;
<------>ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
<------>if (ret < 0)
<------><------>goto out_free_head;
<------>head->instance = ret;
<------>INIT_LIST_HEAD(&head->list);
<------>ret = init_srcu_struct(&head->srcu);
<------>if (ret)
<------><------>goto out_ida_remove;
<------>head->subsys = ctrl->subsys;
<------>head->ns_id = nsid;
<------>head->ids = *ids;
<------>kref_init(&head->ref);
<------>ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, &head->ids);
<------>if (ret) {
<------><------>dev_err(ctrl->device,
<------><------><------>"duplicate IDs for nsid %d\n", nsid);
<------><------>goto out_cleanup_srcu;
<------>}
<------>if (head->ids.csi) {
<------><------>ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
<------><------>if (ret)
<------><------><------>goto out_cleanup_srcu;
<------>} else
<------><------>head->effects = ctrl->effects;
<------>ret = nvme_mpath_alloc_disk(ctrl, head);
<------>if (ret)
<------><------>goto out_cleanup_srcu;
<------>list_add_tail(&head->entry, &ctrl->subsys->nsheads);
<------>kref_get(&ctrl->subsys->ref);
<------>return head;
out_cleanup_srcu:
<------>cleanup_srcu_struct(&head->srcu);
out_ida_remove:
<------>ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
out_free_head:
<------>kfree(head);
out:
<------>if (ret > 0)
<------><------>ret = blk_status_to_errno(nvme_error_status(ret));
<------>return ERR_PTR(ret);
}
static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
<------><------>struct nvme_ns_ids *ids, bool is_shared)
{
<------>struct nvme_ctrl *ctrl = ns->ctrl;
<------>struct nvme_ns_head *head = NULL;
<------>int ret = 0;
<------>mutex_lock(&ctrl->subsys->lock);
<------>head = nvme_find_ns_head(ctrl->subsys, nsid);
<------>if (!head) {
<------><------>head = nvme_alloc_ns_head(ctrl, nsid, ids);
<------><------>if (IS_ERR(head)) {
<------><------><------>ret = PTR_ERR(head);
<------><------><------>goto out_unlock;
<------><------>}
<------><------>head->shared = is_shared;
<------>} else {
<------><------>ret = -EINVAL;
<------><------>if (!is_shared || !head->shared) {
<------><------><------>dev_err(ctrl->device,
<------><------><------><------>"Duplicate unshared namespace %d\n", nsid);
<------><------><------>goto out_put_ns_head;
<------><------>}
<------><------>if (!nvme_ns_ids_equal(&head->ids, ids)) {
<------><------><------>dev_err(ctrl->device,
<------><------><------><------>"IDs don't match for shared namespace %d\n",
<------><------><------><------><------>nsid);
<------><------><------>goto out_put_ns_head;
<------><------>}
<------>}
<------>list_add_tail(&ns->siblings, &head->list);
<------>ns->head = head;
<------>mutex_unlock(&ctrl->subsys->lock);
<------>return 0;
out_put_ns_head:
<------>nvme_put_ns_head(head);
out_unlock:
<------>mutex_unlock(&ctrl->subsys->lock);
<------>return ret;
}
struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
{
<------>struct nvme_ns *ns, *ret = NULL;
<------>down_read(&ctrl->namespaces_rwsem);
<------>list_for_each_entry(ns, &ctrl->namespaces, list) {
<------><------>if (ns->head->ns_id == nsid) {
<------><------><------>if (!kref_get_unless_zero(&ns->kref))
<------><------><------><------>continue;
<------><------><------>ret = ns;
<------><------><------>break;
<------><------>}
<------><------>if (ns->head->ns_id > nsid)
<------><------><------>break;
<------>}
<------>up_read(&ctrl->namespaces_rwsem);
<------>return ret;
}
EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
/*
* Add the namespace to the controller list while keeping the list ordered.
*/
static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns)
{
<------>struct nvme_ns *tmp;
<------>list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) {
<------><------>if (tmp->head->ns_id < ns->head->ns_id) {
<------><------><------>list_add(&ns->list, &tmp->list);
<------><------><------>return;
<------><------>}
<------>}
<------>list_add(&ns->list, &ns->ctrl->namespaces);
}
static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid,
<------><------>struct nvme_ns_ids *ids)
{
<------>struct nvme_ns *ns;
<------>struct gendisk *disk;
<------>struct nvme_id_ns *id;
<------>char disk_name[DISK_NAME_LEN];
<------>int node = ctrl->numa_node, flags = GENHD_FL_EXT_DEVT, ret;
<------>if (nvme_identify_ns(ctrl, nsid, ids, &id))
<------><------>return;
<------>ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
<------>if (!ns)
<------><------>goto out_free_id;
<------>ns->queue = blk_mq_init_queue(ctrl->tagset);
<------>if (IS_ERR(ns->queue))
<------><------>goto out_free_ns;
<------>if (ctrl->opts && ctrl->opts->data_digest)
<------><------>blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue);
<------>blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
<------>if (ctrl->ops->flags & NVME_F_PCI_P2PDMA)
<------><------>blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
<------>ns->queue->queuedata = ns;
<------>ns->ctrl = ctrl;
<------>kref_init(&ns->kref);
<------>ret = nvme_init_ns_head(ns, nsid, ids, id->nmic & NVME_NS_NMIC_SHARED);
<------>if (ret)
<------><------>goto out_free_queue;
<------>nvme_set_disk_name(disk_name, ns, ctrl, &flags);
<------>disk = alloc_disk_node(0, node);
<------>if (!disk)
<------><------>goto out_unlink_ns;
<------>disk->fops = &nvme_fops;
<------>disk->private_data = ns;
<------>disk->queue = ns->queue;
<------>disk->flags = flags;
<------>memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
<------>ns->disk = disk;
<------>if (nvme_update_ns_info(ns, id))
<------><------>goto out_put_disk;
<------>if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
<------><------>ret = nvme_nvm_register(ns, disk_name, node);
<------><------>if (ret) {
<------><------><------>dev_warn(ctrl->device, "LightNVM init failure\n");
<------><------><------>goto out_put_disk;
<------><------>}
<------>}
<------>down_write(&ctrl->namespaces_rwsem);
<------>nvme_ns_add_to_ctrl_list(ns);
<------>up_write(&ctrl->namespaces_rwsem);
<------>nvme_get_ctrl(ctrl);
<------>device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups);
<------>nvme_mpath_add_disk(ns, id);
<------>nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
<------>kfree(id);
<------>return;
out_put_disk:
<------>/* prevent double queue cleanup */
<------>ns->disk->queue = NULL;
<------>put_disk(ns->disk);
out_unlink_ns:
<------>mutex_lock(&ctrl->subsys->lock);
<------>list_del_rcu(&ns->siblings);
<------>if (list_empty(&ns->head->list))
<------><------>list_del_init(&ns->head->entry);
<------>mutex_unlock(&ctrl->subsys->lock);
<------>nvme_put_ns_head(ns->head);
out_free_queue:
<------>blk_cleanup_queue(ns->queue);
out_free_ns:
<------>kfree(ns);
out_free_id:
<------>kfree(id);
}
static void nvme_ns_remove(struct nvme_ns *ns)
{
<------>if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
<------><------>return;
<------>set_capacity(ns->disk, 0);
<------>nvme_fault_inject_fini(&ns->fault_inject);
<------>mutex_lock(&ns->ctrl->subsys->lock);
<------>list_del_rcu(&ns->siblings);
<------>if (list_empty(&ns->head->list))
<------><------>list_del_init(&ns->head->entry);
<------>mutex_unlock(&ns->ctrl->subsys->lock);
<------>synchronize_rcu(); /* guarantee not available in head->list */
<------>nvme_mpath_clear_current_path(ns);
<------>synchronize_srcu(&ns->head->srcu); /* wait for concurrent submissions */
<------>if (ns->disk->flags & GENHD_FL_UP) {
<------><------>del_gendisk(ns->disk);
<------><------>blk_cleanup_queue(ns->queue);
<------><------>if (blk_get_integrity(ns->disk))
<------><------><------>blk_integrity_unregister(ns->disk);
<------>}
<------>down_write(&ns->ctrl->namespaces_rwsem);
<------>list_del_init(&ns->list);
<------>up_write(&ns->ctrl->namespaces_rwsem);
<------>nvme_mpath_check_last_path(ns);
<------>nvme_put_ns(ns);
}
static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
{
<------>struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
<------>if (ns) {
<------><------>nvme_ns_remove(ns);
<------><------>nvme_put_ns(ns);
<------>}
}
static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_ids *ids)
{
<------>struct nvme_id_ns *id;
<------>int ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
<------>if (test_bit(NVME_NS_DEAD, &ns->flags))
<------><------>goto out;
<------>ret = nvme_identify_ns(ns->ctrl, ns->head->ns_id, ids, &id);
<------>if (ret)
<------><------>goto out;
<------>ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
<------>if (!nvme_ns_ids_equal(&ns->head->ids, ids)) {
<------><------>dev_err(ns->ctrl->device,
<------><------><------>"identifiers changed for nsid %d\n", ns->head->ns_id);
<------><------>goto out_free_id;
<------>}
<------>ret = nvme_update_ns_info(ns, id);
out_free_id:
<------>kfree(id);
out:
<------>/*
<------> * Only remove the namespace if we got a fatal error back from the
<------> * device, otherwise ignore the error and just move on.
<------> *
<------> * TODO: we should probably schedule a delayed retry here.
<------> */
<------>if (ret > 0 && (ret & NVME_SC_DNR))
<------><------>nvme_ns_remove(ns);
<------>else
<------><------>revalidate_disk_size(ns->disk, true);
}
static void nvme_validate_or_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
{
<------>struct nvme_ns_ids ids = { };
<------>struct nvme_ns *ns;
<------>if (nvme_identify_ns_descs(ctrl, nsid, &ids))
<------><------>return;
<------>ns = nvme_find_get_ns(ctrl, nsid);
<------>if (ns) {
<------><------>nvme_validate_ns(ns, &ids);
<------><------>nvme_put_ns(ns);
<------><------>return;
<------>}
<------>switch (ids.csi) {
<------>case NVME_CSI_NVM:
<------><------>nvme_alloc_ns(ctrl, nsid, &ids);
<------><------>break;
<------>case NVME_CSI_ZNS:
<------><------>if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
<------><------><------>dev_warn(ctrl->device,
<------><------><------><------>"nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
<------><------><------><------>nsid);
<------><------><------>break;
<------><------>}
<------><------>if (!nvme_multi_css(ctrl)) {
<------><------><------>dev_warn(ctrl->device,
<------><------><------><------>"command set not reported for nsid: %d\n",
<------><------><------><------>nsid);
<------><------><------>break;
<------><------>}
<------><------>nvme_alloc_ns(ctrl, nsid, &ids);
<------><------>break;
<------>default:
<------><------>dev_warn(ctrl->device, "unknown csi %u for nsid %u\n",
<------><------><------>ids.csi, nsid);
<------><------>break;
<------>}
}
static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
<------><------><------><------><------>unsigned nsid)
{
<------>struct nvme_ns *ns, *next;
<------>LIST_HEAD(rm_list);
<------>down_write(&ctrl->namespaces_rwsem);
<------>list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
<------><------>if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
<------><------><------>list_move_tail(&ns->list, &rm_list);
<------>}
<------>up_write(&ctrl->namespaces_rwsem);
<------>list_for_each_entry_safe(ns, next, &rm_list, list)
<------><------>nvme_ns_remove(ns);
}
static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
{
<------>const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
<------>__le32 *ns_list;
<------>u32 prev = 0;
<------>int ret = 0, i;
<------>if (nvme_ctrl_limited_cns(ctrl))
<------><------>return -EOPNOTSUPP;
<------>ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
<------>if (!ns_list)
<------><------>return -ENOMEM;
<------>for (;;) {
<------><------>struct nvme_command cmd = {
<------><------><------>.identify.opcode = nvme_admin_identify,
<------><------><------>.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST,
<------><------><------>.identify.nsid = cpu_to_le32(prev),
<------><------>};
<------><------>ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
<------><------><------><------><------> NVME_IDENTIFY_DATA_SIZE);
<------><------>if (ret)
<------><------><------>goto free;
<------><------>for (i = 0; i < nr_entries; i++) {
<------><------><------>u32 nsid = le32_to_cpu(ns_list[i]);
<------><------><------>if (!nsid) /* end of the list? */
<------><------><------><------>goto out;
<------><------><------>nvme_validate_or_alloc_ns(ctrl, nsid);
<------><------><------>while (++prev < nsid)
<------><------><------><------>nvme_ns_remove_by_nsid(ctrl, prev);
<------><------>}
<------>}
out:
<------>nvme_remove_invalid_namespaces(ctrl, prev);
free:
<------>kfree(ns_list);
<------>return ret;
}
static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
{
<------>struct nvme_id_ctrl *id;
<------>u32 nn, i;
<------>if (nvme_identify_ctrl(ctrl, &id))
<------><------>return;
<------>nn = le32_to_cpu(id->nn);
<------>kfree(id);
<------>for (i = 1; i <= nn; i++)
<------><------>nvme_validate_or_alloc_ns(ctrl, i);
<------>nvme_remove_invalid_namespaces(ctrl, nn);
}
static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
{
<------>size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
<------>__le32 *log;
<------>int error;
<------>log = kzalloc(log_size, GFP_KERNEL);
<------>if (!log)
<------><------>return;
<------>/*
<------> * We need to read the log to clear the AEN, but we don't want to rely
<------> * on it for the changed namespace information as userspace could have
<------> * raced with us in reading the log page, which could cause us to miss
<------> * updates.
<------> */
<------>error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
<------><------><------>NVME_CSI_NVM, log, log_size, 0);
<------>if (error)
<------><------>dev_warn(ctrl->device,
<------><------><------>"reading changed ns log failed: %d\n", error);
<------>kfree(log);
}
static void nvme_scan_work(struct work_struct *work)
{
<------>struct nvme_ctrl *ctrl =
<------><------>container_of(work, struct nvme_ctrl, scan_work);
<------>/* No tagset on a live ctrl means IO queues could not created */
<------>if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
<------><------>return;
<------>if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
<------><------>dev_info(ctrl->device, "rescanning namespaces.\n");
<------><------>nvme_clear_changed_ns_log(ctrl);
<------>}
<------>mutex_lock(&ctrl->scan_lock);
<------>if (nvme_scan_ns_list(ctrl) != 0)
<------><------>nvme_scan_ns_sequential(ctrl);
<------>mutex_unlock(&ctrl->scan_lock);
}
/*
* This function iterates the namespace list unlocked to allow recovery from
* controller failure. It is up to the caller to ensure the namespace list is
* not modified by scan work while this function is executing.
*/
void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
{
<------>struct nvme_ns *ns, *next;
<------>LIST_HEAD(ns_list);
<------>/*
<------> * make sure to requeue I/O to all namespaces as these
<------> * might result from the scan itself and must complete
<------> * for the scan_work to make progress
<------> */
<------>nvme_mpath_clear_ctrl_paths(ctrl);
<------>/* prevent racing with ns scanning */
<------>flush_work(&ctrl->scan_work);
<------>/*
<------> * The dead states indicates the controller was not gracefully
<------> * disconnected. In that case, we won't be able to flush any data while
<------> * removing the namespaces' disks; fail all the queues now to avoid
<------> * potentially having to clean up the failed sync later.
<------> */
<------>if (ctrl->state == NVME_CTRL_DEAD)
<------><------>nvme_kill_queues(ctrl);
<------>/* this is a no-op when called from the controller reset handler */
<------>nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
<------>down_write(&ctrl->namespaces_rwsem);
<------>list_splice_init(&ctrl->namespaces, &ns_list);
<------>up_write(&ctrl->namespaces_rwsem);
<------>list_for_each_entry_safe(ns, next, &ns_list, list)
<------><------>nvme_ns_remove(ns);
}
EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
{
<------>struct nvme_ctrl *ctrl =
<------><------>container_of(dev, struct nvme_ctrl, ctrl_device);
<------>struct nvmf_ctrl_options *opts = ctrl->opts;
<------>int ret;
<------>ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
<------>if (ret)
<------><------>return ret;
<------>if (opts) {
<------><------>ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
<------><------>if (ret)
<------><------><------>return ret;
<------><------>ret = add_uevent_var(env, "NVME_TRSVCID=%s",
<------><------><------><------>opts->trsvcid ?: "none");
<------><------>if (ret)
<------><------><------>return ret;
<------><------>ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
<------><------><------><------>opts->host_traddr ?: "none");
<------>}
<------>return ret;
}
static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
{
<------>char *envp[2] = { NULL, NULL };
<------>u32 aen_result = ctrl->aen_result;
<------>ctrl->aen_result = 0;
<------>if (!aen_result)
<------><------>return;
<------>envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
<------>if (!envp[0])
<------><------>return;
<------>kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
<------>kfree(envp[0]);
}
static void nvme_async_event_work(struct work_struct *work)
{
<------>struct nvme_ctrl *ctrl =
<------><------>container_of(work, struct nvme_ctrl, async_event_work);
<------>nvme_aen_uevent(ctrl);
<------>/*
<------> * The transport drivers must guarantee AER submission here is safe by
<------> * flushing ctrl async_event_work after changing the controller state
<------> * from LIVE and before freeing the admin queue.
<------>*/
<------>if (ctrl->state == NVME_CTRL_LIVE)
<------><------>ctrl->ops->submit_async_event(ctrl);
}
static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
{
<------>u32 csts;
<------>if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
<------><------>return false;
<------>if (csts == ~0)
<------><------>return false;
<------>return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
}
static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
{
<------>struct nvme_fw_slot_info_log *log;
<------>log = kmalloc(sizeof(*log), GFP_KERNEL);
<------>if (!log)
<------><------>return;
<------>if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
<------><------><------>log, sizeof(*log), 0))
<------><------>dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
<------>kfree(log);
}
static void nvme_fw_act_work(struct work_struct *work)
{
<------>struct nvme_ctrl *ctrl = container_of(work,
<------><------><------><------>struct nvme_ctrl, fw_act_work);
<------>unsigned long fw_act_timeout;
<------>if (ctrl->mtfa)
<------><------>fw_act_timeout = jiffies +
<------><------><------><------>msecs_to_jiffies(ctrl->mtfa * 100);
<------>else
<------><------>fw_act_timeout = jiffies +
<------><------><------><------>msecs_to_jiffies(admin_timeout * 1000);
<------>nvme_stop_queues(ctrl);
<------>while (nvme_ctrl_pp_status(ctrl)) {
<------><------>if (time_after(jiffies, fw_act_timeout)) {
<------><------><------>dev_warn(ctrl->device,
<------><------><------><------>"Fw activation timeout, reset controller\n");
<------><------><------>nvme_try_sched_reset(ctrl);
<------><------><------>return;
<------><------>}
<------><------>msleep(100);
<------>}
<------>if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
<------><------>return;
<------>nvme_start_queues(ctrl);
<------>/* read FW slot information to clear the AER */
<------>nvme_get_fw_slot_info(ctrl);
}
static void nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
{
<------>u32 aer_notice_type = (result & 0xff00) >> 8;
<------>trace_nvme_async_event(ctrl, aer_notice_type);
<------>switch (aer_notice_type) {
<------>case NVME_AER_NOTICE_NS_CHANGED:
<------><------>set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
<------><------>nvme_queue_scan(ctrl);
<------><------>break;
<------>case NVME_AER_NOTICE_FW_ACT_STARTING:
<------><------>/*
<------><------> * We are (ab)using the RESETTING state to prevent subsequent
<------><------> * recovery actions from interfering with the controller's
<------><------> * firmware activation.
<------><------> */
<------><------>if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
<------><------><------>queue_work(nvme_wq, &ctrl->fw_act_work);
<------><------>break;
#ifdef CONFIG_NVME_MULTIPATH
<------>case NVME_AER_NOTICE_ANA:
<------><------>if (!ctrl->ana_log_buf)
<------><------><------>break;
<------><------>queue_work(nvme_wq, &ctrl->ana_work);
<------><------>break;
#endif
<------>case NVME_AER_NOTICE_DISC_CHANGED:
<------><------>ctrl->aen_result = result;
<------><------>break;
<------>default:
<------><------>dev_warn(ctrl->device, "async event result %08x\n", result);
<------>}
}
void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
<------><------>volatile union nvme_result *res)
{
<------>u32 result = le32_to_cpu(res->u32);
<------>u32 aer_type = result & 0x07;
<------>if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
<------><------>return;
<------>switch (aer_type) {
<------>case NVME_AER_NOTICE:
<------><------>nvme_handle_aen_notice(ctrl, result);
<------><------>break;
<------>case NVME_AER_ERROR:
<------>case NVME_AER_SMART:
<------>case NVME_AER_CSS:
<------>case NVME_AER_VS:
<------><------>trace_nvme_async_event(ctrl, aer_type);
<------><------>ctrl->aen_result = result;
<------><------>break;
<------>default:
<------><------>break;
<------>}
<------>queue_work(nvme_wq, &ctrl->async_event_work);
}
EXPORT_SYMBOL_GPL(nvme_complete_async_event);
void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
{
<------>nvme_mpath_stop(ctrl);
<------>nvme_stop_keep_alive(ctrl);
<------>flush_work(&ctrl->async_event_work);
<------>cancel_work_sync(&ctrl->fw_act_work);
}
EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
void nvme_start_ctrl(struct nvme_ctrl *ctrl)
{
<------>nvme_start_keep_alive(ctrl);
<------>nvme_enable_aen(ctrl);
<------>if (ctrl->queue_count > 1) {
<------><------>nvme_queue_scan(ctrl);
<------><------>nvme_start_queues(ctrl);
<------>}
}
EXPORT_SYMBOL_GPL(nvme_start_ctrl);
void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
{
<------>nvme_fault_inject_fini(&ctrl->fault_inject);
<------>dev_pm_qos_hide_latency_tolerance(ctrl->device);
<------>cdev_device_del(&ctrl->cdev, ctrl->device);
<------>nvme_put_ctrl(ctrl);
}
EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
static void nvme_free_cels(struct nvme_ctrl *ctrl)
{
<------>struct nvme_effects_log *cel;
<------>unsigned long i;
<------>xa_for_each (&ctrl->cels, i, cel) {
<------><------>xa_erase(&ctrl->cels, i);
<------><------>kfree(cel);
<------>}
<------>xa_destroy(&ctrl->cels);
}
static void nvme_free_ctrl(struct device *dev)
{
<------>struct nvme_ctrl *ctrl =
<------><------>container_of(dev, struct nvme_ctrl, ctrl_device);
<------>struct nvme_subsystem *subsys = ctrl->subsys;
<------>if (!subsys || ctrl->instance != subsys->instance)
<------><------>ida_simple_remove(&nvme_instance_ida, ctrl->instance);
<------>nvme_free_cels(ctrl);
<------>nvme_mpath_uninit(ctrl);
<------>__free_page(ctrl->discard_page);
<------>if (subsys) {
<------><------>mutex_lock(&nvme_subsystems_lock);
<------><------>list_del(&ctrl->subsys_entry);
<------><------>sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
<------><------>mutex_unlock(&nvme_subsystems_lock);
<------>}
<------>ctrl->ops->free_ctrl(ctrl);
<------>if (subsys)
<------><------>nvme_put_subsystem(subsys);
}
/*
* Initialize a NVMe controller structures. This needs to be called during
* earliest initialization so that we have the initialized structured around
* during probing.
*/
int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
<------><------>const struct nvme_ctrl_ops *ops, unsigned long quirks)
{
<------>int ret;
<------>ctrl->state = NVME_CTRL_NEW;
<------>spin_lock_init(&ctrl->lock);
<------>mutex_init(&ctrl->scan_lock);
<------>INIT_LIST_HEAD(&ctrl->namespaces);
<------>xa_init(&ctrl->cels);
<------>init_rwsem(&ctrl->namespaces_rwsem);
<------>ctrl->dev = dev;
<------>ctrl->ops = ops;
<------>ctrl->quirks = quirks;
<------>ctrl->numa_node = NUMA_NO_NODE;
<------>INIT_WORK(&ctrl->scan_work, nvme_scan_work);
<------>INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
<------>INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
<------>INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
<------>init_waitqueue_head(&ctrl->state_wq);
<------>INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
<------>memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
<------>ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
<------>BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
<------><------><------>PAGE_SIZE);
<------>ctrl->discard_page = alloc_page(GFP_KERNEL);
<------>if (!ctrl->discard_page) {
<------><------>ret = -ENOMEM;
<------><------>goto out;
<------>}
<------>ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
<------>if (ret < 0)
<------><------>goto out;
<------>ctrl->instance = ret;
<------>device_initialize(&ctrl->ctrl_device);
<------>ctrl->device = &ctrl->ctrl_device;
<------>ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance);
<------>ctrl->device->class = nvme_class;
<------>ctrl->device->parent = ctrl->dev;
<------>ctrl->device->groups = nvme_dev_attr_groups;
<------>ctrl->device->release = nvme_free_ctrl;
<------>dev_set_drvdata(ctrl->device, ctrl);
<------>ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
<------>if (ret)
<------><------>goto out_release_instance;
<------>nvme_get_ctrl(ctrl);
<------>cdev_init(&ctrl->cdev, &nvme_dev_fops);
<------>ctrl->cdev.owner = ops->module;
<------>ret = cdev_device_add(&ctrl->cdev, ctrl->device);
<------>if (ret)
<------><------>goto out_free_name;
<------>/*
<------> * Initialize latency tolerance controls. The sysfs files won't
<------> * be visible to userspace unless the device actually supports APST.
<------> */
<------>ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
<------>dev_pm_qos_update_user_latency_tolerance(ctrl->device,
<------><------>min(default_ps_max_latency_us, (unsigned long)S32_MAX));
<------>nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
<------>nvme_mpath_init_ctrl(ctrl);
<------>return 0;
out_free_name:
<------>nvme_put_ctrl(ctrl);
<------>kfree_const(ctrl->device->kobj.name);
out_release_instance:
<------>ida_simple_remove(&nvme_instance_ida, ctrl->instance);
out:
<------>if (ctrl->discard_page)
<------><------>__free_page(ctrl->discard_page);
<------>return ret;
}
EXPORT_SYMBOL_GPL(nvme_init_ctrl);
/**
* nvme_kill_queues(): Ends all namespace queues
* @ctrl: the dead controller that needs to end
*
* Call this function when the driver determines it is unable to get the
* controller in a state capable of servicing IO.
*/
void nvme_kill_queues(struct nvme_ctrl *ctrl)
{
<------>struct nvme_ns *ns;
<------>down_read(&ctrl->namespaces_rwsem);
<------>/* Forcibly unquiesce queues to avoid blocking dispatch */
<------>if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
<------><------>blk_mq_unquiesce_queue(ctrl->admin_q);
<------>list_for_each_entry(ns, &ctrl->namespaces, list)
<------><------>nvme_set_queue_dying(ns);
<------>up_read(&ctrl->namespaces_rwsem);
}
EXPORT_SYMBOL_GPL(nvme_kill_queues);
void nvme_unfreeze(struct nvme_ctrl *ctrl)
{
<------>struct nvme_ns *ns;
<------>down_read(&ctrl->namespaces_rwsem);
<------>list_for_each_entry(ns, &ctrl->namespaces, list)
<------><------>blk_mq_unfreeze_queue(ns->queue);
<------>up_read(&ctrl->namespaces_rwsem);
}
EXPORT_SYMBOL_GPL(nvme_unfreeze);
int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
{
<------>struct nvme_ns *ns;
<------>down_read(&ctrl->namespaces_rwsem);
<------>list_for_each_entry(ns, &ctrl->namespaces, list) {
<------><------>timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
<------><------>if (timeout <= 0)
<------><------><------>break;
<------>}
<------>up_read(&ctrl->namespaces_rwsem);
<------>return timeout;
}
EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
void nvme_wait_freeze(struct nvme_ctrl *ctrl)
{
<------>struct nvme_ns *ns;
<------>down_read(&ctrl->namespaces_rwsem);
<------>list_for_each_entry(ns, &ctrl->namespaces, list)
<------><------>blk_mq_freeze_queue_wait(ns->queue);
<------>up_read(&ctrl->namespaces_rwsem);
}
EXPORT_SYMBOL_GPL(nvme_wait_freeze);
void nvme_start_freeze(struct nvme_ctrl *ctrl)
{
<------>struct nvme_ns *ns;
<------>down_read(&ctrl->namespaces_rwsem);
<------>list_for_each_entry(ns, &ctrl->namespaces, list)
<------><------>blk_freeze_queue_start(ns->queue);
<------>up_read(&ctrl->namespaces_rwsem);
}
EXPORT_SYMBOL_GPL(nvme_start_freeze);
void nvme_stop_queues(struct nvme_ctrl *ctrl)
{
<------>struct nvme_ns *ns;
<------>down_read(&ctrl->namespaces_rwsem);
<------>list_for_each_entry(ns, &ctrl->namespaces, list)
<------><------>blk_mq_quiesce_queue(ns->queue);
<------>up_read(&ctrl->namespaces_rwsem);
}
EXPORT_SYMBOL_GPL(nvme_stop_queues);
void nvme_start_queues(struct nvme_ctrl *ctrl)
{
<------>struct nvme_ns *ns;
<------>down_read(&ctrl->namespaces_rwsem);
<------>list_for_each_entry(ns, &ctrl->namespaces, list)
<------><------>blk_mq_unquiesce_queue(ns->queue);
<------>up_read(&ctrl->namespaces_rwsem);
}
EXPORT_SYMBOL_GPL(nvme_start_queues);
void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
{
<------>struct nvme_ns *ns;
<------>down_read(&ctrl->namespaces_rwsem);
<------>list_for_each_entry(ns, &ctrl->namespaces, list)
<------><------>blk_sync_queue(ns->queue);
<------>up_read(&ctrl->namespaces_rwsem);
}
EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
void nvme_sync_queues(struct nvme_ctrl *ctrl)
{
<------>nvme_sync_io_queues(ctrl);
<------>if (ctrl->admin_q)
<------><------>blk_sync_queue(ctrl->admin_q);
}
EXPORT_SYMBOL_GPL(nvme_sync_queues);
struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
{
<------>if (file->f_op != &nvme_dev_fops)
<------><------>return NULL;
<------>return file->private_data;
}
EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
/*
* Check we didn't inadvertently grow the command structure sizes:
*/
static inline void _nvme_check_size(void)
{
<------>BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
<------>BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
<------>BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
<------>BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
<------>BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
<------>BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
<------>BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
<------>BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
<------>BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
<------>BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
<------>BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
<------>BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
<------>BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
<------>BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
<------>BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
<------>BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
<------>BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
<------>BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
<------>BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
}
static int __init nvme_core_init(void)
{
<------>int result = -ENOMEM;
<------>_nvme_check_size();
<------>nvme_wq = alloc_workqueue("nvme-wq",
<------><------><------>WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
<------>if (!nvme_wq)
<------><------>goto out;
<------>nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
<------><------><------>WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
<------>if (!nvme_reset_wq)
<------><------>goto destroy_wq;
<------>nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
<------><------><------>WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
<------>if (!nvme_delete_wq)
<------><------>goto destroy_reset_wq;
<------>result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme");
<------>if (result < 0)
<------><------>goto destroy_delete_wq;
<------>nvme_class = class_create(THIS_MODULE, "nvme");
<------>if (IS_ERR(nvme_class)) {
<------><------>result = PTR_ERR(nvme_class);
<------><------>goto unregister_chrdev;
<------>}
<------>nvme_class->dev_uevent = nvme_class_uevent;
<------>nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
<------>if (IS_ERR(nvme_subsys_class)) {
<------><------>result = PTR_ERR(nvme_subsys_class);
<------><------>goto destroy_class;
<------>}
<------>return 0;
destroy_class:
<------>class_destroy(nvme_class);
unregister_chrdev:
<------>unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
destroy_delete_wq:
<------>destroy_workqueue(nvme_delete_wq);
destroy_reset_wq:
<------>destroy_workqueue(nvme_reset_wq);
destroy_wq:
<------>destroy_workqueue(nvme_wq);
out:
<------>return result;
}
static void __exit nvme_core_exit(void)
{
<------>class_destroy(nvme_subsys_class);
<------>class_destroy(nvme_class);
<------>unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
<------>destroy_workqueue(nvme_delete_wq);
<------>destroy_workqueue(nvme_reset_wq);
<------>destroy_workqueue(nvme_wq);
<------>ida_destroy(&nvme_instance_ida);
}
MODULE_LICENSE("GPL");
MODULE_VERSION("1.0");
module_init(nvme_core_init);
module_exit(nvme_core_exit);