Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
/******************************************************************************
 *
 * Copyright(c) 2007 - 2017  Realtek Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of version 2 of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * The full GNU General Public License is included in this distribution in the
 * file called LICENSE.
 *
 * Contact Information:
 * wlanfae <wlanfae@realtek.com>
 * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
 * Hsinchu 300, Taiwan.
 *
 * Larry Finger <Larry.Finger@lwfinger.net>
 *
 *****************************************************************************/

/*************************************************************
 * include files
 ************************************************************/
#include "mp_precomp.h"
#include "phydm_precomp.h"

/**************************************************
 * This function is for inband noise test utility only
 * To obtain the inband noise level(dbm), do the following.
 * 1. disable DIG and Power Saving
 * 2. Set initial gain = 0x1a
 * 3. Stop updating idle time pwer report (for driver read)
 *	- 0x80c[25]
 *
 *************************************************/

void phydm_set_noise_data_sum(struct noise_level *noise_data, u8 max_rf_path)
{
	u8 i = 0;

	for (i = RF_PATH_A; i < max_rf_path; i++) {
		if (noise_data->valid_cnt[i])
			noise_data->sum[i] /= noise_data->valid_cnt[i];
		else
			noise_data->sum[i] = 0;
	}
}

#if (ODM_IC_11N_SERIES_SUPPORT)
s16 odm_inband_noise_monitor_n(struct dm_struct *dm, u8 is_pause_dig, u8 igi,
			       u32 max_time)
{
	u32 tmp4b;
	u8 max_rf_path = 0, i = 0;
	u8 reg_c50, reg_c58, valid_done = 0;
	struct noise_level noise_data;
	u64 start = 0, func_start = 0, func_end = 0;
	s8 val_s8 = 0;

	func_start = odm_get_current_time(dm);
	dm->noise_level.noise_all = 0;

	if (dm->rf_type == RF_1T2R || dm->rf_type == RF_2T2R)
		max_rf_path = 2;
	else
		max_rf_path = 1;

	PHYDM_DBG(dm, DBG_ENV_MNTR,
		  "odm_DebugControlInbandNoise_Nseries() ==>\n");

	odm_memory_set(dm, &noise_data, 0, sizeof(struct noise_level));
	/* step 1. Disable DIG && Set initial gain. */

	if (is_pause_dig)
		odm_pause_dig(dm, PHYDM_PAUSE, PHYDM_PAUSE_LEVEL_1, igi);

	/* step 3. Get noise power level */
	start = odm_get_current_time(dm);
	while (1) {
		/* Stop updating idle time pwer report (for driver read) */
		odm_set_bb_reg(dm, REG_FPGA0_TX_GAIN_STAGE, BIT(25), 1);

		/* Read Noise Floor Report */
		tmp4b = odm_get_bb_reg(dm, R_0x8f8, MASKDWORD);

		/* update idle time pwer report per 5us */
		odm_set_bb_reg(dm, REG_FPGA0_TX_GAIN_STAGE, BIT(25), 0);

		ODM_delay_us(5);

		noise_data.value[RF_PATH_A] = (u8)(tmp4b & 0xff);
		noise_data.value[RF_PATH_B] = (u8)((tmp4b & 0xff00) >> 8);

		for (i = RF_PATH_A; i < max_rf_path; i++) {
			noise_data.sval[i] = (s8)noise_data.value[i];
			noise_data.sval[i] /= 2;
		}

		for (i = RF_PATH_A; i < max_rf_path; i++) {
			if (noise_data.valid_cnt[i] >= VALID_CNT)
				continue;

			noise_data.valid_cnt[i]++;
			noise_data.sum[i] += noise_data.sval[i];
			PHYDM_DBG(dm, DBG_ENV_MNTR,
				  "rf_path:%d Valid sval=%d\n", i,
				  noise_data.sval[i]);
			PHYDM_DBG(dm, DBG_ENV_MNTR, "Sum of sval = %d,\n",
				  noise_data.sum[i]);
			if (noise_data.valid_cnt[i] == VALID_CNT)
				valid_done++;
		}
		if (valid_done == max_rf_path ||
		    (odm_get_progressing_time(dm, start) > max_time)) {
			phydm_set_noise_data_sum(&noise_data, max_rf_path);
			break;
		}
	}
	reg_c50 = (u8)odm_get_bb_reg(dm, REG_OFDM_0_XA_AGC_CORE1, MASKBYTE0);
	reg_c50 &= ~BIT(7);
	val_s8 = (s8)(-110 + reg_c50 + noise_data.sum[RF_PATH_A]);
	dm->noise_level.noise[RF_PATH_A] = val_s8;
	dm->noise_level.noise_all += dm->noise_level.noise[RF_PATH_A];

	if (max_rf_path == 2) {
		reg_c58 = (u8)odm_get_bb_reg(dm, R_0xc58, MASKBYTE0);
		reg_c58 &= ~BIT(7);
		val_s8 = (s8)(-110 + reg_c58 + noise_data.sum[RF_PATH_B]);
		dm->noise_level.noise[RF_PATH_B] = val_s8;
		dm->noise_level.noise_all += dm->noise_level.noise[RF_PATH_B];
	}
	dm->noise_level.noise_all /= max_rf_path;

	PHYDM_DBG(dm, DBG_ENV_MNTR,
		  "noise_a = %d, noise_b = %d, noise_all = %d\n",
		  dm->noise_level.noise[RF_PATH_A],
		  dm->noise_level.noise[RF_PATH_B], dm->noise_level.noise_all);

	/* step 4. Recover the Dig */
	if (is_pause_dig)
		odm_pause_dig(dm, PHYDM_RESUME, PHYDM_PAUSE_LEVEL_1, igi);
	func_end = odm_get_progressing_time(dm, func_start);

	PHYDM_DBG(dm, DBG_ENV_MNTR, "end\n");
	return dm->noise_level.noise_all;
}
#endif

#if (ODM_IC_11AC_SERIES_SUPPORT)
s16 phydm_idle_noise_measure_ac(struct dm_struct *dm, u8 pause_dig,
				u8 igi, u32 max_time)
{
	u32 tmp4b;
	u8 max_rf_path = 0, i = 0;
	u8 reg_c50, reg_e50, valid_done = 0;
	u64 start = 0, func_start = 0, func_end = 0;
	struct noise_level noise_data;
	s8 val_s8 = 0;

	func_start = odm_get_current_time(dm);
	dm->noise_level.noise_all = 0;

	if (dm->rf_type == RF_1T2R || dm->rf_type == RF_2T2R)
		max_rf_path = 2;
	else
		max_rf_path = 1;

	PHYDM_DBG(dm, DBG_ENV_MNTR, "%s==>\n", __func__);

	odm_memory_set(dm, &noise_data, 0, sizeof(struct noise_level));

	/*Step 1. Disable DIG && Set initial gain.*/

	if (pause_dig)
		odm_pause_dig(dm, PHYDM_PAUSE, PHYDM_PAUSE_LEVEL_1, igi);

	/*Step 2. Get noise power level*/
	start = odm_get_current_time(dm);

	while (1) {
		/*Stop updating idle time pwer report (for driver read)*/
		odm_set_bb_reg(dm, R_0x9e4, BIT(30), 0x1);

		/*Read Noise Floor Report*/
		tmp4b = odm_get_bb_reg(dm, R_0xff0, MASKDWORD);

		/*update idle time pwer report per 5us*/
		odm_set_bb_reg(dm, R_0x9e4, BIT(30), 0x0);

		ODM_delay_us(5);

		noise_data.value[RF_PATH_A] = (u8)(tmp4b & 0xff);
		noise_data.value[RF_PATH_B] = (u8)((tmp4b & 0xff00) >> 8);

		for (i = RF_PATH_A; i < max_rf_path; i++) {
			noise_data.sval[i] = (s8)noise_data.value[i];
			noise_data.sval[i] = noise_data.sval[i] >> 1;
		}

		for (i = RF_PATH_A; i < max_rf_path; i++) {
			if (noise_data.valid_cnt[i] >= VALID_CNT)
				continue;

			noise_data.valid_cnt[i]++;
			noise_data.sum[i] += noise_data.sval[i];
			PHYDM_DBG(dm, DBG_ENV_MNTR, "Path:%d Valid sval = %d\n",
				  i, noise_data.sval[i]);
			PHYDM_DBG(dm, DBG_ENV_MNTR, "Sum of sval = %d\n",
				  noise_data.sum[i]);
			if (noise_data.valid_cnt[i] == VALID_CNT)
				valid_done++;
		}

		if (valid_done == max_rf_path ||
		    (odm_get_progressing_time(dm, start) > max_time)) {
			phydm_set_noise_data_sum(&noise_data, max_rf_path);
			break;
		}
	}
	reg_c50 = (u8)odm_get_bb_reg(dm, R_0xc50, MASKBYTE0);
	reg_c50 &= ~BIT(7);
	val_s8 = (s8)(-110 + reg_c50 + noise_data.sum[RF_PATH_A]);
	dm->noise_level.noise[RF_PATH_A] = val_s8;
	dm->noise_level.noise_all += dm->noise_level.noise[RF_PATH_A];

	if (max_rf_path == 2) {
		reg_e50 = (u8)odm_get_bb_reg(dm, R_0xe50, MASKBYTE0);
		reg_e50 &= ~BIT(7);
		val_s8 = (s8)(-110 + reg_e50 + noise_data.sum[RF_PATH_B]);
		dm->noise_level.noise[RF_PATH_B] = val_s8;
		dm->noise_level.noise_all += dm->noise_level.noise[RF_PATH_B];
	}
	dm->noise_level.noise_all /= max_rf_path;

	PHYDM_DBG(dm, DBG_ENV_MNTR,
		  "noise_a = %d, noise_b = %d, noise_all = %d\n",
		  dm->noise_level.noise[RF_PATH_A],
		  dm->noise_level.noise[RF_PATH_B], dm->noise_level.noise_all);

	/*Step 3. Recover the Dig*/
	if (pause_dig)
		odm_pause_dig(dm, PHYDM_RESUME, PHYDM_PAUSE_LEVEL_1, igi);
	func_end = odm_get_progressing_time(dm, func_start);

	PHYDM_DBG(dm, DBG_ENV_MNTR, "end\n");
	return dm->noise_level.noise_all;
}

s16 odm_inband_noise_monitor_ac(struct dm_struct *dm, u8 pause_dig, u8 igi,
				u32 max_time)
{
	s32 rxi_buf_anta, rxq_buf_anta; /*rxi_buf_antb, rxq_buf_antb;*/
	s32 value32, pwdb_A = 0, sval, noise, sum = 0;
	boolean pd_flag;
	u8 valid_cnt = 0;
	u64 start = 0, func_start = 0, func_end = 0;
	s32 val_s32 = 0;
	s16 rpt = 0;
	u8 val_u8 = 0;

	if (dm->support_ic_type & (ODM_RTL8822B | ODM_RTL8821C)) {
		rpt = phydm_idle_noise_measure_ac(dm, pause_dig, igi, max_time);
		return rpt;
	}

	if (!(dm->support_ic_type & (ODM_RTL8812 | ODM_RTL8821 | ODM_RTL8814A)))
		return 0;

	func_start = odm_get_current_time(dm);
	dm->noise_level.noise_all = 0;

	PHYDM_DBG(dm, DBG_ENV_MNTR, "%s ==>\n", __func__);

	/* step 1. Disable DIG && Set initial gain. */
	if (pause_dig)
		odm_pause_dig(dm, PHYDM_PAUSE, PHYDM_PAUSE_LEVEL_1, igi);

	/* step 3. Get noise power level */
	start = odm_get_current_time(dm);

	/* step 3. Get noise power level */
	while (1) {
		/*Set IGI=0x1C */
		odm_write_dig(dm, 0x1C);
		/*stop CK320&CK88 */
		odm_set_bb_reg(dm, R_0x8b4, BIT(6), 1);
		/*Read path-A */
		/*set debug port*/
		odm_set_bb_reg(dm, R_0x8fc, MASKDWORD, 0x200);
		/*read debug port*/
		value32 = odm_get_bb_reg(dm, R_0xfa0, MASKDWORD);
		/*rxi_buf_anta=RegFA0[19:10]*/
		rxi_buf_anta = (value32 & 0xFFC00) >> 10;
		rxq_buf_anta = value32 & 0x3FF; /*rxq_buf_anta=RegFA0[19:10]*/

		pd_flag = (boolean)((value32 & BIT(31)) >> 31);

		/*Not in packet detection period or Tx state */
		if (!pd_flag || rxi_buf_anta != 0x200) {
			/*sign conversion*/
			rxi_buf_anta = odm_sign_conversion(rxi_buf_anta, 10);
			rxq_buf_anta = odm_sign_conversion(rxq_buf_anta, 10);

			val_s32 = rxi_buf_anta * rxi_buf_anta +
				  rxq_buf_anta * rxq_buf_anta;
			/*S(10,9)*S(10,9)=S(20,18)*/
			pwdb_A = odm_pwdb_conversion(val_s32, 20, 18);

			PHYDM_DBG(dm, DBG_ENV_MNTR,
				  "pwdb_A= %d dB, rxi_buf_anta= 0x%x, rxq_buf_anta= 0x%x\n",
				  pwdb_A, rxi_buf_anta & 0x3FF,
				  rxq_buf_anta & 0x3FF);
		}
		/*Start CK320&CK88*/
		odm_set_bb_reg(dm, R_0x8b4, BIT(6), 0);
		/*@BB Reset*/
		val_u8 = odm_read_1byte(dm, 0x02) & (~BIT(0));
		odm_write_1byte(dm, 0x02, val_u8);
		val_u8 = odm_read_1byte(dm, 0x02) | BIT(0);
		odm_write_1byte(dm, 0x02, val_u8);
		/*PMAC Reset*/
		val_u8 = odm_read_1byte(dm, 0xB03) & (~BIT(0));
		odm_write_1byte(dm, 0xB03, val_u8);
		val_u8 = odm_read_1byte(dm, 0xB03) | BIT(0);
		odm_write_1byte(dm, 0xB03, val_u8);
		/*@CCK Reset*/
		if (odm_read_1byte(dm, 0x80B) & BIT(4)) {
			val_u8 = odm_read_1byte(dm, 0x80B) & (~BIT(4));
			odm_write_1byte(dm, 0x80B, val_u8);
			val_u8 = odm_read_1byte(dm, 0x80B) | BIT(4);
			odm_write_1byte(dm, 0x80B, val_u8);
		}

		sval = pwdb_A;

		if ((sval < 0 && sval >= -27) && valid_cnt < VALID_CNT) {
			valid_cnt++;
			sum += sval;
			PHYDM_DBG(dm, DBG_ENV_MNTR, "Valid sval = %d\n", sval);
			PHYDM_DBG(dm, DBG_ENV_MNTR, "Sum of sval = %d,\n", sum);
			if (valid_cnt >= VALID_CNT ||
			    (odm_get_progressing_time(dm, start) > max_time)) {
				sum /= VALID_CNT;
				PHYDM_DBG(dm, DBG_ENV_MNTR,
					  "After divided, sum = %d\n", sum);
				break;
			}
		}
	}

	/*@ADC backoff is 12dB,*/
	/*Ptarget=0x1C-110=-82dBm*/
	noise = sum + 12 + 0x1C - 110;

	/*Offset*/
	noise = noise - 3;
	PHYDM_DBG(dm, DBG_ENV_MNTR, "noise = %d\n", noise);
	dm->noise_level.noise_all = (s16)noise;

	/* step 4. Recover the Dig*/
	if (pause_dig)
		odm_pause_dig(dm, PHYDM_RESUME, PHYDM_PAUSE_LEVEL_1, igi);

	func_end = odm_get_progressing_time(dm, func_start);

	PHYDM_DBG(dm, DBG_ENV_MNTR, "%s <==\n", __func__);

	return dm->noise_level.noise_all;
}
#endif

s16 odm_inband_noise_monitor(void *dm_void, u8 pause_dig, u8 igi,
			     u32 max_time)
{
	struct dm_struct *dm = (struct dm_struct *)dm_void;
	s16 val = 0;

	igi = 0x32;

	/* since HW ability is about +15~-35,
	 * we fix IGI = -60 for maximum coverage
	 */
	#if (ODM_IC_11AC_SERIES_SUPPORT)
	if (dm->support_ic_type & ODM_IC_11AC_SERIES)
		val = odm_inband_noise_monitor_ac(dm, pause_dig, igi, max_time);
	#endif

	#if (ODM_IC_11N_SERIES_SUPPORT)
	if (dm->support_ic_type & ODM_IC_11N_SERIES)
		val = odm_inband_noise_monitor_n(dm, pause_dig, igi, max_time);
	#endif

	return val;
}

void phydm_noisy_detection(void *dm_void)
{
	struct dm_struct *dm = (struct dm_struct *)dm_void;
	u32 total_fa_cnt, total_cca_cnt;
	u32 score = 0, i, score_smooth;

	total_cca_cnt = dm->false_alm_cnt.cnt_cca_all;
	total_fa_cnt = dm->false_alm_cnt.cnt_all;

#if 0
	if (total_fa_cnt * 16 >= total_cca_cnt * 14)    /*  @87.5 */
		;
	else if (total_fa_cnt * 16 >= total_cca_cnt * 12) /*  @75 */
		;
	else if (total_fa_cnt * 16 >= total_cca_cnt * 10) /*  @56.25 */
		;
	else if (total_fa_cnt * 16 >= total_cca_cnt * 8) /*  @50 */
		;
	else if (total_fa_cnt * 16 >= total_cca_cnt * 7) /*  @43.75 */
		;
	else if (total_fa_cnt * 16 >= total_cca_cnt * 6) /*  @37.5 */
		;
	else if (total_fa_cnt * 16 >= total_cca_cnt * 5) /*  @31.25% */
		;
	else if (total_fa_cnt * 16 >= total_cca_cnt * 4) /*  @25% */
		;
	else if (total_fa_cnt * 16 >= total_cca_cnt * 3) /*  @18.75% */
		;
	else if (total_fa_cnt * 16 >= total_cca_cnt * 2) /*  @12.5% */
		;
	else if (total_fa_cnt * 16 >= total_cca_cnt * 1) /*  @6.25% */
		;
#endif
	for (i = 0; i <= 16; i++) {
		if (total_fa_cnt * 16 >= total_cca_cnt * (16 - i)) {
			score = 16 - i;
			break;
		}
	}

	/* noisy_decision_smooth = noisy_decision_smooth>>1 + (score<<3)>>1; */
	dm->noisy_decision_smooth = (dm->noisy_decision_smooth >> 1) +
				    (score << 2);

	/* Round the noisy_decision_smooth: +"3" comes from (2^3)/2-1 */
	if (total_cca_cnt >= 300)
		score_smooth = (dm->noisy_decision_smooth + 3) >> 3;
	else
		score_smooth = 0;

	dm->noisy_decision = (score_smooth >= 3) ? 1 : 0;

	PHYDM_DBG(dm, DBG_ENV_MNTR,
		  "[NoisyDetection] CCA_cnt=%d,FA_cnt=%d, noisy_dec_smooth=%d, score=%d, score_smooth=%d, noisy_dec=%d\n",
		  total_cca_cnt, total_fa_cnt, dm->noisy_decision_smooth, score,
		  score_smooth, dm->noisy_decision);
}