/*
* Copyright (C) 2013 Realtek Semiconductor Corp.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* Module Name:
* hciattach_rtk.c
*
* Description:
* H4/H5 specific initialization
*
* Revision History:
* Date Version Author Comment
* ---------- --------- --------------- -----------------------
* 2013-06-06 1.0.0 gordon_yang Create
* 2013-06-18 1.0.1 lory_xu add support for multi fw
* 2013-06-21 1.0.2 gordon_yang add timeout for get version cmd
* 2013-07-01 1.0.3 lory_xu close file handle
* 2013-07-01 2.0 champion_chen add IC check
* 2013-12-16 2.1 champion_chen fix bug in Additional packet number
* 2013-12-25 2.2 champion_chen open host flow control after send last fw packet
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <stdio.h>
#include <errno.h>
#include <unistd.h>
#include <stdlib.h>
#include <termios.h>
#include <time.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/param.h>
#include <sys/ioctl.h>
#include <sys/socket.h>
#include <sys/uio.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <signal.h>
#include <stdint.h>
#include <string.h>
#include <endian.h>
#include <byteswap.h>
#include <netinet/in.h>
#include "hciattach.h"
#define RTK_VERSION "3.1"
/* #define RTL_8703A_SUPPORT */
#define BAUDRATE_4BYTES
//#define USE_CUSTUMER_ADDRESS
#define FIRMWARE_DIRECTORY "/lib/firmware/rtlbt/"
#define BT_CONFIG_DIRECTORY "/lib/firmware/rtlbt/"
#ifdef USE_CUSTUMER_ADDRESS
#define BT_ADDR_DIR "/data/bt_mac/"
#define BT_ADDR_FILE "/data/bt_mac/btmac.txt"
#endif
#if __BYTE_ORDER == __LITTLE_ENDIAN
#define cpu_to_le16(d) (d)
#define cpu_to_le32(d) (d)
#define le16_to_cpu(d) (d)
#define le32_to_cpu(d) (d)
#elif __BYTE_ORDER == __BIG_ENDIAN
#define cpu_to_le16(d) bswap_16(d)
#define cpu_to_le32(d) bswap_32(d)
#define le16_to_cpu(d) bswap_16(d)
#define le32_to_cpu(d) bswap_32(d)
#else
#error "Unknown byte order"
#endif
typedef uint8_t RT_U8, *PRT_U8;
typedef int8_t RT_S8, *PRT_S8;
typedef uint16_t RT_U16, *PRT_U16;
typedef int32_t RT_S32, *PRT_S32;
typedef uint32_t RT_U32, *PRT_U32;
RT_U8 DBG_ON = 1;
#define LOG_STR "Realtek Bluetooth"
#define RS_DBG(fmt, arg...) \
do{ \
if (DBG_ON) \
fprintf(stderr, "%s :" fmt "\n" , LOG_STR, ##arg); \
}while(0)
#define RS_INFO(fmt, arg...) \
do{ \
fprintf(stderr, "%s :" fmt "\n", LOG_STR, ##arg); \
}while(0)
#define RS_ERR(fmt, arg...) \
do{ \
fprintf(stderr, "%s ERROR: " fmt "\n", LOG_STR, ##arg); \
}while(0)
#define HCI_COMMAND_HDR_SIZE 3
#define HCI_EVENT_HDR_SIZE 2
/* #define RTK_PATCH_LENGTH_MAX 24576 */ //24*1024
#define RTK_PATCH_LENGTH_MAX (40 * 1024)
#define PATCH_DATA_FIELD_MAX_SIZE 252
#define READ_DATA_SIZE 16
#define H5_MAX_RETRY_COUNT 40
#define RTK_VENDOR_CONFIG_MAGIC 0x8822ab55
const RT_U8 RTK_EPATCH_SIGNATURE[8] =
{ 0x52, 0x65, 0x61, 0x6C, 0x74, 0x65, 0x63, 0x68 };
const RT_U8 Extension_Section_SIGNATURE[4] = { 0x51, 0x04, 0xFD, 0x77 };
#define HCI_CMD_READ_BD_ADDR 0x1009
#define HCI_VENDOR_CHANGE_BDRATE 0xfc17
#define HCI_VENDOR_READ_RTK_ROM_VERISION 0xfc6d
#define HCI_CMD_READ_LOCAL_VERISION 0x1001
#define HCI_VENDOR_READ_CHIP_TYPE 0xfc61
#define ROM_LMP_NONE 0x0000
#define ROM_LMP_8723a 0x1200
#define ROM_LMP_8723b 0x8723
#define ROM_LMP_8821a 0x8821
#define ROM_LMP_8761a 0x8761
#define ROM_LMP_8703a 0x87b3
#define ROM_LMP_8763a 0x8763
#define ROM_LMP_8703b 0x8703
#define ROM_LMP_8723c 0x87c3 /* ??????? */
#define ROM_LMP_8822b 0x8822
#define ROM_LMP_8723cs_xx 0x8704
#define ROM_LMP_8723cs_cg 0x8705
#define ROM_LMP_8723cs_vf 0x8706
/* Chip type */
#define CHIP_8703AS 1
#define CHIP_8723CS_CG 3
#define CHIP_8723CS_VF 4
#define CHIP_RTL8723CS_XX 5
#define CHIP_8703BS 7
#define CHIP_8822BS 9
/* HCI data types */
#define H5_ACK_PKT 0x00
#define HCI_COMMAND_PKT 0x01
#define HCI_ACLDATA_PKT 0x02
#define HCI_SCODATA_PKT 0x03
#define HCI_EVENT_PKT 0x04
#define H5_VDRSPEC_PKT 0x0E
#define H5_LINK_CTL_PKT 0x0F
#define H5_HDR_SEQ(hdr) ((hdr)[0] & 0x07)
#define H5_HDR_ACK(hdr) (((hdr)[0] >> 3) & 0x07)
#define H5_HDR_CRC(hdr) (((hdr)[0] >> 6) & 0x01)
#define H5_HDR_RELIABLE(hdr) (((hdr)[0] >> 7) & 0x01)
#define H5_HDR_PKT_TYPE(hdr) ((hdr)[1] & 0x0f)
#define H5_HDR_LEN(hdr) ((((hdr)[1] >> 4) & 0xff) + ((hdr)[2] << 4))
#define H5_HDR_SIZE 4
struct sk_buff {
RT_U32 max_len;
RT_U32 data_len;
RT_U8 data[0];
};
/* Skb helpers */
struct bt_skb_cb {
RT_U8 pkt_type;
RT_U8 incoming;
RT_U16 expect;
RT_U8 tx_seq;
RT_U8 retries;
RT_U8 sar;
unsigned short channel;
};
typedef struct {
uint8_t index;
uint8_t data[252];
} __attribute__ ((packed)) download_vendor_patch_cp;
struct hci_command_hdr {
RT_U16 opcode;
RT_U8 plen;
} __attribute__ ((packed));
struct hci_event_hdr {
RT_U8 evt;
RT_U8 plen;
} __attribute__ ((packed));
struct hci_ev_cmd_complete {
RT_U8 ncmd;
RT_U16 opcode;
} __attribute__ ((packed));
struct rtk_bt_vendor_config_entry {
RT_U16 offset;
RT_U8 entry_len;
RT_U8 entry_data[0];
} __attribute__ ((packed));
struct rtk_bt_vendor_config {
RT_U32 signature;
RT_U16 data_len;
struct rtk_bt_vendor_config_entry entry[0];
} __attribute__ ((packed));
struct rtk_epatch_entry {
RT_U16 chipID;
RT_U16 patch_length;
RT_U32 start_offset;
RT_U32 svn_ver;
RT_U32 coex_ver;
} __attribute__ ((packed));
struct rtk_epatch {
RT_U8 signature[8];
RT_U32 fw_version;
RT_U16 number_of_patch;
struct rtk_epatch_entry entry[0];
} __attribute__ ((packed));
struct rtk_extension_entry {
uint8_t opcode;
uint8_t length;
uint8_t *data;
} __attribute__ ((packed));
typedef enum _RTK_ROM_VERSION_CMD_STATE {
cmd_not_send,
cmd_has_sent,
event_received
} RTK_ROM_VERSION_CMD_STATE;
typedef enum _H5_RX_STATE {
H5_W4_PKT_DELIMITER,
H5_W4_PKT_START,
H5_W4_HDR,
H5_W4_DATA,
H5_W4_CRC
} H5_RX_STATE;
typedef enum _H5_RX_ESC_STATE {
H5_ESCSTATE_NOESC,
H5_ESCSTATE_ESC
} H5_RX_ESC_STATE;
typedef enum _H5_LINK_STATE {
H5_SYNC,
H5_CONFIG,
H5_INIT,
H5_PATCH,
H5_ACTIVE
} H5_LINK_STATE;
uint16_t project_id[]=
{
ROM_LMP_8723a,
ROM_LMP_8723b, /* RTL8723BS */
ROM_LMP_8821a, /* RTL8821AS */
ROM_LMP_8761a, /* RTL8761ATV */
ROM_LMP_8703a,
ROM_LMP_8763a,
ROM_LMP_8703b,
ROM_LMP_8723c, /* index 7 for 8723CS. What is for other 8723CS */
ROM_LMP_8822b, /* RTL8822BS */
ROM_LMP_8723b, /* RTL8723DS */
ROM_LMP_8821a, /* id 10 for RTL8821CS, lmp subver 0x8821 */
ROM_LMP_NONE
};
#define RTL_FW_MATCH_CHIP_TYPE (1 << 0)
#define RTL_FW_MATCH_HCI_VER (1 << 1)
#define RTL_FW_MATCH_HCI_REV (1 << 2)
struct patch_info {
uint32_t match_flags;
uint8_t chip_type;
uint16_t lmp_subver;
uint16_t proj_id;
uint8_t hci_ver;
uint16_t hci_rev;
char *patch_file;
char *config_file;
char *ic_name;
};
static struct patch_info patch_table[] = {
/* match flags, chip type, lmp subver, proj id(unused), hci_ver, hci_rev, ...*/
/* RTL8761AT H4 */
{ 0, 0, 0xffff, 0xffff, 0, 0,
"rtl8761at_fw", "rtl8761at_config", "RTL8761AT" },
/* RTL8723AS */
{ 0, 0, ROM_LMP_8723a, ROM_LMP_8723a, 0, 0,
"rtl8723a_fw", "rtl8723a_config", "RTL8723AS"},
/* RTL8821CS */
{ RTL_FW_MATCH_HCI_REV, 0,
ROM_LMP_8821a, ROM_LMP_8821a, 0, 0x000c,
"rtl8821c_fw", "rtl8821c_config", "RTL8821CS"},
/* RTL8821AS */
{ 0, 0, ROM_LMP_8821a, ROM_LMP_8821a, 0, 0,
"rtl8821a_fw", "rtl8821a_config", "RTL8821AS"},
/* RTL8761ATV */
{ 0, 0, ROM_LMP_8761a, ROM_LMP_8761a, 0, 0,
"rtl8761a_fw", "rtl8761a_config", "RTL8761ATV"},
/* RTL8703AS
* RTL8822BS
* */
#ifdef RTL_8703A_SUPPORT
{ RTL_FW_MATCH_CHIP_TYPE, CHIP_8703AS,
ROM_LMP_8723b, ROM_LMP_8723b, 0, 0,
"rtl8703a_fw", "rtl8703a_config", "RTL8703AS"},
#endif
{ 0, 0, ROM_LMP_8822b, ROM_LMP_8822b, 0, 0,
"rtl8822b_fw", "rtl8822b_config", "RTL8822BS"},
/* RTL8703BS
* RTL8723CS_XX
* RTL8723CS_CG
* RTL8723CS_VF
* */
{ RTL_FW_MATCH_CHIP_TYPE, CHIP_8703BS,
ROM_LMP_8703b, ROM_LMP_8703b, 0, 0,
"rtl8703b_fw", "rtl8703b_config", "RTL8703BS"},
{ RTL_FW_MATCH_CHIP_TYPE, CHIP_RTL8723CS_XX,
ROM_LMP_8703b, ROM_LMP_8723cs_xx, 0, 0,
"rtl8723cs_xx_fw", "rtl8723cs_xx_config", "RTL8723CS_XX"},
{ RTL_FW_MATCH_CHIP_TYPE, CHIP_8723CS_CG,
ROM_LMP_8703b, ROM_LMP_8723cs_cg, 0, 0,
"rtl8723cs_cg_fw", "rtl8723cs_cg_config", "RTL8723CS_CG"},
{ RTL_FW_MATCH_CHIP_TYPE, CHIP_8723CS_VF,
ROM_LMP_8703b, ROM_LMP_8723cs_vf, 0, 0,
"rtl8723cs_vf_fw", "rtl8723cs_vf_config", "RTL8723CS_VF"},
/* RTL8723BS */
{ RTL_FW_MATCH_HCI_VER | RTL_FW_MATCH_HCI_REV, 0,
ROM_LMP_8723b, ROM_LMP_8723b, 6, 0x000b,
"rtl8723b_fw", "rtl8723b_config", "RTL8723BS"},
/* RTL8723DS */
{ RTL_FW_MATCH_HCI_VER | RTL_FW_MATCH_HCI_REV, 0,
ROM_LMP_8723b, ROM_LMP_8723b, 8, 0x000d,
"rtl8723d_fw", "rtl8723d_config", "RTL8723DS"},
/* add entries here*/
{ 0, 0, 0, ROM_LMP_NONE, 0, 0, "rtl_none_fw", "rtl_none_config", "NONE"}
};
typedef struct btrtl_info {
/**********************h5 releated*************************/
RT_U8 rxseq_txack; /* expected rx seq number */
RT_U8 rxack; /* last packet sent by us that the peer ack'ed */
RT_U8 use_crc;
RT_U8 is_txack_req; /* txack required */
RT_U8 msgq_txseq; /* next pkt seq */
RT_U16 message_crc;
RT_U32 rx_count; /* expected pkts to recv */
H5_RX_STATE rx_state;
H5_RX_ESC_STATE rx_esc_state;
H5_LINK_STATE link_estab_state;
struct sk_buff *rx_skb;
struct sk_buff *host_last_cmd;
uint16_t num_of_cmd_sent;
RT_U16 lmp_subver;
uint16_t hci_rev;
uint8_t hci_ver;
RT_U8 eversion;
int h5_max_retries;
RT_U8 chip_type;
/**********************patch related************************/
uint32_t baudrate;
uint8_t dl_fw_flag;
int serial_fd;
int hw_flow_control;
int final_speed;
int total_num; /* total pkt number */
int tx_index; /* current sending pkt number */
int rx_index; /* ack index from board */
int fw_len; /* fw patch file len */
int config_len; /* config patch file len */
int total_len; /* fw & config extracted buf len */
uint8_t *fw_buf; /* fw patch file buf */
uint8_t *config_buf; /* config patch file buf */
uint8_t *total_buf; /* fw & config extracted buf */
RTK_ROM_VERSION_CMD_STATE rom_version_cmd_state;
RTK_ROM_VERSION_CMD_STATE hci_version_cmd_state;
RTK_ROM_VERSION_CMD_STATE chip_type_cmd_state;
struct patch_info *patch_ent;
int proto;
} rtk_hw_cfg_t;
static rtk_hw_cfg_t rtk_hw_cfg;
/* Get the entry from patch_table according to LMP subversion */
struct patch_info *get_patch_entry(struct btrtl_info *btrtl)
{
struct patch_info *n = NULL;
n = patch_table;
for (; n->lmp_subver; n++) {
if ((n->match_flags & RTL_FW_MATCH_CHIP_TYPE) &&
n->chip_type != btrtl->chip_type)
continue;
if ((n->match_flags & RTL_FW_MATCH_HCI_VER) &&
n->hci_ver != btrtl->hci_ver)
continue;
if ((n->match_flags & RTL_FW_MATCH_HCI_REV) &&
n->hci_rev != btrtl->hci_rev)
continue;
if (n->lmp_subver != btrtl->lmp_subver)
continue;
break;
}
return n;
}
// bite reverse in bytes
// 00000001 -> 10000000
// 00000100 -> 00100000
const RT_U8 byte_rev_table[256] = {
0x00, 0x80, 0x40, 0xc0, 0x20, 0xa0, 0x60, 0xe0,
0x10, 0x90, 0x50, 0xd0, 0x30, 0xb0, 0x70, 0xf0,
0x08, 0x88, 0x48, 0xc8, 0x28, 0xa8, 0x68, 0xe8,
0x18, 0x98, 0x58, 0xd8, 0x38, 0xb8, 0x78, 0xf8,
0x04, 0x84, 0x44, 0xc4, 0x24, 0xa4, 0x64, 0xe4,
0x14, 0x94, 0x54, 0xd4, 0x34, 0xb4, 0x74, 0xf4,
0x0c, 0x8c, 0x4c, 0xcc, 0x2c, 0xac, 0x6c, 0xec,
0x1c, 0x9c, 0x5c, 0xdc, 0x3c, 0xbc, 0x7c, 0xfc,
0x02, 0x82, 0x42, 0xc2, 0x22, 0xa2, 0x62, 0xe2,
0x12, 0x92, 0x52, 0xd2, 0x32, 0xb2, 0x72, 0xf2,
0x0a, 0x8a, 0x4a, 0xca, 0x2a, 0xaa, 0x6a, 0xea,
0x1a, 0x9a, 0x5a, 0xda, 0x3a, 0xba, 0x7a, 0xfa,
0x06, 0x86, 0x46, 0xc6, 0x26, 0xa6, 0x66, 0xe6,
0x16, 0x96, 0x56, 0xd6, 0x36, 0xb6, 0x76, 0xf6,
0x0e, 0x8e, 0x4e, 0xce, 0x2e, 0xae, 0x6e, 0xee,
0x1e, 0x9e, 0x5e, 0xde, 0x3e, 0xbe, 0x7e, 0xfe,
0x01, 0x81, 0x41, 0xc1, 0x21, 0xa1, 0x61, 0xe1,
0x11, 0x91, 0x51, 0xd1, 0x31, 0xb1, 0x71, 0xf1,
0x09, 0x89, 0x49, 0xc9, 0x29, 0xa9, 0x69, 0xe9,
0x19, 0x99, 0x59, 0xd9, 0x39, 0xb9, 0x79, 0xf9,
0x05, 0x85, 0x45, 0xc5, 0x25, 0xa5, 0x65, 0xe5,
0x15, 0x95, 0x55, 0xd5, 0x35, 0xb5, 0x75, 0xf5,
0x0d, 0x8d, 0x4d, 0xcd, 0x2d, 0xad, 0x6d, 0xed,
0x1d, 0x9d, 0x5d, 0xdd, 0x3d, 0xbd, 0x7d, 0xfd,
0x03, 0x83, 0x43, 0xc3, 0x23, 0xa3, 0x63, 0xe3,
0x13, 0x93, 0x53, 0xd3, 0x33, 0xb3, 0x73, 0xf3,
0x0b, 0x8b, 0x4b, 0xcb, 0x2b, 0xab, 0x6b, 0xeb,
0x1b, 0x9b, 0x5b, 0xdb, 0x3b, 0xbb, 0x7b, 0xfb,
0x07, 0x87, 0x47, 0xc7, 0x27, 0xa7, 0x67, 0xe7,
0x17, 0x97, 0x57, 0xd7, 0x37, 0xb7, 0x77, 0xf7,
0x0f, 0x8f, 0x4f, 0xcf, 0x2f, 0xaf, 0x6f, 0xef,
0x1f, 0x9f, 0x5f, 0xdf, 0x3f, 0xbf, 0x7f, 0xff,
};
static __inline RT_U8 bit_rev8(RT_U8 byte)
{
return byte_rev_table[byte];
}
static __inline RT_U16 bit_rev16(RT_U16 x)
{
return (bit_rev8(x & 0xff) << 8) | bit_rev8(x >> 8);
}
static const RT_U16 crc_table[] = {
0x0000, 0x1081, 0x2102, 0x3183,
0x4204, 0x5285, 0x6306, 0x7387,
0x8408, 0x9489, 0xa50a, 0xb58b,
0xc60c, 0xd68d, 0xe70e, 0xf78f
};
// Initialise the crc calculator
#define H5_CRC_INIT(x) x = 0xffff
/**
* Malloc the socket buffer
*
* @param skb socket buffer
* @return the point to the malloc buffer
*/
static __inline struct sk_buff *skb_alloc(unsigned int len)
{
struct sk_buff *skb = NULL;
if ((skb = malloc(len + 8))) {
skb->max_len = len;
skb->data_len = 0;
} else {
RS_ERR("Allocate skb fails!!!");
skb = NULL;
}
memset(skb->data, 0, len);
return skb;
}
/**
* Free the socket buffer
*
* @param skb socket buffer
*/
static __inline void skb_free(struct sk_buff *skb)
{
free(skb);
return;
}
/**
* Increase the date length in sk_buffer by len,
* and return the increased header pointer
*
* @param skb socket buffer
* @param len length want to increase
* @return the pointer to increased header
*/
static RT_U8 *skb_put(struct sk_buff *skb, RT_U32 len)
{
RT_U32 old_len = skb->data_len;
if ((skb->data_len + len) > (skb->max_len)) {
RS_ERR("Buffer too small");
return NULL;
}
skb->data_len += len;
return (skb->data + old_len);
}
/**
* decrease data length in sk_buffer by to len by cut the tail
*
* @warning len should be less than skb->len
*
* @param skb socket buffer
* @param len length want to be changed
*/
static void skb_trim(struct sk_buff *skb, unsigned int len)
{
if (skb->data_len > len) {
skb->data_len = len;
} else {
RS_ERR("Error: skb->data_len(%d) < len(%d)", skb->data_len,
len);
}
}
/**
* Decrease the data length in sk_buffer by len,
* and move the content forward to the header.
* the data in header will be removed.
*
* @param skb socket buffer
* @param len length of data
* @return new data
*/
static RT_U8 *skb_pull(struct sk_buff *skb, RT_U32 len)
{
skb->data_len -= len;
unsigned char *buf;
if (!(buf = malloc(skb->data_len))) {
RS_ERR("Unable to allocate file buffer");
exit(1);
}
memcpy(buf, skb->data + len, skb->data_len);
memcpy(skb->data, buf, skb->data_len);
free(buf);
return (skb->data);
}
/**
* Add "d" into crc scope, caculate the new crc value
*
* @param crc crc data
* @param d one byte data
*/
static void h5_crc_update(RT_U16 * crc, RT_U8 d)
{
RT_U16 reg = *crc;
reg = (reg >> 4) ^ crc_table[(reg ^ d) & 0x000f];
reg = (reg >> 4) ^ crc_table[(reg ^ (d >> 4)) & 0x000f];
*crc = reg;
}
struct __una_u16 {
RT_U16 x;
};
static __inline RT_U16 __get_unaligned_cpu16(const void *p)
{
const struct __una_u16 *ptr = (const struct __una_u16 *)p;
return ptr->x;
}
static __inline RT_U16 get_unaligned_be16(const void *p)
{
return __get_unaligned_cpu16((const RT_U8 *)p);
}
static __inline RT_U16 get_unaligned_le16(RT_U8 * p)
{
return (RT_U16) (*p) + ((RT_U16) (*(p + 1)) << 8);
}
static __inline RT_U32 get_unaligned_le32(RT_U8 * p)
{
return (RT_U32) (*p) + ((RT_U32) (*(p + 1)) << 8) +
((RT_U32) (*(p + 2)) << 16) + ((RT_U32) (*(p + 3)) << 24);
}
/**
* Get crc data.
*
* @param h5 realtek h5 struct
* @return crc data
*/
static RT_U16 h5_get_crc(rtk_hw_cfg_t * h5)
{
RT_U16 crc = 0;
RT_U8 *data = h5->rx_skb->data + h5->rx_skb->data_len - 2;
crc = data[1] + (data[0] << 8);
return crc;
// return get_unaligned_be16(&h5->rx_skb->data[h5->rx_skb->data_len - 2]);
}
/**
* Just add 0xc0 at the end of skb,
* we can also use this to add 0xc0 at start while there is no data in skb
*
* @param skb socket buffer
*/
static void h5_slip_msgdelim(struct sk_buff *skb)
{
const char pkt_delim = 0xc0;
memcpy(skb_put(skb, 1), &pkt_delim, 1);
}
/**
* Slip ecode one byte in h5 proto, as follows:
* 0xc0 -> 0xdb, 0xdc
* 0xdb -> 0xdb, 0xdd
* 0x11 -> 0xdb, 0xde
* 0x13 -> 0xdb, 0xdf
* others will not change
*
* @param skb socket buffer
* @c pure data in the one byte
*/
static void h5_slip_one_byte(struct sk_buff *skb, RT_U8 c)
{
const RT_S8 esc_c0[2] = { 0xdb, 0xdc };
const RT_S8 esc_db[2] = { 0xdb, 0xdd };
const RT_S8 esc_11[2] = { 0xdb, 0xde };
const RT_S8 esc_13[2] = { 0xdb, 0xdf };
switch (c) {
case 0xc0:
memcpy(skb_put(skb, 2), &esc_c0, 2);
break;
case 0xdb:
memcpy(skb_put(skb, 2), &esc_db, 2);
break;
case 0x11:
memcpy(skb_put(skb, 2), &esc_11, 2);
break;
case 0x13:
memcpy(skb_put(skb, 2), &esc_13, 2);
break;
default:
memcpy(skb_put(skb, 1), &c, 1);
break;
}
}
/**
* Decode one byte in h5 proto, as follows:
* 0xdb, 0xdc -> 0xc0
* 0xdb, 0xdd -> 0xdb
* 0xdb, 0xde -> 0x11
* 0xdb, 0xdf -> 0x13
* others will not change
*
* @param h5 realtek h5 struct
* @byte pure data in the one byte
*/
static void h5_unslip_one_byte(rtk_hw_cfg_t * h5, unsigned char byte)
{
const RT_U8 c0 = 0xc0, db = 0xdb;
const RT_U8 oof1 = 0x11, oof2 = 0x13;
if (H5_ESCSTATE_NOESC == h5->rx_esc_state) {
if (0xdb == byte) {
h5->rx_esc_state = H5_ESCSTATE_ESC;
} else {
memcpy(skb_put(h5->rx_skb, 1), &byte, 1);
//Check Pkt Header's CRC enable bit
if ((h5->rx_skb->data[0] & 0x40) != 0
&& h5->rx_state != H5_W4_CRC) {
h5_crc_update(&h5->message_crc, byte);
}
h5->rx_count--;
}
} else if (H5_ESCSTATE_ESC == h5->rx_esc_state) {
switch (byte) {
case 0xdc:
memcpy(skb_put(h5->rx_skb, 1), &c0, 1);
if ((h5->rx_skb->data[0] & 0x40) != 0
&& h5->rx_state != H5_W4_CRC)
h5_crc_update(&h5->message_crc, 0xc0);
h5->rx_esc_state = H5_ESCSTATE_NOESC;
h5->rx_count--;
break;
case 0xdd:
memcpy(skb_put(h5->rx_skb, 1), &db, 1);
if ((h5->rx_skb->data[0] & 0x40) != 0
&& h5->rx_state != H5_W4_CRC)
h5_crc_update(&h5->message_crc, 0xdb);
h5->rx_esc_state = H5_ESCSTATE_NOESC;
h5->rx_count--;
break;
case 0xde:
memcpy(skb_put(h5->rx_skb, 1), &oof1, 1);
if ((h5->rx_skb->data[0] & 0x40) != 0
&& h5->rx_state != H5_W4_CRC)
h5_crc_update(&h5->message_crc, oof1);
h5->rx_esc_state = H5_ESCSTATE_NOESC;
h5->rx_count--;
break;
case 0xdf:
memcpy(skb_put(h5->rx_skb, 1), &oof2, 1);
if ((h5->rx_skb->data[0] & 0x40) != 0
&& h5->rx_state != H5_W4_CRC)
h5_crc_update(&h5->message_crc, oof2);
h5->rx_esc_state = H5_ESCSTATE_NOESC;
h5->rx_count--;
break;
default:
RS_ERR("Error: Invalid byte %02x after esc byte", byte);
skb_free(h5->rx_skb);
h5->rx_skb = NULL;
h5->rx_state = H5_W4_PKT_DELIMITER;
h5->rx_count = 0;
break;
}
}
}
/**
* Prepare h5 packet, packet format as follow:
* | LSB 4 octets | 0 ~4095| 2 MSB
* |packet header | payload | data integrity check |
*
* pakcket header fromat is show below:
* | LSB 3 bits | 3 bits | 1 bits | 1 bits |
* | 4 bits | 12 bits | 8 bits MSB
* |sequence number | acknowledgement number | data integrity check present | reliable packet |
* |packet type | payload length | header checksum
*
* @param h5 realtek h5 struct
* @param data pure data
* @param len the length of data
* @param pkt_type packet type
* @return socket buff after prepare in h5 proto
*/
static struct sk_buff *h5_prepare_pkt(rtk_hw_cfg_t * h5, RT_U8 * data,
RT_S32 len, RT_S32 pkt_type)
{
struct sk_buff *nskb;
RT_U8 hdr[4];
RT_U16 H5_CRC_INIT(h5_txmsg_crc);
int rel, i;
switch (pkt_type) {
case HCI_ACLDATA_PKT:
case HCI_COMMAND_PKT:
case HCI_EVENT_PKT:
rel = 1; // reliable
break;
case H5_ACK_PKT:
case H5_VDRSPEC_PKT:
case H5_LINK_CTL_PKT:
rel = 0; // unreliable
break;
default:
RS_ERR("Unknown packet type");
return NULL;
}
// Max len of packet: (original len +4(h5 hdr) +2(crc))*2
// (because bytes 0xc0 and 0xdb are escaped, worst case is
// when the packet is all made of 0xc0 and 0xdb :) )
// + 2 (0xc0 delimiters at start and end).
nskb = skb_alloc((len + 6) * 2 + 2);
if (!nskb)
return NULL;
//Add SLIP start byte: 0xc0
h5_slip_msgdelim(nskb);
// set AckNumber in SlipHeader
hdr[0] = h5->rxseq_txack << 3;
h5->is_txack_req = 0;
//RS_DBG("We request packet no(%u) to card", h5->rxseq_txack);
//RS_DBG("Sending packet with seqno %u and wait %u", h5->msgq_txseq, h5->rxseq_txack);
if (rel) {
// set reliable pkt bit and SeqNumber
hdr[0] |= 0x80 + h5->msgq_txseq;
//RS_DBG("Sending packet with seqno(%u)", h5->msgq_txseq);
++(h5->msgq_txseq);
h5->msgq_txseq = (h5->msgq_txseq) & 0x07;
}
// set DicPresent bit
if (h5->use_crc)
hdr[0] |= 0x40;
// set packet type and payload length
hdr[1] = ((len << 4) & 0xff) | pkt_type;
hdr[2] = (RT_U8) (len >> 4);
// set checksum
hdr[3] = ~(hdr[0] + hdr[1] + hdr[2]);
// Put h5 header */
for (i = 0; i < 4; i++) {
h5_slip_one_byte(nskb, hdr[i]);
if (h5->use_crc)
h5_crc_update(&h5_txmsg_crc, hdr[i]);
}
// Put payload */
for (i = 0; i < len; i++) {
h5_slip_one_byte(nskb, data[i]);
if (h5->use_crc)
h5_crc_update(&h5_txmsg_crc, data[i]);
}
// Put CRC */
if (h5->use_crc) {
h5_txmsg_crc = bit_rev16(h5_txmsg_crc);
h5_slip_one_byte(nskb, (RT_U8) ((h5_txmsg_crc >> 8) & 0x00ff));
h5_slip_one_byte(nskb, (RT_U8) (h5_txmsg_crc & 0x00ff));
}
// Add SLIP end byte: 0xc0
h5_slip_msgdelim(nskb);
return nskb;
}
/**
* Removed controller acked packet from Host's unacked lists
*
* @param h5 realtek h5 struct
*/
static void h5_remove_acked_pkt(rtk_hw_cfg_t * h5)
{
int pkts_to_be_removed = 0;
int seqno = 0;
int i = 0;
seqno = h5->msgq_txseq;
//pkts_to_be_removed = GetListLength(h5->unacked);
while (pkts_to_be_removed) {
if (h5->rxack == seqno)
break;
pkts_to_be_removed--;
seqno = (seqno - 1) & 0x07;
}
if (h5->rxack != seqno) {
RS_DBG("Peer acked invalid packet");
}
//skb_queue_walk_safe(&h5->unack, skb, tmp) // remove ack'ed packet from h5->unack queue
for (i = 0; i < 5; ++i) {
if (i >= pkts_to_be_removed)
break;
i++;
//__skb_unlink(skb, &h5->unack);
//skb_free(skb);
}
// if (skb_queue_empty(&h5->unack))
// del_timer(&h5->th5);
// spin_unlock_irqrestore(&h5->unack.lock, flags);
if (i != pkts_to_be_removed)
RS_DBG("Removed only (%u) out of (%u) pkts", i,
pkts_to_be_removed);
}
/**
* Realtek send pure ack, send a packet only with an ack
*
* @param fd uart file descriptor
*
*/
static void rtk_send_pure_ack_down(int fd)
{
struct sk_buff *nskb = h5_prepare_pkt(&rtk_hw_cfg, NULL, 0, H5_ACK_PKT);
write(fd, nskb->data, nskb->data_len);
skb_free(nskb);
return;
}
/**
* Parse hci event command complete, pull the cmd complete event header
*
* @param skb socket buffer
*
*/
static void hci_event_cmd_complete(struct sk_buff *skb)
{
struct hci_event_hdr *hdr = (struct hci_event_hdr *)skb->data;
struct hci_ev_cmd_complete *ev = NULL;
RT_U16 opcode = 0;
RT_U8 status = 0;
//pull hdr
skb_pull(skb, HCI_EVENT_HDR_SIZE);
ev = (struct hci_ev_cmd_complete *)skb->data;
opcode = le16_to_cpu(ev->opcode);
RS_DBG("receive hci command complete event with command:%x\n", opcode);
//pull command complete event header
skb_pull(skb, sizeof(struct hci_ev_cmd_complete));
switch (opcode) {
case HCI_VENDOR_CHANGE_BDRATE:
status = skb->data[0];
RS_DBG("Change BD Rate with status:%x", status);
skb_free(rtk_hw_cfg.host_last_cmd);
rtk_hw_cfg.host_last_cmd = NULL;
rtk_hw_cfg.link_estab_state = H5_PATCH;
break;
case HCI_CMD_READ_BD_ADDR:
status = skb->data[0];
RS_DBG("Read BD Address with Status:%x", status);
if (!status) {
RS_DBG("BD Address: %8x%8x", *(int *)&skb->data[1],
*(int *)&skb->data[5]);
}
break;
case HCI_CMD_READ_LOCAL_VERISION:
rtk_hw_cfg.hci_version_cmd_state = event_received;
status = skb->data[0];
RS_DBG("Read Local Version Information with Status:%x", status);
if (0 == status) {
rtk_hw_cfg.hci_ver = skb->data[1];
rtk_hw_cfg.hci_rev = (skb->data[2] | skb->data[3] << 8);
rtk_hw_cfg.lmp_subver =
(skb->data[7] | (skb->data[8] << 8));
RS_DBG("HCI Version 0x%02x", rtk_hw_cfg.hci_ver);
RS_DBG("HCI Revision 0x%04x", rtk_hw_cfg.hci_rev);
RS_DBG("LMP Subversion 0x%04x", rtk_hw_cfg.lmp_subver);
} else {
RS_ERR("Read Local Version Info status error!");
//Need to do more
}
skb_free(rtk_hw_cfg.host_last_cmd);
rtk_hw_cfg.host_last_cmd = NULL;
break;
case HCI_VENDOR_READ_RTK_ROM_VERISION:
rtk_hw_cfg.rom_version_cmd_state = event_received;
status = skb->data[0];
RS_DBG("Read RTK rom version with Status:%x", status);
if (0 == status)
rtk_hw_cfg.eversion = skb->data[1];
else if (1 == status)
rtk_hw_cfg.eversion = 0;
else {
RS_ERR("READ_RTK_ROM_VERISION return status error!");
//Need to do more
}
skb_free(rtk_hw_cfg.host_last_cmd);
rtk_hw_cfg.host_last_cmd = NULL;
break;
case HCI_VENDOR_READ_CHIP_TYPE:
rtk_hw_cfg.chip_type_cmd_state = event_received;
status = skb->data[0];
RS_DBG("Read RTK chip type with Status:%x", status);
if (0 == status)
rtk_hw_cfg.chip_type= (skb->data[1] & 0x0f);
else
RS_ERR("READ_RTK_CHIP_TYPE return status error!");
skb_free(rtk_hw_cfg.host_last_cmd);
rtk_hw_cfg.host_last_cmd = NULL;
break;
default:
return;
}
rtk_hw_cfg.num_of_cmd_sent++;
}
/**
* Check if it's a hci frame, if it is, complete it with response or parse the cmd complete event
*
* @param skb socket buffer
*
*/
static void hci_recv_frame(struct sk_buff *skb)
{
int len;
unsigned char h5sync[2] = { 0x01, 0x7E }, h5syncresp[2] = {
0x02, 0x7D}, h5_sync_resp_pkt[0x8] = {
0xc0, 0x00, 0x2F, 0x00, 0xD0, 0x02, 0x7D, 0xc0},
h5_conf_resp_pkt_to_Ctrl[0x8] = {
0xc0, 0x00, 0x2F, 0x00, 0xD0, 0x04, 0x7B, 0xc0}, h5conf[3] = {
0x03, 0xFC, 0x10}, h5confresp[3] = {
0x04, 0x7B, 0x10}, cmd_complete_evt_code = 0xe;
if (rtk_hw_cfg.link_estab_state == H5_SYNC) {
if (!memcmp(skb->data, h5sync, 2)) {
RS_DBG("Get SYNC Pkt\n");
len =
write(rtk_hw_cfg.serial_fd, &h5_sync_resp_pkt, 0x8);
} else if (!memcmp(skb->data, h5syncresp, 2)) {
RS_DBG("Get SYNC Resp Pkt\n");
rtk_hw_cfg.link_estab_state = H5_CONFIG;
}
skb_free(skb);
} else if (rtk_hw_cfg.link_estab_state == H5_CONFIG) {
if (!memcmp(skb->data, h5sync, 0x2)) {
len =
write(rtk_hw_cfg.serial_fd, &h5_sync_resp_pkt, 0x8);
RS_DBG("Get SYNC pkt-active mode\n");
} else if (!memcmp(skb->data, h5conf, 0x2)) {
len =
write(rtk_hw_cfg.serial_fd,
&h5_conf_resp_pkt_to_Ctrl, 0x8);
RS_DBG("Get CONFG pkt-active mode\n");
} else if (!memcmp(skb->data, h5confresp, 0x2)) {
RS_DBG("Get CONFG resp pkt-active mode\n");
rtk_hw_cfg.link_estab_state = H5_INIT;
} else {
RS_DBG("H5_CONFIG receive event\n");
rtk_send_pure_ack_down(rtk_hw_cfg.serial_fd);
}
skb_free(skb);
} else if (rtk_hw_cfg.link_estab_state == H5_INIT) {
if (skb->data[0] == cmd_complete_evt_code) {
hci_event_cmd_complete(skb);
}
rtk_send_pure_ack_down(rtk_hw_cfg.serial_fd);
usleep(10000);
rtk_send_pure_ack_down(rtk_hw_cfg.serial_fd);
usleep(10000);
rtk_send_pure_ack_down(rtk_hw_cfg.serial_fd);
skb_free(skb);
} else if (rtk_hw_cfg.link_estab_state == H5_PATCH) {
if (skb->data[0] != 0x0e) {
RS_DBG("Received event 0x%x\n", skb->data[0]);
skb_free(skb);
rtk_send_pure_ack_down(rtk_hw_cfg.serial_fd);
return;
}
rtk_hw_cfg.rx_index = skb->data[6];
RS_DBG("rtk_hw_cfg.rx_index %d\n", rtk_hw_cfg.rx_index);
/* Download fw/config done */
if (rtk_hw_cfg.rx_index & 0x80) {
rtk_hw_cfg.rx_index &= ~0x80;
rtk_hw_cfg.link_estab_state = H5_ACTIVE;
}
skb_free(skb);
} else {
RS_ERR("receive packets in active state");
skb_free(skb);
}
}
/**
* after rx data is parsed, and we got a rx frame saved in h5->rx_skb,
* this routinue is called.
* things todo in this function:
* 1. check if it's a hci frame, if it is, complete it with response or ack
* 2. see the ack number, free acked frame in queue
* 3. reset h5->rx_state, set rx_skb to null.
*
* @param h5 realtek h5 struct
*
*/
static void h5_complete_rx_pkt(rtk_hw_cfg_t * h5)
{
int pass_up = 1;
uint8_t *h5_hdr = NULL;
h5_hdr = (uint8_t *) (h5->rx_skb->data);
if (H5_HDR_RELIABLE(h5_hdr)) {
RS_DBG("Received reliable seqno %u from card", h5->rxseq_txack);
h5->rxseq_txack = H5_HDR_SEQ(h5_hdr) + 1;
h5->rxseq_txack %= 8;
h5->is_txack_req = 1;
}
h5->rxack = H5_HDR_ACK(h5_hdr);
switch (H5_HDR_PKT_TYPE(h5_hdr)) {
case HCI_ACLDATA_PKT:
case HCI_EVENT_PKT:
case HCI_SCODATA_PKT:
case HCI_COMMAND_PKT:
case H5_LINK_CTL_PKT:
pass_up = 1;
break;
default:
pass_up = 0;
break;
}
h5_remove_acked_pkt(h5);
if (pass_up) {
skb_pull(h5->rx_skb, H5_HDR_SIZE);
hci_recv_frame(h5->rx_skb);
} else {
skb_free(h5->rx_skb);
}
h5->rx_state = H5_W4_PKT_DELIMITER;
h5->rx_skb = NULL;
}
/**
* Parse the receive data in h5 proto.
*
* @param h5 realtek h5 struct
* @param data point to data received before parse
* @param count num of data
* @return reserved count
*/
static int h5_recv(rtk_hw_cfg_t * h5, void *data, int count)
{
unsigned char *ptr;
//RS_DBG("count %d rx_state %d rx_count %ld", count, h5->rx_state, h5->rx_count);
ptr = (unsigned char *)data;
while (count) {
if (h5->rx_count) {
if (*ptr == 0xc0) {
RS_ERR("short h5 packet");
skb_free(h5->rx_skb);
h5->rx_state = H5_W4_PKT_START;
h5->rx_count = 0;
} else
h5_unslip_one_byte(h5, *ptr);
ptr++;
count--;
continue;
}
switch (h5->rx_state) {
case H5_W4_HDR:
/* check header checksum. see Core Spec V4 "3-wire uart" page 67 */
if ((0xff & (RT_U8) ~
(h5->rx_skb->data[0] + h5->rx_skb->data[1] +
h5->rx_skb->data[2])) != h5->rx_skb->data[3]) {
RS_ERR("h5 hdr checksum error!!!");
skb_free(h5->rx_skb);
h5->rx_state = H5_W4_PKT_DELIMITER;
h5->rx_count = 0;
continue;
}
/* reliable pkt & h5->hdr->SeqNumber != h5->Rxseq_txack */
if (h5->rx_skb->data[0] & 0x80
&& (h5->rx_skb->data[0] & 0x07) !=
h5->rxseq_txack) {
RS_ERR
("Out-of-order packet arrived, got(%u)expected(%u)",
h5->rx_skb->data[0] & 0x07,
h5->rxseq_txack);
h5->is_txack_req = 1;
skb_free(h5->rx_skb);
h5->rx_state = H5_W4_PKT_DELIMITER;
h5->rx_count = 0;
/* depend on weather remote will reset ack numb or not!!!!!!special */
if (rtk_hw_cfg.tx_index == rtk_hw_cfg.total_num) {
rtk_hw_cfg.rxseq_txack =
h5->rx_skb->data[0] & 0x07;
}
continue;
}
h5->rx_state = H5_W4_DATA;
h5->rx_count =
(h5->rx_skb->data[1] >> 4) +
(h5->rx_skb->data[2] << 4);
continue;
case H5_W4_DATA:
/* pkt with crc */
if (h5->rx_skb->data[0] & 0x40) {
h5->rx_state = H5_W4_CRC;
h5->rx_count = 2;
} else {
h5_complete_rx_pkt(h5);
//RS_DBG(DF_SLIP,("--------> H5_W4_DATA ACK\n"));
}
continue;
case H5_W4_CRC:
if (bit_rev16(h5->message_crc) != h5_get_crc(h5)) {
RS_ERR
("Checksum failed, computed(%04x)received(%04x)",
bit_rev16(h5->message_crc),
h5_get_crc(h5));
skb_free(h5->rx_skb);
h5->rx_state = H5_W4_PKT_DELIMITER;
h5->rx_count = 0;
continue;
}
skb_trim(h5->rx_skb, h5->rx_skb->data_len - 2);
h5_complete_rx_pkt(h5);
continue;
case H5_W4_PKT_DELIMITER:
switch (*ptr) {
case 0xc0:
h5->rx_state = H5_W4_PKT_START;
break;
default:
break;
}
ptr++;
count--;
break;
case H5_W4_PKT_START:
switch (*ptr) {
case 0xc0:
ptr++;
count--;
break;
default:
h5->rx_state = H5_W4_HDR;
h5->rx_count = 4;
h5->rx_esc_state = H5_ESCSTATE_NOESC;
H5_CRC_INIT(h5->message_crc);
// Do not increment ptr or decrement count
// Allocate packet. Max len of a H5 pkt=
// 0xFFF (payload) +4 (header) +2 (crc)
h5->rx_skb = skb_alloc(0x1005);
if (!h5->rx_skb) {
h5->rx_state = H5_W4_PKT_DELIMITER;
h5->rx_count = 0;
return 0;
}
break;
}
break;
default:
break;
}
}
return count;
}
/**
* Read data to buf from uart.
*
* @param fd uart file descriptor
* @param buf point to the addr where read data stored
* @param count num of data want to read
* @return num of data successfully read
*/
static int read_check_rtk(int fd, void *buf, int count)
{
int res;
do {
res = read(fd, buf, count);
if (res != -1) {
buf = (RT_U8 *) buf + res;
count -= res;
return res;
}
} while (count && (errno == 0 || errno == EINTR));
return res;
}
/**
* Retry to sync when timeout in h5 proto, max retry times is 10.
*
* @warning Each time to retry, the time for timeout will be set as 1s.
*
* @param sig signaction for timeout
*
*/
static void h5_tsync_sig_alarm(int sig)
{
unsigned char h5sync[2] = { 0x01, 0x7E };
static int retries = 0;
struct itimerval value;
if (retries < rtk_hw_cfg.h5_max_retries) {
retries++;
struct sk_buff *nskb =
h5_prepare_pkt(&rtk_hw_cfg, h5sync, sizeof(h5sync),
H5_LINK_CTL_PKT);
int len =
write(rtk_hw_cfg.serial_fd, nskb->data, nskb->data_len);
RS_DBG("3-wire sync pattern resend : %d, len: %d\n", retries,
len);
skb_free(nskb);
//gordon add 2013-6-7 retry per 250ms
value.it_value.tv_sec = 0;
value.it_value.tv_usec = 250000;
value.it_interval.tv_sec = 0;
value.it_interval.tv_usec = 250000;
setitimer(ITIMER_REAL, &value, NULL);
//gordon end
return;
}
tcflush(rtk_hw_cfg.serial_fd, TCIOFLUSH);
RS_ERR("H5 sync timed out\n");
exit(1);
}
/**
* Retry to config when timeout in h5 proto, max retry times is 10.
*
* @warning Each time to retry, the time for timeout will be set as 1s.
*
* @param sig signaction for timeout
*
*/
static void h5_tconf_sig_alarm(int sig)
{
unsigned char h5conf[3] = { 0x03, 0xFC, 0x14 };
static int retries = 0;
struct itimerval value;
if (retries < rtk_hw_cfg.h5_max_retries) {
retries++;
struct sk_buff *nskb =
h5_prepare_pkt(&rtk_hw_cfg, h5conf, 3, H5_LINK_CTL_PKT);
int len =
write(rtk_hw_cfg.serial_fd, nskb->data, nskb->data_len);
RS_DBG("3-wire config pattern resend : %d , len: %d", retries,
len);
skb_free(nskb);
//gordon add 2013-6-7 retry per 250ms
value.it_value.tv_sec = 0;
value.it_value.tv_usec = 250000;
value.it_interval.tv_sec = 0;
value.it_interval.tv_usec = 250000;
setitimer(ITIMER_REAL, &value, NULL);
return;
}
tcflush(rtk_hw_cfg.serial_fd, TCIOFLUSH);
RS_ERR("H5 config timed out\n");
exit(1);
}
/**
* Retry to init when timeout in h5 proto, max retry times is 10.
*
* @warning Each time to retry, the time for timeout will be set as 1s.
*
* @param sig signaction for timeout
*
*/
static void h5_tinit_sig_alarm(int sig)
{
static int retries = 0;
if (retries < rtk_hw_cfg.h5_max_retries) {
retries++;
if (rtk_hw_cfg.host_last_cmd) {
int len =
write(rtk_hw_cfg.serial_fd,
rtk_hw_cfg.host_last_cmd->data,
rtk_hw_cfg.host_last_cmd->data_len);
RS_DBG("3-wire change baudrate re send:%d, len:%d",
retries, len);
alarm(1);
return;
} else {
RS_DBG
("3-wire init timeout without last command stored\n");
}
}
tcflush(rtk_hw_cfg.serial_fd, TCIOFLUSH);
RS_ERR("H5 init process timed out");
exit(1);
}
/**
* Retry to download patch when timeout in h5 proto, max retry times is 10.
*
* @warning Each time to retry, the time for timeout will be set as 3s.
*
* @param sig signaction for timeout
*
*/
static void h5_tpatch_sig_alarm(int sig)
{
static int retries = 0;
if (retries < rtk_hw_cfg.h5_max_retries) {
RS_ERR("patch timerout, retry:\n");
if (rtk_hw_cfg.host_last_cmd) {
int len =
write(rtk_hw_cfg.serial_fd,
rtk_hw_cfg.host_last_cmd->data,
rtk_hw_cfg.host_last_cmd->data_len);
RS_DBG("3-wire download patch re send:%d", retries);
}
retries++;
alarm(3);
return;
}
RS_ERR("H5 patch timed out\n");
exit(1);
}
/**
* Download patch using hci. For h5 proto, not recv reply for 2s will timeout.
* Call h5_tpatch_sig_alarm for retry.
*
* @param dd uart file descriptor
* @param index current index
* @param data point to the config file
* @param len current buf length
* @return #0 on success
*
*/
static int hci_download_patch(int dd, int index, uint8_t * data, int len,
struct termios *ti)
{
unsigned char hcipatch[256] = { 0x20, 0xfc, 00 };
unsigned char bytes[READ_DATA_SIZE];
int retlen;
struct sigaction sa;
sa.sa_handler = h5_tpatch_sig_alarm;
sigaction(SIGALRM, &sa, NULL);
alarm(2);
download_vendor_patch_cp cp;
memset(&cp, 0, sizeof(cp));
cp.index = index;
if (data != NULL) {
memcpy(cp.data, data, len);
}
if (index & 0x80)
rtk_hw_cfg.tx_index = index & 0x7f;
else
rtk_hw_cfg.tx_index = index;
hcipatch[2] = len + 1;
memcpy(hcipatch + 3, &cp, len + 1);
struct sk_buff *nskb = h5_prepare_pkt(&rtk_hw_cfg, hcipatch, len + 4, HCI_COMMAND_PKT); //data:len+head:4
if (rtk_hw_cfg.host_last_cmd) {
skb_free(rtk_hw_cfg.host_last_cmd);
rtk_hw_cfg.host_last_cmd = NULL;
}
rtk_hw_cfg.host_last_cmd = nskb;
len = write(dd, nskb->data, nskb->data_len);
RS_DBG("hci_download_patch tx_index:%d rx_index: %d\n",
rtk_hw_cfg.tx_index, rtk_hw_cfg.rx_index);
while (rtk_hw_cfg.rx_index != rtk_hw_cfg.tx_index) { //receive data and wait last pkt
if ((retlen = read_check_rtk(dd, &bytes, READ_DATA_SIZE)) == -1) {
RS_ERR("read fail\n");
return -1;
}
h5_recv(&rtk_hw_cfg, &bytes, retlen);
}
alarm(0);
return 0;
}
#define READ_TRY_MAX 6
int os_read(int fd, uint8_t * buff, int len)
{
int n;
int i;
int try = 0;
i = 0;
n = 0;
while (n < len) {
i = read(fd, buff + n, len - n);
if (i > 0)
n += i;
else if (i == 0) {
RS_DBG("read nothing.");
continue;
} else {
RS_ERR("read error, %s\n", strerror(errno));
try++;
if (try > READ_TRY_MAX) {
RS_ERR("read reaches max try number.\n");
return -1;
}
continue;
}
}
return n;
}
#define DUMP_HCI_EVT
#ifdef DUMP_HCI_EVT
#define HCI_DUMP_BUF_LEN 128
static char hci_dump_buf[HCI_DUMP_BUF_LEN];
void hci_dump_evt(uint8_t * buf, uint16_t len)
{
int n;
int i;
if (!buf || !len) {
RS_ERR("Invalid parameters %p, %u.\n", buf, len);
return;
}
n = 0;
for (i = 0; i < len; i++) {
n += sprintf(hci_dump_buf + n, "%02x ", buf[i]);
if ((i + 1) % 16 == 0) {
RS_DBG(" %s\n", hci_dump_buf);
n = 0;
}
}
if (i % 16)
RS_DBG(" %s\n", hci_dump_buf);
}
#endif
int read_hci_evt(int fd, uint8_t * buff, uint8_t evt_code)
{
uint8_t *evt_buff = buff;
int ret;
int try_type = 0;
uint8_t vendor_evt = 0xff;
start_read:
do {
ret = os_read(fd, evt_buff, 1);
if (ret == 1 && evt_buff[0] == 0x04)
break;
else {
RS_DBG("no pkt type, continue.");
try_type++;
continue;
}
} while (try_type < 6);
if (try_type >= 6)
return -1;
ret = os_read(fd, evt_buff + 1, 1);
if (ret < 0) {
RS_ERR("%s: failed to read event code\n", __func__);
return -1;
}
ret = os_read(fd, evt_buff + 2, 1);
if (ret < 0) {
RS_ERR("%s: failed to read parameter total len.\n", __func__);
return -1;
}
ret = os_read(fd, evt_buff + 3, evt_buff[2]);
if (ret < 0) {
RS_ERR("%s: failed to read payload of event.\n", __func__);
return -1;
}
#ifdef DUMP_HCI_EVT
hci_dump_evt(evt_buff, ret + 3);
#endif
/* This event to wake up host. */
if (evt_buff[1] == vendor_evt) {
try_type = 0;
RS_DBG("%s: found vendor evt, continue reading.\n", __func__);
goto start_read;
}
if (evt_buff[1] != evt_code) {
RS_ERR("%s: event code mismatches, %x, expect %x.\n",
__func__, evt_buff[1], evt_code);
return -1;
}
return (ret + 3);
}
/**
* Download h4 patch
*
* @param dd uart file descriptor
* @param index current index
* @param data point to the config file
* @param len current buf length
* @return ret_index
*
*/
static int hci_download_patch_h4(int dd, int index, uint8_t * data, int len)
{
unsigned char bytes[257] = { 0 };
unsigned char buf[257] = { 0x01, 0x20, 0xfc, 00 };
uint16_t readbytes = 0;
int cur_index = index;
int ret_Index = -1;
uint16_t res = 0;
int i = 0;
size_t total_len;
uint16_t w_len;
uint8_t rstatus;
int ret;
uint8_t opcode[2] = {
0x20, 0xfc,
};
RS_DBG("dd:%d, index:%d, len:%d", dd, index, len);
if (NULL != data) {
memcpy(&buf[5], data, len);
}
buf[3] = len + 1;
buf[4] = cur_index;
total_len = len + 5;
w_len = write(dd, buf, total_len);
RS_DBG("h4 write success with len: %d\n", w_len);
ret = read_hci_evt(dd, bytes, 0x0e);
if (ret < 0) {
RS_ERR("%s: read hci evt error.\n", __func__);
return -1;
}
/* RS_DBG("%s: bytes: %x %x %x %x %x %x.\n",
* __func__, bytes[0], bytes[1], bytes[2],
* bytes[3], bytes[4], bytes[5]); */
if ((0x04 == bytes[0]) && (opcode[0] == bytes[4])
&& (opcode[1] == bytes[5])) {
ret_Index = bytes[7];
rstatus = bytes[6];
RS_DBG("---->ret_Index:%d, ----->rstatus:%d\n", ret_Index,
rstatus);
if (0x00 != rstatus) {
RS_ERR("---->read event status is wrong\n");
return -1;
}
} else {
RS_ERR("==========>Didn't read curret data\n");
return -1;
}
return ret_Index;
}
/**
* Realtek change speed with h4 proto. Using vendor specified command packet to achieve this.
*
* @warning before write, need to wait 1s for device up
*
* @param fd uart file descriptor
* @param baudrate the speed want to change
* @return #0 on success
*/
static int rtk_vendor_change_speed_h4(int fd, RT_U32 baudrate)
{
int res;
unsigned char bytes[257];
RT_U8 cmd[8] = { 0 };
cmd[0] = 1; //cmd;
cmd[1] = 0x17; //ocf
cmd[2] = 0xfc; //ogf
cmd[3] = 4; //length;
baudrate = cpu_to_le32(baudrate);
#ifdef BAUDRATE_4BYTES
memcpy((RT_U16 *) & cmd[4], &baudrate, 4);
#else
memcpy((RT_U16 *) & cmd[4], &baudrate, 2);
cmd[6] = 0;
cmd[7] = 0;
#endif
//wait for a while for device to up, just h4 need it
sleep(1);
RS_DBG("baudrate in change speed command: 0x%x 0x%x 0x%x 0x%x \n",
cmd[4], cmd[5], cmd[6], cmd[7]);
if (write(fd, cmd, 8) != 8) {
RS_ERR
("H4 change uart speed error when writing vendor command");
return -1;
}
RS_DBG("H4 Change uart Baudrate after write ");
res = read_hci_evt(fd, bytes, 0x0e);
if (res < 0) {
RS_ERR("%s: Failed to read hci evt.\n", __func__);
return -1;
}
if ((0x04 == bytes[0]) && (0x17 == bytes[4]) && (0xfc == bytes[5])) {
RS_DBG("H4 change uart speed success, receving status:%x",
bytes[6]);
if (bytes[6] == 0)
return 0;
}
return -1;
}
/**
* Parse realtek Bluetooth config file.
* The config file if begin with vendor magic: RTK_VENDOR_CONFIG_MAGIC(8822ab55)
* bt_addr is followed by 0x3c offset, it will be changed by bt_addr param
* proto, baudrate and flow control is followed by 0xc offset,
*
* @param config_buf point to config file content
* @param filelen length of config file
* @param bt_addr where bt addr is stored
* @return baudrate in config file
*
*/
RT_U32 rtk_parse_config_file(RT_U8 * config_buf, size_t filelen,
char bt_addr[6])
{
struct rtk_bt_vendor_config *config =
(struct rtk_bt_vendor_config *)config_buf;
RT_U16 config_len = 0, temp = 0;
struct rtk_bt_vendor_config_entry *entry = NULL;
RT_U16 i;
RT_U32 baudrate = 0;
if (config == NULL)
return 0;
config_len = le16_to_cpu(config->data_len);
entry = config->entry;
if (le32_to_cpu(config->signature) != RTK_VENDOR_CONFIG_MAGIC) {
RS_ERR
("config signature magic number(%x) is not set to RTK_VENDOR_CONFIG_MAGIC",
(unsigned int)config->signature);
return 0; // We know, that we are getting here and hard code the baudrate -> hacky solution
}
/*
if (config_len != filelen - sizeof(struct rtk_bt_vendor_config)) {
RS_ERR("config len(%d) is not right(%zd)", config_len,
filelen - sizeof(struct rtk_bt_vendor_config));
return 0;
}
*/
for (i = 0; i < config_len;) {
switch (le16_to_cpu(entry->offset)) {
#ifdef USE_CUSTUMER_ADDRESS
case 0x3c:
{
int j = 0;
for (j = 0; j < entry->entry_len; j++)
entry->entry_data[j] =
bt_addr[entry->entry_len - 1 - j];
break;
}
#endif
case 0xc:
{
#ifdef BAUDRATE_4BYTES
baudrate =
get_unaligned_le32(entry->entry_data);
#else
baudrate =
get_unaligned_le16(entry->entry_data);
#endif
if (entry->entry_len >= 12) //0ffset 0x18 - 0xc
{
rtk_hw_cfg.hw_flow_control = (entry->entry_data[12] & 0x4) ? 1 : 0; //0x18 byte bit2
}
RS_DBG
("config baud rate to :%x, hwflowcontrol:%x, %x",
(unsigned int)baudrate,
entry->entry_data[12],
rtk_hw_cfg.hw_flow_control);
break;
}
default:
RS_DBG("config offset(%04x),length(%02x)", entry->offset,
entry->entry_len);
break;
}
temp =
entry->entry_len +
sizeof(struct rtk_bt_vendor_config_entry);
i += temp;
entry =
(struct rtk_bt_vendor_config_entry *)((RT_U8 *) entry +
temp);
}
return baudrate;
}
#ifdef USE_CUSTUMER_ADDRESS
/**
* get random realtek Bluetooth addr.
*
* @param bt_addr where bt addr is stored
*
*/
static void rtk_get_ram_addr(char bt_addr[0])
{
srand(time(NULL) + getpid() + getpid() * 987654 + rand());
RT_U32 addr = rand();
memcpy(bt_addr, &addr, sizeof(RT_U8));
}
/**
* Write the random bt addr to the file /data/misc/bluetoothd/bt_mac/btmac.txt.
*
* @param bt_addr where bt addr is stored
*
*/
static void rtk_write_btmac2file(char bt_addr[6])
{
int fd;
mkdir(BT_ADDR_DIR, 0777);
fd = open(BT_ADDR_FILE, O_CREAT | O_RDWR | O_TRUNC);
if (fd > 0) {
chmod(BT_ADDR_FILE, 0666);
char addr[18] = { 0 };
addr[17] = '\0';
sprintf(addr, "%2x:%2x:%2x:%2x:%2x:%2x", bt_addr[0], bt_addr[1],
bt_addr[2], bt_addr[3], bt_addr[4], bt_addr[5]);
write(fd, addr, strlen(addr));
close(fd);
} else {
RS_ERR("open file error:%s\n", BT_ADDR_FILE);
}
}
#endif
/**
* Get realtek Bluetooth config file. The bt addr arg is stored in /data/btmac.txt, if there is not this file,
* change to /data/misc/bluetoothd/bt_mac/btmac.txt. If both of them are not found, using
* random bt addr.
*
* @param config_buf point to the content of realtek Bluetooth config file
* @param config_baud_rate the baudrate set in the config file
* @return file_len the length of config file
*/
int rtk_get_bt_config(struct btrtl_info *btrtl, uint8_t **config_buf,
RT_U32 *config_baud_rate)
{
char bt_config_file_name[PATH_MAX] = { 0 };
RT_U8 *bt_addr_temp = NULL;
char bt_addr[6] = { 0x00, 0xe0, 0x4c, 0x88, 0x88, 0x88 };
struct stat st;
size_t filelen;
int fd;
FILE *file = NULL;
int ret = 0;
int i = 0;
#ifdef USE_CUSTUMER_ADDRESS
sprintf(bt_config_file_name, BT_ADDR_FILE);
if (stat(bt_config_file_name, &st) < 0) {
RS_ERR
("can't access bt bt_mac_addr file:%s, try use ramdom BT Addr\n",
bt_config_file_name);
for (i = 0; i < 6; i++)
rtk_get_ram_addr(&bt_addr[i]);
rtk_write_btmac2file(bt_addr);
goto GET_CONFIG;
}
filelen = st.st_size;
if ((file = fopen(bt_config_file_name, "rb")) == NULL) {
RS_ERR("Can't open bt btaddr file, just use preset BT Addr");
} else {
int i = 0;
char temp;
fscanf(file, "%2x:%2x:%2x:%2x:%2x:%2x",
(unsigned int *)&bt_addr[0], (unsigned int *)&bt_addr[1],
(unsigned int *)&bt_addr[2], (unsigned int *)&bt_addr[3],
(unsigned int *)&bt_addr[4],
(unsigned int *)&bt_addr[5]);
/*reserve LAP addr from 0x9e8b00 to 0x9e8b3f, change to 0x008b** */
if (0x9e == bt_addr[3] && 0x8b == bt_addr[4]
&& (bt_addr[5] <= 0x3f)) {
bt_addr[3] = 0x00;
}
RS_DBG("BT MAC IS : %X,%X,%X,%X,%X,%X\n", bt_addr[0],
bt_addr[1], bt_addr[2], bt_addr[3], bt_addr[4],
bt_addr[5]);
fclose(file);
}
#endif
GET_CONFIG:
//ret = sprintf(bt_config_file_name, BT_CONFIG_DIRECTORY "rtlbt_config");
ret = sprintf(bt_config_file_name, "%s", BT_CONFIG_DIRECTORY);
strcat(bt_config_file_name, btrtl->patch_ent->config_file);
if (stat(bt_config_file_name, &st) < 0) {
RS_ERR("can't access bt config file:%s, errno:%d\n",
bt_config_file_name, errno);
return -1;
}
filelen = st.st_size;
if ((fd = open(bt_config_file_name, O_RDONLY)) < 0) {
perror("Can't open bt config file");
return -1;
}
if ((*config_buf = malloc(filelen)) == NULL) {
RS_DBG("malloc buffer for config file fail(%zd)\n", filelen);
close(fd);
return -1;
}
//we may need to parse this config file.
//for easy debug, only get need data.
if (read(fd, *config_buf, filelen) < (ssize_t) filelen) {
perror("Can't load bt config file");
free(*config_buf);
close(fd);
return -1;
}
*config_baud_rate =
rtk_parse_config_file(*config_buf, filelen, bt_addr);
RS_DBG("Get config baud rate from config file:%x",
(unsigned int)*config_baud_rate);
close(fd);
return filelen;
}
/**
* Realtek change speed with h5 proto. Using vendor specified command packet to achieve this.
*
* @warning it will waiting 2s for reply.
*
* @param fd uart file descriptor
* @param baudrate the speed want to change
*
*/
int rtk_vendor_change_speed_h5(int fd, RT_U32 baudrate)
{
struct sk_buff *cmd_change_bdrate = NULL;
unsigned char cmd[7] = { 0 };
int retlen;
unsigned char bytes[READ_DATA_SIZE];
struct sigaction sa;
sa.sa_handler = h5_tinit_sig_alarm;
sigaction(SIGALRM, &sa, NULL);
cmd[0] = 0x17; //ocf
cmd[1] = 0xfc; //ogf, vendor specified
cmd[2] = 4; //length;
baudrate = cpu_to_le32(baudrate);
#ifdef BAUDRATE_4BYTES
memcpy((RT_U16 *) & cmd[3], &baudrate, 4);
#else
memcpy((RT_U16 *) & cmd[3], &baudrate, 2);
cmd[5] = 0;
cmd[6] = 0;
#endif
RS_DBG("baudrate in change speed command: 0x%x 0x%x 0x%x 0x%x \n",
cmd[3], cmd[4], cmd[5], cmd[6]);
cmd_change_bdrate =
h5_prepare_pkt(&rtk_hw_cfg, cmd, 7, HCI_COMMAND_PKT);
if (!cmd_change_bdrate) {
RS_ERR("Prepare command packet for change speed fail");
return -1;
}
rtk_hw_cfg.host_last_cmd = cmd_change_bdrate;
alarm(1);
write(fd, cmd_change_bdrate->data, cmd_change_bdrate->data_len);
while (rtk_hw_cfg.link_estab_state == H5_INIT) {
if ((retlen = read_check_rtk(fd, &bytes, READ_DATA_SIZE)) == -1) {
perror("read fail");
return -1;
}
//add pure ack check
h5_recv(&rtk_hw_cfg, &bytes, retlen);
}
alarm(0);
return 0;
}
/**
* Init realtek Bluetooth h5 proto. h5 proto is added by realtek in the right kernel.
* Generally there are two steps: h5 sync and h5 config
*
* @param fd uart file descriptor
* @param ti termios struct
*
*/
int rtk_init_h5(int fd, struct termios *ti)
{
unsigned char bytes[READ_DATA_SIZE];
struct sigaction sa;
int retlen;
struct itimerval value;
/* set even parity */
ti->c_cflag |= PARENB;
ti->c_cflag &= ~(PARODD);
if (tcsetattr(fd, TCSANOW, ti) < 0) {
RS_ERR("Can't set port settings");
return -1;
}
rtk_hw_cfg.h5_max_retries = H5_MAX_RETRY_COUNT;
alarm(0);
memset(&sa, 0, sizeof(sa));
sa.sa_flags = SA_NOCLDSTOP;
sa.sa_handler = h5_tsync_sig_alarm;
sigaction(SIGALRM, &sa, NULL);
/* h5 sync */
h5_tsync_sig_alarm(0);
rtk_hw_cfg.link_estab_state = H5_SYNC;
while (rtk_hw_cfg.link_estab_state == H5_SYNC) {
if ((retlen = read_check_rtk(fd, &bytes, READ_DATA_SIZE)) == -1) {
RS_ERR("H5 Read Sync Response Failed");
value.it_value.tv_sec = 0;
value.it_value.tv_usec = 0;
value.it_interval.tv_sec = 0;
value.it_interval.tv_usec = 0;
setitimer(ITIMER_REAL, &value, NULL);
return -1;
}
h5_recv(&rtk_hw_cfg, &bytes, retlen);
}
value.it_value.tv_sec = 0;
value.it_value.tv_usec = 0;
value.it_interval.tv_sec = 0;
value.it_interval.tv_usec = 0;
setitimer(ITIMER_REAL, &value, NULL);
/* h5 config */
sa.sa_handler = h5_tconf_sig_alarm;
sigaction(SIGALRM, &sa, NULL);
h5_tconf_sig_alarm(0);
while (rtk_hw_cfg.link_estab_state == H5_CONFIG) {
if ((retlen = read_check_rtk(fd, &bytes, READ_DATA_SIZE)) == -1) {
RS_ERR("H5 Read Config Response Failed");
value.it_value.tv_sec = 0;
value.it_value.tv_usec = 0;
value.it_interval.tv_sec = 0;
value.it_interval.tv_usec = 0;
setitimer(ITIMER_REAL, &value, NULL);
return -1;
}
h5_recv(&rtk_hw_cfg, &bytes, retlen);
}
value.it_value.tv_sec = 0;
value.it_value.tv_usec = 0;
value.it_interval.tv_sec = 0;
value.it_interval.tv_usec = 0;
setitimer(ITIMER_REAL, &value, NULL);
rtk_send_pure_ack_down(fd);
RS_DBG("H5 init finished\n");
rtk_hw_cfg.rom_version_cmd_state = cmd_not_send;
rtk_hw_cfg.hci_version_cmd_state = cmd_not_send;
return 0;
}
/**
* Download realtek firmware and config file from uart with the proto.
* Parse the content to serval packets follow the proto and then write the packets from uart
*
* @param fd uart file descriptor
* @param buf addr where stor the content of firmware and config file
* @param filesize length of buf
* @param is_sent_changerate if baudrate need to be changed
* @param proto realtek Bluetooth protocol, shall be either HCI_UART_H4 or HCI_UART_3WIRE
*
*/
static int rtk_download_fw_config(int fd, RT_U8 * buf, size_t filesize,
int is_sent_changerate, int proto,
struct termios *ti)
{
uint8_t iCurIndex = 0;
uint8_t iCurLen = 0;
uint8_t iEndIndex = 0;
uint8_t iLastPacketLen = 0;
uint8_t iAdditionPkt = 0;
uint8_t iTotalIndex = 0;
uint8_t iCmdSentNum = 0;
unsigned char *bufpatch;
uint8_t i, j;
iEndIndex = (uint8_t) ((filesize - 1) / PATCH_DATA_FIELD_MAX_SIZE);
iLastPacketLen = (filesize) % PATCH_DATA_FIELD_MAX_SIZE;
/* if (is_sent_changerate)
* iCmdSentNum++;
* if (rtk_hw_cfg.rom_version_cmd_state >= cmd_has_sent)
* iCmdSentNum++;
* if (rtk_hw_cfg.hci_version_cmd_state >= cmd_has_sent)
* iCmdSentNum++; */
iCmdSentNum += rtk_hw_cfg.num_of_cmd_sent;
iAdditionPkt =
(iEndIndex + 1 + iCmdSentNum) % 8 ? (8 -
(iEndIndex + 1 +
iCmdSentNum) % 8) : 0;
iTotalIndex = iAdditionPkt + iEndIndex;
rtk_hw_cfg.total_num = iTotalIndex; //init TotalIndex
RS_DBG("iEndIndex:%d iLastPacketLen:%d iAdditionpkt:%d\n", iEndIndex,
iLastPacketLen, iAdditionPkt);
if (iLastPacketLen == 0)
iLastPacketLen = PATCH_DATA_FIELD_MAX_SIZE;
bufpatch = buf;
for (i = 0; i <= iTotalIndex; i++) {
/* Index will roll over when it reaches 0x80. */
if (i > 0x7f)
j = (i & 0x7f) + 1;
else
j = i;
if (i < iEndIndex) {
iCurIndex = j;
iCurLen = PATCH_DATA_FIELD_MAX_SIZE;
} else if (i == iEndIndex) {
/* Send last data packets */
if (i == iTotalIndex)
iCurIndex = j | 0x80;
else
iCurIndex = j;
iCurLen = iLastPacketLen;
} else if (i < iTotalIndex) {
/* Send additional packets */
iCurIndex = j;
bufpatch = NULL;
iCurLen = 0;
RS_DBG("Send additional packet %u", iCurIndex);
} else {
/* Send end packet */
iCurIndex = j | 0x80;
bufpatch = NULL;
iCurLen = 0;
RS_DBG("Send end packet %u", iCurIndex);
}
if (iCurIndex & 0x80)
RS_DBG("Send FW last command");
if (proto == HCI_UART_H4) {
iCurIndex = hci_download_patch_h4(fd, iCurIndex,
bufpatch, iCurLen);
if ((iCurIndex != j) && (i != rtk_hw_cfg.total_num)) {
RS_DBG(
"index mismatch j %d, iCurIndex:%d, fail\n",
j, iCurIndex);
return -1;
}
} else if (proto == HCI_UART_3WIRE) {
if (hci_download_patch(fd, iCurIndex, bufpatch, iCurLen,
ti) < 0)
return -1;
}
if (iCurIndex < iEndIndex) {
bufpatch += PATCH_DATA_FIELD_MAX_SIZE;
}
}
/* Set last ack packet down */
if (proto == HCI_UART_3WIRE) {
rtk_send_pure_ack_down(fd);
}
return 0;
}
/**
* Get realtek Bluetooth firmaware file. The content will be saved in *fw_buf which is malloc here.
* The length malloc here will be lager than length of firmware file if there is a config file.
* The content of config file will copy to the tail of *fw_buf in rtk_config.
*
* @param fw_buf point to the addr where stored the content of firmware.
* @param addi_len length of config file.
* @return length of *fw_buf.
*
*/
int rtk_get_bt_firmware(struct btrtl_info *btrtl, RT_U8 **fw_buf)
{
const char *filename;
struct stat st;
int fd = -1;
size_t fwsize;
static char firmware_file_name[PATH_MAX] = { 0 };
int ret = 0;
sprintf(firmware_file_name, "%s", FIRMWARE_DIRECTORY);
strcat(firmware_file_name, btrtl->patch_ent->patch_file);
filename = firmware_file_name;
if (stat(filename, &st) < 0) {
RS_ERR("Can't access firmware %s, %s", filename,
strerror(errno));
return -1;
}
fwsize = st.st_size;
if ((fd = open(filename, O_RDONLY)) < 0) {
RS_ERR("Can't open firmware, errno:%d", errno);
return -1;
}
if (!(*fw_buf = malloc(fwsize))) {
RS_ERR("Can't alloc memory for fw&config, errno:%d", errno);
close(fd);
return -1;
}
if (read(fd, *fw_buf, fwsize) < (ssize_t) fwsize) {
free(*fw_buf);
*fw_buf = NULL;
close(fd);
return -1;
}
RS_DBG("Load FW OK");
close(fd);
return fwsize;
}
//These two function(rtk<-->uart speed transfer) need check Host uart speed at first!!!! IMPORTANT
//add more speed if neccessary
typedef struct _baudrate_ex {
RT_U32 rtk_speed;
int uart_speed;
} baudrate_ex;
#ifdef BAUDRATE_4BYTES
baudrate_ex baudrates[] = {
#ifdef RTL_8703A_SUPPORT
{0x00004003, 1500000}, /* for rtl8703as */
#endif
{0x0252C014, 115200},
{0x0252C00A, 230400},
{0x05F75004, 921600},
{0x00005004, 1000000},
{0x04928002, 1500000},
{0x01128002, 1500000}, //8761AT
{0x00005002, 2000000},
{0x0000B001, 2500000},
{0x04928001, 3000000},
{0x052A6001, 3500000},
{0x00005001, 4000000},
};
#else
baudrate_ex baudrates[] = {
{0x701d, 115200}
{0x6004, 921600},
{0x4003, 1500000},
{0x5002, 2000000},
{0x8001, 3000000},
{0x9001, 3000000},
{0x7001, 3500000},
{0x5001, 4000000},
};
#endif
/**
* Change realtek Bluetooth speed to uart speed. It is matching in the struct baudrates:
*
* @code
* baudrate_ex baudrates[] =
* {
* {0x7001, 3500000},
* {0x6004, 921600},
* {0x4003, 1500000},
* {0x5001, 4000000},
* {0x5002, 2000000},
* {0x8001, 3000000},
* {0x701d, 115200}
* };
* @endcode
*
* If there is no match in baudrates, uart speed will be set as #115200.
*
* @param rtk_speed realtek Bluetooth speed
* @param uart_speed uart speed
*
*/
static void rtk_speed_to_uart_speed(RT_U32 rtk_speed, RT_U32 * uart_speed)
{
*uart_speed = 115200;
unsigned int i;
for (i = 0; i < sizeof(baudrates) / sizeof(baudrate_ex); i++) {
if (baudrates[i].rtk_speed == rtk_speed) {
*uart_speed = baudrates[i].uart_speed;
return;
}
}
return;
}
/**
* Change uart speed to realtek Bluetooth speed. It is matching in the struct baudrates:
*
* @code
* baudrate_ex baudrates[] =
* {
* {0x7001, 3500000},
* {0x6004, 921600},
* {0x4003, 1500000},
* {0x5001, 4000000},
* {0x5002, 2000000},
* {0x8001, 3000000},
* {0x701d, 115200}
* };
* @endcode
*
* If there is no match in baudrates, realtek Bluetooth speed will be set as #0x701D.
*
* @param uart_speed uart speed
* @param rtk_speed realtek Bluetooth speed
*
*/
static inline void uart_speed_to_rtk_speed(int uart_speed, RT_U32 * rtk_speed)
{
*rtk_speed = 0x701d;
unsigned int i;
for (i = 0; i < sizeof(baudrates) / sizeof(baudrate_ex); i++) {
if (baudrates[i].uart_speed == uart_speed) {
*rtk_speed = baudrates[i].rtk_speed;
return;
}
}
return;
}
static void rtk_get_chip_type_timeout(int sig)
{
static int retries = 0;
int len = 0;
struct btrtl_info *btrtl = &rtk_hw_cfg;
RS_INFO("RTK get HCI_VENDOR_READ_RTK_CHIP_TYPE_Command\n");
if (retries < btrtl->h5_max_retries) {
RS_DBG("rtk get chip type timerout, retry:%d\n", retries);
if (btrtl->host_last_cmd) {
len = write(btrtl->serial_fd,
btrtl->host_last_cmd->data,
btrtl->host_last_cmd->data_len);
}
retries++;
alarm(3);
return;
}
tcflush(btrtl->serial_fd, TCIOFLUSH);
RS_ERR("rtk get chip type cmd complete event timed out\n");
exit(1);
}
void rtk_get_chip_type(int dd)
{
unsigned char bytes[READ_DATA_SIZE];
int retlen;
struct sigaction sa;
/* 0xB000A094 */
unsigned char cmd_buff[] = {0x61, 0xfc,
0x05, 0x00, 0x94, 0xa0, 0x00, 0xb0};
struct sk_buff *nskb;
struct btrtl_info *btrtl = &rtk_hw_cfg;
nskb = h5_prepare_pkt(btrtl, cmd_buff, sizeof(cmd_buff),
HCI_COMMAND_PKT);
if (btrtl->host_last_cmd){
skb_free(btrtl->host_last_cmd);
btrtl->host_last_cmd = NULL;
}
btrtl->host_last_cmd = nskb;
write(dd, nskb->data, nskb->data_len);
RS_INFO("RTK send HCI_VENDOR_READ_CHIP_TYPE_Command\n");
alarm(0);
memset(&sa, 0, sizeof(sa));
sa.sa_flags = SA_NOCLDSTOP;
sa.sa_handler = rtk_get_chip_type_timeout;
sigaction(SIGALRM, &sa, NULL);
alarm(3);
while (btrtl->chip_type_cmd_state != event_received) {
if ((retlen = read_check_rtk(dd, &bytes, READ_DATA_SIZE)) == -1) {
perror("rtk get chip type: read fail");
return;
}
h5_recv(btrtl, &bytes, retlen);
}
alarm(0);
return;
}
static void rtk_get_eversion_timeout(int sig)
{
static int retries = 0;
int len = 0;
RS_DBG("RTK get HCI_VENDOR_READ_RTK_ROM_VERISION_Command\n");
if (retries < rtk_hw_cfg.h5_max_retries) {
RS_DBG("rtk get eversion timerout, retry:%d\n", retries);
if (rtk_hw_cfg.host_last_cmd) {
len = write(rtk_hw_cfg.serial_fd,
rtk_hw_cfg.host_last_cmd->data,
rtk_hw_cfg.host_last_cmd->data_len);
}
retries++;
alarm(3);
return;
}
tcflush(rtk_hw_cfg.serial_fd, TCIOFLUSH);
RS_ERR("rtk get eversion cmd complete event timed out\n");
exit(1);
}
/**
* Send vendor cmd to get eversion: 0xfc6d
* If Rom code does not support this cmd, use default.
*/
void rtk_get_eversion(int dd)
{
unsigned char bytes[READ_DATA_SIZE];
int retlen;
struct sigaction sa;
unsigned char read_rom_patch_cmd[3] = { 0x6d, 0xfc, 00 };
struct sk_buff *nskb =
h5_prepare_pkt(&rtk_hw_cfg, read_rom_patch_cmd, 3, HCI_COMMAND_PKT);
if (rtk_hw_cfg.host_last_cmd) {
skb_free(rtk_hw_cfg.host_last_cmd);
rtk_hw_cfg.host_last_cmd = NULL;
}
rtk_hw_cfg.host_last_cmd = nskb;
write(dd, nskb->data, nskb->data_len);
rtk_hw_cfg.rom_version_cmd_state = cmd_has_sent;
RS_DBG("RTK send HCI_VENDOR_READ_RTK_ROM_VERISION_Command\n");
alarm(0);
memset(&sa, 0, sizeof(sa));
sa.sa_flags = SA_NOCLDSTOP;
sa.sa_handler = rtk_get_eversion_timeout;
sigaction(SIGALRM, &sa, NULL);
alarm(3);
while (rtk_hw_cfg.rom_version_cmd_state != event_received) {
if ((retlen = read_check_rtk(dd, &bytes, READ_DATA_SIZE)) == -1) {
perror("rtk get eversion: read fail");
return;
}
h5_recv(&rtk_hw_cfg, &bytes, retlen);
}
alarm(0);
return;
}
static void rtk_get_lmp_version_timeout(int sig)
{
static int retries = 0;
RS_DBG("RTK get HCI_VENDOR_READ_RTK_LMP_VERISION_Command\n");
if (retries < rtk_hw_cfg.h5_max_retries) {
usleep(10000);
RS_DBG("rtk get lmp version timeout, retry: %d\n", retries);
if (rtk_hw_cfg.host_last_cmd) {
int len = write(rtk_hw_cfg.serial_fd,
rtk_hw_cfg.host_last_cmd->data,
rtk_hw_cfg.host_last_cmd->data_len);
}
retries++;
alarm(3);
return;
}
tcflush(rtk_hw_cfg.serial_fd, TCIOFLUSH);
RS_ERR("rtk get lmp version cmd complete event timed out\n");
exit(1);
}
void rtk_get_lmp_version(int dd)
{
unsigned char bytes[READ_DATA_SIZE];
int retlen;
struct sigaction sa;
unsigned char read_rom_patch_cmd[3] = { 0x01, 0x10, 00 };
struct sk_buff *nskb = h5_prepare_pkt(&rtk_hw_cfg, read_rom_patch_cmd, 3, HCI_COMMAND_PKT); //data:len+head:4
if (rtk_hw_cfg.host_last_cmd) {
skb_free(rtk_hw_cfg.host_last_cmd);
rtk_hw_cfg.host_last_cmd = NULL;
}
rtk_hw_cfg.host_last_cmd = nskb;
write(dd, nskb->data, nskb->data_len);
rtk_hw_cfg.hci_version_cmd_state = cmd_has_sent;
RS_DBG("RTK send HCI_VENDOR_READ_RTK_ROM_VERISION_Command\n");
alarm(0);
memset(&sa, 0, sizeof(sa));
sa.sa_flags = SA_NOCLDSTOP;
sa.sa_handler = rtk_get_lmp_version_timeout;
sigaction(SIGALRM, &sa, NULL);
alarm(3);
while (rtk_hw_cfg.hci_version_cmd_state != event_received) {
if ((retlen = read_check_rtk(dd, &bytes, READ_DATA_SIZE)) == -1) {
perror("read fail");
return;
}
h5_recv(&rtk_hw_cfg, &bytes, retlen);
}
alarm(0);
return;
}
uint8_t rtk_get_fw_project_id(uint8_t * p_buf)
{
uint8_t opcode;
uint8_t len;
uint8_t data = 0;
do {
opcode = *p_buf;
len = *(p_buf - 1);
if (opcode == 0x00) {
if (len == 1) {
data = *(p_buf - 2);
RS_DBG
("rtk_get_fw_project_id: opcode %d, len %d, data %d",
opcode, len, data);
break;
} else {
RS_ERR("rtk_get_fw_project_id: invalid len %d",
len);
}
}
p_buf -= len + 2;
} while (*p_buf != 0xFF);
return data;
}
struct rtk_epatch_entry *rtk_get_patch_entry(void)
{
uint16_t i;
struct rtk_epatch *patch;
struct rtk_epatch_entry *entry;
uint8_t *p;
uint16_t chip_id;
uint32_t tmp;
patch = (struct rtk_epatch *)rtk_hw_cfg.fw_buf;
entry = (struct rtk_epatch_entry *)malloc(sizeof(*entry));
if (!entry) {
RS_ERR("failed to allocate mem for patch entry");
return NULL;
}
patch->number_of_patch = le16_to_cpu(patch->number_of_patch);
RS_DBG("fw_ver 0x%08x, patch_num %d",
le32_to_cpu(patch->fw_version), patch->number_of_patch);
for (i = 0; i < patch->number_of_patch; i++) {
RS_DBG("chip id 0x%04x",
get_unaligned_le16(rtk_hw_cfg.fw_buf + 14 + 2 * i));
if (get_unaligned_le16(rtk_hw_cfg.fw_buf + 14 + 2 * i) ==
rtk_hw_cfg.eversion + 1) {
entry->chipID = rtk_hw_cfg.eversion + 1;
entry->patch_length =
get_unaligned_le16(rtk_hw_cfg.fw_buf + 14 +
2 * patch->number_of_patch +
2 * i);
entry->start_offset =
get_unaligned_le32(rtk_hw_cfg.fw_buf + 14 +
4 * patch->number_of_patch +
4 * i);
RS_DBG("patch length is 0x%x", entry->patch_length);
RS_DBG("start offset is 0x%x", entry->start_offset);
entry->svn_ver = get_unaligned_le32(rtk_hw_cfg.fw_buf +
entry->start_offset +
entry->patch_length - 8);
entry->coex_ver = get_unaligned_le32(rtk_hw_cfg.fw_buf +
entry->start_offset +
entry->patch_length - 12);
RS_INFO("Svn version: %8d\n", entry->svn_ver);
tmp = ((entry->coex_ver >> 16) & 0x7ff) +
(entry->coex_ver >> 27) * 10000;
RS_INFO("Coexistence: BTCOEX_20%06d-%04x\n", tmp,
(entry->coex_ver & 0xffff));
break;
}
}
if (i == patch->number_of_patch) {
RS_ERR("failed to get entry");
free(entry);
entry = NULL;
}
return entry;
}
void rtk_get_final_patch(int fd, int proto)
{
struct btrtl_info *rtl = &rtk_hw_cfg;
uint8_t proj_id = 0;
struct rtk_epatch_entry *entry = NULL;
struct rtk_epatch *patch = (struct rtk_epatch *)rtl->fw_buf;
uint32_t svn_ver, coex_ver, tmp;
if ((proto == HCI_UART_H4) ||
((proto == HCI_UART_3WIRE) && (rtl->lmp_subver == ROM_LMP_8703a))) {
if (memcmp(rtl->fw_buf, RTK_EPATCH_SIGNATURE, 8) == 0) {
RS_ERR("Check signature error!");
rtl->dl_fw_flag = 0;
goto free_buf;
} else {
rtl->total_len = rtl->config_len + rtl->fw_len;
if (!(rtl->total_buf = malloc(rtl->total_len))) {
RS_ERR("Can't alloc mem for fw/config, errno:%d",
errno);
rtl->dl_fw_flag = 0;
rtl->total_len = 0;
goto free_buf;
} else {
RS_DBG("fw copy directy");
svn_ver = get_unaligned_le32(
rtl->fw_buf + rtl->fw_len - 8);
coex_ver = get_unaligned_le32(
rtl->fw_buf + rtl->fw_len - 12);
RS_INFO("Svn version: %8d\n", svn_ver);
tmp = ((coex_ver >> 16) & 0x7ff) +
(coex_ver >> 27) * 10000;
RS_INFO("Coexistence: BTCOEX_20%06d-%04x\n", tmp,
(coex_ver & 0xffff));
memcpy(rtl->total_buf, rtl->fw_buf,
rtl->fw_len);
if (rtl->config_len)
memcpy(rtl->total_buf +
rtl->fw_len,
rtl->config_buf,
rtl->config_len);
rtl->dl_fw_flag = 1;
goto free_buf;
}
}
}
if (memcmp(rtl->fw_buf, RTK_EPATCH_SIGNATURE, 8)) {
RS_DBG("check signature error!");
rtl->dl_fw_flag = 0;
goto free_buf;
}
if (memcmp
(rtl->fw_buf + rtl->fw_len - 4,
Extension_Section_SIGNATURE, 4)) {
RS_ERR("check extension section signature error");
rtl->dl_fw_flag = 0;
goto free_buf;
}
proj_id = rtk_get_fw_project_id(rtl->fw_buf + rtl->fw_len - 5);
#ifdef RTL_8703A_SUPPORT
if (rtl->hci_ver == 0x4 && rtl->lmp_subver == ROM_LMP_8703a) {
RS_DBG("HCI version = 0x4, IC is 8703A.");
} else {
RS_ERR("error: lmp_version %x, hci_version %x, project_id %x",
rtl->lmp_subver, rtl->hci_ver, project_id[proj_id]);
rtk_hw_cfg.dl_fw_flag = 0;
goto free_buf;
}
#else
if (rtl->lmp_subver != ROM_LMP_8822b) {
if (rtl->lmp_subver != project_id[proj_id]) {
RS_ERR("lmp_subver %04x, project id %04x, mismatch\n",
rtl->lmp_subver, project_id[proj_id]);
rtl->dl_fw_flag = 0;
goto free_buf;
}
} else {
/* if (rtk_hw_cfg.patch_ent->proj_id != project_id[proj_id]) {
* RS_ERR("proj_id %04x, version %04x from firmware "
* "project_id[%u], mismatch\n",
* rtk_hw_cfg.patch_ent->proj_id,
* project_id[proj_id], proj_id);
* rtk_hw_cfg.dl_fw_flag = 0;
* goto free_buf;
* } */
}
#endif
entry = rtk_get_patch_entry();
if (entry)
rtl->total_len =
entry->patch_length + rtl->config_len;
else {
rtl->dl_fw_flag = 0;
goto free_buf;
}
if (!(rtl->total_buf = malloc(rtl->total_len))) {
RS_ERR("Can't alloc memory for multi fw&config, errno:%d",
errno);
rtl->dl_fw_flag = 0;
rtl->total_len = 0;
goto free_buf;
} else {
memcpy(rtl->total_buf,
rtl->fw_buf + entry->start_offset,
entry->patch_length);
memcpy(rtl->total_buf + entry->patch_length - 4,
&patch->fw_version, 4);
if (rtl->config_len)
memcpy(rtl->total_buf + entry->patch_length,
rtl->config_buf, rtl->config_len);
rtl->dl_fw_flag = 1;
}
RS_DBG("fw:%s exists, config file:%s exists",
(rtl->fw_len > 0) ? "" : "not",
(rtl->config_len > 0) ? "" : "not");
free_buf:
if (rtl->fw_len > 0) {
free(rtl->fw_buf);
rtl->fw_len = 0;
}
if (rtl->config_len > 0) {
free(rtl->config_buf);
rtl->config_len = 0;
}
if (entry)
free(entry);
}
/**
* Config realtek Bluetooth. The configuration parameter is get from config file and fw.
* Config file is rtk8723_bt_config. which is set in rtk_get_bt_config.
* fw file is "rlt8723a_chip_b_cut_bt40_fw", which is set in get_firmware_name.
*
* @warning maybe only one of config file and fw file exists. The bt_addr arg is stored in "/data/btmac.txt"
* or "/data/misc/bluetoothd/bt_mac/btmac.txt",
*
* @param fd uart file descriptor
* @param proto realtek Bluetooth protocol, shall be either HCI_UART_H4 or HCI_UART_3WIRE
* @param speed init_speed in uart struct
* @param ti termios struct
* @returns #0 on success
*/
static int rtk_config(int fd, int proto, int speed, struct termios *ti)
{
int final_speed = 0;
int ret = 0;
struct btrtl_info *btrtl = &rtk_hw_cfg;
btrtl->proto = proto;
/* Get Local Version Information and RTK ROM version */
if (proto == HCI_UART_3WIRE) {
rtk_get_lmp_version(fd);
rtk_get_eversion(fd);
RS_INFO("LMP Subversion 0x%04x", btrtl->lmp_subver);
RS_INFO("EVersion %d", btrtl->eversion);
} else {
/* RTL8761AT H4 */
btrtl->lmp_subver = 0xffff;
}
switch (rtk_hw_cfg.lmp_subver) {
case ROM_LMP_8723a:
break;
case ROM_LMP_8703a:
#ifdef RTL_8703A_SUPPORT
rtl->chip_type = CHIP_8703A;
#endif
break;
case ROM_LMP_8821a:
break;
case ROM_LMP_8761a:
break;
case ROM_LMP_8822b:
rtk_get_chip_type(fd);
break;
}
btrtl->patch_ent = get_patch_entry(btrtl);
if (btrtl->patch_ent) {
RS_INFO("IC: %s\n", btrtl->patch_ent->ic_name);
RS_INFO("Firmware/config: %s, %s\n",
btrtl->patch_ent->patch_file,
btrtl->patch_ent->config_file);
} else {
RS_ERR("Can not find firmware/config entry\n");
return -1;
}
rtk_hw_cfg.config_len =
rtk_get_bt_config(btrtl, &btrtl->config_buf, &btrtl->baudrate);
if (rtk_hw_cfg.config_len < 0) {
RS_ERR("Get Config file error, just use efuse settings");
rtk_hw_cfg.config_len = 0;
}
rtk_hw_cfg.fw_len = rtk_get_bt_firmware(btrtl, &btrtl->fw_buf);
if (rtk_hw_cfg.fw_len < 0) {
RS_ERR("Get BT firmware error");
rtk_hw_cfg.fw_len = 0;
return -1;
} else {
rtk_get_final_patch(fd, proto);
}
if (rtk_hw_cfg.total_len > RTK_PATCH_LENGTH_MAX) {
RS_ERR("total length of fw&config larger than allowed");
return -1;
}
RS_INFO("Total len %d for fw/config", rtk_hw_cfg.total_len);
/* change baudrate if needed
* rtk_hw_cfg.baudrate is a __u32/__u16 vendor-specific variable
* parsed from config file
* */
if (rtk_hw_cfg.baudrate == 0) {
uart_speed_to_rtk_speed(speed, &rtk_hw_cfg.baudrate);
RS_DBG
("no config file to set uart baudrate, use input parameters:%x, %x",
(unsigned int)speed, (unsigned int)rtk_hw_cfg.baudrate);
goto SET_FLOW_CONTRL;
} else
rtk_speed_to_uart_speed(rtk_hw_cfg.baudrate,
(RT_U32 *) & (rtk_hw_cfg.final_speed));
if (proto == HCI_UART_3WIRE)
rtk_vendor_change_speed_h5(fd, rtk_hw_cfg.baudrate);
else
rtk_vendor_change_speed_h4(fd, rtk_hw_cfg.baudrate);
usleep(50000);
final_speed = rtk_hw_cfg.final_speed ? rtk_hw_cfg.final_speed : speed;
RS_DBG("final_speed %d\n", final_speed);
if (set_speed(fd, ti, final_speed) < 0) {
RS_ERR("Can't set baud rate:%x, %x, %x", final_speed,
rtk_hw_cfg.final_speed, speed);
return -1;
}
SET_FLOW_CONTRL:
if (rtk_hw_cfg.hw_flow_control) {
RS_DBG("hw flow control enable");
ti->c_cflag |= CRTSCTS;
if (tcsetattr(fd, TCSANOW, ti) < 0) {
RS_ERR("Can't set port settings");
return -1;
}
} else {
RS_DBG("hw flow control disable");
ti->c_cflag &= ~CRTSCTS;
}
/* wait for while for controller to setup */
usleep(10000);
if ((rtk_hw_cfg.total_len > 0) && (rtk_hw_cfg.dl_fw_flag)) {
rtk_hw_cfg.link_estab_state = H5_PATCH;
rtk_hw_cfg.rx_index = -1;
ret =
rtk_download_fw_config(fd, rtk_hw_cfg.total_buf,
rtk_hw_cfg.total_len,
rtk_hw_cfg.baudrate, proto, ti);
free(rtk_hw_cfg.total_buf);
if (ret < 0)
return ret;
}
RS_DBG("Init Process finished");
return 0;
}
/**
* Init uart by realtek Bluetooth.
*
* @param fd uart file descriptor
* @param proto realtek Bluetooth protocol, shall be either HCI_UART_H4 or HCI_UART_3WIRE
* @param speed init_speed in uart struct
* @param ti termios struct
* @returns #0 on success, depend on rtk_config
*/
int rtk_init(int fd, int proto, int speed, struct termios *ti)
{
struct sigaction sa;
int retlen;
RS_DBG("Realtek hciattach version %s \n", RTK_VERSION);
memset(&rtk_hw_cfg, 0, sizeof(rtk_hw_cfg));
rtk_hw_cfg.serial_fd = fd;
rtk_hw_cfg.dl_fw_flag = 1;
/* h4 will do nothing for init */
if (proto == HCI_UART_3WIRE) {
if (rtk_init_h5(fd, ti) < 0)
return -1;;
}
return rtk_config(fd, proto, speed, ti);
}
/**
* Post uart by realtek Bluetooth. If gFinalSpeed is set, set uart speed with it.
*
* @param fd uart file descriptor
* @param proto realtek Bluetooth protocol, shall be either HCI_UART_H4 or HCI_UART_3WIRE
* @param ti termios struct
* @returns #0 on success.
*/
int rtk_post(int fd, int proto, struct termios *ti)
{
if (rtk_hw_cfg.final_speed)
return set_speed(fd, ti, rtk_hw_cfg.final_speed);
return 0;
}