Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
/******************************************************************************
 *
 * Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of version 2 of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
 *
 *
 ******************************************************************************/
#define _RTL8814A_HAL_INIT_C_

//#include <drv_types.h>
#include <rtl8814a_hal.h>
#include "phydm_antdiv.h"

#define REG_BCN_INTERVAL				0x0554

extern u32 array_length_mp_8814a_fw_ap;
extern u8 array_mp_8814a_fw_ap[];
extern u32 array_length_mp_8814a_fw_nic;
extern u8 array_mp_8814a_fw_nic[];

enum {
	VOLTAGE_V25						= 0x03,
	LDOE25_SHIFT						= 28 ,
};

//-------------------------------------------------------------------------
//
// LLT R/W/Init function
//
//-------------------------------------------------------------------------
VOID
Hal_InitEfuseVars_8814A(
	IN	PADAPTER	Adapter
	)
{
	HAL_DATA_TYPE	*pHalData = GET_HAL_DATA(Adapter);
	PEFUSE_HAL		pEfuseHal = &(pHalData->EfuseHal);
	pu2Byte		ptr;
	
	#define INIT_EFUSE(var,value)	ptr = (pu2Byte)&var; *ptr = value

	RTW_INFO("====> %s \n", __func__);
	//2 Common
	INIT_EFUSE(pEfuseHal->WordUnit	     , EFUSE_MAX_WORD_UNIT);
	RTW_INFO("====>pEfuseHal->WordUnit %d \n", pEfuseHal->WordUnit);
	INIT_EFUSE(pEfuseHal->BankSize	     , 512);
	INIT_EFUSE(pEfuseHal->OOBProtectBytes, EFUSE_OOB_PROTECT_BYTES);
	RTW_INFO("====>pEfuseHal->OOBProtectBytes %d \n", pEfuseHal->OOBProtectBytes);
	INIT_EFUSE(pEfuseHal->ProtectBytes   , EFUSE_PROTECT_BYTES_BANK_8814A);
	RTW_INFO("====>pEfuseHal->ProtectBytes %d \n", pEfuseHal->ProtectBytes);
	INIT_EFUSE(pEfuseHal->BankAvailBytes , (pEfuseHal->BankSize - pEfuseHal->OOBProtectBytes));
	INIT_EFUSE(pEfuseHal->TotalBankNum   , EFUSE_MAX_BANK_8814A);
	INIT_EFUSE(pEfuseHal->HeaderRetry    , 0);
	INIT_EFUSE(pEfuseHal->DataRetry      , 0);

	//2 Wi-Fi
	INIT_EFUSE(pEfuseHal->MaxSecNum_WiFi	  , EFUSE_MAX_SECTION_8814A);
	RTW_INFO("====>pEfuseHal->MaxSecNum_WiFi %d \n", pEfuseHal->MaxSecNum_WiFi);
	INIT_EFUSE(pEfuseHal->PhysicalLen_WiFi	  , EFUSE_REAL_CONTENT_LEN_8814A);
	RTW_INFO("====>pEfuseHal->PhysicalLen_WiFi %d \n", pEfuseHal->PhysicalLen_WiFi);
	INIT_EFUSE(pEfuseHal->LogicalLen_WiFi	  , EFUSE_MAP_LEN_8814A);
	RTW_INFO("====>pEfuseHal->LogicalLen_WiFi %d \n", pEfuseHal->LogicalLen_WiFi);
	INIT_EFUSE(pEfuseHal->BankNum_WiFi		 , pEfuseHal->PhysicalLen_WiFi/pEfuseHal->BankSize);	
	INIT_EFUSE(pEfuseHal->TotalAvailBytes_WiFi, (pEfuseHal->PhysicalLen_WiFi - (pEfuseHal->TotalBankNum * pEfuseHal->OOBProtectBytes)));	

	//2 BT
	INIT_EFUSE(pEfuseHal->MaxSecNum_BT   , 0);	
	INIT_EFUSE(pEfuseHal->PhysicalLen_BT , 0);
	INIT_EFUSE(pEfuseHal->LogicalLen_BT  , 0);
	INIT_EFUSE(pEfuseHal->BankNum_BT	 , 0);
	INIT_EFUSE(pEfuseHal->TotalAvailBytes_BT, 0);	
	
	RTW_INFO("%s <====\n", __func__);
}


s32 InitLLTTable8814A(
	IN	PADAPTER	Adapter
	)
{
	// Auto-init LLT table ( Set REG:0x208[BIT0] )
	//Write 1 to enable HW init LLT, driver need polling to 0 meaning init success
	u8		tmp1byte=0, testcnt=0;
	s32	Status = _SUCCESS;

	tmp1byte = rtw_read8(Adapter, REG_AUTO_LLT_8814A);
	rtw_write8(Adapter, REG_AUTO_LLT_8814A, tmp1byte|BIT0);
	while(tmp1byte & BIT0)
	{
		tmp1byte = rtw_read8(Adapter, REG_AUTO_LLT_8814A);
		rtw_mdelay_os(100);
		testcnt++;
		if(testcnt > 100)
		{
			Status = _FAIL;
			break;
		}	
	}
	return Status;	
}

#ifdef CONFIG_WOWLAN
void hal_DetectWoWMode(PADAPTER pAdapter)
{
	adapter_to_pwrctl(pAdapter)->bSupportRemoteWakeup = _TRUE;
}
#endif


VOID
_FWDownloadEnable_8814A(
	IN	PADAPTER		Adapter,
	IN	BOOLEAN			enable
	)
{
	u8	tmp;
	u16	u2Tmp = 0;

	if(enable)
	{
		// MCU firmware download enable.
		u2Tmp = rtw_read16(Adapter, REG_8051FW_CTRL_8814A);
		u2Tmp &= 0x3000;
		u2Tmp &= (~BIT12);
		u2Tmp |= BIT13;
		u2Tmp |= BIT0;
		rtw_write16(Adapter, REG_8051FW_CTRL_8814A, u2Tmp);	

		// Clear Rom DL enable
	//	tmp = rtw_read8(Adapter, REG_8051FW_CTRL_8814A+2); //modify by gw 20130826(advice by hw)
	//	rtw_write8(Adapter, REG_8051FW_CTRL_8814A+2, tmp&0xf7);//clear bit3 
	}
	else
	{
		// MCU firmware download enable.
		tmp = rtw_read8(Adapter, REG_8051FW_CTRL_8814A);
		rtw_write8(Adapter, REG_8051FW_CTRL_8814A, tmp&0xfe);
	}
}

#define MAX_REG_BOLCK_SIZE	196

VOID
_BlockWrite_8814A(
	IN		PADAPTER		Adapter,
	IN		PVOID			buffer,
	IN		u32			buffSize
	)
{
	u32			blockSize_p1 = 4;	// (Default) Phase #1 : PCI muse use 4-byte write to download FW
	u32			blockSize_p2 = 8;	// Phase #2 : Use 8-byte, if Phase#1 use big size to write FW.
	u32			blockSize_p3 = 1;	// Phase #3 : Use 1-byte, the remnant of FW image.
	u32			blockCount_p1 = 0, blockCount_p2 = 0, blockCount_p3 = 0;
	u32			remainSize_p1 = 0, remainSize_p2 = 0;
	u8*			bufferPtr	= (u8*)buffer;
	u32			i=0, offset=0;

#ifdef CONFIG_USB_HCI
	blockSize_p1	= MAX_REG_BOLCK_SIZE; // Use 196-byte write to download FW
	// Small block size will increase USB init speed. But prevent FW download fail
	// use 4-Byte instead of 196-Byte to write FW. 
#endif

	//3 Phase #1
	blockCount_p1 = buffSize / blockSize_p1;
	remainSize_p1 = buffSize % blockSize_p1;

	for(i = 0 ; i < blockCount_p1 ; i++){
		#if (DEV_BUS_TYPE == RT_USB_INTERFACE)
		rtw_writeN(Adapter, (FW_START_ADDRESS + i * blockSize_p1), blockSize_p1,(bufferPtr + i * blockSize_p1));
		#else
		rtw_write32(Adapter, (FW_START_ADDRESS + i * blockSize_p1), *((pu4Byte)(bufferPtr + i * blockSize_p1)));
		#endif
	}

	//3 Phase #2
	if(remainSize_p1){
		offset = blockCount_p1 * blockSize_p1;

		blockCount_p2=remainSize_p1/blockSize_p2;
		remainSize_p2=remainSize_p1%blockSize_p2;

		#if (DEV_BUS_TYPE == RT_USB_INTERFACE)
		for(i = 0 ; i < blockCount_p2 ; i++){	
			rtw_writeN(Adapter, (FW_START_ADDRESS + offset+i*blockSize_p2), blockSize_p2,(bufferPtr + offset+i*blockSize_p2));
		}
		#endif
	}
	
	//3 Phase #3
	if(remainSize_p2)
	{
		offset=(blockCount_p1 * blockSize_p1)+(blockCount_p2*blockSize_p2);		

		blockCount_p3 = remainSize_p2 /blockSize_p3;
	 
		for(i = 0 ; i < blockCount_p3 ; i++){
			rtw_write8(Adapter, (FW_START_ADDRESS + offset + i), *(bufferPtr +offset+ i));
		}
	}
}

VOID
_PageWrite_8814A(
	IN		PADAPTER		Adapter,
	IN		u32			page,
	IN		PVOID			buffer,
	IN		u32			size
	)
{
	u8 value8;
	u8 u8Page = (u8) (page & 0x07) ;

	value8 = (rtw_read8(Adapter, REG_8051FW_CTRL_8814A+2)& 0xF8 ) | u8Page ;
	rtw_write8(Adapter,REG_8051FW_CTRL_8814A+2,value8);
	
	_BlockWrite_8814A(Adapter,buffer,size);
}

VOID
_FillDummy_8814A(
	u8*		pFwBuf,
	pu4Byte		pFwLen
	)
{
	u32	FwLen = *pFwLen;
	u8	remain = (u8)(FwLen%4);
	remain = (remain==0)?0:(4-remain);

	while(remain>0)
	{
		pFwBuf[FwLen] = 0;
		FwLen++;
		remain--;
	}

	*pFwLen = FwLen;
}

VOID
_WriteFW_8814A(
	IN		PADAPTER		Adapter,
	IN		PVOID			buffer,
	IN		u32			size
	)
{
	u32 			pageNums,remainSize ;
	u32 			page,offset;
	u8*			bufferPtr = (u8*)buffer;

#ifdef CONFIG_PCI_HCI
	// 20100120 Joseph: Add for 88CE normal chip. 
	// Fill in zero to make firmware image to dword alignment.
	_FillDummy_8814A(bufferPtr, &size);
#endif //CONFIG_PCI_HCI
	
	pageNums = size / MAX_PAGE_SIZE ;		

	//RT_ASSERT((pageNums <= 8), ("Page numbers should not greater then 8 \n"));	
	
	remainSize = size % MAX_PAGE_SIZE;		
	
	for(page = 0; page < pageNums;  page++){
		offset = page *MAX_PAGE_SIZE;
		_PageWrite_8814A(Adapter,page, (bufferPtr+offset),MAX_PAGE_SIZE);			
		rtw_udelay_os(2);
	}
	if(remainSize){
		offset = pageNums *MAX_PAGE_SIZE;
		page = pageNums;
		_PageWrite_8814A(Adapter,page, (bufferPtr+offset),remainSize);
	}	
}

VOID
_3081Disable8814A(
	IN	PADAPTER		Adapter
	)
{
		u8	u1bTmp;
		u1bTmp = rtw_read8(Adapter, REG_SYS_FUNC_EN_8814A+1);
		rtw_write8(Adapter, REG_SYS_FUNC_EN_8814A+1, u1bTmp&(~BIT2));


}

VOID
_3081Enable8814A(
	IN	PADAPTER		Adapter
	)
{
	u8	u1bTmp;
	u1bTmp = rtw_read8(Adapter, REG_SYS_FUNC_EN_8814A+1);
	rtw_write8(Adapter, REG_SYS_FUNC_EN_8814A+1, u1bTmp|BIT2);
}


//add by ylb 20130814 for 3081 download FW
static
BOOLEAN 
IDDMADownLoadFW_3081(
  IN		PADAPTER	Adapter,
  IN	 	u32 source,
  IN	  	u32 dest,
  IN	  	u32  length,
  IN		BOOLEAN fs,
  IN	  	BOOLEAN ls
  )
  {
	u32 ch0ctrl = (DDMA_CHKSUM_EN|DDMA_CH_OWN);
	u32 cnt;
	u1Byte tmp;
	//check if ddma ch0 is idle
	cnt=20;
	while(rtw_read32(Adapter, REG_DDMA_CH0CTRL)&DDMA_CH_OWN)
	{
		rtw_udelay_os(1000);
		cnt--;
		if(cnt==0)
		{ 
			RTW_INFO("IDDMADownLoadFW_3081, line%d: CNT fail\n", __LINE__);
			return _FALSE;
		}
	}
	ch0ctrl |= length & DDMA_LEN_MASK;
	
	//check if chksum continuous
	if(fs == _FALSE){
		ch0ctrl |= DDMA_CH_CHKSUM_CNT;
	} 
	rtw_write32(Adapter,REG_DDMA_CH0SA, source);
	rtw_write32(Adapter,REG_DDMA_CH0DA, dest);
	rtw_write32(Adapter,REG_DDMA_CH0CTRL, ch0ctrl);

	cnt=20;
	while(rtw_read32(Adapter, REG_DDMA_CH0CTRL)&DDMA_CH_OWN)
	{
		rtw_udelay_os(1000);
		cnt--;
		if(cnt==0)
		{ 
			RTW_INFO("IDDMADownLoadFW_3081, line%d: CNT fail\n", __LINE__);
			return _FALSE;
		}
	}
	
	//check checksum 
	if(ls == _TRUE)
	{
		tmp = rtw_read8(Adapter,REG_8051FW_CTRL_8814A);
		if(0==(rtw_read32(Adapter,REG_DDMA_CH0CTRL)&DDMA_CHKSUM_FAIL))
		{//chksum ok
			RTW_INFO("Check sum OK\n");
			//imem
			if(dest < OCPBASE_DMEM_3081)
			{
				tmp |= IMEM_DL_RDY;
				rtw_write8(Adapter,REG_8051FW_CTRL_8814A, tmp|IMEM_CHKSUM_OK);
				RTW_INFO("imem check sum tmp %d\n",tmp);
			}
			//dmem
			else
			{
				tmp |= DMEM_DL_RDY;
				rtw_write8(Adapter,REG_8051FW_CTRL_8814A, tmp|DMEM_CHKSUM_OK);
				RTW_INFO("dmem check sum tmp %d\n",tmp);
			} 
		}
		else
		{//chksum fail
			RTW_INFO("Check sum fail\n");
			ch0ctrl=rtw_read32(Adapter,REG_DDMA_CH0CTRL);
			rtw_write32(Adapter, REG_DDMA_CH0CTRL,ch0ctrl|DDMA_RST_CHKSUM_STS);

			//imem
			if(dest < OCPBASE_DMEM_3081)
			{
				tmp &= (~IMEM_DL_RDY);
				rtw_write8(Adapter,REG_8051FW_CTRL_8814A, tmp&~IMEM_CHKSUM_OK);
			}
			//dmem
			else
			{
				tmp &= (~DMEM_DL_RDY);
				rtw_write8(Adapter,REG_8051FW_CTRL_8814A, tmp&~DMEM_CHKSUM_OK);
			}
			return _FALSE;
		}
	}
	return _TRUE;
}


//add by ylb 20130814 for 3081 download FW
static
BOOLEAN 
WaitDownLoadRSVDPageOK_3081(
	IN	PADAPTER			Adapter
  )
{
	u8	BcnValidReg=0,TxBcReg=0;
	u8	count=0, DLBcnCount=0;
	BOOLEAN bRetValue = _FALSE;
	
#if defined(CONFIG_PCI_HCI)
	//Polling Beacon Queue to send Beacon
	TxBcReg = rtw_read8(Adapter, REG_MGQ_TXBD_NUM_8814A+3);
	count=0;
	while(( count <20) && (TxBcReg & BIT4))
	{
		count++;
		rtw_udelay_os(10);
		TxBcReg = rtw_read8(Adapter, REG_MGQ_TXBD_NUM_8814A+3);
	}
	
	rtw_write8(Adapter, REG_MGQ_TXBD_NUM_8814A+3, TxBcReg|BIT4);
#endif //#if defined(CONFIG_PCI_HCI)
	// check rsvd page download OK.
	BcnValidReg = rtw_read8(Adapter, REG_FIFOPAGE_CTRL_2_8814A+1);
	count=0;
	while(!(BcnValidReg & BIT7) && count <20)
	{
		count++;
		rtw_udelay_os(50);
		BcnValidReg = rtw_read8(Adapter, REG_FIFOPAGE_CTRL_2_8814A+1);
	}
		
	//Set 1 to Clear BIT7 by SW
	if(BcnValidReg & BIT7)
	{
		rtw_write8(Adapter, REG_FIFOPAGE_CTRL_2_8814A+1, (BcnValidReg|BIT7));
		bRetValue =  _TRUE;
	}
	else
	{
		RTW_INFO("WaitDownLoadRSVDPageOK_3081(): Download RSVD page failed!\n");
		bRetValue = _FALSE;
	}

	return bRetValue;
}


VOID
SetDownLoadFwRsvdPagePkt_8814A(
	IN PADAPTER		Adapter,
	IN PVOID			buffer,
	IN u32		len
	)
{
	PHAL_DATA_TYPE pHalData;
	struct xmit_frame	*pcmdframe;
	struct xmit_priv	*pxmitpriv;
	struct pkt_attrib	*pattrib;
	//The desc lengh in Tx packet buffer of 8814A is 40 bytes.	
	u16	BufIndex=0, TxDescOffset = TXDESC_OFFSET;
	u32	TotalPacketLen = len;
	BOOLEAN		bDLOK = FALSE;
	u8	*ReservedPagePacket;
		
	pHalData = GET_HAL_DATA(Adapter);
	pxmitpriv = &Adapter->xmitpriv;

#ifdef CONFIG_BCN_ICF
	pcmdframe = rtw_alloc_cmdxmitframe(pxmitpriv);
#else
	pcmdframe = alloc_mgtxmitframe(pxmitpriv);
#endif
	if (pcmdframe == NULL) {
		return;
	}

	ReservedPagePacket = pcmdframe->buf_addr;

	BufIndex = TxDescOffset;

	TotalPacketLen = len + BufIndex;
	
	_rtw_memcpy(&ReservedPagePacket[BufIndex], buffer, len);
	//RTW_INFO("SetFwRsvdPagePkt_8814A(): HW_VAR_SET_TX_CMD: BCN, %p, %d\n", &ReservedPagePacket[BufIndex], len);
	
	//RTW_INFO("SetFwRsvdPagePkt(): TotalPacketLen=%d \n", TotalPacketLen);
	
	// update attribute
	pattrib = &pcmdframe->attrib;
	update_mgntframe_attrib(Adapter, pattrib);
	pattrib->qsel = QSLT_BEACON;
	pattrib->pktlen = pattrib->last_txcmdsz = TotalPacketLen - TxDescOffset;
	
	dump_mgntframe(Adapter, pcmdframe);

	//ReturnGenTempBuffer(pAdapter, pGenBufReservedPagePacket);
}

/* ************************************************************************************
 *
 * 20100209 Joseph:
 * This function is used only for 92C to set REG_BCN_CTRL(0x550) register.
 * We just reserve the value of the register in variable pHalData->RegBcnCtrlVal and then operate
 * the value of the register via atomic operation.
 * This prevents from race condition when setting this register.
 * The value of pHalData->RegBcnCtrlVal is initialized in HwConfigureRTL8192CE() function.
 *   */
static void SetBcnCtrlReg(
	PADAPTER	padapter,
	u8		SetBits,
	u8		ClearBits)
{
	PHAL_DATA_TYPE pHalData;
	u8 RegBcnCtrlVal = 0;

	pHalData = GET_HAL_DATA(padapter);
	RegBcnCtrlVal = rtw_read8(padapter, REG_BCN_CTRL);

	RegBcnCtrlVal |= SetBits;
	RegBcnCtrlVal &= ~ClearBits;

#if 0
	/* #ifdef CONFIG_SDIO_HCI */
	if (pHalData->sdio_himr & (SDIO_HIMR_TXBCNOK_MSK | SDIO_HIMR_TXBCNERR_MSK))
		RegBcnCtrlVal |= EN_TXBCN_RPT;
#endif
	rtw_write8(padapter, REG_BCN_CTRL, RegBcnCtrlVal);
}

VOID
HalROMDownloadFWRSVDPage8814A(
	IN	PADAPTER			Adapter,
	IN	PVOID				buffer,
	IN	u32				Len
)
{
	u8	u1bTmp=0, tmpReg422=0;	
	u8	BcnValidReg=0,TxBcReg=0;
	BOOLEAN	bSendBeacon=_FALSE, bDownLoadRSVDPageOK = _FALSE;
	u8*  pbuffer = buffer;
	
	BOOLEAN fs = _TRUE, ls = _FALSE;
	u8	FWHeaderSize = 64, PageSize = 128 ;
	u16 RsvdPageNum = 0;
	u32 dmem_pkt_size = 0, iram_pkt_size = 0 ,MaxRsvdPageBufSize = 0;	
	u32 last_block_size = 0, filesize_ram_block = 0, pkt_offset = 0;
	u32 txpktbuf_bndy = 0;
	u32	BeaconHeaderInTxPacketBuf = 0, MEMOffsetInTxPacketBuf  = 0;

	//Set REG_CR bit 8. DMA beacon by SW.
	u1bTmp = rtw_read8(Adapter, REG_CR_8814A+1);
	rtw_write8(Adapter,  REG_CR_8814A+1, (u1bTmp|BIT0));
	/*RTW_INFO("%s-%d: enable SW BCN, REG_CR=0x%x\n", __func__, __LINE__, rtw_read32(Adapter, REG_CR));*/

	// Disable Hw protection for a time which revserd for Hw sending beacon.
	// Fix download reserved page packet fail that access collision with the protection time.
	// 2010.05.11. Added by tynli.
	SetBcnCtrlReg(Adapter, 0, BIT3);
	SetBcnCtrlReg(Adapter, BIT4, 0);
	
	// Set FWHW_TXQ_CTRL 0x422[6]=0 to tell Hw the packet is not a real beacon frame.
	tmpReg422 = rtw_read8(Adapter, REG_FWHW_TXQ_CTRL_8814A+2);
	rtw_write8(Adapter, REG_FWHW_TXQ_CTRL_8814A+2,  tmpReg422&(~BIT6));

	if(tmpReg422&BIT6)
	{
		RTW_INFO("HalROMDownloadFWRSVDPage8814A(): There is an Adapter is sending beacon.\n");
		bSendBeacon = _TRUE;
	}

	//Set The head page of packet of Bcnq
	rtw_hal_get_def_var(Adapter, HAL_DEF_TX_PAGE_BOUNDARY, (u16*)&txpktbuf_bndy);
	rtw_write16(Adapter,REG_FIFOPAGE_CTRL_2_8814A, txpktbuf_bndy);
	
	/* RTW_INFO("HalROMDownloadFWRSVDPage8814A: txpktbuf_bndy=%d\n", txpktbuf_bndy); */
	
	// Clear beacon valid check bit.
	BcnValidReg = rtw_read8(Adapter, REG_FIFOPAGE_CTRL_2_8814A+1);
	rtw_write8(Adapter, REG_FIFOPAGE_CTRL_2_8814A+1, (BcnValidReg|BIT7));
	
	// Return Beacon TCB.
	//ReturnBeaconQueueTcb_8814A(Adapter);
			
	dmem_pkt_size =  (u32)GET_FIRMWARE_HDR_TOTAL_DMEM_SZ_3081(pbuffer);
	iram_pkt_size =  (u32)GET_FIRMWARE_HDR_IRAM_SZ_3081(pbuffer);	
	dmem_pkt_size += (u32)FW_CHKSUM_DUMMY_SZ;
	iram_pkt_size += (u32)FW_CHKSUM_DUMMY_SZ;
			
	if(dmem_pkt_size + iram_pkt_size + FWHeaderSize != Len)
	{
		RTW_INFO("ERROR: Fw Hdr size do not match the real fw size!!\n");
		RTW_INFO("dmem_pkt_size = %d, iram_pkt_size = %d,FWHeaderSize = %d, Len = %d!!\n",dmem_pkt_size,iram_pkt_size,FWHeaderSize,Len);
		return;
	}
	RTW_INFO("dmem_pkt_size = %d, iram_pkt_size = %d,FWHeaderSize = %d, Len = %d!!\n",dmem_pkt_size,iram_pkt_size,FWHeaderSize,Len);
			
	// download rsvd page.	
	//RsvdPageNum = GetTxBufferRsvdPageNum8814A(Adapter, _FALSE);
#ifdef CONFIG_BCN_IC
	/* TODO: check tx buffer and DMA size */
	MaxRsvdPageBufSize = MAX_CMDBUF_SZ-TXDESC_OFFSET;
#else
	MaxRsvdPageBufSize = MAX_XMIT_EXTBUF_SZ-TXDESC_OFFSET;//RsvdPageNum*PageSize - 40 -16 /*modified for usb*/;//TX_INFO_SIZE_8814AE;
#endif
	RTW_INFO("MaxRsvdPageBufSize %d,  Total len %d\n",MaxRsvdPageBufSize,Len);
			
	BeaconHeaderInTxPacketBuf = txpktbuf_bndy * PageSize;
	MEMOffsetInTxPacketBuf = OCPBASE_TXBUF_3081 + BeaconHeaderInTxPacketBuf + 40;//TX_INFO_SIZE_8814AE;	
	//download DMEM
	while(dmem_pkt_size > 0)
	{	
		if(dmem_pkt_size > MaxRsvdPageBufSize)
		{
			filesize_ram_block = MaxRsvdPageBufSize;
			ls = _FALSE;

			last_block_size = dmem_pkt_size -MaxRsvdPageBufSize;
			if(last_block_size < MaxRsvdPageBufSize)
			{
				if(((last_block_size + 40) & 0x3F)  == 0)	// Multiples of 64
					filesize_ram_block -=4;
			}
		}
		else
		{
			filesize_ram_block = dmem_pkt_size;
			ls = _TRUE;					
		}
		fs = (pkt_offset == 0 ? _TRUE: _FALSE);
		// Return Beacon TCB.
		//ReturnBeaconQueueTcb_8814A(Adapter);
		//RTW_INFO("%d packet offset %d dmem_pkt_size %d\n", __LINE__,pkt_offset, dmem_pkt_size);
		SetDownLoadFwRsvdPagePkt_8814A(Adapter, pbuffer+FWHeaderSize+pkt_offset, filesize_ram_block);
		bDownLoadRSVDPageOK = WaitDownLoadRSVDPageOK_3081(Adapter);
		if(!bDownLoadRSVDPageOK)
		{
			RTW_INFO("ERROR: DMEM  bDownLoadRSVDPageOK is false!!\n");
			return;
		}			
		
		IDDMADownLoadFW_3081(Adapter,MEMOffsetInTxPacketBuf,OCPBASE_DMEM_3081+pkt_offset,filesize_ram_block,fs,ls);	
		dmem_pkt_size -= filesize_ram_block;	
		pkt_offset += filesize_ram_block;
	}			
			
	//download IRAM
	pkt_offset = 0;
	while(iram_pkt_size > 0)
	{	
		if(iram_pkt_size > MaxRsvdPageBufSize)
		{
			filesize_ram_block = MaxRsvdPageBufSize;
			ls = _FALSE;

			last_block_size = iram_pkt_size -MaxRsvdPageBufSize;
			if(last_block_size < MaxRsvdPageBufSize)
			{
				if(((last_block_size + 40) & 0x3F)  == 0)	// Multiples of 64
					filesize_ram_block -=4;
			}
		}
		else
		{
			filesize_ram_block = iram_pkt_size;
			ls = _TRUE;
		}
		
		fs = (pkt_offset == 0 ? _TRUE: _FALSE);
		// Return Beacon TCB.
		//ReturnBeaconQueueTcb_8814A(Adapter);
		//RTW_INFO("%d packet offset %d iram_pkt_size %d\n", __LINE__,pkt_offset, iram_pkt_size);
		SetDownLoadFwRsvdPagePkt_8814A(Adapter, pbuffer+Len-iram_pkt_size, filesize_ram_block);
	
		bDownLoadRSVDPageOK = WaitDownLoadRSVDPageOK_3081(Adapter);
		if(!bDownLoadRSVDPageOK)
		{
			RTW_INFO("ERROR: IRAM  bDownLoadRSVDPageOK is false!!\n");
			return;
		}
				
		IDDMADownLoadFW_3081(Adapter,MEMOffsetInTxPacketBuf,OCPBASE_IMEM_3081+pkt_offset,filesize_ram_block,fs,ls);	
	
		iram_pkt_size -= filesize_ram_block;	
		pkt_offset += filesize_ram_block;
	}
			
	// Enable Bcn	
	SetBcnCtrlReg(Adapter, BIT3, 0);
	SetBcnCtrlReg(Adapter, 0, BIT4);

	// To make sure that if there exists an adapter which would like to send beacon.
	// If exists, the origianl value of 0x422[6] will be 1, we should check this to
	// prevent from setting 0x422[6] to 0 after download reserved page, or it will cause 
	// the beacon cannot be sent by HW.
	// 2010.06.23. Added by tynli.
	if(bSendBeacon)
	{
		rtw_write8(Adapter, REG_FWHW_TXQ_CTRL_8814A+2, tmpReg422);
	}

	// Do not enable HW DMA BCN or it will cause Pcie interface hang by timing issue. 2011.11.24. by tynli.
	//if(!Adapter->bEnterPnpSleep)
	{
		// Clear CR[8] or beacon packet will not be send to TxBuf anymore.
		u1bTmp = rtw_read8(Adapter, REG_CR_8814A+1);
		rtw_write8(Adapter, REG_CR_8814A+1, (u1bTmp&(~BIT0)));
	}

	u1bTmp=rtw_read8(Adapter, REG_8051FW_CTRL_8814A); //add by gw for flags to show the fw download ok 20130826
	if( u1bTmp&DMEM_CHKSUM_OK)
	{
		if(u1bTmp&IMEM_CHKSUM_OK)
		{
			u1Byte tem;
			tem=rtw_read8(Adapter, REG_8051FW_CTRL_8814A+1);
			rtw_write8(Adapter, REG_8051FW_CTRL_8814A+1,(tem|BIT6));
		}
	}
}

s32
_FWFreeToGo8814A(
	IN		PADAPTER		Adapter
	)
{
	u32	counter = 0;
	u32	value32;

	// polling CheckSum report
	do{
		rtw_mdelay_os(50);
		value32 = rtw_read32(Adapter, REG_8051FW_CTRL_8814A);
		
	} while ((counter++ < 100) && (!(value32 &  CPU_DL_READY)));

	if (counter >= 100) {
		RTW_ERR("_FWFreeToGo8814A:: FW init fail ! REG_8051FW_CTRL_8814A:0x%08x .\n", value32);		
		return _FAIL;
	}
	RTW_INFO("_FWFreeToGo8814A:: FW init ok ! REG_8051FW_CTRL_8814A:0x%08x .\n", value32);

	
	return _SUCCESS;
}


#ifdef CONFIG_FILE_FWIMG
extern char *rtw_fw_file_path;
u8	FwBuffer8814[FW_SIZE];
#ifdef CONFIG_MP_INCLUDED
extern char *rtw_fw_mp_bt_file_path;
#endif // CONFIG_MP_INCLUDED
u8 FwBuffer[FW_SIZE];
#endif //CONFIG_FILE_FWIMG

s32
FirmwareDownload8814A(
	IN	PADAPTER			Adapter,
	IN	BOOLEAN			bUsedWoWLANFw
)
{
	s32	rtStatus = _SUCCESS;
	u8	write_fw = 0;
	u32 fwdl_start_time;
	PHAL_DATA_TYPE	pHalData = GET_HAL_DATA(Adapter);	
	
	u8				*pFwImageFileName;
	u8				*pucMappedFile = NULL;
	PRT_FIRMWARE_8814	pFirmware = NULL;
	u8				*pFwHdr = NULL;
	u8				*pFirmwareBuf;
	u32				FirmwareLen;


	pFirmware = (PRT_FIRMWARE_8814)rtw_zmalloc(sizeof(RT_FIRMWARE_8814));
	if(!pFirmware)
	{
		rtStatus = _FAIL;
		goto exit;
	}

	#ifdef CONFIG_FILE_FWIMG
	if(rtw_is_file_readable(rtw_fw_file_path) == _TRUE)
	{
		RTW_INFO("%s accquire FW from file:%s\n", __FUNCTION__, rtw_fw_file_path);
		pFirmware->eFWSource = FW_SOURCE_IMG_FILE;
	}
	else
	#endif //CONFIG_FILE_FWIMG
	{
		RTW_INFO("%s fw source from Header\n", __FUNCTION__);
		pFirmware->eFWSource = FW_SOURCE_HEADER_FILE;
	}

	switch(pFirmware->eFWSource)
	{
		case FW_SOURCE_IMG_FILE:
			#ifdef CONFIG_FILE_FWIMG
			rtStatus = rtw_retrieve_from_file(rtw_fw_file_path, FwBuffer8814, FW_SIZE);
			pFirmware->ulFwLength = rtStatus>=0?rtStatus:0;
			pFirmware->szFwBuffer = FwBuffer8814;
			#endif //CONFIG_FILE_FWIMG
			break;
		case FW_SOURCE_HEADER_FILE:
			#ifdef CONFIG_WOWLAN
			if (bUsedWoWLANFw) {
				pFirmware->szFwBuffer = array_mp_8814a_fw_wowlan;
				pFirmware->ulFwLength = array_length_mp_8814a_fw_wowlan;
				RTW_INFO("%s fw:%s, size: %d\n", __FUNCTION__, "WoWLAN", pFirmware->ulFwLength);
			} else
			#endif /* CONFIG_WOWLAN */
			#ifdef CONFIG_BT_COEXIST
			if (pHalData->EEPROMBluetoothCoexist == _TRUE) {
				pFirmware->szFwBuffer = array_mp_8814a_fw_nic_bt;
				pFirmware->ulFwLength = array_length_mp_8814a_fw_nic_bt;
				RTW_INFO("%s fw:%s, size: %d\n", __FUNCTION__, "NIC-BTCOEX", pFirmware->ulFwLength);
			} else
			#endif /* CONFIG_BT_COEXIST */
			{
				//ODM_CmnInfoInit(pDM_OutSrc, ODM_CMNINFO_IC_TYPE, ODM_RTL8814A);
				pFirmware->szFwBuffer = array_mp_8814a_fw_nic;
					pFirmware->ulFwLength = array_length_mp_8814a_fw_nic;
				RTW_INFO("%s fw:%s, size: %d\n", __FUNCTION__, "NIC", pFirmware->ulFwLength);
			}
			break;
	}

	if (pFirmware->ulFwLength > FW_SIZE) {
		rtStatus = _FAIL;
		RTW_ERR("Firmware size:%u exceed %u\n", pFirmware->ulFwLength, FW_SIZE);
		goto exit;
	}

	pFirmwareBuf = pFirmware->szFwBuffer;
	FirmwareLen = pFirmware->ulFwLength;
	pFwHdr = (u8 *)pFirmware->szFwBuffer;

	pHalData->firmware_version =  (u16)GET_FIRMWARE_HDR_VERSION_3081(pFwHdr);
	pHalData->firmware_sub_version = (u16)GET_FIRMWARE_HDR_SUB_VER_3081(pFwHdr);
	pHalData->FirmwareSignature = (u16)GET_FIRMWARE_HDR_SIGNATURE_3081(pFwHdr);

	RTW_INFO ("%s: fw_ver=%d fw_subver=%d sig=0x%x\n",
		  __FUNCTION__, pHalData->firmware_version, pHalData->firmware_sub_version, pHalData->FirmwareSignature);
	fwdl_start_time = rtw_get_current_time();
	
	_FWDownloadEnable_8814A(Adapter, _TRUE);

	_3081Disable8814A(Adapter);//add by gw 2013026 for disable mcu core

	HalROMDownloadFWRSVDPage8814A(Adapter,pFirmwareBuf,FirmwareLen);

	_3081Enable8814A(Adapter);//add by gw 2013026 for Enable mcu core

	_FWDownloadEnable_8814A(Adapter, _FALSE);
	
	rtStatus = _FWFreeToGo8814A(Adapter);	
	if (_SUCCESS != rtStatus)
		goto fwdl_stat;

fwdl_stat:
	RTW_INFO("FWDL %s. write_fw:%u, %dms\n"
		, (rtStatus == _SUCCESS)?"success":"fail"
		, write_fw
		, rtw_get_passing_time_ms(fwdl_start_time)
	);

exit:
	if (pFirmware)
		rtw_mfree((u8*)pFirmware, sizeof(RT_FIRMWARE_8814));

#ifdef CONFIG_WOWLAN
	if (adapter_to_pwrctl(Adapter)->wowlan_mode)
		InitializeFirmwareVars8814(Adapter);	
	else
		RTW_ERR("%s: wowland_mode:%d wowlan_wake_reason:%d\n", 
			__func__, adapter_to_pwrctl(Adapter)->wowlan_mode, 
			adapter_to_pwrctl(Adapter)->wowlan_wake_reason);
#endif

	return rtStatus;
}



void InitializeFirmwareVars8814(PADAPTER padapter)
{
	PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
	struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(padapter);

	// Init Fw LPS related.
	pwrpriv->bFwCurrentInPSMode = _FALSE;

	/* Init H2C cmd.*/
	rtw_write8(padapter, REG_HMETFR_8814A, 0x0f);

	// Init H2C counter. by tynli. 2009.12.09.
	pHalData->LastHMEBoxNum = 0;
}

/*
//
// Description: Determine the contents of H2C BT_FW_PATCH Command sent to FW.
// 2013.01.23 by tynli
// Porting from 8723B. 2013.04.01
//
VOID
SetFwBTFwPatchCmd(
	IN PADAPTER Adapter,
	IN u16		FwSize
	)
{
	u8		u1BTFwPatchParm[6]={0};

	RTW_INFO("SetFwBTFwPatchCmd_8821(): FwSize = %d\n", FwSize);

	//SET_8812_H2CCMD_BT_FW_PATCH_ENABLE(u1BTFwPatchParm, 1);
	SET_H2CCMD_BT_FW_PATCH_SIZE(u1BTFwPatchParm, FwSize);
	SET_H2CCMD_BT_FW_PATCH_ADDR0(u1BTFwPatchParm, 0);
	SET_H2CCMD_BT_FW_PATCH_ADDR1(u1BTFwPatchParm, 0xa0);
	SET_H2CCMD_BT_FW_PATCH_ADDR2(u1BTFwPatchParm, 0x10);
	SET_H2CCMD_BT_FW_PATCH_ADDR3(u1BTFwPatchParm, 0x80);

	FillH2CCmd_8812(Adapter, H2C_BT_FW_PATCH, 6 , u1BTFwPatchParm);
}


int _CheckWLANFwPatchBTFwReady_8821A( PADAPTER	Adapter )
{
	HAL_DATA_TYPE	*pHalData = GET_HAL_DATA(Adapter);
	u32	count=0;
	u8	u1bTmp;
	int ret = _FAIL;
	
#if (DEV_BUS_TYPE == RT_SDIO_INTERFACE)
		u32	txpktbuf_bndy;
#endif

	//---------------------------------------------------------
	// Check if BT FW patch procedure is ready.
	//---------------------------------------------------------
	do{
		u1bTmp = rtw_read8(Adapter, REG_FW_DRV_MSG_8812);
		if((u1bTmp&BIT6) || (u1bTmp&BIT7))
		{	
			ret = _SUCCESS;
			break;
		}
		count++;
		RT_TRACE(_module_mp_, _drv_info_,("0x81=%x, wait for 50 ms (%d) times.\n",
					u1bTmp, count));
		rtw_msleep_os(50); // 50ms
	}while(!((u1bTmp&BIT6) || (u1bTmp&BIT7)) && count < 50);

	RT_TRACE(_module_mp_, _drv_notice_,("_CheckWLANFwPatchBTFwReady():"
				" Polling ready bit 0x88[6:7] for %d times.\n", count));

	if(count >= 50)
	{
		RTW_INFO("_CheckWLANFwPatchBTFwReady():"
				" Polling ready bit 0x88[6:7] FAIL!!\n");
	}

	//---------------------------------------------------------
	// Reset beacon setting to the initial value.
	//---------------------------------------------------------
#if (DEV_BUS_TYPE == RT_SDIO_INTERFACE)
#if 0
		if(!Adapter->MgntInfo.bWiFiConfg)
		{
			txpktbuf_bndy = TX_PAGE_BOUNDARY_8821;
		}
		else
#endif
		{// for WMM
			txpktbuf_bndy = WMM_NORMAL_TX_PAGE_BOUNDARY_8821;
		}
		
		ret =	InitLLTTable8812A(Adapter, txpktbuf_bndy);
		if(_SUCCESS != ret){
			RTW_INFO("_CheckWLANFwPatchBTFwReady_8821A(): Failed to init LLT!\n");
		}
	
		// Init Tx boundary.
		rtw_write8(Adapter, REG_TDECTRL+1, (u8)txpktbuf_bndy);
#endif

	SetBcnCtrlReg(Adapter, BIT3, 0);
	SetBcnCtrlReg(Adapter, 0, BIT4);
	
	rtw_write8(Adapter, REG_FWHW_TXQ_CTRL+2, (pHalData->RegFwHwTxQCtrl|BIT6));
	pHalData->RegFwHwTxQCtrl |= BIT6;

	u1bTmp = rtw_read8(Adapter, REG_CR+1);
	rtw_write8(Adapter, REG_CR+1, (u1bTmp&(~BIT0)));
	
	return ret;
}


int _WriteBTFWtoTxPktBuf8812(
	PADAPTER		Adapter,
	PVOID			buffer,
	u32			FwBufLen,
	u8			times
	)
{
	int 		rtStatus = _SUCCESS;
	//u32				value32;
	//u8				numHQ, numLQ, numPubQ;//, txpktbuf_bndy;
	HAL_DATA_TYPE		*pHalData = GET_HAL_DATA(Adapter);
	//PMGNT_INFO		pMgntInfo = &(Adapter->MgntInfo);
	u8				BcnValidReg;
	u8				count=0, DLBcnCount=0;
	u8* 			FwbufferPtr = (u8*)buffer;
	//PRT_TCB			pTcb, ptempTcb;
	//PRT_TX_LOCAL_BUFFER pBuf;
	BOOLEAN 			bRecover=_FALSE;
	u8* 			ReservedPagePacket = NULL;
	u8* 			pGenBufReservedPagePacket = NULL;
	u32				TotalPktLen,txpktbuf_bndy;
	//u8				tmpReg422;
	//u8				u1bTmp;
	u8			*pframe;
	struct xmit_priv	*pxmitpriv = &(Adapter->xmitpriv);
	struct xmit_frame	*pmgntframe;
	struct pkt_attrib	*pattrib;
	u8			txdesc_offset = TXDESC_OFFSET;
	u8			val8;

#if 1//(DEV_BUS_TYPE == RT_PCI_INTERFACE)
	TotalPktLen = FwBufLen;
#else
	TotalPktLen = FwBufLen+pHalData->HWDescHeadLength;
#endif
	if((TotalPktLen+TXDESC_OFFSET) > MAX_CMDBUF_SZ)
	{
		RTW_INFO(" WARNING %s => Total packet len = %d over MAX_CMDBUF_SZ:%d \n"
			,__FUNCTION__,(TotalPktLen+TXDESC_OFFSET),MAX_CMDBUF_SZ);
		return _FAIL;
	}
	pGenBufReservedPagePacket = rtw_zmalloc(TotalPktLen);//GetGenTempBuffer (Adapter, TotalPktLen);
	if (!pGenBufReservedPagePacket)
		return _FAIL;

	ReservedPagePacket = (u8 *)pGenBufReservedPagePacket;

	_rtw_memset(ReservedPagePacket, 0, TotalPktLen);

#if 1//(DEV_BUS_TYPE == RT_PCI_INTERFACE)
	_rtw_memcpy(ReservedPagePacket, FwbufferPtr, FwBufLen);

#else
	PlatformMoveMemory(ReservedPagePacket+Adapter->HWDescHeadLength , FwbufferPtr, FwBufLen);
#endif

	//---------------------------------------------------------
	// 1. Pause BCN
	//---------------------------------------------------------
	//Set REG_CR bit 8. DMA beacon by SW.
#if 0//(DEV_BUS_TYPE == RT_PCI_INTERFACE)
	u1bTmp = rtw_read8(Adapter, REG_CR+1);
	rtw_write8(Adapter,  REG_CR+1, (u1bTmp|BIT0));
#else
	// Remove for temparaily because of the code on v2002 is not sync to MERGE_TMEP for USB/SDIO.
	// De not remove this part on MERGE_TEMP. by tynli.
	//pHalData->RegCR_1 |= (BIT0);
	//rtw_write8(Adapter,  REG_CR+1, pHalData->RegCR_1);
#endif

	// Disable Hw protection for a time which revserd for Hw sending beacon.
	// Fix download reserved page packet fail that access collision with the protection time.
	// 2010.05.11. Added by tynli.
	val8 = rtw_read8(Adapter, REG_BCN_CTRL);
	val8 &= ~BIT(3);
	val8 |= BIT(4);
	rtw_write8(Adapter, REG_BCN_CTRL, val8);

#if 0//(DEV_BUS_TYPE == RT_PCI_INTERFACE)
	tmpReg422 = rtw_read8(Adapter, REG_FWHW_TXQ_CTRL+2);
	if( tmpReg422&BIT6)
		bRecover = _TRUE;
	rtw_write8(Adapter, REG_FWHW_TXQ_CTRL+2,  tmpReg422&(~BIT6));
#else
	// Set FWHW_TXQ_CTRL 0x422[6]=0 to tell Hw the packet is not a real beacon frame.
	if(pHalData->RegFwHwTxQCtrl & BIT(6))
		bRecover=_TRUE;
	rtw_write8(Adapter, REG_FWHW_TXQ_CTRL+2, (pHalData->RegFwHwTxQCtrl&(~BIT(6))));
	pHalData->RegFwHwTxQCtrl &= (~ BIT(6));
#endif

	//---------------------------------------------------------
	// 2. Adjust LLT table to an even boundary.
	//---------------------------------------------------------
#if 0//(DEV_BUS_TYPE == RT_SDIO_INTERFACE)
	txpktbuf_bndy = 10; // rsvd page start address should be an even value. 														
	rtStatus =	InitLLTTable8723BS(Adapter, txpktbuf_bndy);
	if(_SUCCESS != rtStatus){
		RTW_INFO("_CheckWLANFwPatchBTFwReady_8723B(): Failed to init LLT!\n");
		return _FAIL;
	}
	
	// Init Tx boundary.
	rtw_write8(Adapter, REG_DWBCN0_CTRL_8723B+1, (u8)txpktbuf_bndy);	
#endif


	//---------------------------------------------------------
	// 3. Write Fw to Tx packet buffer by reseverd page.
	//---------------------------------------------------------
	do
	{
		// download rsvd page.
		// Clear beacon valid check bit.
		BcnValidReg = rtw_read8(Adapter, REG_TDECTRL+2);
		rtw_write8(Adapter, REG_TDECTRL+2, BcnValidReg&(~BIT(0)));

		//BT patch is big, we should set 0x209 < 0x40 suggested from Gimmy
		RT_TRACE(_module_mp_, _drv_info_,("0x209:%x\n",
					rtw_read8(Adapter, REG_TDECTRL+1)));//209 < 0x40

		rtw_write8(Adapter, REG_TDECTRL+1, (0x90-0x20*(times-1)));
		RTW_INFO("0x209:0x%x\n", rtw_read8(Adapter, REG_TDECTRL+1));
		RT_TRACE(_module_mp_, _drv_info_,("0x209:%x\n",
					rtw_read8(Adapter, REG_TDECTRL+1)));

#if 0
		// Acquice TX spin lock before GetFwBuf and send the packet to prevent system deadlock.
		// Advertised by Roger. Added by tynli. 2010.02.22.
		PlatformAcquireSpinLock(Adapter, RT_TX_SPINLOCK);
		if(MgntGetFWBuffer(Adapter, &pTcb, &pBuf))
		{
			PlatformMoveMemory(pBuf->Buffer.VirtualAddress, ReservedPagePacket, TotalPktLen);
			CmdSendPacket(Adapter, pTcb, pBuf, TotalPktLen, DESC_PACKET_TYPE_NORMAL, _FALSE);
		}
		else
			dbgdump("SetFwRsvdPagePkt(): MgntGetFWBuffer FAIL!!!!!!!!.\n");
		PlatformReleaseSpinLock(Adapter, RT_TX_SPINLOCK);
#else
		//---------------------------------------------------------
		//tx reserved_page_packet
		//----------------------------------------------------------
			if ((pmgntframe = rtw_alloc_cmdxmitframe(pxmitpriv)) == NULL) {
					rtStatus = _FAIL;
					goto exit;
			}
			//update attribute
			pattrib = &pmgntframe->attrib;
			update_mgntframe_attrib(Adapter, pattrib);

			pattrib->qsel = QSLT_BEACON;
			pattrib->pktlen = pattrib->last_txcmdsz = FwBufLen ;

			//_rtw_memset(pmgntframe->buf_addr, 0, TotalPktLen+txdesc_size);
			//pmgntframe->buf_addr = ReservedPagePacket ;

			_rtw_memcpy( (u8*) (pmgntframe->buf_addr + txdesc_offset), ReservedPagePacket, FwBufLen);
			RTW_INFO("[%d]===>TotalPktLen + TXDESC_OFFSET TotalPacketLen:%d \n", DLBcnCount, (FwBufLen + txdesc_offset));

#ifdef CONFIG_PCI_HCI
			dump_mgntframe(Adapter, pmgntframe);
#else
			dump_mgntframe_and_wait(Adapter, pmgntframe, 100);
#endif

#endif
#if 1
		// check rsvd page download OK.
		BcnValidReg = rtw_read8(Adapter, REG_TDECTRL+2);
		while(!(BcnValidReg & BIT(0)) && count <200)
		{
			count++;
			//PlatformSleepUs(10);
			rtw_msleep_os(1);
			BcnValidReg = rtw_read8(Adapter, REG_TDECTRL+2);
			RT_TRACE(_module_mp_, _drv_notice_,("Poll 0x20A = %x\n", BcnValidReg));
		}
		DLBcnCount++;
		//RTW_INFO("##0x208:%08x,0x210=%08x\n",rtw_read32(Adapter, REG_TDECTRL),rtw_read32(Adapter, 0x210));

		rtw_write8(Adapter, REG_TDECTRL+2,BcnValidReg);
		
	}while((!(BcnValidReg&BIT(0))) && DLBcnCount<5);


#endif
	if(DLBcnCount >=5){
		RTW_INFO(" check rsvd page download OK DLBcnCount =%d  \n",DLBcnCount);
		rtStatus = _FAIL;
		goto exit;
	}

	if(!(BcnValidReg&BIT(0)))
	{
		RTW_INFO("_WriteFWtoTxPktBuf(): 1 Download RSVD page failed!\n");
		rtStatus = _FAIL;
		goto exit;
	}

	//---------------------------------------------------------
	// 4. Set Tx boundary to the initial value
	//---------------------------------------------------------


	//---------------------------------------------------------
	// 5. Reset beacon setting to the initial value.
	//	 After _CheckWLANFwPatchBTFwReady().
	//---------------------------------------------------------

exit:

	if(pGenBufReservedPagePacket)
	{
		RTW_INFO("_WriteBTFWtoTxPktBuf8723B => rtw_mfree pGenBufReservedPagePacket!\n");
		rtw_mfree((u8*)pGenBufReservedPagePacket, TotalPktLen);
		}
	return rtStatus;
}

int ReservedPage_Compare(PADAPTER Adapter,PRT_MP_FIRMWARE pFirmware,u32 BTPatchSize)
{
	u8 temp,ret,lastBTsz;
	u32 u1bTmp=0,address_start=0,count=0,i=0;
	u8	*myBTFwBuffer = NULL;

	myBTFwBuffer = rtw_zmalloc(BTPatchSize);
	if (myBTFwBuffer == NULL)
	{
		RTW_INFO("%s can't be executed due to the failed malloc.\n", __FUNCTION__);
		Adapter->mppriv.bTxBufCkFail=_TRUE;
		return _FALSE;
	}	
	
	temp=rtw_read8(Adapter,0x209);
	
	address_start=(temp*128)/8;
	
	rtw_write32(Adapter,0x140,0x00000000);
	rtw_write32(Adapter,0x144,0x00000000);
	rtw_write32(Adapter,0x148,0x00000000);

	rtw_write8(Adapter,0x106,0x69);

	
	for(i=0;i<(BTPatchSize/8);i++)
	{
		rtw_write32(Adapter,0x140,address_start+5+i) ;		  
			
		//polling until reg 0x140[23]=1;
		do{
			u1bTmp = rtw_read32(Adapter, 0x140);
			if(u1bTmp&BIT(23))
			{
				ret = _SUCCESS;
				break;
			}
			count++;
			RTW_INFO("0x140=%x, wait for 10 ms (%d) times.\n",u1bTmp, count);
			rtw_msleep_os(10); // 10ms
		}while(!(u1bTmp&BIT(23)) && count < 50);
		
			myBTFwBuffer[i*8+0]=rtw_read8(Adapter, 0x144);
			myBTFwBuffer[i*8+1]=rtw_read8(Adapter, 0x145);
			myBTFwBuffer[i*8+2]=rtw_read8(Adapter, 0x146); 
			myBTFwBuffer[i*8+3]=rtw_read8(Adapter, 0x147);
			myBTFwBuffer[i*8+4]=rtw_read8(Adapter, 0x148);
			myBTFwBuffer[i*8+5]=rtw_read8(Adapter, 0x149);
			myBTFwBuffer[i*8+6]=rtw_read8(Adapter, 0x14a);
			myBTFwBuffer[i*8+7]=rtw_read8(Adapter, 0x14b);
	}
	
	rtw_write32(Adapter,0x140,address_start+5+BTPatchSize/8) ;			  

	lastBTsz=BTPatchSize%8;
	
	//polling until reg 0x140[23]=1;
	u1bTmp=0;
	count=0;
	do{
			u1bTmp = rtw_read32(Adapter, 0x140);
			if(u1bTmp&BIT(23))
			{
				ret = _SUCCESS;
				break;
			}
			count++;
			RTW_INFO("0x140=%x, wait for 10 ms (%d) times.\n",u1bTmp, count);
			rtw_msleep_os(10); // 10ms
	}while(!(u1bTmp&BIT(23)) && count < 50);

	for(i=0;i<lastBTsz;i++)
	{
		myBTFwBuffer[(BTPatchSize/8)*8+i] = rtw_read8(Adapter, (0x144+i));

	}

	for(i=0;i<BTPatchSize;i++)
	{
		if(myBTFwBuffer[i]!= pFirmware->szFwBuffer[i])
		{
			RTW_INFO(" In direct myBTFwBuffer[%d]=%x , pFirmware->szFwBuffer=%x\n",i, myBTFwBuffer[i],pFirmware->szFwBuffer[i]);
			Adapter->mppriv.bTxBufCkFail=_TRUE;
			break;
		}
	}

	if (myBTFwBuffer != NULL)
	{
		rtw_mfree(myBTFwBuffer, BTPatchSize);
	}
	
	return _TRUE;
}

#ifdef CONFIG_RTL8821A
s32 FirmwareDownloadBT(PADAPTER padapter, PRT_MP_FIRMWARE pFirmware)
{
	s32 rtStatus;
	u8 *pBTFirmwareBuf;
	u32 BTFirmwareLen;
	u8 download_time;
	s8 i;


	rtStatus = _SUCCESS;
	pBTFirmwareBuf = NULL;
	BTFirmwareLen = 0;

	//
	// Patch BT Fw. Download BT RAM code to Tx packet buffer.
	//
	if (padapter->bBTFWReady) {
		RTW_INFO("%s: BT Firmware is ready!!\n", __FUNCTION__);
		return _FAIL;
	}

#ifdef CONFIG_FILE_FWIMG
	if (rtw_is_file_readable(rtw_fw_mp_bt_file_path) == _TRUE)
	{
		RTW_INFO("%s: accquire MP BT FW from file:%s\n", __FUNCTION__, rtw_fw_mp_bt_file_path);

		rtStatus = rtw_retrieve_from_file(rtw_fw_mp_bt_file_path, FwBuffer, 0x8000);
		BTFirmwareLen = rtStatus>=0?rtStatus:0;
		pBTFirmwareBuf = FwBuffer;
	}
	else
#endif // CONFIG_FILE_FWIMG
	{
#ifdef CONFIG_EMBEDDED_FWIMG
		RTW_INFO("%s: Download MP BT FW from header\n", __FUNCTION__);

		pBTFirmwareBuf = (u8*)Rtl8821A_BT_MP_Patch_FW;
		BTFirmwareLen = Rtl8812BFwBTImgArrayLength;
		pFirmware->szFwBuffer = pBTFirmwareBuf;
		pFirmware->ulFwLength = BTFirmwareLen;
#endif // CONFIG_EMBEDDED_FWIMG
	}

	RTW_INFO("%s: MP BT Firmware size=%d\n", __FUNCTION__, BTFirmwareLen);

	// for h2c cam here should be set to  true
	padapter->bFWReady = _TRUE;

	download_time = (BTFirmwareLen + 4095) / 4096;
	RTW_INFO("%s: download_time is %d\n", __FUNCTION__, download_time);

	// Download BT patch Fw.
	for (i = (download_time-1); i >= 0; i--)
	{
		if (i == (download_time - 1))
		{
			rtStatus = _WriteBTFWtoTxPktBuf8812(padapter, pBTFirmwareBuf+(4096*i), (BTFirmwareLen-(4096*i)), 1);
			RTW_INFO("%s: start %d, len %d, time 1\n", __FUNCTION__, 4096*i, BTFirmwareLen-(4096*i));
		}
		else
		{
			rtStatus = _WriteBTFWtoTxPktBuf8812(padapter, pBTFirmwareBuf+(4096*i), 4096, (download_time-i));
			RTW_INFO("%s: start %d, len 4096, time %d\n", __FUNCTION__, 4096*i, download_time-i);
		}

		if (rtStatus != _SUCCESS)
		{
			RTW_INFO("%s: BT Firmware download to Tx packet buffer fail!\n", __FUNCTION__);
			padapter->bBTFWReady = _FALSE;
			return rtStatus;
		}
	}

	ReservedPage_Compare(padapter,pFirmware,BTFirmwareLen);

	padapter->bBTFWReady = _TRUE;
	SetFwBTFwPatchCmd_8821(padapter, (u16)BTFirmwareLen);
	rtStatus = _CheckWLANFwPatchBTFwReady_8821A(padapter);

	RTW_INFO("<===%s: return %s!\n", __FUNCTION__, rtStatus==_SUCCESS?"SUCCESS":"FAIL");
	return rtStatus;
}
#endif //CONFIG_RTL8821A*/

#ifdef CONFIG_WOWLAN
//===========================================
//
// Description: Prepare some information to Fw for WoWLAN.
//					(1) Download wowlan Fw.
//					(2) Download RSVD page packets.
//					(3) Enable AP offload if needed.
//
// 2011.04.12 by tynli.
//
VOID
SetFwRelatedForWoWLAN8812(
		IN		PADAPTER			padapter,
		IN		u8					bHostIsGoingtoSleep
)
{
		int				status=_FAIL;
		HAL_DATA_TYPE	*pHalData = GET_HAL_DATA(padapter);
		u8				bRecover = _FALSE;
	//
	// 1. Before WoWLAN we need to re-download WoWLAN Fw.
	//
	status = FirmwareDownload8812(padapter, bHostIsGoingtoSleep);
	if(status != _SUCCESS) {
		RTW_INFO("SetFwRelatedForWoWLAN8812(): Re-Download Firmware failed!!\n");
		return;
	} else {
		RTW_INFO("SetFwRelatedForWoWLAN8812(): Re-Download Firmware Success !!\n");
	}
	//
	// 2. Re-Init the variables about Fw related setting.
	//
	InitializeFirmwareVars8812(padapter);
}
#endif //CONFIG_WOWLAN

//===========================================================
//				Efuse related code
//===========================================================
BOOLEAN 
hal_GetChnlGroup8814A(
	IN	u8 Channel,
	OUT u8*	pGroup
	)
{
	BOOLEAN bIn24G=_TRUE;

	if(Channel <= 14)
	{
		bIn24G=_TRUE;

		if      (1  <= Channel && Channel <= 2 )   *pGroup = 0;
		else if (3  <= Channel && Channel <= 5 )   *pGroup = 1;
		else if (6  <= Channel && Channel <= 8 )   *pGroup = 2;
		else if (9  <= Channel && Channel <= 11)   *pGroup = 3;
		else if (12 <= Channel && Channel <= 14)   *pGroup = 4;
		else
		{
			RT_DISP(FPHY, PHY_TXPWR_EFUSE, ("==>hal_GetChnlGroupJaguar in 2.4 G, but Channel %d in Group not found \n", Channel));
		}
	}
	else
	{
		bIn24G=_FALSE;

		if      (36   <= Channel && Channel <=  42)   *pGroup = 0;		// 36 38 40
		else if (44   <= Channel && Channel <=  48)   *pGroup = 1;	// 44 46 48
		else if (50   <= Channel && Channel <=  58)   *pGroup = 2;	// 52 54 56
		else if (60   <= Channel && Channel <=  64)   *pGroup = 3;	// 60 62 64
		else if (100  <= Channel && Channel <= 106)   *pGroup = 4;	// 100 102 104
		else if (108  <= Channel && Channel <= 114)   *pGroup = 5;	// 108 110 112
		else if (116  <= Channel && Channel <= 122)   *pGroup = 6;	// 116 118  120
		else if (124  <= Channel && Channel <= 130)   *pGroup = 7;	// 124 126 128
		else if (132  <= Channel && Channel <= 138)   *pGroup = 8;	// 132 134 136
		else if (140  <= Channel && Channel <= 144)   *pGroup = 9;	// 140 142 144
		else if (149  <= Channel && Channel <= 155)   *pGroup = 10;	// 149 151 153
		else if (157  <= Channel && Channel <= 161)   *pGroup = 11;	// 157 159 161
		else if (165  <= Channel && Channel <= 171)   *pGroup = 12;	// 165 167 169
		else if (173  <= Channel && Channel <= 177)   *pGroup = 13;	// 173 175 177
		else
		{
			RT_DISP(FPHY, PHY_TXPWR_EFUSE, ("==>hal_GetChnlGroupJaguar in 5G, but Channel %d in Group not found \n",Channel));
		}

	}

	return bIn24G;
}

#if 0
static void
hal_ReadPowerValueFromPROM8814A(
	IN	PADAPTER 		Adapter,
	IN	PTxPowerInfo24G	pwrInfo24G,
	IN	PTxPowerInfo5G	pwrInfo5G,
	IN	u8*				PROMContent,
	IN	BOOLEAN			AutoLoadFail
	)
{
	HAL_DATA_TYPE	*pHalData = GET_HAL_DATA(Adapter);
	u32 rfPath, eeAddr=EEPROM_TX_PWR_INX_8814, group,TxCount=0;
	
	_rtw_memset(pwrInfo24G, 0, sizeof(TxPowerInfo24G));
	_rtw_memset(pwrInfo5G, 0, sizeof(TxPowerInfo5G));

	/* RTW_INFO("hal_ReadPowerValueFromPROM8814A(): PROMContent[0x%x]=0x%x\n", (eeAddr+1), PROMContent[eeAddr+1]); */
	if(0xFF == PROMContent[eeAddr+1])  //YJ,add,120316
		AutoLoadFail = _TRUE;

	if(AutoLoadFail)
	{
		RTW_INFO("hal_ReadPowerValueFromPROM8814A(): Use Default value!\n");
		for(rfPath = 0 ; rfPath < MAX_RF_PATH ; rfPath++)
		{
			// 2.4G default value
			for(group = 0 ; group < MAX_CHNL_GROUP_24G; group++)
			{
				pwrInfo24G->IndexCCK_Base[rfPath][group] =	EEPROM_DEFAULT_24G_INDEX;
				pwrInfo24G->IndexBW40_Base[rfPath][group] =	EEPROM_DEFAULT_24G_INDEX;
			}
			for(TxCount=0;TxCount<MAX_TX_COUNT;TxCount++)
			{
				if(TxCount==0)
				{
					pwrInfo24G->BW20_Diff[rfPath][0] =	EEPROM_DEFAULT_24G_HT20_DIFF;
					pwrInfo24G->OFDM_Diff[rfPath][0] =	EEPROM_DEFAULT_24G_OFDM_DIFF;
				}
				else
				{
					pwrInfo24G->BW20_Diff[rfPath][TxCount] =	EEPROM_DEFAULT_DIFF;
					pwrInfo24G->BW40_Diff[rfPath][TxCount] =	EEPROM_DEFAULT_DIFF;
					pwrInfo24G->CCK_Diff[rfPath][TxCount] =	EEPROM_DEFAULT_DIFF;
					pwrInfo24G->OFDM_Diff[rfPath][TxCount] =	EEPROM_DEFAULT_DIFF;
				}
			}	

			// 5G default value
			for(group = 0 ; group < MAX_CHNL_GROUP_5G; group++)
			{
				pwrInfo5G->IndexBW40_Base[rfPath][group] =		EEPROM_DEFAULT_5G_INDEX;
			}
			
			for(TxCount=0;TxCount<MAX_TX_COUNT;TxCount++)
			{
				if(TxCount==0)
				{
					pwrInfo5G->OFDM_Diff[rfPath][0] =	EEPROM_DEFAULT_5G_OFDM_DIFF;
					pwrInfo5G->BW20_Diff[rfPath][0] =	EEPROM_DEFAULT_5G_HT20_DIFF;
					pwrInfo5G->BW80_Diff[rfPath][0] =	EEPROM_DEFAULT_DIFF;
					pwrInfo5G->BW160_Diff[rfPath][0] =	EEPROM_DEFAULT_DIFF;
				}
				else
				{
					pwrInfo5G->OFDM_Diff[rfPath][TxCount] =	EEPROM_DEFAULT_DIFF;
					pwrInfo5G->BW20_Diff[rfPath][TxCount] =	EEPROM_DEFAULT_DIFF;
					pwrInfo5G->BW40_Diff[rfPath][TxCount]=	EEPROM_DEFAULT_DIFF;
					pwrInfo5G->BW80_Diff[rfPath][TxCount]=	EEPROM_DEFAULT_DIFF;
					pwrInfo5G->BW160_Diff[rfPath][TxCount] =	EEPROM_DEFAULT_DIFF;

				}
			}	
			
		}
		
		//pHalData->bNOPG = _TRUE;				
		return;
	}

	for(rfPath = 0 ; rfPath < MAX_RF_PATH ; rfPath++)
	{
		// 2.4G default value
		for(group = 0 ; group < MAX_CHNL_GROUP_24G; group++)
		{
			pwrInfo24G->IndexCCK_Base[rfPath][group] =	PROMContent[eeAddr++];
			if(pwrInfo24G->IndexCCK_Base[rfPath][group] == 0xFF)
			{
				pwrInfo24G->IndexCCK_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
			}
			/* RTW_INFO("8814-2G RF-%d-G-%d CCK-Addr-%x BASE=%x\n", 
				rfPath, group, eeAddr-1, pwrInfo24G->IndexCCK_Base[rfPath][group]); */
		}
		for(group = 0 ; group < MAX_CHNL_GROUP_24G-1; group++)
		{
			pwrInfo24G->IndexBW40_Base[rfPath][group] =	PROMContent[eeAddr++];
			if(pwrInfo24G->IndexBW40_Base[rfPath][group] == 0xFF)
				pwrInfo24G->IndexBW40_Base[rfPath][group] =	EEPROM_DEFAULT_24G_INDEX;
			/* RTW_INFO("8814-2G RF-%d-G-%d BW40-Addr-%x BASE=%x\n", 
				rfPath, group, eeAddr-1, pwrInfo24G->IndexBW40_Base[rfPath][group]); */
		}
		for(TxCount=0;TxCount<MAX_TX_COUNT;TxCount++)
		{
			if(TxCount==0)
			{
				pwrInfo24G->BW40_Diff[rfPath][TxCount] = 0;

				{
					pwrInfo24G->BW20_Diff[rfPath][TxCount] =	(PROMContent[eeAddr]&0xf0)>>4;				
				 	if(pwrInfo24G->BW20_Diff[rfPath][TxCount] & BIT3)		//4bit sign number to 8 bit sign number
						pwrInfo24G->BW20_Diff[rfPath][TxCount] |= 0xF0;
				}
				/* RTW_INFO("8814-2G RF-%d-SS-%d BW20-Addr-%x DIFF=%d\n", 
					rfPath, TxCount, eeAddr, pwrInfo24G->BW20_Diff[rfPath][TxCount]); */

				{
					pwrInfo24G->OFDM_Diff[rfPath][TxCount] =	(PROMContent[eeAddr]&0x0f);					
					if(pwrInfo24G->OFDM_Diff[rfPath][TxCount] & BIT3)		//4bit sign number to 8 bit sign number
						pwrInfo24G->OFDM_Diff[rfPath][TxCount] |= 0xF0;
				}
				/* RTW_INFO("8814-2G RF-%d-SS-%d LGOD-Addr-%x DIFF=%d\n", 
					rfPath, TxCount, eeAddr, pwrInfo24G->OFDM_Diff[rfPath][TxCount]); */

				pwrInfo24G->CCK_Diff[rfPath][TxCount] = 0;
				eeAddr++;
			}
			else
			{				

				{
					pwrInfo24G->BW40_Diff[rfPath][TxCount] =	(PROMContent[eeAddr]&0xf0)>>4;				
					if(pwrInfo24G->BW40_Diff[rfPath][TxCount] & BIT3)		//4bit sign number to 8 bit sign number
						pwrInfo24G->BW40_Diff[rfPath][TxCount] |= 0xF0;
				}
				/* RTW_INFO("8814-2G RF-%d-SS-%d BW40-Addr-%x DIFF=%d\n", 
					rfPath, TxCount, eeAddr, pwrInfo24G->BW40_Diff[rfPath][TxCount]); */


				{
					pwrInfo24G->BW20_Diff[rfPath][TxCount] =	(PROMContent[eeAddr]&0x0f);				
					if(pwrInfo24G->BW20_Diff[rfPath][TxCount] & BIT3)		//4bit sign number to 8 bit sign number
						pwrInfo24G->BW20_Diff[rfPath][TxCount] |= 0xF0;
				}
				/* RTW_INFO("8814-2G RF-%d-SS-%d BW20-Addr-%x DIFF=%d\n", 
					rfPath, TxCount, eeAddr, pwrInfo24G->BW20_Diff[rfPath][TxCount]); */

				eeAddr++;
				

				{
					pwrInfo24G->OFDM_Diff[rfPath][TxCount] =	(PROMContent[eeAddr]&0xf0)>>4;				
					if(pwrInfo24G->OFDM_Diff[rfPath][TxCount] & BIT3)		//4bit sign number to 8 bit sign number
						pwrInfo24G->OFDM_Diff[rfPath][TxCount] |= 0xF0;
				}
				/* RTW_INFO("8814-2G RF-%d-SS-%d LGOD-Addr-%x DIFF=%d\n", 
					rfPath, TxCount, eeAddr, pwrInfo24G->BW20_Diff[rfPath][TxCount]); */


				{
					pwrInfo24G->CCK_Diff[rfPath][TxCount] =	(PROMContent[eeAddr]&0x0f);				
					if(pwrInfo24G->CCK_Diff[rfPath][TxCount] & BIT3)		//4bit sign number to 8 bit sign number
						pwrInfo24G->CCK_Diff[rfPath][TxCount] |= 0xF0;
				}
				/* RTW_INFO("8814-2G RF-%d-SS-%d CCK-Addr-%x DIFF=%d\n", 
					rfPath, TxCount, eeAddr, pwrInfo24G->CCK_Diff[rfPath][TxCount]); */

				eeAddr++;
			}
		}

		//5G default value
		for(group = 0 ; group < MAX_CHNL_GROUP_5G; group++)
		{
			pwrInfo5G->IndexBW40_Base[rfPath][group] =		PROMContent[eeAddr++];
			if(pwrInfo5G->IndexBW40_Base[rfPath][group] == 0xFF)
				pwrInfo5G->IndexBW40_Base[rfPath][group] = EEPROM_DEFAULT_DIFF;												

			/* RTW_INFO("8814-5G RF-%d-G-%d BW40-Addr-%x BASE=%x\n", 
				rfPath, TxCount, eeAddr-1, pwrInfo5G->IndexBW40_Base[rfPath][group]); */
		}
		
		for(TxCount=0;TxCount<MAX_TX_COUNT;TxCount++)
		{
			if(TxCount==0)
			{
				pwrInfo5G->BW40_Diff[rfPath][TxCount]=	 0;				
			

				{
					pwrInfo5G->BW20_Diff[rfPath][0] =	(PROMContent[eeAddr]&0xf0)>>4;				
					if(pwrInfo5G->BW20_Diff[rfPath][TxCount] & BIT3)		//4bit sign number to 8 bit sign number
						pwrInfo5G->BW20_Diff[rfPath][TxCount] |= 0xF0;		
				}
				/* RTW_INFO("8814-5G RF-%d-SS-%d BW20-Addr-%x DIFF=%d\n", 
					rfPath, TxCount, eeAddr, pwrInfo5G->BW20_Diff[rfPath][TxCount]); */


				{
					pwrInfo5G->OFDM_Diff[rfPath][0] =	(PROMContent[eeAddr]&0x0f);				
					if(pwrInfo5G->OFDM_Diff[rfPath][TxCount] & BIT3)		//4bit sign number to 8 bit sign number
						pwrInfo5G->OFDM_Diff[rfPath][TxCount] |= 0xF0;								
				}
				/* RTW_INFO("8814-5G RF-%d-SS-%d LGOD-Addr-%x DIFF=%d\n", 
					rfPath, TxCount, eeAddr, pwrInfo5G->OFDM_Diff[rfPath][TxCount]); */

				eeAddr++;
			}
			else
			{

				{
					pwrInfo5G->BW40_Diff[rfPath][TxCount]=	 (PROMContent[eeAddr]&0xf0)>>4;					
					if(pwrInfo5G->BW40_Diff[rfPath][TxCount] & BIT3)		//4bit sign number to 8 bit sign number
					pwrInfo5G->BW40_Diff[rfPath][TxCount] |= 0xF0;	
				}
				/* RTW_INFO("8814-5G RF-%d-SS-%d BW40-Addr-%x DIFF=%d\n", 
					rfPath, TxCount, eeAddr, pwrInfo5G->BW40_Diff[rfPath][TxCount]); */
				

				{
					pwrInfo5G->BW20_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0x0f);				
					if(pwrInfo5G->BW20_Diff[rfPath][TxCount] & BIT3)		//4bit sign number to 8 bit sign number
					pwrInfo5G->BW20_Diff[rfPath][TxCount] |= 0xF0;					
				}
				/* RTW_INFO("8814-5G RF-%d-SS-%d BW20-Addr-%x DIFF=%d\n", 
					rfPath, TxCount, eeAddr, pwrInfo5G->BW20_Diff[rfPath][TxCount]); */
				
				eeAddr++;
			}
		}	


		{
			pwrInfo5G->OFDM_Diff[rfPath][1] =	(PROMContent[eeAddr]&0xf0)>>4;
			pwrInfo5G->OFDM_Diff[rfPath][2] =	(PROMContent[eeAddr]&0x0f);
		}
		/* RTW_INFO("8814-5G RF-%d-SS-%d LGOD-Addr-%x DIFF=%d\n", 
			rfPath, 2, eeAddr, pwrInfo5G->OFDM_Diff[rfPath][2]); */
		eeAddr++;		


			pwrInfo5G->OFDM_Diff[rfPath][3] =	(PROMContent[eeAddr]&0x0f);

		/* RTW_INFO("8814-5G RF-%d-SS-%d LGOD-Addr-%x DIFF=%d\n", 
			rfPath, 3, eeAddr, pwrInfo5G->OFDM_Diff[rfPath][3]); */
		eeAddr++;
		
		for(TxCount=1;TxCount<MAX_TX_COUNT;TxCount++)
		{
			if(pwrInfo5G->OFDM_Diff[rfPath][TxCount] & BIT3)		//4bit sign number to 8 bit sign number
				pwrInfo5G->OFDM_Diff[rfPath][TxCount] |= 0xF0;			

			/* RTW_INFO("8814-5G RF-%d-SS-%d LGOD-Addr-%x DIFF=%d\n", 
				rfPath, TxCount, eeAddr, pwrInfo5G->OFDM_Diff[rfPath][TxCount]); */
		}	
		
		for(TxCount=0;TxCount<MAX_TX_COUNT;TxCount++)
		{		

			{
				pwrInfo5G->BW80_Diff[rfPath][TxCount] =	(PROMContent[eeAddr]&0xf0)>>4;			
				if(pwrInfo5G->BW80_Diff[rfPath][TxCount] & BIT3)		//4bit sign number to 8 bit sign number
					pwrInfo5G->BW80_Diff[rfPath][TxCount] |= 0xF0;			
			}
			/* RTW_INFO("8814-5G RF-%d-SS-%d BW80-Addr-%x DIFF=%d\n", 
				rfPath, TxCount, eeAddr, pwrInfo5G->BW80_Diff[rfPath][TxCount]); */
			

			{
				pwrInfo5G->BW160_Diff[rfPath][TxCount]=	(PROMContent[eeAddr]&0x0f);			
				if(pwrInfo5G->BW160_Diff[rfPath][TxCount] & BIT3)		//4bit sign number to 8 bit sign number
					pwrInfo5G->BW160_Diff[rfPath][TxCount] |= 0xF0;						
			}
			/* RTW_INFO("8814-5G RF-%d-SS-%d BW160-Addr-%x DIFF=%d\n", 
				rfPath, TxCount, eeAddr, pwrInfo5G->BW160_Diff[rfPath][TxCount]); */
			eeAddr++;
		}
	}

}
#endif

VOID
HALBT_InitHalVars(
	IN	PADAPTER	Adapter
	)
{
	HAL_DATA_TYPE	*pHalData = GET_HAL_DATA(Adapter);
#ifdef CONFIG_BT_COEXIST
#if (MP_DRIVER == 1)
	pHalData->bt_coexist.bBtExist = 0;
#else
	pHalData->bt_coexist.bBtExist = pHalData->EEPROMBluetoothCoexist;
#endif
	pHalData->bt_coexist.btTotalAntNum = pHalData->EEPROMBluetoothAntNum;
	pHalData->bt_coexist.btChipType = pHalData->EEPROMBluetoothType;
#endif //CONFIG_BT_COEXIST
}


VOID 
BT_InitHalVars(
	IN	PADAPTER			Adapter
	)
{
	u8	antNum=2, chipType;
	BOOLEAN	bBtExist=_FALSE;

	// HALBT_InitHalVars() must be called first
	HALBT_InitHalVars(Adapter);
#if 0
	// called after HALBT_InitHalVars()
	bBtExist = HALBT_GetBtExist(Adapter);
	EXhalbtcoutsrc_SetBtExist(bBtExist);
	chipType = HALBT_GetBtChipType(Adapter);
	EXhalbtcoutsrc_SetChipType(chipType);
	antNum = HALBT_GetPgAntNum(Adapter);
	EXhalbtcoutsrc_SetAntNum(BT_COEX_ANT_TYPE_PG, antNum);
#endif
}


VOID
hal_EfuseParseBTCoexistInfo8814A(
	IN PADAPTER			Adapter,
	IN u8*			hwinfo,
	IN BOOLEAN			AutoLoadFail
	)
{
	HAL_DATA_TYPE	*pHalData = GET_HAL_DATA(Adapter);
	u8			tempval=0x0;

	if(!AutoLoadFail)
	{
		tempval = hwinfo[EEPROM_RF_BOARD_OPTION_8814];
		if( ((tempval & 0xe0)>>5) == 0x1)// [7:5]
			pHalData->EEPROMBluetoothCoexist = 1;
		else
			pHalData->EEPROMBluetoothCoexist = 0;
		pHalData->EEPROMBluetoothType = BT_RTL8814A;

		tempval = hwinfo[EEPROM_RF_BT_SETTING_8814];
		pHalData->EEPROMBluetoothAntNum = Ant_x1;
	}
	else
	{
		pHalData->EEPROMBluetoothCoexist = 0;
		pHalData->EEPROMBluetoothType = BT_RTL8814A;
		pHalData->EEPROMBluetoothAntNum = Ant_x1;
	}

	BT_InitHalVars(Adapter);
}

VOID
hal_ReadPROMVersion8814A(
	IN	PADAPTER	Adapter,	
	IN	u8* 	PROMContent,
	IN	BOOLEAN 	AutoloadFail
	)
{
	HAL_DATA_TYPE	*pHalData = GET_HAL_DATA(Adapter);

	if(AutoloadFail){
		pHalData->EEPROMVersion = EEPROM_Default_Version;		
	}
	else{
		pHalData->EEPROMVersion = *(u8 *)&PROMContent[EEPROM_VERSION_8814];
		if(pHalData->EEPROMVersion == 0xFF)
			pHalData->EEPROMVersion = EEPROM_Default_Version;					
	}
}
#if 0
void
hal_ReadTxPowerInfo8814A(
	IN	PADAPTER 		Adapter,
	IN	u8*				PROMContent,
	IN	BOOLEAN			AutoLoadFail
	)
{	
	HAL_DATA_TYPE	*pHalData = GET_HAL_DATA(Adapter);
	TxPowerInfo24G	pwrInfo24G;
	TxPowerInfo5G	pwrInfo5G;
	u8	rfPath, ch, group, TxCount;

	hal_ReadPowerValueFromPROM8814A(Adapter, &pwrInfo24G,&pwrInfo5G, PROMContent, AutoLoadFail);

	//if(!AutoLoadFail)
	//	pHalData->bTXPowerDataReadFromEEPORM = _TRUE;		

	for(rfPath = 0 ; rfPath < MAX_RF_PATH ; rfPath++)
	{
		for (ch = 0 ; ch < CENTER_CH_2G_NUM ; ch++) {
			hal_GetChnlGroup8814A(ch+1, &group);

			if(ch == 14-1) 
			{
				pHalData->Index24G_CCK_Base[rfPath][ch] = pwrInfo24G.IndexCCK_Base[rfPath][5];
				pHalData->Index24G_BW40_Base[rfPath][ch] = pwrInfo24G.IndexBW40_Base[rfPath][group];
			}
			else
			{
				pHalData->Index24G_CCK_Base[rfPath][ch] = pwrInfo24G.IndexCCK_Base[rfPath][group];
				pHalData->Index24G_BW40_Base[rfPath][ch] = pwrInfo24G.IndexBW40_Base[rfPath][group];
			}
			//RTW_INFO("======= Path %d, ChannelIndex %d, Group %d=======\n",rfPath,ch, group);	
			//RTW_INFO("Index24G_CCK_Base[%d][%d] = 0x%x\n",rfPath,ch ,pHalData->Index24G_CCK_Base[rfPath][ch]);
			//RTW_INFO("Index24G_BW40_Base[%d][%d] = 0x%x\n",rfPath,ch,pHalData->Index24G_BW40_Base[rfPath][ch]);
		}	

		for (ch = 0 ; ch < CENTER_CH_5G_ALL_NUM; ch++) {
			hal_GetChnlGroup8814A(center_ch_5g_all[ch], &group);
			
			pHalData->Index5G_BW40_Base[rfPath][ch] = pwrInfo5G.IndexBW40_Base[rfPath][group];
			//RTW_INFO("======= Path %d, ChannelIndex %d, Group %d=======\n",rfPath,ch, group);			
			//RTW_INFO("Index5G_BW40_Base[%d][%d] = 0x%x\n",rfPath,ch,pHalData->Index5G_BW40_Base[rfPath][ch]);
		}
		for (ch = 0 ; ch < CENTER_CH_5G_80M_NUM; ch++) {
			u8	upper, lower;
			
			hal_GetChnlGroup8814A(center_ch_5g_80m[ch], &group);
			upper = pwrInfo5G.IndexBW40_Base[rfPath][group];
			lower = pwrInfo5G.IndexBW40_Base[rfPath][group+1];
			
			pHalData->Index5G_BW80_Base[rfPath][ch] = (upper + lower) / 2;
			
			//RTW_INFO("======= Path %d, ChannelIndex %d, Group %d=======\n",rfPath,ch, group);	
			//RTW_INFO("Index5G_BW80_Base[%d][%d] = 0x%x\n",rfPath,ch,pHalData->Index5G_BW80_Base[rfPath][ch]);
		}

		for(TxCount=0;TxCount<MAX_TX_COUNT;TxCount++)
		{
			pHalData->CCK_24G_Diff[rfPath][TxCount]=pwrInfo24G.CCK_Diff[rfPath][TxCount];
			pHalData->OFDM_24G_Diff[rfPath][TxCount]=pwrInfo24G.OFDM_Diff[rfPath][TxCount];
			pHalData->BW20_24G_Diff[rfPath][TxCount]=pwrInfo24G.BW20_Diff[rfPath][TxCount];
			pHalData->BW40_24G_Diff[rfPath][TxCount]=pwrInfo24G.BW40_Diff[rfPath][TxCount];
			
			pHalData->OFDM_5G_Diff[rfPath][TxCount]=pwrInfo5G.OFDM_Diff[rfPath][TxCount];
			pHalData->BW20_5G_Diff[rfPath][TxCount]=pwrInfo5G.BW20_Diff[rfPath][TxCount];
			pHalData->BW40_5G_Diff[rfPath][TxCount]=pwrInfo5G.BW40_Diff[rfPath][TxCount];
			pHalData->BW80_5G_Diff[rfPath][TxCount]=pwrInfo5G.BW80_Diff[rfPath][TxCount];
//#if DBG
#if 0
			RTW_INFO("--------------------------------------- 2.4G ---------------------------------------\n");
			RTW_INFO("CCK_24G_Diff[%d][%d]= %d\n",rfPath,TxCount,pHalData->CCK_24G_Diff[rfPath][TxCount]);
			RTW_INFO("OFDM_24G_Diff[%d][%d]= %d\n",rfPath,TxCount,pHalData->OFDM_24G_Diff[rfPath][TxCount]);
			RTW_INFO("BW20_24G_Diff[%d][%d]= %d\n",rfPath,TxCount,pHalData->BW20_24G_Diff[rfPath][TxCount]);
			RTW_INFO("BW40_24G_Diff[%d][%d]= %d\n",rfPath,TxCount,pHalData->BW40_24G_Diff[rfPath][TxCount]);
			RTW_INFO("---------------------------------------- 5G ----------------------------------------\n");
			RTW_INFO("OFDM_5G_Diff[%d][%d]= %d\n",rfPath,TxCount,pHalData->OFDM_5G_Diff[rfPath][TxCount]);
			RTW_INFO("BW20_5G_Diff[%d][%d]= %d\n",rfPath,TxCount,pHalData->BW20_5G_Diff[rfPath][TxCount]);
			RTW_INFO("BW40_5G_Diff[%d][%d]= %d\n",rfPath,TxCount,pHalData->BW40_5G_Diff[rfPath][TxCount]);
			RTW_INFO("BW80_5G_Diff[%d][%d]= %d\n",rfPath,TxCount,pHalData->BW80_5G_Diff[rfPath][TxCount]);
#endif							
		}
	}

	
	// 2010/10/19 MH Add Regulator recognize for CU.
	if(!AutoLoadFail)
	{
		struct registry_priv  *registry_par = &Adapter->registrypriv;
		
		pHalData->EEPROMRegulatory = (PROMContent[EEPROM_RF_BOARD_OPTION_8814]&0x7);	//bit0~2
		if(PROMContent[EEPROM_RF_BOARD_OPTION_8814] == 0xFF)
			pHalData->EEPROMRegulatory = (EEPROM_DEFAULT_BOARD_OPTION&0x7);	//bit0~2
	}
	else
	{
		pHalData->EEPROMRegulatory = 0;

	}
	RTW_INFO("EEPROMRegulatory = 0x%x\n", pHalData->EEPROMRegulatory);

}
#else
void
hal_ReadTxPowerInfo8814A(
	IN	PADAPTER		Adapter,
	IN	u8				*PROMContent,
	IN	BOOLEAN			AutoLoadFail
)
{
	HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
	TxPowerInfo24G pwrInfo24G;
	TxPowerInfo5G pwrInfo5G;

	hal_load_txpwr_info(Adapter, &pwrInfo24G, &pwrInfo5G, PROMContent);

	/* 2010/10/19 MH Add Regulator recognize for CU. */
	if (!AutoLoadFail) {
		struct registry_priv  *registry_par = &Adapter->registrypriv;


		if (PROMContent[EEPROM_RF_BOARD_OPTION_8814] == 0xFF)
			pHalData->EEPROMRegulatory = (EEPROM_DEFAULT_BOARD_OPTION & 0x7);	/* bit0~2 */
		else
			pHalData->EEPROMRegulatory = (PROMContent[EEPROM_RF_BOARD_OPTION_8814] & 0x7);	/* bit0~2 */

	} else
		pHalData->EEPROMRegulatory = 0;
	RTW_INFO("EEPROMRegulatory = 0x%x\n", pHalData->EEPROMRegulatory);

}
#endif

VOID
hal_ReadBoardType8814A(
	IN	PADAPTER	Adapter,	
	IN	u8*		PROMContent,
	IN	BOOLEAN		AutoloadFail
	)
{


	HAL_DATA_TYPE	*pHalData = GET_HAL_DATA(Adapter);

	if(!AutoloadFail)
	{
		pHalData->InterfaceSel = (PROMContent[EEPROM_RF_BOARD_OPTION_8814]&0xE0)>>5;
		if(PROMContent[EEPROM_RF_BOARD_OPTION_8814] == 0xFF)
			pHalData->InterfaceSel = (EEPROM_DEFAULT_BOARD_OPTION&0xE0)>>5;
	}
	else
	{
		pHalData->InterfaceSel = 0;
	}
	RTW_INFO("Board Type: 0x%2x\n", pHalData->InterfaceSel);
}

VOID
hal_Read_TRX_antenna_8814A(
	IN	PADAPTER	Adapter,	
	IN	u8	*PROMContent,
	IN	BOOLEAN		AutoloadFail
	)
{
	HAL_DATA_TYPE	*pHalData = GET_HAL_DATA(Adapter);
	u8 trx_antenna = RF_2T4R;

	if (!AutoloadFail) {
		u8 trx_antenna_option = PROMContent[EEPROM_TRX_ANTENNA_OPTION_8814];

		if (trx_antenna_option == 0xff) {
			trx_antenna = RF_4T4R;
			RTW_INFO("EEPROM RF set 4T4R\n");
		} else if (trx_antenna_option == 0xee) {
			trx_antenna = RF_3T3R;
			RTW_INFO("EEPROM RF set 3T3R\n");
		} else if (trx_antenna_option == 0x66) {
			trx_antenna = RF_2T2R;
			RTW_INFO("EEPROM RF set 2T2R\n");
		} else if (trx_antenna_option == 0x6f) {
			trx_antenna = RF_2T4R;
			RTW_INFO("EEPROM RF set 2T4R\n");
		} else {
			trx_antenna = RF_2T4R;
			RTW_INFO("unknown EEPROM RF set, default to 2T4R\n");
		}
	} else {
		trx_antenna = RF_2T4R;
		RTW_INFO("AutoloadFail, default to 2T4R\n");
	}
	
	/* if driver doesn't set rf_config, use the value of EEPROM */
	if (Adapter->registrypriv.rf_config == RF_TYPE_MAX) {

		if (trx_antenna == RF_4T4R
#ifdef CONFIG_USB_HCI
		&& IS_SUPER_SPEED_USB(Adapter)
#endif /* CONFIG_USB_HCI */
		)
			Adapter->registrypriv.rf_config = RF_3T3R;
		else if (trx_antenna == RF_2T4R)
			Adapter->registrypriv.rf_config = RF_2T4R;
		else {
			Adapter->registrypriv.rf_config = RF_2T4R;
			RTW_INFO("default rf type: %d\n", Adapter->registrypriv.rf_config);
		}
	} else {
#ifdef CONFIG_USB_HCI
		if (!IS_SUPER_SPEED_USB(Adapter))
			Adapter->registrypriv.rf_config = RF_2T4R;
#endif /* CONFIG_USB_HCI */
	}
	
	RTW_INFO("Final rf_config: %d\n", Adapter->registrypriv.rf_config);
}


VOID
hal_ReadThermalMeter_8814A(
	IN	PADAPTER	Adapter,	
	IN	u8* 		PROMContent,
	IN	BOOLEAN 	AutoloadFail
	)
{
	HAL_DATA_TYPE	*pHalData = GET_HAL_DATA(Adapter);

	pHalData->eeprom_thermal_meter = 0xff;
	
	if(!AutoloadFail)	
		pHalData->eeprom_thermal_meter = PROMContent[EEPROM_THERMAL_METER_8814];

#if 0 /* ToDo: check with RF */
	else
		pHalData->eeprom_thermal_meter = EEPROM_Default_ThermalMeter_8814A;

	if ((pHalData->eeprom_thermal_meter == 0xff) || (_TRUE == AutoloadFail)) {
		pHalData->odmpriv.rf_calibrate_info.bAPKThermalMeterIgnore = _TRUE;
		pHalData->eeprom_thermal_meter = EEPROM_Default_ThermalMeter_8814A;
	}
#endif

	//pHalData->ThermalMeter[0] = pHalData->eeprom_thermal_meter;
	RTW_INFO("ThermalMeter = 0x%x\n", pHalData->eeprom_thermal_meter);
}


void hal_ReadRemoteWakeup_8814A(
	PADAPTER		padapter,
	IN	u8*			hwinfo,
	IN	BOOLEAN			AutoLoadFail
	)
{
	HAL_DATA_TYPE	*pHalData = GET_HAL_DATA(padapter);
	struct pwrctrl_priv *pwrctl = adapter_to_pwrctl(padapter);
	u8 tmpvalue;

	if(AutoLoadFail){
		pwrctl->bHWPowerdown = _FALSE;
		pwrctl->bSupportRemoteWakeup = _FALSE;
	}
	else
	{		
		// decide hw if support remote wakeup function
		// if hw supported, 8051 (SIE) will generate WeakUP signal( D+/D- toggle) when autoresume
/* todo: wowlan should check the efuse again
#ifdef CONFIG_USB_HCI
		if(IS_HARDWARE_TYPE_8821U(padapter))
			pwrctl->bSupportRemoteWakeup = (hwinfo[EEPROM_USB_OPTIONAL_FUNCTION0_8811AU] & BIT1)?_TRUE :_FALSE;
		else
			pwrctl->bSupportRemoteWakeup = (hwinfo[EEPROM_USB_OPTIONAL_FUNCTION0] & BIT1)?_TRUE :_FALSE;
#endif //CONFIG_USB_HCI
*/
		RTW_INFO("%s...bSupportRemoteWakeup(%x)\n",__FUNCTION__, pwrctl->bSupportRemoteWakeup);
	}
}

VOID
hal_ReadChannelPlan8814A(
	IN	PADAPTER		padapter,
	IN	u8*				hwinfo,
	IN	BOOLEAN			AutoLoadFail
	)
{
	struct rf_ctl_t *rfctl = adapter_to_rfctl(padapter);
	hal_com_config_channel_plan(
			padapter
			, hwinfo ? &hwinfo[EEPROM_COUNTRY_CODE_8814] : NULL
			, hwinfo ? hwinfo[EEPROM_ChannelPlan_8814] : 0xFF
			, padapter->registrypriv.alpha2
			, padapter->registrypriv.channel_plan
			, RTW_CHPLAN_REALTEK_DEFINE
			, AutoLoadFail
					 );
/*
	padapter->mlmepriv.ChannelPlan = hal_com_config_channel_plan(
		padapter
		, hwinfo?hwinfo[EEPROM_ChannelPlan_8814]:0xFF
		, padapter->registrypriv.channel_plan
		, RTW_CHPLAN_REALTEK_DEFINE
		, AutoLoadFail
	);
*/
	RTW_INFO("rfctl->ChannelPlan = 0x%02x\n", rfctl->ChannelPlan);
}

void hal_GetRxGainOffset_8814A(
	PADAPTER	Adapter,
	pu1Byte		PROMContent,
	BOOLEAN		AutoloadFail
	)
{
	HAL_DATA_TYPE	*pHalData = GET_HAL_DATA(Adapter);
	struct registry_priv *pregistrypriv = &Adapter->registrypriv;

	pHalData->RxGainOffset[0] = 0;
	pHalData->RxGainOffset[1] = 0;
	pHalData->RxGainOffset[2] = 0;
	pHalData->RxGainOffset[3] = 0;

	if ((pregistrypriv->reg_rxgain_offset_2g != 0 && pregistrypriv->reg_rxgain_offset_5gl != 0) && 
		(pregistrypriv->reg_rxgain_offset_5gm != 0 && pregistrypriv->reg_rxgain_offset_5gh != 0)) {
		pHalData->RxGainOffset[0] = pregistrypriv->reg_rxgain_offset_2g;
		pHalData->RxGainOffset[1] = pregistrypriv->reg_rxgain_offset_5gl;
		pHalData->RxGainOffset[2] = pregistrypriv->reg_rxgain_offset_5gm;
		pHalData->RxGainOffset[3] = pregistrypriv->reg_rxgain_offset_5gh;
		RTW_INFO("%s():Use registrypriv 0x%x 0x%x 0x%x 0x%x !!\n", __func__, pregistrypriv->reg_rxgain_offset_2g, pregistrypriv->reg_rxgain_offset_5gl, pregistrypriv->reg_rxgain_offset_5gm, pregistrypriv->reg_rxgain_offset_5gh);

	} else {
		RTW_INFO("%s(): AutoloadFail = %d!!\n", __func__, AutoloadFail);
		pHalData->RxGainOffset[0] = PROMContent[EEPROM_IG_OFFSET_4_CD_2G_8814A];
		pHalData->RxGainOffset[0] |= (PROMContent[EEPROM_IG_OFFSET_4_AB_2G_8814A]) << 8;
		pHalData->RxGainOffset[1] = PROMContent[EEPROM_IG_OFFSET_4_CD_5GL_8814A];
		pHalData->RxGainOffset[1] |= (PROMContent[EEPROM_IG_OFFSET_4_AB_5GL_8814A]) << 8;
		pHalData->RxGainOffset[2] = PROMContent[EEPROM_IG_OFFSET_4_CD_5GM_8814A];
		pHalData->RxGainOffset[2] |= (PROMContent[EEPROM_IG_OFFSET_4_AB_5GM_8814A]) << 8;
		pHalData->RxGainOffset[3] = PROMContent[EEPROM_IG_OFFSET_4_CD_5GH_8814A];
		pHalData->RxGainOffset[3] |= (PROMContent[EEPROM_IG_OFFSET_4_AB_5GH_8814A]) << 8;
	}
	RTW_INFO("hal_GetRxGainOffset_8814A(): RegRxGainOffset_2G = 0x%x!!\n", pHalData->RxGainOffset[0]);
	RTW_INFO("hal_GetRxGainOffset_8814A(): RegRxGainOffset_5GL = 0x%x!!\n", pHalData->RxGainOffset[1]);
	RTW_INFO("hal_GetRxGainOffset_8814A(): RegRxGainOffset_5GM = 0x%x!!\n", pHalData->RxGainOffset[2]);
	RTW_INFO("hal_GetRxGainOffset_8814A(): RegRxGainOffset_5GH = 0x%x!!\n", pHalData->RxGainOffset[3]);
}


void Hal_EfuseParseKFreeData_8814A(
	IN		PADAPTER		Adapter,
	IN		u8				*PROMContent,
	IN		BOOLEAN			AutoloadFail)
{
#ifdef CONFIG_RF_GAIN_OFFSET

	HAL_DATA_TYPE	*pHalData = GET_HAL_DATA(Adapter);
	struct kfree_data_t *kfree_data = &pHalData->kfree_data;
	u8 kfreePhydata[KFREE_GAIN_DATA_LENGTH_8814A];
	u32 i = 0, j = 2, chidx = 0, efuseaddr = 0;
	u8 rfpath = 0;

	if (GET_PG_KFREE_ON_8814A(PROMContent) && PROMContent[0xc8] != 0xff)
		kfree_data->flag |= KFREE_FLAG_ON;
	if (GET_PG_KFREE_THERMAL_K_ON_8814A(PROMContent) && PROMContent[0xc8] != 0xff)
		kfree_data->flag |= KFREE_FLAG_THERMAL_K_ON;

	if (Adapter->registrypriv.RegRfKFreeEnable == 1) {
			kfree_data->flag |= KFREE_FLAG_ON;
			kfree_data->flag |= KFREE_FLAG_THERMAL_K_ON;
	}

	_rtw_memset(kfree_data->bb_gain, 0xff, BB_GAIN_NUM * RF_PATH_MAX);

	if (kfree_data->flag & KFREE_FLAG_ON) {

		for (i = 0; i < KFREE_GAIN_DATA_LENGTH_8814A; i++) {
			efuseaddr = PPG_BB_GAIN_2G_TXBA_OFFSET_8814A - i;

			if (efuseaddr <= PPG_BB_GAIN_2G_TXBA_OFFSET_8814A) {
				kfreePhydata[i] = EFUSE_Read1Byte(Adapter, efuseaddr);
				RTW_INFO("%s,kfreePhydata[%d] = %x\n", __func__, i, kfreePhydata[i]);
			}
		}
		kfree_data->bb_gain[0][RF_PATH_A]
			= (kfreePhydata[0] & PPG_BB_GAIN_2G_TX_OFFSET_MASK);
		kfree_data->bb_gain[0][RF_PATH_B]
			= (kfreePhydata[0] & PPG_BB_GAIN_2G_TXB_OFFSET_MASK) >> 4;
		kfree_data->bb_gain[0][RF_PATH_C]
			= (kfreePhydata[1] & PPG_BB_GAIN_2G_TX_OFFSET_MASK);
		kfree_data->bb_gain[0][RF_PATH_D]
			= (kfreePhydata[1] & PPG_BB_GAIN_2G_TXB_OFFSET_MASK) >> 4;

		for (chidx = 1; chidx <= BB_GAIN_5GHB; chidx++) {
			for (rfpath = RF_PATH_A;  rfpath < RF_PATH_MAX; rfpath++)
					kfree_data->bb_gain[chidx][rfpath] = kfreePhydata[j + rfpath] & PPG_BB_GAIN_5G_TX_OFFSET_MASK;

			j = j + RF_PATH_MAX;
		}
	}

	if (kfree_data->flag & KFREE_FLAG_THERMAL_K_ON)
		pHalData->eeprom_thermal_meter += kfree_data->thermal;

	RTW_INFO("registrypriv.RegRfKFreeEnable = %d\n", Adapter->registrypriv.RegRfKFreeEnable);

	RTW_INFO("kfree flag:%u\n", kfree_data->flag);
	if (Adapter->registrypriv.RegRfKFreeEnable == 1 || kfree_data->flag & KFREE_FLAG_ON) {
		for (chidx = 0 ; chidx <= BB_GAIN_5GHB; chidx++) {
			for (rfpath = RF_PATH_A;  rfpath < RF_PATH_MAX; rfpath++)
				RTW_INFO("bb_gain[%d][%d]= %x\n", chidx, rfpath, kfree_data->bb_gain[chidx][rfpath]);
		}
	}

#endif /*CONFIG_RF_GAIN_OFFSET */
}


VOID
hal_EfuseParseXtal_8814A(
	IN	PADAPTER	pAdapter,
	IN	u8*			hwinfo,
	IN	BOOLEAN		AutoLoadFail
	)
{
	HAL_DATA_TYPE	*pHalData = GET_HAL_DATA(pAdapter);

	if(!AutoLoadFail)
	{
		pHalData->crystal_cap = hwinfo[EEPROM_XTAL_8814];
		if(pHalData->crystal_cap == 0xFF)
			pHalData->crystal_cap = EEPROM_Default_CrystalCap_8814;	 /* what value should 8814 set? */
	}
	else
	{
		pHalData->crystal_cap = EEPROM_Default_CrystalCap_8814;
	}
	RTW_INFO("crystal_cap: 0x%2x\n", pHalData->crystal_cap);
}

VOID
hal_ReadAntennaDiversity8814A(
	IN	PADAPTER		pAdapter,
	IN	u8*				PROMContent,
	IN	BOOLEAN			AutoLoadFail
	)
{
	HAL_DATA_TYPE	*pHalData = GET_HAL_DATA(pAdapter);
	
	pHalData->TRxAntDivType = NO_ANTDIV; 
	pHalData->AntDivCfg = 0;
	
	RTW_INFO("SWAS: bHwAntDiv = %x, TRxAntDivType = %x\n", 
                                                pHalData->AntDivCfg, pHalData->TRxAntDivType);
}

VOID
hal_ReadPAType_8814A(
	IN	PADAPTER	Adapter,
	IN	u8*			PROMContent,
	IN	BOOLEAN		AutoloadFail,
	OUT u8*		pPAType, 
	OUT u8*		pLNAType
	)
{
	HAL_DATA_TYPE	*pHalData = GET_HAL_DATA(Adapter);
	u8			LNAType_AB, LNAType_CD;

	if( ! AutoloadFail )
	{
		u8			rfe_type = PROMContent[EEPROM_RFE_OPTION_8814];

		if (GetRegAmplifierType2G(Adapter) == 0) // AUTO
		{
			*pPAType = EF1Byte( *(u8*)&PROMContent[EEPROM_PA_TYPE_8814] );

			LNAType_AB = EF1Byte( *(u8*)&PROMContent[EEPROM_LNA_TYPE_AB_2G_8814] );
			LNAType_CD = EF1Byte( *(u8*)&PROMContent[EEPROM_LNA_TYPE_CD_2G_8814] );
			
			if (*pPAType == 0xFF && rfe_type == 0xFF)
				pHalData->ExternalPA_2G  = (GetRegAmplifierType2G(Adapter)&ODM_BOARD_EXT_PA)  ? 1 : 0; 
  			else	
				pHalData->ExternalPA_2G = (*pPAType & BIT4) ? 1 : 0;

			if (LNAType_AB == 0xFF)
				pHalData->ExternalLNA_2G = (GetRegAmplifierType2G(Adapter)&ODM_BOARD_EXT_LNA) ? 1 : 0;
			else
				pHalData->ExternalLNA_2G = (LNAType_AB & BIT3) ? 1 : 0;		

			*pLNAType =	(LNAType_AB & BIT3) << 1 | (LNAType_AB & BIT7) >> 2 |
						(LNAType_CD & BIT3) << 3 | (LNAType_CD & BIT7);
		}
		else 
		{
			pHalData->ExternalPA_2G  = (GetRegAmplifierType2G(Adapter)&ODM_BOARD_EXT_PA)  ? 1 : 0; 
			pHalData->ExternalLNA_2G = (GetRegAmplifierType2G(Adapter)&ODM_BOARD_EXT_LNA) ? 1 : 0; 					    
		}

		if (GetRegAmplifierType5G(Adapter) == 0) // AUTO
		{
			LNAType_AB = EF1Byte( *(u8*)&PROMContent[EEPROM_LNA_TYPE_AB_5G_8814] );
			LNAType_CD = EF1Byte( *(u8*)&PROMContent[EEPROM_LNA_TYPE_CD_5G_8814] );
			
			if (*pPAType == 0xFF && rfe_type == 0xFF)
				pHalData->external_pa_5g  = (GetRegAmplifierType5G(Adapter)&ODM_BOARD_EXT_PA)  ? 1 : 0; 
  			else	
			    pHalData->external_pa_5g = (*pPAType & BIT0) ? 1 : 0;					

			if (LNAType_AB == 0xFF)
				pHalData->external_lna_5g = (GetRegAmplifierType5G(Adapter)&ODM_BOARD_EXT_LNA) ? 1 : 0;
			else
			    pHalData->external_lna_5g = (LNAType_AB & BIT3) ? 1 : 0;		

			(*pLNAType) |= 	((LNAType_AB & BIT3) >> 3 | (LNAType_AB & BIT7) >> 6 |
							(LNAType_CD & BIT3) >> 1 | (LNAType_CD & BIT7) >> 4);
		}
		else
		{
			pHalData->external_pa_5g  = (GetRegAmplifierType5G(Adapter)&ODM_BOARD_EXT_PA_5G)  ? 1 : 0; 			
			pHalData->external_lna_5g = (GetRegAmplifierType5G(Adapter)&ODM_BOARD_EXT_LNA_5G) ? 1 : 0;  		    
		}
	}
	else
	{
		pHalData->ExternalPA_2G  = EEPROM_Default_PAType; 
		pHalData->external_pa_5g  = 0xFF; 
		pHalData->ExternalLNA_2G = EEPROM_Default_LNAType;  
		pHalData->external_lna_5g = 0xFF; 
		
		if (GetRegAmplifierType2G(Adapter) == 0) 
		{		
			pHalData->ExternalPA_2G  = 0; 
			pHalData->ExternalLNA_2G = 0;  
		}
		else
		{
			pHalData->ExternalPA_2G  = (GetRegAmplifierType2G(Adapter)&ODM_BOARD_EXT_PA)  ? 1 : 0; 
			pHalData->ExternalLNA_2G = (GetRegAmplifierType2G(Adapter)&ODM_BOARD_EXT_LNA) ? 1 : 0;  
		}
		if (GetRegAmplifierType5G(Adapter) == 0) 
		{		
			pHalData->external_pa_5g  = 0; 
			pHalData->external_lna_5g = 0;  
		}
		else
		{
			pHalData->external_pa_5g  = (GetRegAmplifierType5G(Adapter)&ODM_BOARD_EXT_PA_5G)  ? 1 : 0; 			
			pHalData->external_lna_5g = (GetRegAmplifierType5G(Adapter)&ODM_BOARD_EXT_LNA_5G) ? 1 : 0;  
		}
	}
	RTW_INFO("PAType is 0x%x, LNAType is 0x%x\n", *pPAType, *pLNAType);
	RTW_INFO("pHalData->ExternalPA_2G = %d, pHalData->external_pa_5g = %d\n", pHalData->ExternalPA_2G, pHalData->external_pa_5g);
	RTW_INFO("pHalData->ExternalLNA_2G = %d, pHalData->external_lna_5g = %d\n", pHalData->ExternalLNA_2G, pHalData->external_lna_5g);
}

VOID hal_ReadAmplifierType_8814A(
	IN	PADAPTER		Adapter
	)
{
	HAL_DATA_TYPE	*pHalData = GET_HAL_DATA(Adapter);
	switch(pHalData->rfe_type)
	{
		case 1:	/* 8814AU */
			pHalData->external_pa_5g = pHalData->external_lna_5g = _TRUE;
			pHalData->TypeAPA = pHalData->TypeALNA = 0;/* APA and ALNA is 0 */
			break;
		case 2:	/* socket board 8814AR and 8194AR */
			pHalData->ExternalPA_2G = pHalData->external_pa_5g = _TRUE;
			pHalData->ExternalLNA_2G = pHalData->external_lna_5g = _TRUE;
			pHalData->TypeAPA = pHalData->TypeALNA = 0x55;/* APA and ALNA is 1 */
			pHalData->TypeGPA = pHalData->TypeGLNA = 0x55;/* GPA and GLNA is 1 */
			break;
		case 3:	/* high power on-board 8814AR and 8194AR */
			pHalData->ExternalPA_2G = pHalData->external_pa_5g = _TRUE;
			pHalData->ExternalLNA_2G = pHalData->external_lna_5g = _TRUE;
			pHalData->TypeAPA = pHalData->TypeALNA = 0xaa;/* APA and ALNA is 2 */
			pHalData->TypeGPA = pHalData->TypeGLNA = 0xaa;/* GPA and GLNA is 2 */
			break;
		case 4:	/* on-board 8814AR and 8194AR */
			pHalData->ExternalPA_2G = pHalData->external_pa_5g = _TRUE;
			pHalData->ExternalLNA_2G = pHalData->external_lna_5g = _TRUE;
			pHalData->TypeAPA = 0x55;/* APA is 1 */
			pHalData->TypeALNA = 0xff; /* ALNA is 3 */
			pHalData->TypeGPA = pHalData->TypeGLNA = 0x55;/* GPA and GLNA is 1 */
			break;
		case 5:
			pHalData->ExternalPA_2G = pHalData->external_pa_5g = _TRUE;
			pHalData->ExternalLNA_2G = pHalData->external_lna_5g = _TRUE;
			pHalData->TypeAPA = 0xaa; /* APA2 */
			pHalData->TypeALNA = 0x5500; /* ALNA4 */
			pHalData->TypeGPA = pHalData->TypeGLNA = 0xaa; /* GPA2,GLNA2 */
			break;
		case 6:
			pHalData->external_lna_5g = _TRUE;
			pHalData->TypeALNA = 0; /* ALNA0 */
			break;
		case 0:
		default:	/* 8814AE */
			break;
	}

	RTW_INFO("pHalData->ExternalPA_2G = %d, pHalData->external_pa_5g = %d\n", pHalData->ExternalPA_2G, pHalData->external_pa_5g);
	RTW_INFO("pHalData->ExternalLNA_2G = %d, pHalData->external_lna_5g = %d\n", pHalData->ExternalLNA_2G, pHalData->external_lna_5g);
	RTW_INFO("pHalData->TypeGPA = 0x%X, pHalData->TypeAPA = 0x%X\n", pHalData->TypeGPA, pHalData->TypeAPA);
	RTW_INFO("pHalData->TypeGLNA = 0x%X, pHalData->TypeALNA = 0x%X\n", pHalData->TypeGLNA, pHalData->TypeALNA);
}


VOID
hal_ReadRFEType_8814A(
	IN	PADAPTER	Adapter,	
	IN	u8*			PROMContent,
	IN	BOOLEAN		AutoloadFail
	)
{
	HAL_DATA_TYPE	*pHalData = GET_HAL_DATA(Adapter);

	if(!AutoloadFail)
	{
		if ((GetRegRFEType(Adapter) != 64) || 0xFF == PROMContent[EEPROM_RFE_OPTION_8814] || PROMContent[EEPROM_RFE_OPTION_8814] & BIT7) {
			if(GetRegRFEType(Adapter) != 64)
				pHalData->rfe_type = GetRegRFEType(Adapter);
			else if(IS_HARDWARE_TYPE_8814AE(Adapter))
				pHalData->rfe_type = 0;
			else if(IS_HARDWARE_TYPE_8814AU(Adapter))
				pHalData->rfe_type = 1;
			hal_ReadAmplifierType_8814A(Adapter);
			
		} else {
			/* bit7==0 means  RFE type defined by 0xCA[6:0] */
			pHalData->rfe_type = PROMContent[EEPROM_RFE_OPTION_8814] & 0x7F;
			hal_ReadAmplifierType_8814A(Adapter);
		}
	}
	else
	{
		if(GetRegRFEType(Adapter) != 64)
			pHalData->rfe_type = GetRegRFEType(Adapter);
		else if(IS_HARDWARE_TYPE_8814AE(Adapter))
			pHalData->rfe_type = 0;
		else if(IS_HARDWARE_TYPE_8814AU(Adapter))
			pHalData->rfe_type = 1;

		hal_ReadAmplifierType_8814A(Adapter);
	}
	RTW_INFO("RFE Type: 0x%2x\n", pHalData->rfe_type);
}

static VOID
hal_EfusePowerSwitch8814A(
	IN	PADAPTER	pAdapter,
	IN	u8		bWrite,
	IN	u8		PwrState)
{
	u8	tempval;
	u16	tmpV16;
	u8 	EFUSE_ACCESS_ON_8814A = 0x69;
	u8	EFUSE_ACCESS_OFF_8814A = 0x00;
	
	if (PwrState == _TRUE)
	{
		rtw_write8(pAdapter, REG_EFUSE_ACCESS, EFUSE_ACCESS_ON_8814A);	
		
		// Reset: 0x0000h[28], default valid
		tmpV16 =  PlatformEFIORead2Byte(pAdapter,REG_SYS_FUNC_EN);
		if( !(tmpV16 & FEN_ELDR) ){
			tmpV16 |= FEN_ELDR ;
			rtw_write16(pAdapter,REG_SYS_FUNC_EN,tmpV16);
		}
		
		// Clock: Gated(0x0008h[5]) 8M(0x0008h[1]) clock from ANA, default valid
		tmpV16 = PlatformEFIORead2Byte(pAdapter,REG_SYS_CLKR);
		if( (!(tmpV16 & LOADER_CLK_EN) )  ||(!(tmpV16 & ANA8M) ) )
		{
			tmpV16 |= (LOADER_CLK_EN |ANA8M ) ;
			rtw_write16(pAdapter,REG_SYS_CLKR,tmpV16);
		}

		if(bWrite == _TRUE)
		{
			// Enable LDO 2.5V before read/write action
			tempval = rtw_read8(pAdapter, EFUSE_TEST+3);
			tempval &= 0x0F;
			tempval |= (VOLTAGE_V25 << 4);
			rtw_write8(pAdapter, EFUSE_TEST+3, (tempval | 0x80));
		}
	}
	else
	{	
		rtw_write8(pAdapter, REG_EFUSE_ACCESS, EFUSE_ACCESS_OFF_8814A);
		
		if(bWrite == _TRUE){
			// Disable LDO 2.5V after read/write action
			tempval = rtw_read8(pAdapter, EFUSE_TEST+3);
			rtw_write8(pAdapter, EFUSE_TEST+3, (tempval & 0x7F));
		}
	}	
}

static VOID
rtl8814_EfusePowerSwitch(
	IN	PADAPTER	pAdapter,
	IN	u8		bWrite,
	IN	u8		PwrState)
{
	hal_EfusePowerSwitch8814A(pAdapter, bWrite, PwrState);	
}

static VOID
hal_EfuseReadEFuse8814A(
	PADAPTER		Adapter,
	u16			_offset,
	u16 			_size_byte,
	u8      		*pbuf,
	IN	BOOLEAN	bPseudoTest
	)
{
	u8	*efuseTbl = NULL;
	u16	eFuse_Addr = 0;
	u8	offset=0, wden=0;
	u16	i, j;
	u16	**eFuseWord = NULL;
	u16	efuse_utilized = 0;
	u8	efuse_usage = 0;
	u8	offset_2_0=0;
	u8	efuseHeader=0, efuseExtHdr=0, efuseData=0;

	//
	// Do NOT excess total size of EFuse table. Added by Roger, 2008.11.10.
	//
	if((_offset + _size_byte)>EFUSE_MAP_LEN_8814A)
	{// total E-Fuse table is 512bytes
		RTW_INFO("Hal_EfuseReadEFuse8814A(): Invalid offset(%#x) with read bytes(%#x)!!\n", _offset, _size_byte);
		goto exit;
	}

	efuseTbl = (u8*)rtw_zmalloc(EFUSE_MAP_LEN_8814A);
	if(efuseTbl == NULL)
	{
		RTW_INFO("%s: alloc efuseTbl fail!\n", __FUNCTION__);
		goto exit;
	}

	eFuseWord= (u16 **)rtw_malloc2d(EFUSE_MAX_SECTION_8814A, EFUSE_MAX_WORD_UNIT_8814A, 2);
	if(eFuseWord == NULL)
	{
		RTW_INFO("%s: alloc eFuseWord fail!\n", __FUNCTION__);
		goto exit;
	}

	// 0. Refresh efuse init map as all oxFF.
	for (i = 0; i < EFUSE_MAX_SECTION_8814A; i++)
		for (j = 0; j < EFUSE_MAX_WORD_UNIT_8814A; j++)
			eFuseWord[i][j] = 0xFFFF;

	//
	// 1. Read the first byte to check if efuse is empty!!!
	// 
	//
	efuse_OneByteRead(Adapter, eFuse_Addr++, &efuseHeader, bPseudoTest);	

	if(efuseHeader != 0xFF)
	{
		efuse_utilized++;
	}
	else
	{
		RTW_INFO("EFUSE is empty\n");
		efuse_utilized = 0;
		goto exit;
	}
	/* RT_DISP(FEEPROM, EFUSE_READ_ALL, ("Hal_EfuseReadEFuse8814A(): efuse_utilized: %d\n", efuse_utilized)); */

	//
	// 2. Read real efuse content. Filter PG header and every section data.
	//
	while((efuseHeader != 0xFF) && AVAILABLE_EFUSE_ADDR_8814A(eFuse_Addr))
	{
		//RTPRINT(FEEPROM, EFUSE_READ_ALL, ("efuse_Addr-%d efuse_data=%x\n", eFuse_Addr-1, *rtemp8));
	
		// Check PG header for section num.
		if(EXT_HEADER(efuseHeader))		//extended header
		{
			offset_2_0 = GET_HDR_OFFSET_2_0(efuseHeader);
			//RT_DISP(FEEPROM, EFUSE_READ_ALL, ("extended header offset_2_0=%X\n", offset_2_0));

			efuse_OneByteRead(Adapter, eFuse_Addr++, &efuseExtHdr, bPseudoTest);	

			//RT_DISP(FEEPROM, EFUSE_READ_ALL, ("efuse[%X]=%X\n", eFuse_Addr-1, efuseExtHdr));

			if(efuseExtHdr != 0xff)
			{
				efuse_utilized++;
				if(ALL_WORDS_DISABLED(efuseExtHdr))
				{
					efuse_OneByteRead(Adapter, eFuse_Addr++, &efuseHeader, bPseudoTest);
					if(efuseHeader != 0xff)
					{
						efuse_utilized++;
					}
					break;
				}
				else
				{
					offset = ((efuseExtHdr & 0xF0) >> 1) | offset_2_0;
					wden = (efuseExtHdr & 0x0F);
				}
			}
			else
			{
				RTW_INFO("Error condition, extended = 0xff\n");
				// We should handle this condition.
				break;
			}
		}
		else
		{
			offset = ((efuseHeader >> 4) & 0x0f);
			wden = (efuseHeader & 0x0f);
		}
		
		if(offset < EFUSE_MAX_SECTION_8814A)
		{
			// Get word enable value from PG header
			//RT_DISP(FEEPROM, EFUSE_READ_ALL, ("Offset-%X Worden=%X\n", offset, wden));

			for(i=0; i<EFUSE_MAX_WORD_UNIT_8814A; i++)
			{
				// Check word enable condition in the section				
				if(!(wden & (0x01<<i)))
				{
					efuse_OneByteRead(Adapter, eFuse_Addr++, &efuseData, bPseudoTest);
					//RT_DISP(FEEPROM, EFUSE_READ_ALL, ("efuse[%X]=%X\n", eFuse_Addr-1, efuseData));
					efuse_utilized++;
					eFuseWord[offset][i] = (efuseData & 0xff);

					if(!AVAILABLE_EFUSE_ADDR_8814A(eFuse_Addr))
						break;

					efuse_OneByteRead(Adapter, eFuse_Addr++, &efuseData, bPseudoTest);
					//RT_DISP(FEEPROM, EFUSE_READ_ALL, ("efuse[%X]=%X\n", eFuse_Addr-1, efuseData));
					efuse_utilized++;
					eFuseWord[offset][i] |= (((u16)efuseData << 8) & 0xff00);

					if(!AVAILABLE_EFUSE_ADDR_8814A(eFuse_Addr)) 
						break;
				}
			}
		}
		else{//deal with error offset,skip error data		
			RTW_ERR("invalid offset:0x%02x \n",offset);
			for(i=0; i<EFUSE_MAX_WORD_UNIT_8814A; i++){
				// Check word enable condition in the section				
				if(!(wden & 0x01)){
					eFuse_Addr++;
					efuse_utilized++;
					if(!AVAILABLE_EFUSE_ADDR_8814A(eFuse_Addr)) 
						break;
					eFuse_Addr++;
					efuse_utilized++;
					if(!AVAILABLE_EFUSE_ADDR_8814A(eFuse_Addr)) 
						break;
				}
			}
		}
		// Read next PG header
		efuse_OneByteRead(Adapter, eFuse_Addr, &efuseHeader, bPseudoTest);
		//RTPRINT(FEEPROM, EFUSE_READ_ALL, ("Addr=%d rtemp 0x%x\n", eFuse_Addr, *rtemp8));
		
		if(efuseHeader != 0xFF)
		{
			eFuse_Addr++;
			efuse_utilized++;
		}

	}

	//
	// 3. Collect 16 sections and 4 word unit into Efuse map.
	//
	for(i=0; i<EFUSE_MAX_SECTION_8814A; i++)
	{
		for(j=0; j<EFUSE_MAX_WORD_UNIT_8814A; j++)
		{
			efuseTbl[(i*8)+(j*2)]=(eFuseWord[i][j] & 0xff);
			efuseTbl[(i*8)+((j*2)+1)]=((eFuseWord[i][j] >> 8) & 0xff);
		}
	}

	/* RT_DISP(FEEPROM, EFUSE_READ_ALL, ("Hal_EfuseReadEFuse8814A(): efuse_utilized: %d\n", efuse_utilized)); */

	//
	// 4. Copy from Efuse map to output pointer memory!!!
	//
	for(i=0; i<_size_byte; i++)
	{		
		pbuf[i] = efuseTbl[_offset+i];
	}

	//
	// 5. Calculate Efuse utilization.
	//
	efuse_usage = (u1Byte)((eFuse_Addr*100)/EFUSE_REAL_CONTENT_LEN_8814A);
	rtw_hal_set_hwreg(Adapter, HW_VAR_EFUSE_BYTES, (u8 *)&eFuse_Addr);

exit:
	if(efuseTbl)
		rtw_mfree(efuseTbl, EFUSE_MAP_LEN_8814A);

	if(eFuseWord)
		rtw_mfree2d((void *)eFuseWord, EFUSE_MAX_SECTION_8814A, EFUSE_MAX_WORD_UNIT_8814A, sizeof(u16));
}

static VOID
rtl8814_ReadEFuse(
	PADAPTER	Adapter,
	u8		efuseType,
	u16		_offset,
	u16 		_size_byte,
	u8      	*pbuf,
	IN	BOOLEAN	bPseudoTest
	)
{
	hal_EfuseReadEFuse8814A(Adapter, _offset, _size_byte, pbuf, bPseudoTest);
}

//Do not support BT
VOID
hal_EFUSEGetEfuseDefinition8814A(
	IN		PADAPTER	pAdapter,
	IN		u8		efuseType,
	IN		u8		type,
	OUT		PVOID		pOut
	)
{
	switch(type)
	{
		case TYPE_EFUSE_MAX_SECTION:
			{
				u8*	pMax_section;
				pMax_section = (u8*)pOut;
				*pMax_section = EFUSE_MAX_SECTION_8814A;
			}
			break;
		case TYPE_EFUSE_REAL_CONTENT_LEN:
			{
				u16* pu2Tmp;
				pu2Tmp = (u16*)pOut;
				*pu2Tmp = EFUSE_REAL_CONTENT_LEN_8814A;
			}
			break;
		case TYPE_EFUSE_CONTENT_LEN_BANK:
			{
				u16* pu2Tmp;
				pu2Tmp = (u16*)pOut;
				*pu2Tmp = EFUSE_REAL_CONTENT_LEN_8814A;
			}
			break;
		case TYPE_AVAILABLE_EFUSE_BYTES_BANK:
			{
				u16* pu2Tmp;
				pu2Tmp = (u16*)pOut;
				*pu2Tmp = (u16)(EFUSE_REAL_CONTENT_LEN_8814A-EFUSE_OOB_PROTECT_BYTES);
			}
			break;
		case TYPE_AVAILABLE_EFUSE_BYTES_TOTAL:
			{
				u16* pu2Tmp;
				pu2Tmp = (u16*)pOut;
				*pu2Tmp = (u16)(EFUSE_REAL_CONTENT_LEN_8814A-EFUSE_OOB_PROTECT_BYTES);
			}
			break;
		case TYPE_EFUSE_MAP_LEN:
			{
				u16* pu2Tmp;
				pu2Tmp = (u16*)pOut;
				*pu2Tmp = (u16)EFUSE_MAP_LEN_8814A;
			}
			break;
		case TYPE_EFUSE_PROTECT_BYTES_BANK:
			{
				u8* pu1Tmp;
				pu1Tmp = (u8*)pOut;
				*pu1Tmp = (u8)(EFUSE_OOB_PROTECT_BYTES);
			}
			break;
		default:
			{
				u8* pu1Tmp;
				pu1Tmp = (u8*)pOut;
				*pu1Tmp = 0;
			}
			break;
	}
}

static VOID
rtl8814_EFUSE_GetEfuseDefinition(
	IN		PADAPTER	pAdapter,
	IN		u8		efuseType,
	IN		u8		type,
	OUT		void		*pOut,
	IN		BOOLEAN		bPseudoTest
	)
{
		hal_EFUSEGetEfuseDefinition8814A(pAdapter, efuseType, type, pOut);
}

static u8
hal_EfuseWordEnableDataWrite8814A(	IN	PADAPTER	pAdapter,
							IN	u16		efuse_addr,
							IN	u8		word_en,
							IN	u8		*data,
							IN	BOOLEAN		bPseudoTest)
{
	u16 readbackAddr = 0;
	u16 start_addr = efuse_addr;
	u8  badworden = 0x0F;
	u8  readbackData[PGPKT_DATA_SIZE]; 

	_rtw_memset((PVOID)readbackData, 0xff, PGPKT_DATA_SIZE);
	
	RTW_INFO("word_en = %x efuse_addr=%x\n", word_en, efuse_addr);

	if ( ! (word_en&BIT0))
	{
		readbackAddr = start_addr;
		efuse_OneByteWrite(pAdapter,start_addr++, data[0], bPseudoTest);
		efuse_OneByteWrite(pAdapter,start_addr++, data[1], bPseudoTest);

		if (IS_HARDWARE_TYPE_8723B(pAdapter) || IS_HARDWARE_TYPE_8188E(pAdapter) ||
			IS_HARDWARE_TYPE_8192E(pAdapter) || IS_HARDWARE_TYPE_8703B(pAdapter) || IS_HARDWARE_TYPE_8188F(pAdapter))
			phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 0); // Use 10K Read, Suggested by Morris & Victor
		
		efuse_OneByteRead(pAdapter,readbackAddr, &readbackData[0], bPseudoTest);
		efuse_OneByteRead(pAdapter,readbackAddr+1, &readbackData[1], bPseudoTest);

		if (IS_HARDWARE_TYPE_8723B(pAdapter) || IS_HARDWARE_TYPE_8188E(pAdapter) ||
			IS_HARDWARE_TYPE_8192E(pAdapter) || IS_HARDWARE_TYPE_8703B(pAdapter) || IS_HARDWARE_TYPE_8188F(pAdapter))
			phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 1); // Restored to 1.5K Read, Suggested by Morris & Victor
		
		if((data[0]!=readbackData[0])||(data[1]!=readbackData[1])){
			badworden &= (~BIT0);
		}
	}
	if ( ! (word_en&BIT1))
	{
		readbackAddr = start_addr;
		efuse_OneByteWrite(pAdapter,start_addr++, data[2], bPseudoTest);
		efuse_OneByteWrite(pAdapter,start_addr++, data[3], bPseudoTest);

		if (IS_HARDWARE_TYPE_8723B(pAdapter) || IS_HARDWARE_TYPE_8188E(pAdapter) ||
			IS_HARDWARE_TYPE_8192E(pAdapter) || IS_HARDWARE_TYPE_8703B(pAdapter) || IS_HARDWARE_TYPE_8188F(pAdapter))
			phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 0); // Use 10K Read, Suggested by Morris & Victor

		efuse_OneByteRead(pAdapter,readbackAddr    , &readbackData[2], bPseudoTest);
		efuse_OneByteRead(pAdapter,readbackAddr+1, &readbackData[3], bPseudoTest);

		if (IS_HARDWARE_TYPE_8723B(pAdapter) || IS_HARDWARE_TYPE_8188E(pAdapter) ||
			IS_HARDWARE_TYPE_8192E(pAdapter) || IS_HARDWARE_TYPE_8703B(pAdapter) || IS_HARDWARE_TYPE_8188F(pAdapter))
			phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 1); // Restored to 1.5K Read, Suggested by Morris & Victor

		if((data[2]!=readbackData[2])||(data[3]!=readbackData[3])){
			badworden &=( ~BIT1);
		}
	}
	if ( ! (word_en&BIT2))
	{
		readbackAddr = start_addr;
		efuse_OneByteWrite(pAdapter,start_addr++, data[4], bPseudoTest);
		efuse_OneByteWrite(pAdapter,start_addr++, data[5], bPseudoTest);

		if (IS_HARDWARE_TYPE_8723B(pAdapter) || IS_HARDWARE_TYPE_8188E(pAdapter) ||
			IS_HARDWARE_TYPE_8192E(pAdapter) || IS_HARDWARE_TYPE_8703B(pAdapter) || IS_HARDWARE_TYPE_8188F(pAdapter))
			phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 0); // Use 10K Read, Suggested by Morris & Victor

		efuse_OneByteRead(pAdapter,readbackAddr, &readbackData[4], bPseudoTest);							
		efuse_OneByteRead(pAdapter,readbackAddr+1, &readbackData[5], bPseudoTest);

		if (IS_HARDWARE_TYPE_8723B(pAdapter) || IS_HARDWARE_TYPE_8188E(pAdapter) ||
			IS_HARDWARE_TYPE_8192E(pAdapter) || IS_HARDWARE_TYPE_8703B(pAdapter) || IS_HARDWARE_TYPE_8188F(pAdapter))
			phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 1); // Restored to 1.5K Read, Suggested by Morris & Victor

		if((data[4]!=readbackData[4])||(data[5]!=readbackData[5])){
			badworden &=( ~BIT2);
		}
	}
	if ( ! (word_en&BIT3))
	{
		readbackAddr = start_addr;
		efuse_OneByteWrite(pAdapter,start_addr++, data[6], bPseudoTest);
		efuse_OneByteWrite(pAdapter,start_addr++, data[7], bPseudoTest);

		if (IS_HARDWARE_TYPE_8723B(pAdapter) || IS_HARDWARE_TYPE_8188E(pAdapter) ||
			IS_HARDWARE_TYPE_8192E(pAdapter) || IS_HARDWARE_TYPE_8703B(pAdapter) || IS_HARDWARE_TYPE_8188F(pAdapter))
			phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 0); // Use 10K Read, Suggested by Morris & Victor

		efuse_OneByteRead(pAdapter,readbackAddr, &readbackData[6], bPseudoTest);
		efuse_OneByteRead(pAdapter,readbackAddr+1, &readbackData[7], bPseudoTest);

		if (IS_HARDWARE_TYPE_8723B(pAdapter) || IS_HARDWARE_TYPE_8188E(pAdapter) ||
			IS_HARDWARE_TYPE_8192E(pAdapter) || IS_HARDWARE_TYPE_8703B(pAdapter) || IS_HARDWARE_TYPE_8188F(pAdapter))
			phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 1); // Restored to 1.5K Read, Suggested by Morris & Victor

		if((data[6]!=readbackData[6])||(data[7]!=readbackData[7])){
			badworden &=( ~BIT3);
		}
	}
	return badworden;
}

static u8
rtl8814_Efuse_WordEnableDataWrite(	IN	PADAPTER	pAdapter,
							IN	u16		efuse_addr,
							IN	u8		word_en,
							IN	u8		*data,
							IN	BOOLEAN		bPseudoTest)
{
	u8	ret=0;

	ret = hal_EfuseWordEnableDataWrite8814A(pAdapter, efuse_addr, word_en, data, bPseudoTest);

	return ret;
}


static u16 hal_EfuseGetCurrentSize_8814A( PADAPTER	pAdapter, BOOLEAN	bPseudoTest)
{
	int			bContinual = _TRUE;

	u16			efuse_addr = 0;
	u8			hoffset=0, hworden=0;	
	u8			efuse_data, word_cnts=0;
	
	HAL_DATA_TYPE	*pHalData = GET_HAL_DATA(pAdapter);
	PEFUSE_HAL		pEfuseHal = &(pHalData->EfuseHal);

	RTW_INFO("=======> %s() \n", __func__);

	if(bPseudoTest)
	{
		efuse_addr = (u16)(fakeEfuseUsedBytes);
	}
	else
	{
		rtw_hal_get_hwreg(pAdapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_addr);
	}
	//RTPRINT(FEEPROM, EFUSE_PG, ("hal_EfuseGetCurrentSize_8723A(), start_efuse_addr = %d\n", efuse_addr));

	while ( bContinual &&
			efuse_OneByteRead(pAdapter, efuse_addr , &efuse_data, bPseudoTest) &&
			(efuse_addr  < EFUSE_REAL_CONTENT_LEN_8814A))
	{
		if (efuse_data != 0xFF)
		{
			if ((efuse_data&0x1F) == 0x0F)		//extended header
			{			
				hoffset = efuse_data;
				efuse_addr++;
				efuse_OneByteRead(pAdapter, efuse_addr, &efuse_data, bPseudoTest);
				if((efuse_data & 0x0F) == 0x0F)
				{
					efuse_addr++;
					continue;
				} else {
					hoffset = ((hoffset & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1);
					hworden = efuse_data & 0x0F;
				}
			} else {
				hoffset = (efuse_data>>4) & 0x0F;
				hworden =  efuse_data & 0x0F;									
			}
			word_cnts = Efuse_CalculateWordCnts(hworden);
			//read next header
			efuse_addr = efuse_addr + (word_cnts*2)+1;
		}
		else
		{
			bContinual = _FALSE ;
		}
	}

	if(bPseudoTest)
	{
		fakeEfuseUsedBytes = efuse_addr;
		pEfuseHal->fakeEfuseUsedBytes = efuse_addr;
		RTW_INFO ("%s(), return %d \n", __func__, pEfuseHal->fakeEfuseUsedBytes );
	}
	else
	{
		pEfuseHal->EfuseUsedBytes = efuse_addr;
		pEfuseHal->EfuseUsedPercentage = (u1Byte)((pEfuseHal->EfuseUsedBytes*100)/pEfuseHal->PhysicalLen_WiFi);	
		rtw_hal_set_hwreg(pAdapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_addr);
		rtw_hal_set_hwreg(pAdapter, HW_VAR_EFUSE_USAGE, (u8 *)&(pEfuseHal->EfuseUsedPercentage));
		RTW_INFO("%s(), return %d\n", __func__, efuse_addr);
	}

	return efuse_addr;
	
}

static u16
rtl8814_EfuseGetCurrentSize(
	IN	PADAPTER	pAdapter,
	IN	u8			efuseType,
	IN	BOOLEAN		bPseudoTest)
{
	u16	ret=0;

	ret = hal_EfuseGetCurrentSize_8814A(pAdapter, bPseudoTest);

	return ret;
}


static int
hal_EfusePgPacketRead_8814A(
	IN	PADAPTER	pAdapter,
	IN	u8			offset,
	IN	u8			*data,
	IN	BOOLEAN		bPseudoTest)
{	
	HAL_DATA_TYPE	*pHalData = GET_HAL_DATA(pAdapter);
	PEFUSE_HAL		pEfuseHal = &(pHalData->EfuseHal);
	u8 ReadState = PG_STATE_HEADER;	
	
	int bContinual = _TRUE;
	int bDataEmpty = _TRUE ;	

	u8 efuse_data,word_cnts=0;
	u16 efuse_addr = 0;
	u8 hoffset=0,hworden=0;	
	u8 tmpidx=0;
	u8 tmpdata[8];
	u8 tmp_header = 0;
	
	if(data==NULL)	return _FALSE;
	if(offset>=EFUSE_MAX_SECTION_JAGUAR)		return _FALSE;	
	
	_rtw_memset((PVOID)data, 0xff, sizeof(u8)*PGPKT_DATA_SIZE);
	_rtw_memset((PVOID)tmpdata, 0xff, sizeof(u8)*PGPKT_DATA_SIZE);
	
	//
	// <Roger_TODO> Efuse has been pre-programmed dummy 5Bytes at the end of Efuse by CP.
	// Skip dummy parts to prevent unexpected data read from Efuse.
	// By pass right now. 2009.02.19.
	//
	while(bContinual && (efuse_addr  < pEfuseHal->PhysicalLen_WiFi) )
	{			
		//-------  Header Read -------------
		if(ReadState & PG_STATE_HEADER)
		{
			if(efuse_OneByteRead(pAdapter, efuse_addr ,&efuse_data, bPseudoTest)&&(efuse_data!=0xFF))
			{
				if(ALL_WORDS_DISABLED(efuse_data))
				{
					tmp_header = efuse_data;
					efuse_addr++;
					efuse_OneByteRead(pAdapter, efuse_addr ,&efuse_data, bPseudoTest);
					if((efuse_data & 0x0F) != 0x0F)
					{
						hoffset = ((tmp_header & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1);
						hworden = efuse_data & 0x0F;						
					}
					else
					{
						efuse_addr++;
						break;
					}
					
				}
				else	
				{
					hoffset = (efuse_data>>4) & 0x0F;
					hworden =  efuse_data & 0x0F;									
				}
				word_cnts = Efuse_CalculateWordCnts(hworden);
				bDataEmpty = _TRUE ;

				if(hoffset==offset){
					for(tmpidx = 0;tmpidx< word_cnts*2 ;tmpidx++){
						if(efuse_OneByteRead(pAdapter, efuse_addr+1+tmpidx ,&efuse_data, bPseudoTest) ){
							tmpdata[tmpidx] = efuse_data;
							if(efuse_data!=0xff){						
								bDataEmpty = _FALSE;
							}
						}					
					}
					if(bDataEmpty==_FALSE){
						ReadState = PG_STATE_DATA;							
					}else{//read next header							
						efuse_addr = efuse_addr + (word_cnts*2)+1;
						ReadState = PG_STATE_HEADER; 
					}
				}
				else{//read next header 
					efuse_addr = efuse_addr + (word_cnts*2)+1;
					ReadState = PG_STATE_HEADER; 
				}
				
			}
			else{
				bContinual = _FALSE ;
			}
		}		
		//-------  Data section Read -------------
		else if(ReadState & PG_STATE_DATA)
		{
			efuse_WordEnableDataRead(hworden,tmpdata,data);
			efuse_addr = efuse_addr + (word_cnts*2)+1;
			ReadState = PG_STATE_HEADER; 
		}
		
	}			
	
	if( (data[0]==0xff) &&(data[1]==0xff) && (data[2]==0xff)  && (data[3]==0xff) &&
		(data[4]==0xff) &&(data[5]==0xff) && (data[6]==0xff)  && (data[7]==0xff))
		return _FALSE;
	else
		return _TRUE;
}

static int
rtl8814_Efuse_PgPacketRead(	IN	PADAPTER	pAdapter,
					IN	u8			offset,
					IN	u8			*data,
					IN	BOOLEAN		bPseudoTest)
{
	int	ret=0;

	ret = hal_EfusePgPacketRead_8814A(pAdapter, offset, data, bPseudoTest);

	return ret;
}

static BOOLEAN efuse_PgPacketCheck(
	PADAPTER	pAdapter,
	u8		efuseType,
	BOOLEAN		bPseudoTest
)
{
	HAL_DATA_TYPE	*pHalData = GET_HAL_DATA(pAdapter);

	if (Efuse_GetCurrentSize(pAdapter, efuseType, bPseudoTest) >= (EFUSE_REAL_CONTENT_LEN_8814A-EFUSE_PROTECT_BYTES_BANK_8814A))
	{
		RTW_INFO("%s()error: %x >= %x\n", __func__, Efuse_GetCurrentSize(pAdapter, efuseType, bPseudoTest), (EFUSE_REAL_CONTENT_LEN_8814A-EFUSE_PROTECT_BYTES_BANK_8814A));
		return _FALSE;
	}

	return _TRUE;
}

static VOID
efuse_PgPacketConstruct(
    IN	    u8 			offset,
    IN	    u8			word_en,
    IN	    u8*			pData,
    IN OUT	PPGPKT_STRUCT	pTargetPkt
	)
{
	_rtw_memset((PVOID)pTargetPkt->data, 0xFF, sizeof(u8)*8);
	pTargetPkt->offset = offset;
	pTargetPkt->word_en= word_en;
	efuse_WordEnableDataRead(word_en, pData, pTargetPkt->data);
	pTargetPkt->word_cnts = Efuse_CalculateWordCnts(pTargetPkt->word_en);

	RTW_INFO("efuse_PgPacketConstruct(), targetPkt, offset=%d, word_en=0x%x, word_cnts=%d\n", pTargetPkt->offset, pTargetPkt->word_en, pTargetPkt->word_cnts);
}


u16
efuse_PgPacketExceptionHandle(
					IN	PADAPTER		pAdapter,
					IN	u16			ErrOffset
					)
{
	RTW_INFO("===> efuse_PgPacketExceptionHandle(), ErrOffset = 0x%X\n", ErrOffset);

	// ErrOffset is the offset of bad (extension) header.
	//if (IS_HARDWARE_TYPE_8812AU(pAdapter)) 
		//ErrOffset = Hal_EfusePgPacketExceptionHandle_8812A(pAdapter, ErrOffset);

	RTW_INFO("<=== efuse_PgPacketExceptionHandle(), recovered! Jump to Offset = 0x%X\n", ErrOffset);
	
	return ErrOffset; 
}


static BOOLEAN
hal_EfuseCheckIfDatafollowed(
	IN		PADAPTER		pAdapter,
	IN		u8			word_cnts,
	IN		u16			startAddr,
	IN		BOOLEAN			bPseudoTest
	)
{
	BOOLEAN		bRet=FALSE;
	u8		i, efuse_data;
	
	for(i=0; i<(word_cnts*2) ; i++)
	{
		if(efuse_OneByteRead(pAdapter, (startAddr+i) ,&efuse_data, bPseudoTest)&&(efuse_data != 0xFF))
			bRet = TRUE;
	}

	return bRet;
}

static BOOLEAN
hal_EfuseWordEnMatched(
	IN	PPGPKT_STRUCT	pTargetPkt,
	IN	PPGPKT_STRUCT	pCurPkt,
	IN	u8*			pWden
)
{
	u8	match_word_en = 0x0F;	// default all words are disabled

	// check if the same words are enabled both target and current PG packet
	if( ((pTargetPkt->word_en & BIT0) == 0) &&
		((pCurPkt->word_en & BIT0) == 0) )
	{
		match_word_en &= ~BIT0;				// enable word 0
	}
	if( ((pTargetPkt->word_en & BIT1) == 0) &&
		((pCurPkt->word_en & BIT1) == 0) )
	{
		match_word_en &= ~BIT1;				// enable word 1
	}
	if( ((pTargetPkt->word_en & BIT2) == 0) &&
		((pCurPkt->word_en & BIT2) == 0) )
	{
		match_word_en &= ~BIT2;				// enable word 2
	}
	if( ((pTargetPkt->word_en & BIT3) == 0) &&
		((pCurPkt->word_en & BIT3) == 0) )
	{
		match_word_en &= ~BIT3;				// enable word 3
	}

	*pWden = match_word_en;

	if(match_word_en != 0xf)
		return TRUE;
	else
		return FALSE;
}


static BOOLEAN
efuse_PgPacketPartialWrite(
    IN	    PADAPTER		pAdapter,
    IN	    u8			efuseType,
    IN OUT	u16*			pAddr,
    IN	    PPGPKT_STRUCT	pTargetPkt,
    IN	    BOOLEAN			bPseudoTest
    )
{
	HAL_DATA_TYPE	*pHalData = GET_HAL_DATA(pAdapter);
	PEFUSE_HAL		pEfuseHal=&(pHalData->EfuseHal);
	BOOLEAN			bRet=_FALSE;
	u8			i, efuse_data=0, cur_header=0;
	u8			matched_wden=0, badworden=0;
	u16			startAddr=0;
	PGPKT_STRUCT	curPkt;
	u16 			max_sec_num = (efuseType == EFUSE_WIFI) ? pEfuseHal->MaxSecNum_WiFi : pEfuseHal->MaxSecNum_BT;
	u16 			efuse_max = pEfuseHal->BankSize;
	u16 			efuse_max_available_len = 
					(efuseType == EFUSE_WIFI) ? pEfuseHal->TotalAvailBytes_WiFi : pEfuseHal->TotalAvailBytes_BT;

	if (bPseudoTest) {
		pEfuseHal->fakeEfuseBank = (efuseType == EFUSE_WIFI) ? 0 : pEfuseHal->fakeEfuseBank;
		Efuse_GetCurrentSize(pAdapter, efuseType, _TRUE);
	}

	//EFUSE_GetEfuseDefinition(pAdapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &efuse_max_available_len, bPseudoTest);
	//EFUSE_GetEfuseDefinition(pAdapter, efuseType, TYPE_EFUSE_CONTENT_LEN_BANK, &efuse_max, bPseudoTest);
	
	if(efuseType == EFUSE_WIFI)
	{
		if(bPseudoTest)
		{
#ifdef HAL_EFUSE_MEMORY
						startAddr = (u16)pEfuseHal->fakeEfuseUsedBytes;
#else
						startAddr = (u16)fakeEfuseUsedBytes;
#endif

		}
		else
		{
			rtw_hal_get_hwreg(pAdapter, HW_VAR_EFUSE_BYTES, (u8*)&startAddr);
		}
	}
	else
	{
		if(bPseudoTest)
		{
#ifdef HAL_EFUSE_MEMORY
						startAddr = (u16)pEfuseHal->fakeBTEfuseUsedBytes;
#else
						startAddr = (u16)fakeBTEfuseUsedBytes;
#endif

		}
		else
		{
			rtw_hal_get_hwreg(pAdapter, HW_VAR_EFUSE_BT_BYTES, (u8*)&startAddr);
		}
	}
	
	startAddr %= efuse_max;
	RTW_INFO("%s: startAddr=%#X\n", __FUNCTION__, startAddr);
	RTW_INFO("efuse_PgPacketPartialWrite(), startAddr = 0x%X\n", startAddr);

	while(1)
	{
		if(startAddr >= efuse_max_available_len) 
		{
			bRet = _FALSE;
			RTW_INFO("startAddr(%d) >= efuse_max_available_len(%d)\n", 
				startAddr, efuse_max_available_len);
			break;
		}
		
		if (efuse_OneByteRead(pAdapter, startAddr, &efuse_data, bPseudoTest) && (efuse_data!=0xFF))
		{	
			if(EXT_HEADER(efuse_data))
			{
				cur_header = efuse_data;
				startAddr++;
				efuse_OneByteRead(pAdapter, startAddr, &efuse_data, bPseudoTest);
				if (ALL_WORDS_DISABLED(efuse_data))
				{
					u16 recoveredAddr = startAddr;					
					recoveredAddr = efuse_PgPacketExceptionHandle(pAdapter, startAddr-1);

					if (recoveredAddr == (startAddr-1)) {
						RTW_INFO("Error! All words disabled and the recovery failed, (Addr, Data) = (0x%X, 0x%X)\n", 
												startAddr, efuse_data);
						pAdapter->LastError = ERR_INVALID_DATA;
						break;
					} else {
						startAddr = recoveredAddr;
						RTW_INFO("Bad extension header but recovered => Keep going.\n");
						continue;
					}
				}
				else
				{
					curPkt.offset = ((cur_header & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1);
					curPkt.word_en = efuse_data & 0x0F;
				}
			}
			else
			{
				if (ALL_WORDS_DISABLED(efuse_data)) {
					u16 recoveredAddr = startAddr;
					recoveredAddr = efuse_PgPacketExceptionHandle(pAdapter, startAddr);
					if (recoveredAddr != startAddr) {
						efuse_OneByteRead(pAdapter, startAddr, &efuse_data, bPseudoTest);
						RTW_INFO("Bad header but recovered => Read header again.\n");
					}
				}
				
				cur_header  =  efuse_data;					
				curPkt.offset = (cur_header>>4) & 0x0F;
				curPkt.word_en = cur_header & 0x0F;
			}

			if (curPkt.offset > max_sec_num) {
				pAdapter->LastError = ERR_OUT_OF_RANGE;
				pEfuseHal->Status = ERR_OUT_OF_RANGE;
				bRet = _FALSE;				
				break;
			}
			
			curPkt.word_cnts = Efuse_CalculateWordCnts(curPkt.word_en);
			// if same header is found but no data followed
			// write some part of data followed by the header.
			if( (curPkt.offset == pTargetPkt->offset) && 
				(!hal_EfuseCheckIfDatafollowed(pAdapter, curPkt.word_cnts, startAddr+1, bPseudoTest)) &&
				hal_EfuseWordEnMatched(pTargetPkt, &curPkt, &matched_wden) )
			{
				RTW_INFO("Need to partial write data by the previous wrote header\n");
				//RT_ASSERT(_FALSE, ("Error, Need to partial write data by the previous wrote header!!\n"));
				// Here to write partial data
				badworden = Efuse_WordEnableDataWrite(pAdapter, startAddr+1, matched_wden, pTargetPkt->data, bPseudoTest);
				if(badworden != 0x0F)
				{
					u32 PgWriteSuccess=0;
					// if write fail on some words, write these bad words again

					PgWriteSuccess = Efuse_PgPacketWrite(pAdapter, pTargetPkt->offset, badworden, pTargetPkt->data, bPseudoTest);
			
					if(!PgWriteSuccess)
					{
						bRet = _FALSE;	// write fail, return
						break;
					}					
				}
				// partial write ok, update the target packet for later use		
				for(i=0; i<4; i++)
				{
					if((matched_wden & (0x1<<i)) == 0)	// this word has been written
					{
						pTargetPkt->word_en |= (0x1<<i);	// disable the word
					}
				}
				pTargetPkt->word_cnts = Efuse_CalculateWordCnts(pTargetPkt->word_en);
			}
			// read from next header
			startAddr = startAddr + (curPkt.word_cnts*2) +1;	
		}
		else
		{
			// not used header, 0xff
			*pAddr = startAddr;
			RTW_INFO("Started from unused header offset=%d\n", startAddr);
			bRet = _TRUE;
			break;
		}
	}	
	return bRet;
}


static BOOLEAN
hal_EfuseFixHeaderProcess(
	IN		PADAPTER			pAdapter,
	IN		u8				efuseType,
	IN		PPGPKT_STRUCT		pFixPkt,
	IN		u16*				pAddr,
	IN		BOOLEAN				bPseudoTest
)
{
	u8	originaldata[8], badworden=0;
	u16	efuse_addr=*pAddr;
	u32	PgWriteSuccess=0;
	
	_rtw_memset((PVOID)originaldata, 0xff, 8);
					
	if(Efuse_PgPacketRead(pAdapter, pFixPkt->offset, originaldata, bPseudoTest))
	{	//check if data exist
		badworden = Efuse_WordEnableDataWrite(pAdapter, efuse_addr+1, pFixPkt->word_en, originaldata, bPseudoTest);

		if(badworden != 0xf)	// write fail
		{
			PgWriteSuccess = Efuse_PgPacketWrite(pAdapter, pFixPkt->offset, badworden, originaldata, bPseudoTest);
			if(!PgWriteSuccess)
				return _FALSE;
			else
				efuse_addr = Efuse_GetCurrentSize(pAdapter, efuseType, bPseudoTest);
		}
		else
		{
			efuse_addr = efuse_addr + (pFixPkt->word_cnts*2) +1;
		}
	}
	else
	{
		efuse_addr = efuse_addr + (pFixPkt->word_cnts*2) +1;
	}
	*pAddr = efuse_addr;
	return _TRUE;
}


BOOLEAN
efuse_PgPacketWrite2ByteHeader(
	IN			PADAPTER		pAdapter,
	IN			u8			efuseType,
	IN OUT		u16*			pAddr,
	IN			PPGPKT_STRUCT	pTargetPkt,
	IN			BOOLEAN			bPseudoTest)
{
	HAL_DATA_TYPE	*pHalData = GET_HAL_DATA(pAdapter);
	PEFUSE_HAL		pEfuseHal = &(pHalData->EfuseHal);
	BOOLEAN			bRet=_FALSE;
	u16			efuse_addr=*pAddr;
	u8			pg_header=0, tmp_header=0, pg_header_temp=0;
	u8			repeatcnt=0;
	u16 			efuse_max_available_len = 
					(efuseType == EFUSE_WIFI) ? pEfuseHal->TotalAvailBytes_WiFi : pEfuseHal->TotalAvailBytes_BT;

	RTW_INFO("Wirte 2byte header\n");


	while(efuse_addr < efuse_max_available_len)
	{
		pg_header = ((pTargetPkt->offset & 0x07) << 5) | 0x0F;
		RTW_INFO("pg_header = 0x%x\n", pg_header);
		efuse_OneByteWrite(pAdapter, efuse_addr, pg_header, bPseudoTest);
		efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header, bPseudoTest);

		while(tmp_header == 0xFF || pg_header != tmp_header)
		{
			if(repeatcnt++ > pEfuseHal->DataRetry)
			{
				RTW_INFO("Repeat over limit for pg_header!!\n");
				return _FALSE;
			}

			efuse_OneByteWrite(pAdapter, efuse_addr, pg_header, bPseudoTest);
			efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header, bPseudoTest);
		}
		
		//to write ext_header
		if(tmp_header == pg_header)
		{
			efuse_addr++;
			pg_header_temp = pg_header;
			pg_header = ((pTargetPkt->offset & 0x78) << 1) | pTargetPkt->word_en;

			efuse_OneByteWrite(pAdapter, efuse_addr, pg_header, bPseudoTest);
			efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header, bPseudoTest);

			while(tmp_header == 0xFF || pg_header != tmp_header)
			{											
				if(repeatcnt++ > pEfuseHal->DataRetry)
				{
					RTW_INFO("Repeat over limit for ext_header!!\n");
					return _FALSE;
				}							

				efuse_OneByteWrite(pAdapter, efuse_addr, pg_header, bPseudoTest);
				efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header, bPseudoTest);
			}

			if((tmp_header & 0x0F) == 0x0F)	//word_en PG fail
			{
				if(repeatcnt++ > pEfuseHal->DataRetry)
				{
					RTW_INFO("Repeat over limit for word_en!!\n");
					return _FALSE;
				}
				else
				{
					efuse_addr++;
					continue;
				}
			}
			else if(pg_header != tmp_header)	//offset PG fail						
			{
				PGPKT_STRUCT	fixPkt;
				//RT_ASSERT(_FALSE, ("Error, efuse_PgPacketWrite2ByteHeader(), offset PG fail, need to cover the existed data!!\n"));
				RTW_INFO("Error condition for offset PG fail, need to cover the existed data\n");
				fixPkt.offset = ((pg_header_temp & 0xE0) >> 5) | ((tmp_header & 0xF0) >> 1);
				fixPkt.word_en = tmp_header & 0x0F;					
				fixPkt.word_cnts = Efuse_CalculateWordCnts(fixPkt.word_en);
				if(!hal_EfuseFixHeaderProcess(pAdapter, efuseType, &fixPkt, &efuse_addr, bPseudoTest))
					return _FALSE;
			}
			else
			{
				bRet = _TRUE;
				break;
			}
		}
		else if ((tmp_header & 0x1F) == 0x0F)		//wrong extended header
		{
			efuse_addr+=2;
			continue;						
		}
	}

	*pAddr = efuse_addr;
	return bRet;
}


BOOLEAN
efuse_PgPacketWrite1ByteHeader(
	IN			PADAPTER		pAdapter, 
	IN			u8			efuseType,
	IN OUT		u16*			pAddr,
	IN			PPGPKT_STRUCT	pTargetPkt,
	IN			BOOLEAN			bPseudoTest)
{
	HAL_DATA_TYPE	*pHalData = GET_HAL_DATA(pAdapter);
	PEFUSE_HAL		pEfuseHal=&(pHalData->EfuseHal);
	BOOLEAN			bRet=_FALSE;
	u8			pg_header=0, tmp_header=0;
	u16			efuse_addr=*pAddr;
	u8			repeatcnt=0;

	RTW_INFO("Wirte 1byte header\n");
	pg_header = ((pTargetPkt->offset << 4) & 0xf0) |pTargetPkt->word_en;

	if (IS_HARDWARE_TYPE_8723BE(pAdapter))
		efuse_OneByteWrite(pAdapter, 0x1FF, 00, _FALSE); // increase current
		
	
	efuse_OneByteWrite(pAdapter, efuse_addr, pg_header, bPseudoTest);

	if (IS_HARDWARE_TYPE_8723B(pAdapter) || IS_HARDWARE_TYPE_8188E(pAdapter) ||
		IS_HARDWARE_TYPE_8192E(pAdapter) || IS_HARDWARE_TYPE_8703B(pAdapter) || IS_HARDWARE_TYPE_8188F(pAdapter))
		phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 0); // Use 10K Read, Suggested by Morris & Victor

	efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header, bPseudoTest);

	if (IS_HARDWARE_TYPE_8723B(pAdapter) || IS_HARDWARE_TYPE_8188E(pAdapter) ||
		IS_HARDWARE_TYPE_8192E(pAdapter) || IS_HARDWARE_TYPE_8703B(pAdapter) || IS_HARDWARE_TYPE_8188F(pAdapter))
		phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 1); // Restored to 1.5K Read, Suggested by Morris & Victor


	while(tmp_header == 0xFF || pg_header != tmp_header)
	{
		if(repeatcnt++ > pEfuseHal->HeaderRetry)
		{
			RTW_INFO("retry %d times fail!!\n", repeatcnt);
			return _FALSE;
		}
		efuse_OneByteWrite(pAdapter,efuse_addr, pg_header, bPseudoTest);
		efuse_OneByteRead(pAdapter,efuse_addr, &tmp_header, bPseudoTest);
		RTW_INFO("===> efuse_PgPacketWrite1ByteHeader: Keep %d-th retrying, tmp_header = 0x%X\n", repeatcnt, tmp_header);
	}
	
	if(pg_header == tmp_header)
	{
		bRet = _TRUE;
	}
	else
	{
		PGPKT_STRUCT	fixPkt;
		//RT_ASSERT(_FALSE, ("Error, efuse_PgPacketWrite1ByteHeader(), offset PG fail, need to cover the existed data!!\n"));
		RTW_INFO(" pg_header(0x%X) != tmp_header(0x%X)\n", pg_header, tmp_header);
		RTW_INFO("Error condition for fixed PG packet, need to cover the existed data: (Addr, Data) = (0x%X, 0x%X)\n",
			                       efuse_addr, tmp_header);
		fixPkt.offset = (tmp_header>>4) & 0x0F;
		fixPkt.word_en = tmp_header & 0x0F;					
		fixPkt.word_cnts = Efuse_CalculateWordCnts(fixPkt.word_en);
		if(!hal_EfuseFixHeaderProcess(pAdapter, efuseType, &fixPkt, &efuse_addr, bPseudoTest))
			return _FALSE;
	}
	
	*pAddr = efuse_addr;
	return bRet;
}



static BOOLEAN
efuse_PgPacketWriteHeader(
	IN			PADAPTER		pAdapter, 
	IN			u8			efuseType,
	IN OUT		u16*			pAddr,
	IN			PPGPKT_STRUCT	pTargetPkt,
	IN			BOOLEAN			bPseudoTest)
{
	BOOLEAN		bRet=_FALSE;

	if(pTargetPkt->offset >= EFUSE_MAX_SECTION_BASE)
	{
		bRet = efuse_PgPacketWrite2ByteHeader(pAdapter, efuseType, pAddr, pTargetPkt, bPseudoTest);
	}
	else
	{
		bRet = efuse_PgPacketWrite1ByteHeader(pAdapter, efuseType, pAddr, pTargetPkt, bPseudoTest);
	}

	return bRet;
}

BOOLEAN
efuse_PgPacketWriteData(
	IN			PADAPTER		pAdapter, 
	IN			u8			efuseType,
	IN			u16*			pAddr,
	IN			PPGPKT_STRUCT	pTargetPkt,
	IN			BOOLEAN			bPseudoTest)
{
	BOOLEAN	bRet=_FALSE;
	u16	efuse_addr=*pAddr;
	u8	badworden=0;
	u32	PgWriteSuccess=0;

	badworden = 0x0f;
	badworden = Efuse_WordEnableDataWrite(pAdapter, efuse_addr+1, pTargetPkt->word_en, pTargetPkt->data, bPseudoTest);
	if(badworden == 0x0F)
	{ 
		RTW_INFO("efuse_PgPacketWriteData ok!!\n");
		return _TRUE;
	}
	else
	{   // Reorganize other pg packet
		//RT_ASSERT(_FALSE, ("Error, efuse_PgPacketWriteData(), wirte data fail!!\n"));
		RTW_INFO("efuse_PgPacketWriteData Fail!!\n");
		
		PgWriteSuccess = Efuse_PgPacketWrite(pAdapter, pTargetPkt->offset, badworden, pTargetPkt->data, bPseudoTest);
		if(!PgWriteSuccess)
			return _FALSE;
		else
			return _TRUE;
	}

	return bRet;
}


int
hal_EfusePgPacketWrite_8814A(IN	PADAPTER	pAdapter,
					IN	u8 			offset,
					IN	u8			word_en,
					IN	u8			*pData,
					IN	BOOLEAN		bPseudoTest)
{
	u8 efuseType = EFUSE_WIFI;
	PGPKT_STRUCT	targetPkt;
	u16			startAddr = 0;
	
	RTW_INFO("===> efuse_PgPacketWrite[%s], offset: 0x%X\n", (efuseType == EFUSE_WIFI) ? "WIFI" : "BT", offset);

	//4 [1] Check if the remaining space is available to write. 
	if(!efuse_PgPacketCheck(pAdapter, efuseType, bPseudoTest))
	{
		pAdapter->LastError = ERR_WRITE_PROTECT;
		RTW_INFO("efuse_PgPacketCheck(), fail!!\n");
		return _FALSE;
	}

	//4 [2] Construct a packet to write: (Data, Offset, and WordEnable)
	efuse_PgPacketConstruct(offset, word_en, pData, &targetPkt);


	//4 [3] Fix headers without data or fix bad headers, and then return the address where to get started.
	if(!efuse_PgPacketPartialWrite(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
	{
		pAdapter->LastError = ERR_INVALID_DATA;
		RTW_INFO("efuse_PgPacketPartialWrite(), fail!!\n");
		return _FALSE;
	}

	//4 [4] Write the (extension) header.
	if(!efuse_PgPacketWriteHeader(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
	{
		pAdapter->LastError = ERR_IO_FAILURE;
		RTW_INFO("efuse_PgPacketWriteHeader(), fail!!\n");
		return _FALSE;
	}

	//4 [5] Write the data.
	if(!efuse_PgPacketWriteData(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
	{
		pAdapter->LastError = ERR_IO_FAILURE;
		RTW_INFO("efuse_PgPacketWriteData(), fail!!\n");
		return _FALSE;
	}

	RTW_INFO("<=== efuse_PgPacketWrite\n");
	return _TRUE;
}

static int
rtl8814_Efuse_PgPacketWrite(IN	PADAPTER	pAdapter,
					IN	u8 			offset,
					IN	u8			word_en,
					IN	u8			*data,
					IN	BOOLEAN		bPseudoTest)
{
	int	ret;

	ret = hal_EfusePgPacketWrite_8814A(pAdapter, offset, word_en, data, bPseudoTest);

	return ret;
}

void InitRDGSetting8814A(PADAPTER padapter)
{
	rtw_write8(padapter, REG_RD_CTRL, 0xFF);
	rtw_write16(padapter, REG_RD_NAV_NXT, 0x200);
	rtw_write8(padapter, REG_RD_RESP_PKT_TH, 0x05);
}

void ReadRFType8814A(PADAPTER padapter)
{
	PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);

#if DISABLE_BB_RF
	pHalData->rf_chip = RF_PSEUDO_11N;
#else
	pHalData->rf_chip = RF_6052;
#endif

	//if (pHalData->rf_type == RF_1T1R){
	//	pHalData->bRFPathRxEnable[0] = _TRUE;
	//}
	//else {	// Default unknow type is 2T2r
	//	pHalData->bRFPathRxEnable[0] = pHalData->bRFPathRxEnable[1] = _TRUE;
	//}

	if (IsSupported24G(padapter->registrypriv.wireless_mode) && 
		is_supported_5g(padapter->registrypriv.wireless_mode))
		pHalData->BandSet = BAND_ON_BOTH;
	else if (is_supported_5g(padapter->registrypriv.wireless_mode))
		pHalData->BandSet = BAND_ON_5G;
	else
		pHalData->BandSet = BAND_ON_2_4G;

	//if(padapter->bInHctTest)
	//	pHalData->BandSet = BAND_ON_2_4G;
}

void rtl8814_start_thread(PADAPTER padapter)
{
}

void rtl8814_stop_thread(PADAPTER padapter)
{
}

void hal_notch_filter_8814(_adapter *adapter, bool enable)
{
	if (enable) {
		RTW_INFO("Enable notch filter\n");
		//rtw_write8(adapter, rOFDM0_RxDSP+1, rtw_read8(adapter, rOFDM0_RxDSP+1) | BIT1);
	} else {
		RTW_INFO("Disable notch filter\n");
		//rtw_write8(adapter, rOFDM0_RxDSP+1, rtw_read8(adapter, rOFDM0_RxDSP+1) & ~BIT1);
	}
}

u8
GetEEPROMSize8814A(
	IN	PADAPTER	Adapter
	)
{
	u8	size = 0;
	u32	curRCR;

	curRCR = rtw_read16(Adapter, REG_SYS_EEPROM_CTRL);
	size = (curRCR & EEPROMSEL) ? 6 : 4; // 6: EEPROM used is 93C46, 4: boot from E-Fuse.
	
	RTW_INFO("EEPROM type is %s\n", size==4 ? "E-FUSE" : "93C46");
	//return size;
	return 4; // <20120713, Kordan> The default value of HW is 6 ?!!
}

/*
void CheckAutoloadState8812A(PADAPTER padapter)
{

	u8 val8;
	PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);


	// check system boot selection
	val8 = rtw_read8(padapter, REG_9346CR);
	pHalData->EepromOrEfuse = (val8 & BOOT_FROM_EEPROM) ? _TRUE : _FALSE;
	pHalData->bautoload_fail_flag = (val8 & EEPROM_EN) ? _FALSE : _TRUE;

	RTW_INFO("%s: 9346CR(%#x)=0x%02x, Boot from %s, Autoload %s!\n",
			__FUNCTION__, REG_9346CR, val8,
			(pHalData->EepromOrEfuse ? "EEPROM" : "EFUSE"),
			(pHalData->bautoload_fail_flag ? "Fail" : "OK"));
}
*/

void InitPGData8814A(PADAPTER padapter)
{
	u32 i;
	u16 val16;
	PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);

	if (_FALSE == pHalData->bautoload_fail_flag)
	{
		// autoload OK.
		if (is_boot_from_eeprom(padapter))
		{
			// Read all Content from EEPROM or EFUSE.
			//for (i = 0; i < HWSET_MAX_SIZE_JAGUAR; i += 2)
			{
				//val16 = EF2Byte(ReadEEprom(pAdapter, (u16) (i>>1)));
				//*((u16*)(&PROMContent[i])) = val16;
			}
		}
		else
		{
			// Read EFUSE real map to shadow.
			EFUSE_ShadowMapUpdate(padapter, EFUSE_WIFI, _FALSE);
		}
	}
	else
	{
		// update to default value 0xFF
		if (!is_boot_from_eeprom(padapter))
			EFUSE_ShadowMapUpdate(padapter, EFUSE_WIFI, _FALSE);
	}

#ifdef CONFIG_EFUSE_CONFIG_FILE
	if (check_phy_efuse_tx_power_info_valid(padapter) == _FALSE) {
		if (Hal_readPGDataFromConfigFile(padapter) != _SUCCESS)
			RTW_ERR("invalid phy efuse and read from file fail, will use driver default!!\n");
	}
#endif
}

static void read_chip_version_8814a(PADAPTER Adapter)
{
	u32	value32;
	PHAL_DATA_TYPE	pHalData;
	u8	vdr;

	pHalData = GET_HAL_DATA(Adapter);

	value32 = rtw_read32(Adapter, REG_SYS_CFG);
	RTW_INFO("%s SYS_CFG(0x%X)=0x%08x \n", __FUNCTION__, REG_SYS_CFG, value32);

	pHalData->version_id.ICType = CHIP_8814A;

	pHalData->version_id.ChipType = ((value32 & RTL_ID) ? TEST_CHIP : NORMAL_CHIP);

	pHalData->version_id.RFType = RF_TYPE_3T3R;

	if(Adapter->registrypriv.special_rf_path == 1)
		pHalData->version_id.RFType = RF_TYPE_1T1R;	//RF_1T1R;
	
	vdr = (value32 & EXT_VENDOR_ID) >> EXT_VENDOR_ID_SHIFT;
	if(vdr == 0x00)
		pHalData->version_id.VendorType = CHIP_VENDOR_TSMC;
	else if(vdr == 0x01)
		pHalData->version_id.VendorType = CHIP_VENDOR_SMIC;
	else if(vdr == 0x02)
		pHalData->version_id.VendorType = CHIP_VENDOR_UMC;	

	pHalData->version_id.CUTVersion = (value32 & CHIP_VER_RTL_MASK)>>CHIP_VER_RTL_SHIFT; // IC version (CUT)

	pHalData->MultiFunc = RT_MULTI_FUNC_NONE;

	rtw_hal_config_rftype(Adapter);
	
#if 1
	dump_chip_info(pHalData->version_id);
#endif

}

VOID
hal_PatchwithJaguar_8814(
	IN PADAPTER				Adapter,
	IN RT_MEDIA_STATUS		MediaStatus
	)
{
	HAL_DATA_TYPE	*pHalData = GET_HAL_DATA(Adapter);
	struct mlme_ext_priv	*pmlmeext = &(Adapter->mlmeextpriv);
	struct mlme_ext_info	*pmlmeinfo = &(pmlmeext->mlmext_info);

	if(	(MediaStatus == RT_MEDIA_CONNECT) && 
		(pmlmeinfo->assoc_AP_vendor == HT_IOT_PEER_REALTEK_JAGUAR_BCUTAP ))
	{
		rtw_write8(Adapter, rVhtlen_Use_Lsig_Jaguar, 0x1);
		rtw_write8(Adapter, REG_TCR+3, BIT2);
	}
	else
	{
		rtw_write8(Adapter, rVhtlen_Use_Lsig_Jaguar, 0x3F);
		rtw_write8(Adapter, REG_TCR+3, BIT0|BIT1|BIT2);
	}


	/*if(	(MediaStatus == RT_MEDIA_CONNECT) && 
		((pmlmeinfo->assoc_AP_vendor == HT_IOT_PEER_REALTEK_JAGUAR_BCUTAP) ||
		 (pmlmeinfo->assoc_AP_vendor == HT_IOT_PEER_REALTEK_JAGUAR_CCUTAP)))
	{
		pHalData->Reg837 |= BIT2;
		rtw_write8(Adapter, rBWIndication_Jaguar+3, pHalData->Reg837);
	}
	else
	{
		pHalData->Reg837 &= (~BIT2);
		rtw_write8(Adapter, rBWIndication_Jaguar+3, pHalData->Reg837);
	}*/
}

void init_hal_spec_8814a(_adapter *adapter)
{
	struct hal_spec_t *hal_spec = GET_HAL_SPEC(adapter);

	hal_spec->ic_name = "rtl8814a";
	hal_spec->macid_num = MACID_NUM_8814A;
	hal_spec->sec_cam_ent_num = SEC_CAM_ENT_NUM_8814A;
	hal_spec->sec_cap = SEC_CAP_CHK_BMC;
	hal_spec->rfpath_num_2g = 3;
	hal_spec->rfpath_num_5g = 3;
	hal_spec->max_tx_cnt = 4;
	hal_spec->txgi_max = 63;
	hal_spec->txgi_pdbm = 2;
	hal_spec->tx_nss_num = 4;
	hal_spec->rx_nss_num = 4;
	hal_spec->band_cap = BAND_CAP_8814A;
	hal_spec->bw_cap = BW_CAP_8814A;
	hal_spec->port_num = 2;
	hal_spec->proto_cap = PROTO_CAP_11B | PROTO_CAP_11G | PROTO_CAP_11N | PROTO_CAP_11AC;

	hal_spec->wl_func = 0
						| WL_FUNC_P2P
						| WL_FUNC_MIRACAST
						| WL_FUNC_TDLS
						;

	hal_spec->pg_txpwr_saddr = 0x10;
	hal_spec->pg_txgi_diff_factor = 1;
	rtw_macid_ctl_init_sleep_reg(adapter_to_macidctl(adapter)
		, REG_MACID_SLEEP
		, REG_MACID_SLEEP_1
		, REG_MACID_SLEEP_2
		, REG_MACID_SLEEP_3);

}

void InitDefaultValue8814A(PADAPTER padapter)
{
	PHAL_DATA_TYPE pHalData;
	struct pwrctrl_priv *pwrctrlpriv;
	u8 i;

	pHalData = GET_HAL_DATA(padapter);
	pwrctrlpriv = adapter_to_pwrctl(padapter);

	// init default value
	pHalData->fw_ractrl = _FALSE;		
	if (!pwrctrlpriv->bkeepfwalive)
		pHalData->LastHMEBoxNum = 0;	

	init_hal_spec_8814a(padapter);

	// init dm default value
	pHalData->bChnlBWInitialized = _FALSE;
	pHalData->bIQKInitialized = _FALSE;
	
	pHalData->EfuseHal.fakeEfuseBank = 0;
	pHalData->EfuseHal.fakeEfuseUsedBytes = 0;
	_rtw_memset(pHalData->EfuseHal.fakeEfuseContent, 0xFF, EFUSE_MAX_HW_SIZE);
	_rtw_memset(pHalData->EfuseHal.fakeEfuseInitMap, 0xFF, EFUSE_MAX_MAP_LEN);
	_rtw_memset(pHalData->EfuseHal.fakeEfuseModifiedMap, 0xFF, EFUSE_MAX_MAP_LEN);
}

VOID
_InitBeaconParameters_8814A(
	IN  PADAPTER Adapter
	)
{
	HAL_DATA_TYPE	*pHalData = GET_HAL_DATA(Adapter);
	u16 val16;
	u8  val8;   

	val8 = DIS_TSF_UDT;
	val16 = val8 | (val8 << 8); // port0 and port1
#ifdef CONFIG_BT_COEXIST
    if (pHalData->EEPROMBluetoothCoexist == 1)
    {
        // Enable prot0 beacon function for PSTDMA
        val16 |= EN_BCN_FUNCTION;
    }
#endif
	rtw_write16(Adapter, REG_BCN_CTRL, val16);
	//rtw_write16(Adapter, REG_BCN_CTRL, 0x1010);

	// TODO: Remove these magic number
	rtw_write16(Adapter, REG_TBTT_PROHIBIT,0x6404);// ms
	rtw_write8(Adapter, REG_DRVERLYINT, DRIVER_EARLY_INT_TIME_8814);// 5ms
	rtw_write8(Adapter, REG_BCNDMATIM, BCN_DMA_ATIME_INT_TIME_8814); // 2ms

	// Suggested by designer timchen. Change beacon AIFS to the largest number
	// beacause test chip does not contension before sending beacon. by tynli. 2009.11.03
	rtw_write16(Adapter, REG_BCNTCFG, 0x660F);

	//pHalData->RegBcnCtrlVal = rtw_read8(Adapter, REG_BCN_CTRL);
	//pHalData->RegTxPause = rtw_read8(Adapter, REG_TXPAUSE); 
	//pHalData->RegFwHwTxQCtrl = rtw_read8(Adapter, REG_FWHW_TXQ_CTRL+2);
	//pHalData->RegReg542 = rtw_read8(Adapter, REG_TBTT_PROHIBIT+2);
	//pHalData->RegCR_1 = rtw_read8(Adapter, REG_CR+1);
}

static VOID
_BeaconFunctionEnable(
	IN	PADAPTER		Adapter,
	IN	BOOLEAN			Enable,
	IN	BOOLEAN			Linked
	)
{
	rtw_write8(Adapter, REG_BCN_CTRL, (BIT4 | BIT3 | BIT1));
	//SetBcnCtrlReg(Adapter, (BIT4 | BIT3 | BIT1), 0x00);
	//RT_TRACE(COMP_BEACON, DBG_LOUD, ("_BeaconFunctionEnable 0x550 0x%x\n", rtw_read8(Adapter, 0x550)));			

	rtw_write8(Adapter, REG_RD_CTRL+1, 0x6F);	
}

void SetBeaconRelatedRegisters8814A(PADAPTER padapter)
{
	u32	value32;
	HAL_DATA_TYPE	*pHalData = GET_HAL_DATA(padapter);
	struct mlme_ext_priv	*pmlmeext = &(padapter->mlmeextpriv);
	struct mlme_ext_info	*pmlmeinfo = &(pmlmeext->mlmext_info);
	u32 bcn_ctrl_reg 			= REG_BCN_CTRL;
	//reset TSF, enable update TSF, correcting TSF On Beacon 
	
	//REG_BCN_INTERVAL
	//REG_BCNDMATIM
	//REG_ATIMWND
	//REG_TBTT_PROHIBIT
	//REG_DRVERLYINT
	//REG_BCN_MAX_ERR	
	//REG_BCNTCFG //(0x510)
	//REG_DUAL_TSF_RST
	//REG_BCN_CTRL //(0x550) 

	//BCN interval
#ifdef CONFIG_CONCURRENT_MODE
        if (padapter->iface_type == IFACE_PORT1){
		bcn_ctrl_reg = REG_BCN_CTRL_1;
        }
#endif	
	rtw_write16(padapter, REG_BCN_INTERVAL, pmlmeinfo->bcn_interval);
	rtw_write8(padapter, REG_ATIMWND, 0x02);// 2ms

	_InitBeaconParameters_8814A(padapter);

	rtw_write8(padapter, REG_SLOT, 0x09);

	value32 =rtw_read32(padapter, REG_TCR); 
	value32 &= ~TSFRST;
	rtw_write32(padapter,  REG_TCR, value32); 

	value32 |= TSFRST;
	rtw_write32(padapter, REG_TCR, value32); 

	// NOTE: Fix test chip's bug (about contention windows's randomness)
	rtw_write8(padapter,  REG_RXTSF_OFFSET_CCK, 0x50);
	rtw_write8(padapter, REG_RXTSF_OFFSET_OFDM, 0x50);

	_BeaconFunctionEnable(padapter, _TRUE, _TRUE);

	ResumeTxBeacon(padapter);

	//rtw_write8(padapter, 0x422, rtw_read8(padapter, 0x422)|BIT(6));
	
	//rtw_write8(padapter, 0x541, 0xff);

	//rtw_write8(padapter, 0x542, rtw_read8(padapter, 0x541)|BIT(0));

	rtw_write8(padapter, bcn_ctrl_reg, rtw_read8(padapter, bcn_ctrl_reg)|BIT(1));

}

#ifdef CONFIG_BEAMFORMING
#if (BEAMFORMING_SUPPORT == 0)
VOID
SetBeamformingCLK_8812(
	IN 	PADAPTER			Adapter
	)
{
	struct pwrctrl_priv	*pwrpriv = adapter_to_pwrctl(Adapter);
	u16	u2btmp;
	u8	Count = 0, u1btmp;

	RTW_INFO(" ==>%s\n", __FUNCTION__);

	if ( (check_fwstate(&Adapter->mlmepriv, _FW_UNDER_SURVEY)==_TRUE)
#ifdef CONFIG_CONCURRENT_MODE
		|| (check_buddy_fwstate(Adapter, _FW_UNDER_SURVEY) == _TRUE)
#endif
		)
	{
		RTW_INFO(" <==%s return by Scan\n", __FUNCTION__);
		return;
	}	
	
	// Stop Usb TxDMA
	rtw_write_port_cancel(Adapter);

#ifdef CONFIG_PCI_HCI
	// Stop PCIe TxDMA
	rtw_write8(Adapter, REG_PCIE_CTRL_REG+1, 0xFE);
#endif

	// Wait TXFF empty
	for(Count = 0; Count < 100; Count++)
	{
		u2btmp = rtw_read16(Adapter, REG_TXPKT_EMPTY);
		u2btmp = u2btmp & 0xfff;
		if(u2btmp != 0xfff)
		{
			rtw_mdelay_os(10);
			continue;
		}
		else
			break;
	}

	RTW_INFO(" Tx Empty count %d \n", Count);

	// TX pause
	rtw_write8(Adapter, REG_TXPAUSE, 0xFF);

	// Wait TX State Machine OK
	for(Count = 0; Count < 100; Count++)
	{
		if (rtw_read32(Adapter, REG_SCH_TXCMD_8812A) != 0)
			continue;
		else 
			break;
	}

	RTW_INFO(" Tx Status count %d\n", Count);
	
	// Stop RX DMA path
	u1btmp = rtw_read8(Adapter, REG_RXDMA_CONTROL_8812A);
	rtw_write8(Adapter, REG_RXDMA_CONTROL_8812A, u1btmp | BIT2);

	for(Count = 0; Count < 100; Count++)
	{
		u1btmp = rtw_read8(Adapter, REG_RXDMA_CONTROL_8812A);
		if(u1btmp & BIT1)
			break;
		else
			rtw_mdelay_os(10);
	}

	RTW_INFO(" Rx Empty count %d \n", Count);
	
	// Disable clock
	rtw_write8(Adapter, REG_SYS_CLKR+1, 0xf0);
	// Disable 320M
	rtw_write8(Adapter, REG_AFE_PLL_CTRL+3, 0x8);
	// Enable 320M
	rtw_write8(Adapter, REG_AFE_PLL_CTRL+3, 0xa);
	// Enable clock
	rtw_write8(Adapter, REG_SYS_CLKR+1, 0xfc);

	// Release Tx pause
	rtw_write8(Adapter, REG_TXPAUSE, 0);

	// Enable RX DMA path
	u1btmp = rtw_read8(Adapter, REG_RXDMA_CONTROL_8812A);
	rtw_write8(Adapter, REG_RXDMA_CONTROL_8812A, u1btmp & (~BIT2));

	// Start Usb TxDMA
	RTW_ENABLE_FUNC(Adapter, DF_TX_BIT);
	RTW_INFO("%s \n", __FUNCTION__);

	RTW_INFO("<==%s\n", __FUNCTION__);
}

VOID
SetBeamformRfMode_8812(
	IN PADAPTER				Adapter,
	IN struct beamforming_info	*pBeamInfo
	)
{
	BOOLEAN				bSelfBeamformer = _FALSE;
	BOOLEAN				bSelfBeamformee = _FALSE;
	BEAMFORMING_CAP	BeamformCap = BEAMFORMING_CAP_NONE;

	BeamformCap = beamforming_get_beamform_cap(pBeamInfo);

	if(BeamformCap == pBeamInfo->beamforming_cap)
		return;
	else 
		pBeamInfo->beamforming_cap = BeamformCap;

	if(GET_RF_TYPE(Adapter) == RF_1T1R)
		return;

	bSelfBeamformer = BeamformCap & BEAMFORMER_CAP;
	bSelfBeamformee = BeamformCap & BEAMFORMEE_CAP;

	PHY_SetRFReg(Adapter, ODM_RF_PATH_A, RF_WeLut_Jaguar, 0x80000,0x1); // RF Mode table write enable
	PHY_SetRFReg(Adapter, ODM_RF_PATH_B, RF_WeLut_Jaguar, 0x80000,0x1); // RF Mode table write enable

	if(bSelfBeamformer)
	{	
		// Paath_A
		PHY_SetRFReg(Adapter, ODM_RF_PATH_A, RF_ModeTableAddr, 0x78000,0x3); // Select RX mode
		PHY_SetRFReg(Adapter, ODM_RF_PATH_A, RF_ModeTableData0, 0xfffff,0x3F7FF); // Set Table data
		PHY_SetRFReg(Adapter, ODM_RF_PATH_A, RF_ModeTableData1, 0xfffff,0xE26BF); // Enable TXIQGEN in RX mode
		// Path_B
		PHY_SetRFReg(Adapter, ODM_RF_PATH_B, RF_ModeTableAddr, 0x78000, 0x3); // Select RX mode
		PHY_SetRFReg(Adapter, ODM_RF_PATH_B, RF_ModeTableData0, 0xfffff,0x3F7FF); // Set Table data
		PHY_SetRFReg(Adapter, ODM_RF_PATH_B, RF_ModeTableData1, 0xfffff,0xE26BF); // Enable TXIQGEN in RX mode
	}
	else
	{
		// Paath_A
		PHY_SetRFReg(Adapter, ODM_RF_PATH_A, RF_ModeTableAddr, 0x78000, 0x3); // Select RX mode
		PHY_SetRFReg(Adapter, ODM_RF_PATH_A, RF_ModeTableData0, 0xfffff,0x3F7FF); // Set Table data
		PHY_SetRFReg(Adapter, ODM_RF_PATH_A, RF_ModeTableData1, 0xfffff,0xC26BF); // Disable TXIQGEN in RX mode
		// Path_B
		PHY_SetRFReg(Adapter, ODM_RF_PATH_B, RF_ModeTableAddr, 0x78000, 0x3); // Select RX mode
		PHY_SetRFReg(Adapter, ODM_RF_PATH_B, RF_ModeTableData0, 0xfffff,0x3F7FF); // Set Table data
		PHY_SetRFReg(Adapter, ODM_RF_PATH_B, RF_ModeTableData1, 0xfffff,0xC26BF); // Disable TXIQGEN in RX mode
	}

	PHY_SetRFReg(Adapter, ODM_RF_PATH_A, RF_WeLut_Jaguar, 0x80000,0x0); // RF Mode table write disable
	PHY_SetRFReg(Adapter, ODM_RF_PATH_B, RF_WeLut_Jaguar, 0x80000,0x0); // RF Mode table write disable

	if(bSelfBeamformer)
		PHY_SetBBReg(Adapter, rTxPath_Jaguar, bMaskByte1, 0x33);
	else
		PHY_SetBBReg(Adapter, rTxPath_Jaguar, bMaskByte1, 0x11);
}



VOID
SetBeamformEnter_8812(
	IN PADAPTER				Adapter,
	IN u8					Idx
	)
{
	u8	i = 0;
	u32	CSI_Param;
	HAL_DATA_TYPE			*pHalData = GET_HAL_DATA(Adapter);
	struct mlme_priv			*pmlmepriv = &(Adapter->mlmepriv);
	struct beamforming_info	*pBeamInfo = GET_BEAMFORM_INFO(pmlmepriv);
	struct beamforming_entry	BeamformEntry = pBeamInfo->beamforming_entry[Idx];
	u16	STAid = 0;

	SetBeamformRfMode_8812(Adapter, pBeamInfo);

	if (check_fwstate(pmlmepriv, WIFI_ADHOC_STATE) || check_fwstate(pmlmepriv, WIFI_ADHOC_MASTER_STATE))
		STAid = BeamformEntry.mac_id;
	else 
		STAid = BeamformEntry.p_aid;

	// Sounding protocol control
	rtw_write8(Adapter, REG_SND_PTCL_CTRL_8812A, 0xCB);

	// MAC addresss/Partial AID of Beamformer
	if(Idx == 0)
	{
		for(i = 0; i < 6 ; i++)
			rtw_write8(Adapter, (REG_BFMER0_INFO_8812A+i), BeamformEntry.mac_addr[i]);
		/* CSI report use legacy ofdm so don't need to fill P_AID.*/
		/*rtw_write16(Adapter, REG_BFMER0_INFO_8812A+6, BeamformEntry.P_AID);*/
	}
	else
	{
		for(i = 0; i < 6 ; i++)
			rtw_write8(Adapter, (REG_BFMER1_INFO_8812A+i), BeamformEntry.mac_addr[i]);
		/* CSI report use legacy ofdm so don't need to fill P_AID.*/
		/*rtw_write16(Adapter, REG_BFMER1_INFO_8812A+6, BeamformEntry.P_AID);*/
	}

	// CSI report parameters of Beamformee 
	if(	(BeamformEntry.beamforming_entry_cap & BEAMFORMEE_CAP_VHT_SU) ||
		(BeamformEntry.beamforming_entry_cap & BEAMFORMER_CAP_VHT_SU) )
	{
		if(pHalData->rf_type == RF_2T2R)
			CSI_Param = 0x01090109;
		else
			CSI_Param = 0x01080108;
	}	
	else 
	{
		if(pHalData->rf_type == RF_2T2R)
			CSI_Param = 0x03090309;
		else
			CSI_Param = 0x03080308;
	}	

	if(pHalData->rf_type == RF_2T2R)
		rtw_write32(Adapter, 0x9B4, 0x00000000);	// Nc =2
	else
		rtw_write32(Adapter, 0x9B4, 0x01081008); // Nc =1

	rtw_write32(Adapter, REG_CSI_RPT_PARAM_BW20_8812A, CSI_Param);
	rtw_write32(Adapter, REG_CSI_RPT_PARAM_BW40_8812A, CSI_Param);
	rtw_write32(Adapter, REG_CSI_RPT_PARAM_BW80_8812A, CSI_Param);

	// P_AID of Beamformee & enable NDPA transmission & enable NDPA interrupt
	if(Idx == 0)
	{	
		rtw_write16(Adapter, REG_TXBF_CTRL_8812A, STAid);	
		rtw_write8(Adapter, REG_TXBF_CTRL_8812A+3, rtw_read8(Adapter, REG_TXBF_CTRL_8812A+3)|BIT4|BIT6|BIT7);
	}	
	else
	{
		rtw_write16(Adapter, REG_TXBF_CTRL_8812A+2, STAid | BIT12 | BIT14 | BIT15);
	}	

	// CSI report parameters of Beamformee
	if(Idx == 0)	
	{
		// Get BIT24 & BIT25
		u8	tmp = rtw_read8(Adapter, REG_BFMEE_SEL_8812A+3) & 0x3;
	
		rtw_write8(Adapter, REG_BFMEE_SEL_8812A+3, tmp | 0x60);
		rtw_write16(Adapter, REG_BFMEE_SEL_8812A, STAid | BIT9);
	}	
	else
	{
		// Set BIT25
		rtw_write16(Adapter, REG_BFMEE_SEL_8812A+2, STAid | (0xE2 << 8));
	}

	// Timeout value for MAC to leave NDP_RX_standby_state (60 us, Test chip) (80 us,  MP chip)
	rtw_write8(Adapter, REG_SND_PTCL_CTRL_8812A+3, 0x50);

	beamforming_notify(Adapter);
}


VOID
SetBeamformLeave_8812(
	IN PADAPTER				Adapter,
	IN u8					Idx
	)
{
	struct beamforming_info	*pBeamInfo = GET_BEAMFORM_INFO(&(Adapter->mlmepriv));

	SetBeamformRfMode_8812(Adapter, pBeamInfo);

	/*	Clear P_AID of Beamformee
	* 	Clear MAC addresss of Beamformer
	*	Clear Associated Bfmee Sel
	*/
	if(pBeamInfo->beamforming_cap == BEAMFORMING_CAP_NONE)
		rtw_write8(Adapter, REG_SND_PTCL_CTRL_8812A, 0xC8);	

	if(Idx == 0)
	{	
		rtw_write16(Adapter, REG_TXBF_CTRL_8812A, 0);	

		rtw_write32(Adapter, REG_BFMER0_INFO_8812A, 0);
		rtw_write16(Adapter, REG_BFMER0_INFO_8812A+4, 0);

		rtw_write16(Adapter, REG_BFMEE_SEL_8812A, 0);
	}	
	else
	{
		rtw_write16(Adapter, REG_TXBF_CTRL_8812A+2, rtw_read16(Adapter, REG_TXBF_CTRL_8812A+2) & 0xF000);

		rtw_write32(Adapter, REG_BFMER1_INFO_8812A, 0);
		rtw_write16(Adapter, REG_BFMER1_INFO_8812A+4, 0);

		rtw_write16(Adapter, REG_BFMEE_SEL_8812A+2, rtw_read16(Adapter, REG_BFMEE_SEL_8812A+2) & 0x60);
	}
}


VOID
SetBeamformStatus_8812(
	IN PADAPTER				Adapter,
	IN u8					Idx
	)
{
	u16	BeamCtrlVal;
	u32	BeamCtrlReg;
	struct mlme_priv			*pmlmepriv = &(Adapter->mlmepriv);
	struct beamforming_info	*pBeamInfo = GET_BEAMFORM_INFO(pmlmepriv);
	struct beamforming_entry	BeamformEntry = pBeamInfo->beamforming_entry[Idx];

	if (check_fwstate(pmlmepriv, WIFI_ADHOC_STATE) || check_fwstate(pmlmepriv, WIFI_ADHOC_MASTER_STATE))
		BeamCtrlVal = BeamformEntry.mac_id;
	else 
		BeamCtrlVal = BeamformEntry.p_aid;

	if(Idx == 0)
		BeamCtrlReg = REG_TXBF_CTRL_8812A;
	else
	{
		BeamCtrlReg = REG_TXBF_CTRL_8812A+2;
		BeamCtrlVal |= BIT12 | BIT14|BIT15;
	}

	if(BeamformEntry.beamforming_entry_state == BEAMFORMING_ENTRY_STATE_PROGRESSED)
	{
		if(BeamformEntry.sound_bw == CHANNEL_WIDTH_20)
			BeamCtrlVal |= BIT9;
		else if(BeamformEntry.sound_bw == CHANNEL_WIDTH_40)
			BeamCtrlVal |= BIT10;
		else if(BeamformEntry.sound_bw == CHANNEL_WIDTH_80)
			BeamCtrlVal |= BIT11;
	}
	else
	{
		BeamCtrlVal &= ~(BIT9|BIT10|BIT11);
	}

	rtw_write16(Adapter, BeamCtrlReg, BeamCtrlVal);

	RTW_INFO("%s Idx %d BeamCtrlReg %x BeamCtrlVal %x\n", __FUNCTION__, Idx, BeamCtrlReg, BeamCtrlVal);
}


VOID
SetBeamformFwTxBFCmd_8812(
	IN	PADAPTER	Adapter
	)
{
	u8	Idx, Period0 = 0, Period1 = 0;
	u8	PageNum0 = 0xFF, PageNum1 = 0xFF;
	u8	u1TxBFParm[3]={0};

	struct mlme_priv			*pmlmepriv = &(Adapter->mlmepriv);
	struct beamforming_info	*pBeamInfo = GET_BEAMFORM_INFO(pmlmepriv);

	for(Idx = 0; Idx < BEAMFORMING_ENTRY_NUM; Idx++)
	{
		if(pBeamInfo->beamforming_entry[Idx].beamforming_entry_state == BEAMFORMING_ENTRY_STATE_PROGRESSED)
		{
			if(Idx == 0)
			{
				if(pBeamInfo->beamforming_entry[Idx].bSound)
					PageNum0 = 0xFE;
				else
					PageNum0 = 0xFF; //stop sounding
				Period0 = (u8)(pBeamInfo->beamforming_entry[Idx].sound_period);
			}	
			else if(Idx == 1)
			{
				if(pBeamInfo->beamforming_entry[Idx].bSound)
					PageNum1 = 0xFE;
				else
					PageNum1 = 0xFF; //stop sounding
				Period1 = (u8)(pBeamInfo->beamforming_entry[Idx].sound_period);
			}	
		}
	}

	u1TxBFParm[0] = PageNum0;
	u1TxBFParm[1] = PageNum1;
	u1TxBFParm[2] = (Period1 << 4) | Period0;
	FillH2CCmd_8812(Adapter, H2C_8812_TxBF, 3, u1TxBFParm);
	
	RTW_INFO("%s PageNum0 = %d Period0 = %d\n", __FUNCTION__, PageNum0, Period0);
	RTW_INFO("PageNum1 = %d Period1 %d\n", PageNum1, Period1);
}


VOID
SetBeamformDownloadNDPA_8812(
	IN	PADAPTER			Adapter,
	IN	u8					Idx
	)
{
	u8	u1bTmp=0, tmpReg422=0, Head_Page;	
	u8	BcnValidReg=0, count=0, DLBcnCount=0;
	BOOLEAN			bSendBeacon=_FALSE;
	HAL_DATA_TYPE	*pHalData = GET_HAL_DATA(Adapter);
	u16	TxPageBndy= LAST_ENTRY_OF_TX_PKT_BUFFER_8812; // default reseved 1 page for the IC type which is undefined.
	struct beamforming_info	*pBeamInfo = GET_BEAMFORM_INFO(&(Adapter->mlmepriv));
	struct beamforming_entry	*pBeamEntry = pBeamInfo->beamforming_entry+Idx;

	//pHalData->bFwDwRsvdPageInProgress = _TRUE;

	if(Idx == 0)
		Head_Page = 0xFE;
	else
		Head_Page = 0xFE;

	rtw_hal_get_def_var(Adapter, HAL_DEF_TX_PAGE_BOUNDARY, (u16 *)&TxPageBndy);
	
	//Set REG_CR bit 8. DMA beacon by SW.
	u1bTmp = rtw_read8(Adapter, REG_CR+1);
	rtw_write8(Adapter,  REG_CR+1, (u1bTmp|BIT0));

	pHalData->RegCR_1 |= BIT0;
	rtw_write8(Adapter,  REG_CR+1, pHalData->RegCR_1);

	// Set FWHW_TXQ_CTRL 0x422[6]=0 to tell Hw the packet is not a real beacon frame.
	tmpReg422 = rtw_read8(Adapter, REG_FWHW_TXQ_CTRL+2);
	rtw_write8(Adapter, REG_FWHW_TXQ_CTRL+2,  tmpReg422&(~BIT6));

	if(tmpReg422&BIT6)
	{
		RTW_INFO("SetBeamformDownloadNDPA_8812(): There is an Adapter is sending beacon.\n");
		bSendBeacon = _TRUE;
	}

	// 	TDECTRL[15:8] 0x209[7:0] = 0xF6	Beacon Head for TXDMA
	rtw_write8(Adapter,REG_TDECTRL+1, Head_Page);
	
	do
	{		
		// Clear beacon valid check bit.
		BcnValidReg = rtw_read8(Adapter, REG_TDECTRL+2);
		rtw_write8(Adapter, REG_TDECTRL+2, (BcnValidReg|BIT0));
		
		// download NDPA rsvd page.
		if(pBeamEntry->beamforming_entry_cap & BEAMFORMER_CAP_VHT_SU)
			beamforming_send_vht_ndpa_packet(Adapter,pBeamEntry->mac_addr,pBeamEntry->aid,pBeamEntry->sound_bw, BCN_QUEUE_INX);
		else 
			beamforming_send_ht_ndpa_packet(Adapter,pBeamEntry->mac_addr,pBeamEntry->sound_bw, BCN_QUEUE_INX);

		// check rsvd page download OK.
		BcnValidReg = rtw_read8(Adapter, REG_TDECTRL+2);
		count=0;
		while(!(BcnValidReg & BIT0) && count <20)
		{
			count++;
			rtw_udelay_os(10);
			BcnValidReg = rtw_read8(Adapter, REG_TDECTRL+2);
		}
		DLBcnCount++;
	}while(!(BcnValidReg&BIT0) && DLBcnCount<5);
	
	if(!(BcnValidReg&BIT0))
		RTW_INFO("%s Download RSVD page failed!\n", __FUNCTION__);

	// 	TDECTRL[15:8] 0x209[7:0] = 0xF6	Beacon Head for TXDMA
	rtw_write8(Adapter,REG_TDECTRL+1, TxPageBndy);

	// To make sure that if there exists an adapter which would like to send beacon.
	// If exists, the origianl value of 0x422[6] will be 1, we should check this to
	// prevent from setting 0x422[6] to 0 after download reserved page, or it will cause 
	// the beacon cannot be sent by HW.
	// 2010.06.23. Added by tynli.
	if(bSendBeacon)
	{
		rtw_write8(Adapter, REG_FWHW_TXQ_CTRL+2, tmpReg422);
	}

	// Do not enable HW DMA BCN or it will cause Pcie interface hang by timing issue. 2011.11.24. by tynli.
	// Clear CR[8] or beacon packet will not be send to TxBuf anymore.
	u1bTmp = rtw_read8(Adapter, REG_CR+1);
	rtw_write8(Adapter, REG_CR+1, (u1bTmp&(~BIT0)));

	pBeamEntry->beamforming_entry_state = BEAMFORMING_ENTRY_STATE_PROGRESSED;

	//pHalData->bFwDwRsvdPageInProgress = _FALSE;
}

VOID
SetBeamformFwTxBF_8812(
	IN	PADAPTER			Adapter,
	IN	u8					Idx
	)
{
	struct beamforming_info	*pBeamInfo = GET_BEAMFORM_INFO(&(Adapter->mlmepriv));
	struct beamforming_entry	*pBeamEntry = pBeamInfo->beamforming_entry+Idx;

	if(pBeamEntry->beamforming_entry_state == BEAMFORMING_ENTRY_STATE_PROGRESSING)
		SetBeamformDownloadNDPA_8812(Adapter, Idx);

	SetBeamformFwTxBFCmd_8812(Adapter);
}


VOID
SetBeamformPatch_8812(
	IN	PADAPTER			Adapter,
	IN	u8					Operation
	)
{
	HAL_DATA_TYPE			*pHalData = GET_HAL_DATA(Adapter);
	struct beamforming_info	*pBeamInfo = GET_BEAMFORM_INFO(&(Adapter->mlmepriv));
	
	if(pBeamInfo->beamforming_cap == BEAMFORMING_CAP_NONE)
		return;
	
	/*if(Operation == SCAN_OPT_BACKUP_BAND0)
	{
		rtw_write8(Adapter, REG_SND_PTCL_CTRL_8812A, 0xC8);	
	}
	else if(Operation == SCAN_OPT_RESTORE)
	{
		rtw_write8(Adapter, REG_SND_PTCL_CTRL_8812A, 0xCB);
	}*/
}

#endif /*#if (BEAMFORMING_SUPPORT == 0) for driver's TxBF*/
#endif /*CONFIG_BEAMFORMING*/

static void hw_var_set_monitor(PADAPTER Adapter, u8 variable, u8 *val)
{
	u32	value_rcr, rcr_bits;
	u16	value_rxfltmap2;
	HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
	struct mlme_priv *pmlmepriv = &(Adapter->mlmepriv);

	if (*((u8 *)val) == _HW_STATE_MONITOR_) {

		/* Leave IPS */
		rtw_pm_set_ips(Adapter, IPS_NONE);
		LeaveAllPowerSaveMode(Adapter);

		/* Receive all type */
		rcr_bits = RCR_AAP | RCR_APM | RCR_AM | RCR_AB | RCR_APWRMGT | RCR_ADF | RCR_ACF | RCR_AMF | RCR_APP_PHYST_RXFF;

		/* Append FCS */
		rcr_bits |= RCR_APPFCS;

		#if 0
		/* 
		   CRC and ICV packet will drop in recvbuf2recvframe()
		   We no turn on it.
		 */
		rcr_bits |= (RCR_ACRC32 | RCR_AICV);
		#endif

		/* Receive all data frames */
		value_rxfltmap2 = 0xFFFF;

		value_rcr = rcr_bits;
		rtw_write32(Adapter, REG_RCR, value_rcr);

		rtw_write16(Adapter, REG_RXFLTMAP2, value_rxfltmap2);

		#if 0
		/* tx pause */
		rtw_write8(padapter, REG_TXPAUSE, 0xFF);
		#endif
	} else {
		/* do nothing */
	}

}

static void hw_var_set_opmode(PADAPTER Adapter, u8 variable, u8* val)
{
	u8	val8;	
	u8	mode = *((u8 *)val);
	u32	value_rcr;
	static u8 isMonitor = _FALSE;

	HAL_DATA_TYPE			*pHalData = GET_HAL_DATA(Adapter);

	if (isMonitor == _TRUE) {
		/* reset RCR */
		rtw_write32(Adapter, REG_RCR, pHalData->ReceiveConfig);
		isMonitor = _FALSE;
	}

	if (mode == _HW_STATE_MONITOR_) {
		isMonitor = _TRUE;
		/* set net_type */
		Set_MSR(Adapter, _HW_STATE_NOLINK_);

		hw_var_set_monitor(Adapter, variable, val);
		return;
	}

#ifdef CONFIG_CONCURRENT_MODE
	if(Adapter->iface_type == IFACE_PORT1)
	{
		// disable Port1 TSF update
		rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)|DIS_TSF_UDT);
		
		// set net_type
		val8 = rtw_read8(Adapter, MSR)&0x03;
		val8 |= (mode<<2);
		rtw_write8(Adapter, MSR, val8);
		
		RTW_INFO("%s()-%d mode = %d\n", __FUNCTION__, __LINE__, mode);

		if((mode == _HW_STATE_STATION_) || (mode == _HW_STATE_NOLINK_))
		{
			if(!check_buddy_mlmeinfo_state(Adapter, WIFI_FW_AP_STATE))
			{
				StopTxBeacon(Adapter);
#ifdef CONFIG_PCI_HCI
				UpdateInterruptMask8814AE(Adapter, 0, 0, RT_BCN_INT_MASKS, 0);
#else //CONFIG_PCI_HCI
				#ifdef CONFIG_INTERRUPT_BASED_TXBCN	

				#ifdef  CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT	
				rtw_write8(Adapter, REG_DRVERLYINT, 0x05);//restore early int time to 5ms
				UpdateInterruptMask8814AU(Adapter,_TRUE, 0, IMR_BCNDMAINT0_8812);	
				#endif // CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
				
				#ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR		
				UpdateInterruptMask8814AU(Adapter,_TRUE ,0, (IMR_TXBCN0ERR_8812|IMR_TXBCN0OK_8812));
				#endif// CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
 
				#endif //CONFIG_INTERRUPT_BASED_TXBCN
#endif //CONFIG_PCI_HCI
			}
			
			rtw_write8(Adapter,REG_BCN_CTRL_1, 0x11);//disable atim wnd and disable beacon function
			//rtw_write8(Adapter,REG_BCN_CTRL_1, 0x18);
		}
		else if((mode == _HW_STATE_ADHOC_) /*|| (mode == _HW_STATE_AP_)*/)
		{
#ifdef RTL8814AE_SW_BCN
			/*Beacon is polled to TXBUF*/
			rtw_write16(Adapter, REG_CR, rtw_read16(Adapter, REG_CR)|BIT(8));
			RTW_INFO("%s-%d: enable SW BCN, REG_CR=0x%x\n", __func__, __LINE__, rtw_read32(Adapter, REG_CR));
#endif
			ResumeTxBeacon(Adapter);
			rtw_write8(Adapter,REG_BCN_CTRL_1, 0x1a);
		}
		else if(mode == _HW_STATE_AP_)
		{
#ifdef CONFIG_PCI_HCI
			UpdateInterruptMask8814AE(Adapter, RT_BCN_INT_MASKS, 0, 0, 0);
#else
	#ifdef CONFIG_INTERRUPT_BASED_TXBCN			
			#ifdef  CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
			UpdateInterruptMask8814AU(Adapter,_TRUE ,IMR_BCNDMAINT0_8812, 0);
			#endif//CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT

			#ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR	
			UpdateInterruptMask8814AU(Adapter,_TRUE ,(IMR_TXBCN0ERR_8812|IMR_TXBCN0OK_8812), 0);
			#endif//CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR

	#endif //CONFIG_INTERRUPT_BASED_TXBCN
#endif

			ResumeTxBeacon(Adapter);
					
			rtw_write8(Adapter, REG_BCN_CTRL_1, 0x12);

#ifdef RTL8814AE_SW_BCN
			rtw_write16(Adapter, REG_CR, rtw_read16(Adapter, REG_CR)|BIT(8));
			RTW_INFO("%s-%d: enable SW BCN, REG_CR=0x%x\n", __func__, __LINE__, rtw_read32(Adapter, REG_CR));
#endif
			//Set RCR
			//rtw_write32(padapter, REG_RCR, 0x70002a8e);//CBSSID_DATA must set to 0
			//rtw_write32(Adapter, REG_RCR, 0x7000228e);//CBSSID_DATA must set to 0
			//rtw_write32(Adapter, REG_RCR, 0x7000208e);//CBSSID_DATA must set to 0,reject ICV_ERR packet
			value_rcr = rtw_read32(Adapter, REG_RCR);
			value_rcr &= ~(RCR_CBSSID_DATA);//Clear CBSSID_DATA
			rtw_write32(Adapter, REG_RCR, value_rcr);

			//enable to rx data frame
			rtw_write16(Adapter, REG_RXFLTMAP2, 0xFFFF);

			//Beacon Control related register for first time 
			rtw_write8(Adapter, REG_BCNDMATIM, 0x02); // 2ms		

			//rtw_write8(Adapter, REG_BCN_MAX_ERR, 0xFF);
			rtw_write8(Adapter, REG_ATIMWND_1, 0x0a); // 10ms for port1
			rtw_write16(Adapter, REG_BCNTCFG, 0x00);
			rtw_write16(Adapter, REG_TBTT_PROHIBIT, 0xff04);
			rtw_write16(Adapter, REG_TSFTR_SYN_OFFSET, 0x7fff);// +32767 (~32ms)
	
			//reset TSF2	
			rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(1));

			//enable BCN1 Function for if2
			//don't enable update TSF1 for if2 (due to TSF update when beacon/probe rsp are received)
			rtw_write8(Adapter, REG_BCN_CTRL_1, (DIS_TSF_UDT|EN_BCN_FUNCTION | EN_TXBCN_RPT|DIS_BCNQ_SUB));

#ifdef CONFIG_CONCURRENT_MODE
			if(check_buddy_fwstate(Adapter, WIFI_FW_NULL_STATE))
				rtw_write8(Adapter, REG_BCN_CTRL, 
					rtw_read8(Adapter, REG_BCN_CTRL) & ~EN_BCN_FUNCTION);
#endif
			//BCN1 TSF will sync to BCN0 TSF with offset(0x518) if if1_sta linked
			//rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)|BIT(5));
			//rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(3));
					
			//dis BCN0 ATIM  WND if if1 is station
			rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)|DIS_ATIM);

#ifdef CONFIG_TSF_RESET_OFFLOAD
			// Reset TSF for STA+AP concurrent mode
			if ( check_buddy_fwstate(Adapter, (WIFI_STATION_STATE|WIFI_ASOC_STATE)) ) {
				if (reset_tsf(Adapter, IFACE_PORT1) == _FALSE)
					RTW_INFO("ERROR! %s()-%d: Reset port1 TSF fail\n",
						__FUNCTION__, __LINE__);
			}
#endif	// CONFIG_TSF_RESET_OFFLOAD
		}
	}
	else //else for port0
#endif // CONFIG_CONCURRENT_MODE
	{
		// disable Port0 TSF update
		rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)|DIS_TSF_UDT);
		
		// set net_type
		val8 = rtw_read8(Adapter, MSR)&0x0c;
		val8 |= mode;
		rtw_write8(Adapter, MSR, val8);
		
		RTW_INFO("%s()-%d mode = %d\n", __FUNCTION__, __LINE__, mode);
		
		if((mode == _HW_STATE_STATION_) || (mode == _HW_STATE_NOLINK_))
		{
#ifdef CONFIG_CONCURRENT_MODE
			if(!check_buddy_mlmeinfo_state(Adapter, WIFI_FW_AP_STATE))		
#endif // CONFIG_CONCURRENT_MODE
			{
				StopTxBeacon(Adapter);
#ifdef CONFIG_PCI_HCI
				UpdateInterruptMask8814AE(Adapter, 0, 0, RT_BCN_INT_MASKS, 0);
#else
			#ifdef CONFIG_INTERRUPT_BASED_TXBCN
				#ifdef  CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
				rtw_write8(Adapter, REG_DRVERLYINT, 0x05);//restore early int time to 5ms					
				UpdateInterruptMask8814AU(Adapter,_TRUE, 0, IMR_BCNDMAINT0_8812);	
				#endif//CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
				
				#ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR		
				UpdateInterruptMask8814AU(Adapter,_TRUE ,0, (IMR_TXBCN0ERR_8812|IMR_TXBCN0OK_8812));
				#endif //CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
					
			#endif //CONFIG_INTERRUPT_BASED_TXBCN
#endif
			}
			
			rtw_write8(Adapter,REG_BCN_CTRL, 0x19);//disable atim wnd
			//rtw_write8(Adapter,REG_BCN_CTRL, 0x18);
		}
		else if((mode == _HW_STATE_ADHOC_) /*|| (mode == _HW_STATE_AP_)*/)
		{
#ifdef RTL8814AE_SW_BCN
			rtw_write16(Adapter, REG_CR, rtw_read16(Adapter, REG_CR)|BIT(8));
			RTW_INFO("%s-%d: enable SW BCN, REG_CR=0x%x\n", __func__, __LINE__, rtw_read32(Adapter, REG_CR));
#endif
			ResumeTxBeacon(Adapter);
			rtw_write8(Adapter,REG_BCN_CTRL, 0x1a);
		}
		else if(mode == _HW_STATE_AP_)
		{
#ifdef CONFIG_PCI_HCI
			UpdateInterruptMask8814AE(Adapter, RT_BCN_INT_MASKS, 0, 0, 0);
#else
	#ifdef CONFIG_INTERRUPT_BASED_TXBCN			
			#ifdef  CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
			UpdateInterruptMask8814AU(Adapter,_TRUE ,IMR_BCNDMAINT0_8812, 0);
			#endif//CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT

			#ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR	
			UpdateInterruptMask8814AU(Adapter,_TRUE ,(IMR_TXBCN0ERR_8812|IMR_TXBCN0OK_8812), 0);
			#endif//CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
					
	#endif //CONFIG_INTERRUPT_BASED_TXBCN
#endif

			ResumeTxBeacon(Adapter);

			rtw_write8(Adapter, REG_BCN_CTRL, 0x12);
			/*Beacon is polled to TXBUF*/
#ifdef RTL8814AE_SW_BCN
			rtw_write16(Adapter, REG_CR, rtw_read16(Adapter, REG_CR)|BIT(8));
			RTW_INFO("%s-%d: enable SW BCN, REG_CR=0x%x\n", __func__, __LINE__, rtw_read32(Adapter, REG_CR));
#endif

			//Set RCR
			//rtw_write32(padapter, REG_RCR, 0x70002a8e);//CBSSID_DATA must set to 0
			//rtw_write32(Adapter, REG_RCR, 0x7000228e);//CBSSID_DATA must set to 0
			//rtw_write32(Adapter, REG_RCR, 0x7000208e);//CBSSID_DATA must set to 0,reject ICV_ERR packet
			value_rcr = rtw_read32(Adapter, REG_RCR);
			value_rcr &= ~(RCR_CBSSID_DATA);//Clear CBSSID_DATA
			rtw_write32(Adapter, REG_RCR, value_rcr);

			//enable to rx data frame
			rtw_write16(Adapter, REG_RXFLTMAP2, 0xFFFF);

			//Beacon Control related register for first time
			rtw_write8(Adapter, REG_BCNDMATIM, 0x02); // 2ms			
			
			//rtw_write8(Adapter, REG_BCN_MAX_ERR, 0xFF);
			rtw_write8(Adapter, REG_ATIMWND, 0x0a); // 10ms
			rtw_write16(Adapter, REG_BCNTCFG, 0x00);
			rtw_write16(Adapter, REG_TBTT_PROHIBIT, 0xff04);
			rtw_write16(Adapter, REG_TSFTR_SYN_OFFSET, 0x7fff);// +32767 (~32ms)

			//reset TSF
			rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(0));
	
			//enable BCN0 Function for if1
			//don't enable update TSF0 for if1 (due to TSF update when beacon/probe rsp are received)
			rtw_write8(Adapter, REG_BCN_CTRL, (DIS_TSF_UDT|EN_BCN_FUNCTION | EN_TXBCN_RPT|DIS_BCNQ_SUB));

#ifdef CONFIG_CONCURRENT_MODE
			if(check_buddy_fwstate(Adapter, WIFI_FW_NULL_STATE))
				rtw_write8(Adapter, REG_BCN_CTRL_1, 
					rtw_read8(Adapter, REG_BCN_CTRL_1) & ~EN_BCN_FUNCTION);
#endif

			//dis BCN1 ATIM  WND if if2 is station
			rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)|DIS_ATIM);
#ifdef CONFIG_TSF_RESET_OFFLOAD
			// Reset TSF for STA+AP concurrent mode
			if ( check_buddy_fwstate(Adapter, (WIFI_STATION_STATE|WIFI_ASOC_STATE)) ) {
				if (reset_tsf(Adapter, IFACE_PORT0) == _FALSE)
					RTW_INFO("ERROR! %s()-%d: Reset port0 TSF fail\n",
						__FUNCTION__, __LINE__);
			}
#endif	// CONFIG_TSF_RESET_OFFLOAD
		}
	}
}

static void hw_var_set_macaddr(PADAPTER Adapter, u8 variable, u8* val)
{
	u8 idx = 0;
	u32 reg_macid;

#ifdef CONFIG_CONCURRENT_MODE
	if(Adapter->iface_type == IFACE_PORT1)
	{
		reg_macid = REG_MACID1;
	}
	else
#endif
	{
		reg_macid = REG_MACID;
	}

	for(idx = 0 ; idx < 6; idx++)
	{
		rtw_write8(GET_PRIMARY_ADAPTER(Adapter), (reg_macid+idx), val[idx]);
	}
	
}

static void hw_var_set_bssid(PADAPTER Adapter, u8 variable, u8* val)
{
	u8	idx = 0;
	u32 reg_bssid;

#ifdef CONFIG_CONCURRENT_MODE
	if(Adapter->iface_type == IFACE_PORT1)
	{
		reg_bssid = REG_BSSID1;
	}
	else
#endif //CONFIG_CONCURRENT_MODE
	{
		reg_bssid = REG_BSSID;
	}

	for(idx = 0 ; idx < 6; idx++)
	{
		rtw_write8(Adapter, (reg_bssid+idx), val[idx]);
	}

}

static void hw_var_set_bcn_func(PADAPTER Adapter, u8 variable, u8* val)
{
	u32 bcn_ctrl_reg;
	u8 val8;
#ifdef CONFIG_CONCURRENT_MODE
	if(Adapter->iface_type == IFACE_PORT1)
	{
		bcn_ctrl_reg = REG_BCN_CTRL_1;
	}	
	else
#endif		
	{		
		bcn_ctrl_reg = REG_BCN_CTRL;
	}

	if(*((u8 *)val))
	{
		rtw_write8(Adapter, bcn_ctrl_reg, (EN_BCN_FUNCTION | EN_TXBCN_RPT));
	}
	else
	{
		
                u8 val8;
                val8 = rtw_read8(Adapter, bcn_ctrl_reg);
                val8 &= ~(EN_BCN_FUNCTION | EN_TXBCN_RPT);
                
#ifdef CONFIG_BT_COEXIST
                if (GET_HAL_DATA(Adapter)->EEPROMBluetoothCoexist == 1)
                {
                        // Always enable port0 beacon function for PSTDMA
                        if (REG_BCN_CTRL == bcn_ctrl_reg)
                            val8 |= EN_BCN_FUNCTION;
                }
#endif //CONFIG_BT_COEXIST

		rtw_write8(Adapter, bcn_ctrl_reg, val8);
	}
	

}

static void hw_var_set_correct_tsf(PADAPTER Adapter, u8 variable, u8* val)
{
#if 0 //check 8814 still need sw sync tsf??
#ifdef CONFIG_CONCURRENT_MODE
	u64	tsf;
	struct mlme_ext_priv	*pmlmeext = &Adapter->mlmeextpriv;
	struct mlme_ext_info	*pmlmeinfo = &(pmlmeext->mlmext_info);

	//tsf = pmlmeext->TSFValue - ((u32)pmlmeext->TSFValue % (pmlmeinfo->bcn_interval*1024)) -1024; //us
	tsf = pmlmeext->TSFValue - rtw_modular64(pmlmeext->TSFValue, (pmlmeinfo->bcn_interval*1024)) -1024; //us

	if(((pmlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE) || ((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE))
	{				
		//pHalData->RegTxPause |= STOP_BCNQ;BIT(6)
		//rtw_write8(Adapter, REG_TXPAUSE, (rtw_read8(Adapter, REG_TXPAUSE)|BIT(6)));
		StopTxBeacon(Adapter);
	}

	if(Adapter->iface_type == IFACE_PORT1)
	{
		//disable related TSF function
		rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)&(~BIT(3)));
							
		rtw_write32(Adapter, REG_TSFTR1, tsf);
		rtw_write32(Adapter, REG_TSFTR1+4, tsf>>32);


		//enable related TSF function
		rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)|BIT(3));	

		// Update buddy port's TSF if it is SoftAP for beacon TX issue!
		if ( (pmlmeinfo->state&0x03) == WIFI_FW_STATION_STATE
			&& check_buddy_fwstate(Adapter, WIFI_AP_STATE)
		) { 
			//disable related TSF function
			rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)&(~BIT(3)));

			rtw_write32(Adapter, REG_TSFTR, tsf);
			rtw_write32(Adapter, REG_TSFTR+4, tsf>>32);

			//enable related TSF function
			rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)|BIT(3));
#ifdef CONFIG_TSF_RESET_OFFLOAD
		// Update buddy port's TSF(TBTT) if it is SoftAP for beacon TX issue!
			if (reset_tsf(Adapter, IFACE_PORT0) == _FALSE)
				RTW_INFO("ERROR! %s()-%d: Reset port0 TSF fail\n",
					__FUNCTION__, __LINE__);

#endif	// CONFIG_TSF_RESET_OFFLOAD	
		}		

		
	}
	else
	{
		//disable related TSF function
		rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)&(~BIT(3)));
							
		rtw_write32(Adapter, REG_TSFTR, tsf);
		rtw_write32(Adapter, REG_TSFTR+4, tsf>>32);

		//enable related TSF function
		rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)|BIT(3));
		
		// Update buddy port's TSF if it is SoftAP for beacon TX issue!
		if ( (pmlmeinfo->state&0x03) == WIFI_FW_STATION_STATE
			&& check_buddy_fwstate(Adapter, WIFI_AP_STATE)
		) { 
			//disable related TSF function
			rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)&(~BIT(3)));

			rtw_write32(Adapter, REG_TSFTR1, tsf);
			rtw_write32(Adapter, REG_TSFTR1+4, tsf>>32);

			//enable related TSF function
			rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)|BIT(3));
#ifdef CONFIG_TSF_RESET_OFFLOAD
		// Update buddy port's TSF if it is SoftAP for beacon TX issue!
			if (reset_tsf(Adapter, IFACE_PORT1) == _FALSE)
				RTW_INFO("ERROR! %s()-%d: Reset port1 TSF fail\n",
					__FUNCTION__, __LINE__);
#endif	// CONFIG_TSF_RESET_OFFLOAD
		}		

	}
				
							
	if(((pmlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE) || ((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE))
	{
		//pHalData->RegTxPause  &= (~STOP_BCNQ);
		//rtw_write8(Adapter, REG_TXPAUSE, (rtw_read8(Adapter, REG_TXPAUSE)&(~BIT(6))));
		ResumeTxBeacon(Adapter);
	}
#endif //CONFIG_CONCURRENT_MODE
#endif //0
}

static void hw_var_set_mlme_disconnect(PADAPTER Adapter, u8 variable, u8* val)
{
#ifdef CONFIG_CONCURRENT_MODE
				
	if(check_buddy_mlmeinfo_state(Adapter, _HW_STATE_NOLINK_))	
		rtw_write16(Adapter, REG_RXFLTMAP2, 0x00);
	

	if(Adapter->iface_type == IFACE_PORT1)
	{
		//reset TSF1
		rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(1));

		//disable update TSF1
		rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)|BIT(4));

		// disable Port1's beacon function
		rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)&(~BIT(3)));
	}
	else
	{
		//reset TSF
		rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(0));

		//disable update TSF
		rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)|BIT(4));
	}
#endif //CONFIG_CONCURRENT_MODE
}

static void hw_var_set_mlme_sitesurvey(PADAPTER Adapter, u8 variable, u8* val)
{
	struct dvobj_priv *dvobj = adapter_to_dvobj(Adapter);
	u32	value_rcr, rcr_clear_bit, reg_bcn_ctl;
	u16	value_rxfltmap2;
	HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
	struct mlme_priv *pmlmepriv=&(Adapter->mlmepriv);
	u8 ap_num = 0;

#ifdef DBG_IFACE_STATUS
	DBG_IFACE_STATUS_DUMP(Adapter);
#endif

#ifdef CONFIG_CONCURRENT_MODE
	if(Adapter->iface_type == IFACE_PORT1)
		reg_bcn_ctl = REG_BCN_CTRL_1;
	else
#endif //CONFIG_CONCURRENT_MODE
		reg_bcn_ctl = REG_BCN_CTRL;

#ifdef CONFIG_FIND_BEST_CHANNEL

	rcr_clear_bit = (RCR_CBSSID_BCN | RCR_CBSSID_DATA);

	/* Receive all data frames */
	value_rxfltmap2 = 0xFFFF;

#else /* CONFIG_FIND_BEST_CHANNEL */

	rcr_clear_bit = RCR_CBSSID_BCN;

	//config RCR to receive different BSSID & not to receive data frame
	value_rxfltmap2 = 0;

#endif /* CONFIG_FIND_BEST_CHANNEL */

	if( (check_fwstate(pmlmepriv, WIFI_AP_STATE) == _TRUE)
#ifdef CONFIG_CONCURRENT_MODE
		|| (check_buddy_fwstate(Adapter, WIFI_AP_STATE) == _TRUE)
#endif
		)
	{	
		rcr_clear_bit = RCR_CBSSID_BCN;	
	}
#ifdef CONFIG_TDLS
	// TDLS will clear RCR_CBSSID_DATA bit for connection.
	else if (Adapter->tdlsinfo.link_established == _TRUE)
	{
		rcr_clear_bit = RCR_CBSSID_BCN;
	}
#endif // CONFIG_TDLS

	value_rcr = rtw_read32(Adapter, REG_RCR);

	if(*((u8 *)val))//under sitesurvey
	{
		value_rcr &= ~(rcr_clear_bit);
		rtw_write32(Adapter, REG_RCR, value_rcr);

		rtw_write16(Adapter, REG_RXFLTMAP2, value_rxfltmap2);

		if (check_fwstate(pmlmepriv, WIFI_STATION_STATE | WIFI_ADHOC_STATE |WIFI_ADHOC_MASTER_STATE)) {
			//disable update TSF
			rtw_write8(Adapter, reg_bcn_ctl, rtw_read8(Adapter, reg_bcn_ctl)|DIS_TSF_UDT);
		}

		// Save orignal RRSR setting.
		pHalData->RegRRSR = rtw_read16(Adapter, REG_RRSR);

		if (ap_num)
			StopTxBeacon(Adapter);
	}
	else//sitesurvey done
	{
		if(check_fwstate(pmlmepriv, (_FW_LINKED|WIFI_AP_STATE)) 
#ifdef CONFIG_CONCURRENT_MODE
			|| check_buddy_fwstate(Adapter, (_FW_LINKED|WIFI_AP_STATE))
#endif
			)
		{
			//enable to rx data frame
			rtw_write16(Adapter, REG_RXFLTMAP2,0xFFFF);
		}

		if (check_fwstate(pmlmepriv, WIFI_STATION_STATE | WIFI_ADHOC_STATE |WIFI_ADHOC_MASTER_STATE)) {
			//enable update TSF
			rtw_write8(Adapter, reg_bcn_ctl, rtw_read8(Adapter, reg_bcn_ctl)&(~(DIS_TSF_UDT)));
		}

		value_rcr |= rcr_clear_bit;
		rtw_write32(Adapter, REG_RCR, value_rcr);

		// Restore orignal RRSR setting.
		rtw_write16(Adapter, REG_RRSR, pHalData->RegRRSR);

		if (ap_num) {
			int i;
			_adapter *iface;

			ResumeTxBeacon(Adapter);
			for (i = 0; i < dvobj->iface_nums; i++) {
				iface = dvobj->padapters[i];
				if (!iface)
					continue;

				if (check_fwstate(&iface->mlmepriv, WIFI_AP_STATE) == _TRUE
					&& check_fwstate(&iface->mlmepriv, WIFI_ASOC_STATE) == _TRUE
				) {
					iface->mlmepriv.update_bcn = _TRUE;
					#ifndef CONFIG_INTERRUPT_BASED_TXBCN
					#if defined(CONFIG_USB_HCI) || defined(CONFIG_SDIO_HCI) || defined(CONFIG_GSPI_HCI)
					tx_beacon_hdl(iface, NULL);
					#endif
					#endif			
				}
			}
		}
	}		
}

static void hw_var_set_mlme_join(PADAPTER Adapter, u8 variable, u8* val)
{
#ifdef CONFIG_CONCURRENT_MODE
	u8	RetryLimit = 0x30;
	u8	type = *((u8 *)val);
	HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
	struct mlme_priv	*pmlmepriv = &Adapter->mlmepriv;

	if(type == 0) // prepare to join
	{		
		if(check_buddy_mlmeinfo_state(Adapter, WIFI_FW_AP_STATE) &&
			check_buddy_fwstate(Adapter, _FW_LINKED))		
		{
			StopTxBeacon(Adapter);
		}
	
		//enable to rx data frame.Accept all data frame
		//rtw_write32(padapter, REG_RCR, rtw_read32(padapter, REG_RCR)|RCR_ADF);
		rtw_write16(Adapter, REG_RXFLTMAP2,0xFFFF);

		if(check_buddy_mlmeinfo_state(Adapter, WIFI_FW_AP_STATE))
		{
			rtw_write32(Adapter, REG_RCR, rtw_read32(Adapter, REG_RCR)|RCR_CBSSID_BCN);			
		}	
		else
		{
			rtw_write32(Adapter, REG_RCR, rtw_read32(Adapter, REG_RCR)|RCR_CBSSID_DATA|RCR_CBSSID_BCN);
		}	

		if(check_fwstate(pmlmepriv, WIFI_STATION_STATE) == _TRUE)
		{
			RetryLimit = (pHalData->CustomerID == RT_CID_CCX) ? 7 : 48;
		}
		else // Ad-hoc Mode
		{
			RetryLimit = 0x7;
		}
	}
	else if(type == 1) //joinbss_event call back when join res < 0
	{		
		if(check_buddy_mlmeinfo_state(Adapter, _HW_STATE_NOLINK_))		
			rtw_write16(Adapter, REG_RXFLTMAP2,0x00);

		if(check_buddy_mlmeinfo_state(Adapter, WIFI_FW_AP_STATE) &&
			check_buddy_fwstate(Adapter, _FW_LINKED))
		{
			ResumeTxBeacon(Adapter);			
			
			//reset TSF 1/2 after ResumeTxBeacon
			rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(1)|BIT(0));	
			
		}
	}
	else if(type == 2) //sta add event call back
	{
	 
		//enable update TSF
		if(Adapter->iface_type == IFACE_PORT1)
			rtw_write8(Adapter, REG_BCN_CTRL_1, rtw_read8(Adapter, REG_BCN_CTRL_1)&(~BIT(4)));
		else		
			rtw_write8(Adapter, REG_BCN_CTRL, rtw_read8(Adapter, REG_BCN_CTRL)&(~BIT(4)));
				 
	
		if(check_fwstate(pmlmepriv, WIFI_ADHOC_STATE|WIFI_ADHOC_MASTER_STATE))
		{
			//fixed beacon issue for 8191su...........
			rtw_write8(Adapter,0x542 ,0x02);
			RetryLimit = 0x7;
		}


		if(check_buddy_mlmeinfo_state(Adapter, WIFI_FW_AP_STATE) &&
			check_buddy_fwstate(Adapter, _FW_LINKED))
		{
			ResumeTxBeacon(Adapter);			
			
			//reset TSF 1/2 after ResumeTxBeacon
			rtw_write8(Adapter, REG_DUAL_TSF_RST, BIT(1)|BIT(0));
		}
		
	}

	rtw_write16(Adapter, REG_RETRY_LIMIT, BIT_SRL(RetryLimit) | BIT_LRL(RetryLimit));
	
#endif //CONFIG_CONCURRENT_MODE
}

static void rtw_store_all_sta_hwseq(_adapter *padapter)
{
	_irqL	 irqL;
	_list	*plist, *phead;
	u8 index;
	u16	hw_seq[NUM_STA];
	u32 shcut_addr = 0;
	struct sta_info *psta;
	struct	sta_priv *pstapriv = &padapter->stapriv;
	struct dvobj_priv *dvobj = adapter_to_dvobj(padapter);
	struct macid_ctl_t *macid_ctl = dvobj_to_macidctl(dvobj);
	
	/* save each HW sequence of mac id from report fifo */
	for (index = 0; index < macid_ctl->num && index < NUM_STA; index++) {
		if (rtw_macid_is_used(macid_ctl, index)) {
			rtw_write16(padapter, 0x140, 0x662 | ((index & BIT5)>>5));
			shcut_addr = 0x8000;
			shcut_addr = (shcut_addr | ((index&0x1f)<<7) | (10<<2)) + 1;
			hw_seq[index] = rtw_read16(padapter, shcut_addr);
			/* RTW_INFO("mac_id:%d is used, hw_seq[index]=%d\n", index, hw_seq[index]); */
		}
	}
	
	_enter_critical_bh(&pstapriv->sta_hash_lock, &irqL);
	for (index = 0; index < NUM_STA; index++) {
		psta = NULL;
		
		phead = &(pstapriv->sta_hash[index]);
		plist = get_next(phead);
		
		while ((rtw_end_of_queue_search(phead, plist)) == _FALSE) {
			psta = LIST_CONTAINOR(plist, struct sta_info, hash_list);
			plist = get_next(plist);

			psta->hwseq = hw_seq[psta->cmn.mac_id];
			/* RTW_INFO(" psta->cmn.mac_id=%d, psta->hwseq=%d\n" , psta->cmn.mac_id, psta->hwseq); */
		}

	}
	_exit_critical_bh(&pstapriv->sta_hash_lock, &irqL);
	
}

static void rtw_restore_all_sta_hwseq(_adapter *padapter)
{
	_irqL	 irqL;
	_list	*plist, *phead;
	u8 index;
	u16	hw_seq[NUM_STA];
	u32 shcut_addr = 0;
	struct sta_info *psta;
	struct	sta_priv *pstapriv = &padapter->stapriv;
	struct dvobj_priv *dvobj = adapter_to_dvobj(padapter);
	struct macid_ctl_t *macid_ctl = dvobj_to_macidctl(dvobj);
	
	_enter_critical_bh(&pstapriv->sta_hash_lock, &irqL);
	for (index = 0; index < NUM_STA; index++) {
		psta = NULL;
		
		phead = &(pstapriv->sta_hash[index]);
		plist = get_next(phead);
		
		while ((rtw_end_of_queue_search(phead, plist)) == _FALSE) {
			psta = LIST_CONTAINOR(plist, struct sta_info, hash_list);
			plist = get_next(plist);
			
			hw_seq[psta->cmn.mac_id] = psta->hwseq;
			/* RTW_INFO(" psta->cmn.mac_id=%d, psta->hwseq=%d\n", psta->cmn.mac_id, psta->hwseq); */
		}

	}
	_exit_critical_bh(&pstapriv->sta_hash_lock, &irqL);
	
	/* restore each HW sequence of mac id to report fifo */
	for (index = 0; index < macid_ctl->num && index < NUM_STA; index++) {
		if (rtw_macid_is_used(macid_ctl, index)) {
			rtw_write16(padapter, 0x140, 0x662 | ((index & BIT5)>>5));
			shcut_addr = 0x8000;
			shcut_addr = (shcut_addr | ((index&0x1f)<<7) | (10<<2)) + 1;
			rtw_write16(padapter, shcut_addr, hw_seq[index]);
			/* RTW_INFO("mac_id:%d is used, hw_seq[index]=%d\n", index, hw_seq[index]); */
		}
	}
	
}

u8 SetHwReg8814A(PADAPTER padapter, u8 variable, u8 *pval)
{
	PHAL_DATA_TYPE pHalData; 
	struct dm_struct* podmpriv;
	u8 ret = _SUCCESS;
	u8 val8;
	u16 val16;
	u32 val32;

	pHalData = GET_HAL_DATA(padapter); 
	podmpriv = &pHalData->odmpriv;

	switch (variable)
	{
		case HW_VAR_MEDIA_STATUS:
			val8 = rtw_read8(padapter, MSR) & 0x0c;
			val8 |= *pval;
			rtw_write8(padapter, MSR, val8);
			break;

		case HW_VAR_SET_OPMODE:
			hw_var_set_opmode(padapter, variable, pval);
			break;

		case HW_VAR_MAC_ADDR:
			hw_var_set_macaddr(padapter, variable, pval);
			break;

		case HW_VAR_BSSID:
			hw_var_set_bssid(padapter, variable, pval);
			break;

		case HW_VAR_BASIC_RATE:
		{
			struct mlme_ext_info *mlmext_info = &padapter->mlmeextpriv.mlmext_info;
			u16 input_b = 0, masked = 0, ioted = 0, BrateCfg = 0;
			u16 rrsr_2g_force_mask = RRSR_CCK_RATES;
			u16 rrsr_2g_allow_mask = (RRSR_24M|RRSR_12M|RRSR_6M|RRSR_CCK_RATES);
			u16 rrsr_5g_force_mask = (RRSR_6M);
			u16 rrsr_5g_allow_mask = (RRSR_OFDM_RATES);

			HalSetBrateCfg(padapter, pval, &BrateCfg);
			input_b = BrateCfg;

			/* apply force and allow mask */
			if(pHalData->current_band_type == BAND_ON_2_4G)
			{
				BrateCfg |= rrsr_2g_force_mask;
				BrateCfg &= rrsr_2g_allow_mask;
			}
			else // 5G
			{
				BrateCfg |= rrsr_5g_force_mask;
				BrateCfg &= rrsr_5g_allow_mask;
			}
			masked = BrateCfg;

			/* IOT consideration */
			if (mlmext_info->assoc_AP_vendor == HT_IOT_PEER_CISCO) {
				/* if peer is cisco and didn't use ofdm rate, we enable 6M ack */
				if((BrateCfg & (RRSR_24M|RRSR_12M|RRSR_6M)) == 0)
					BrateCfg |= RRSR_6M;
			}
			ioted = BrateCfg;

			pHalData->BasicRateSet = BrateCfg;

			RTW_INFO("HW_VAR_BASIC_RATE: %#x -> %#x -> %#x\n", input_b, masked, ioted);

			// Set RRSR rate table.
			rtw_write16(padapter, REG_RRSR, BrateCfg);
			rtw_write8(padapter, REG_RRSR+2, rtw_read8(padapter, REG_RRSR+2)&0xf0);
		}
			break;

		case HW_VAR_TXPAUSE:
			rtw_write8(padapter, REG_TXPAUSE, *pval);
			break;

		case HW_VAR_BCN_FUNC:
			hw_var_set_bcn_func(padapter, variable, pval);
			break;

		case HW_VAR_CORRECT_TSF:
#ifdef CONFIG_CONCURRENT_MODE
			hw_var_set_correct_tsf(padapter, variable, pval);
#else //CONFIG_CONCURRENT_MODE
			{
				u64	tsf;
				struct mlme_ext_priv	*pmlmeext = &padapter->mlmeextpriv;
				struct mlme_ext_info	*pmlmeinfo = &(pmlmeext->mlmext_info);

				//tsf = pmlmeext->TSFValue - ((u32)pmlmeext->TSFValue % (pmlmeinfo->bcn_interval*1024)) -1024; //us
				tsf = pmlmeext->TSFValue - rtw_modular64(pmlmeext->TSFValue, (pmlmeinfo->bcn_interval*1024)) -1024; //us

				if(((pmlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE) || ((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE))
				{				
					//pHalData->RegTxPause |= STOP_BCNQ;BIT(6)
					//rtw_write8(padapter, REG_TXPAUSE, (rtw_read8(padapter, REG_TXPAUSE)|BIT(6)));
					StopTxBeacon(padapter);
				}

				//disable related TSF function
				rtw_write8(padapter, REG_BCN_CTRL, rtw_read8(padapter, REG_BCN_CTRL)&(~BIT(3)));
				//select port0 tsf
				rtw_write8(padapter, REG_BCN_INTERVAL+3, rtw_read8(padapter, REG_BCN_INTERVAL+3)&0x8f);
				rtw_write32(padapter, REG_TSFTR, tsf);
				rtw_write32(padapter, REG_TSFTR+4, tsf>>32);

				//enable related TSF function
				rtw_write8(padapter, REG_BCN_CTRL, rtw_read8(padapter, REG_BCN_CTRL)|BIT(3));
				
							
				if(((pmlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE) || ((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE))
				{
					//pHalData->RegTxPause  &= (~STOP_BCNQ);
					//rtw_write8(padapter, REG_TXPAUSE, (rtw_read8(padapter, REG_TXPAUSE)&(~BIT(6))));
					ResumeTxBeacon(padapter);
				}
			}
#endif //CONFIG_CONCURRENT_MODE
			break;

		case HW_VAR_MLME_DISCONNECT:
#ifdef CONFIG_CONCURRENT_MODE
			hw_var_set_mlme_disconnect(padapter, variable, pval);
#else
			{
				// Set RCR to not to receive data frame when NO LINK state
//				val32 = rtw_read32(padapter, REG_RCR);
//				val32 &= ~RCR_ADF;
//				rtw_write32(padapter, REG_RCR, val32);

				// reject all data frames
				rtw_write16(padapter, REG_RXFLTMAP2, 0x00);

				// reset TSF
				val8 = BIT(0) | BIT(1);
				rtw_write8(padapter, REG_DUAL_TSF_RST, val8);

				// disable update TSF
				val8 = rtw_read8(padapter, REG_BCN_CTRL);
				val8 |= BIT(4);
				rtw_write8(padapter, REG_BCN_CTRL, val8);
			}
#endif
			break;

		case HW_VAR_MLME_SITESURVEY:
			hw_var_set_mlme_sitesurvey(padapter, variable,  pval);

#ifdef CONFIG_BT_COEXIST
			if (_TRUE == pHalData->EEPROMBluetoothCoexist)
			        rtw_btcoex_ScanNotify(padapter, *pval?_TRUE:_FALSE);
#endif
			break;

		case HW_VAR_MLME_JOIN:
#ifdef CONFIG_CONCURRENT_MODE
			hw_var_set_mlme_join(padapter, variable, pval);
#else // !CONFIG_CONCURRENT_MODE
			{
				u8 RetryLimit = RL_VAL_AP;
				u8 type = *(u8*)pval;
				struct mlme_priv *pmlmepriv = &padapter->mlmepriv;
		
				if (type == 0) // prepare to join
				{
					//enable to rx data frame.Accept all data frame
					rtw_write16(padapter, REG_RXFLTMAP2, 0xFFFF);

					if (check_fwstate(pmlmepriv, WIFI_STATION_STATE) == _TRUE)
					{
						RetryLimit = (pHalData->CustomerID == RT_CID_CCX) ? 7 : 48;
					}
					else // Ad-hoc Mode
					{
						RetryLimit = RL_VAL_AP;
					}
				}
				else if (type == 1) //joinbss_event call back when join res < 0
				{
					rtw_write16(padapter, REG_RXFLTMAP2, 0x00);
				}
				else if (type == 2) //sta add event call back
				{
					//enable update TSF
					val8 = rtw_read8(padapter, REG_BCN_CTRL);
					val8 &= ~BIT(4);
					rtw_write8(padapter, REG_BCN_CTRL, val8);

					if (check_fwstate(pmlmepriv, WIFI_ADHOC_STATE|WIFI_ADHOC_MASTER_STATE))
					{
						RetryLimit = RL_VAL_AP;
					}
				}

				val16 = BIT_SRL(RetryLimit) | BIT_LRL(RetryLimit);
				rtw_write16(padapter, REG_RETRY_LIMIT, val16);
			}
#endif // !CONFIG_CONCURRENT_MODE

#ifdef CONFIG_BT_COEXIST
			if (_TRUE == pHalData->EEPROMBluetoothCoexist)			 
			{
					switch (*pval)
				{
					case 0:
						// prepare to join
						rtw_btcoex_ConnectNotify(padapter, _TRUE);
						break;
					case 1:
						// joinbss_event callback when join res < 0
						rtw_btcoex_ConnectNotify(padapter, _FALSE);
						break;
					case 2:
						// sta add event callback
	//					rtw_btcoex_MediaStatusNotify(padapter, RT_MEDIA_CONNECT);
						break;
				}	
			}
#endif
			break;


		case HW_VAR_BEACON_INTERVAL:
			rtw_write16(padapter, REG_BCN_INTERVAL, *(u16*)pval);
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
			{
				struct mlme_ext_priv *pmlmeext;
				struct mlme_ext_info *pmlmeinfo;
				u16 bcn_interval;

				pmlmeext = &padapter->mlmeextpriv;
				pmlmeinfo = &pmlmeext->mlmext_info;
				bcn_interval = *((u16*)pval);

				if ((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE)
				{
					RTW_INFO("%s==> bcn_interval:%d, eraly_int:%d\n", __FUNCTION__, bcn_interval, bcn_interval>>1);
					rtw_write8(padapter, REG_DRVERLYINT, bcn_interval>>1);// 50ms for sdio 
				}
			}
#endif // CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
			break;

		case HW_VAR_SLOT_TIME:
			rtw_write8(padapter, REG_SLOT, *pval);
			break;

		case HW_VAR_RESP_SIFS:
			// SIFS_Timer = 0x0a0a0808;
			// RESP_SIFS for CCK
			rtw_write8(padapter, REG_RESP_SIFS_CCK, pval[0]); // SIFS_T2T_CCK (0x08)
			rtw_write8(padapter, REG_RESP_SIFS_CCK+1, pval[1]); //SIFS_R2T_CCK(0x08)
			// RESP_SIFS for OFDM
			rtw_write8(padapter, REG_RESP_SIFS_OFDM, pval[2]); //SIFS_T2T_OFDM (0x0a)
			rtw_write8(padapter, REG_RESP_SIFS_OFDM+1, pval[3]); //SIFS_R2T_OFDM(0x0a)
			break;

		case HW_VAR_ACK_PREAMBLE:
			{
				u8 bShortPreamble = *pval;

				// Joseph marked out for Netgear 3500 TKIP channel 7 issue.(Temporarily)
				val8 = (pHalData->nCur40MhzPrimeSC) << 5;
				if (bShortPreamble)
					val8 |= 0x80;
				rtw_write8(padapter, REG_RRSR+2, val8);
			}
			break;

		case HW_VAR_CAM_EMPTY_ENTRY:
			{
				u8 ucIndex = *pval;
				u8 i;
				u32	ulCommand = 0;
				u32	ulContent = 0;
				u32	ulEncAlgo = CAM_AES;

				for (i=0; i<CAM_CONTENT_COUNT; i++)
				{
					// filled id in CAM config 2 byte
					if (i == 0)
					{
						ulContent |= (ucIndex & 0x03) | ((u16)(ulEncAlgo)<<2);
						//ulContent |= CAM_VALID;
					}
					else
					{
						ulContent = 0;
					}
					// polling bit, and No Write enable, and address
					ulCommand = CAM_CONTENT_COUNT*ucIndex+i;
					ulCommand = ulCommand | CAM_POLLINIG | CAM_WRITE;
					// write content 0 is equall to mark invalid
					rtw_write32(padapter, WCAMI, ulContent);  //rtw_mdelay_os(40);
					rtw_write32(padapter, RWCAM, ulCommand);  //rtw_mdelay_os(40);
				}
			}
			break;

		case HW_VAR_CAM_INVALID_ALL:
			val32 = BIT(31) | BIT(30);
			rtw_write32(padapter, RWCAM, val32);
			break;

		case HW_VAR_AC_PARAM_VO:
			rtw_write32(padapter, REG_EDCA_VO_PARAM, *(u32*)pval);
			break;

		case HW_VAR_AC_PARAM_VI:
			rtw_write32(padapter, REG_EDCA_VI_PARAM, *(u32*)pval);
			break;

		case HW_VAR_AC_PARAM_BE:
			pHalData->ac_param_be = *(u32*)pval;
			rtw_write32(padapter, REG_EDCA_BE_PARAM, *(u32*)pval);
			break;

		case HW_VAR_AC_PARAM_BK:
			rtw_write32(padapter, REG_EDCA_BK_PARAM, *(u32*)pval);
			break;

		case HW_VAR_ACM_CTRL:
			{
				u8 acm_ctrl;
				u8 AcmCtrl;

				acm_ctrl = *(u8*)pval;
				AcmCtrl = rtw_read8(padapter, REG_ACMHWCTRL);

				if (acm_ctrl > 1)
					AcmCtrl = AcmCtrl | 0x1;

				if (acm_ctrl & BIT(3))
					AcmCtrl |= AcmHw_VoqEn;
				else
					AcmCtrl &= (~AcmHw_VoqEn);

				if (acm_ctrl & BIT(2))
					AcmCtrl |= AcmHw_ViqEn;
				else
					AcmCtrl &= (~AcmHw_ViqEn);

				if (acm_ctrl & BIT(1))
					AcmCtrl |= AcmHw_BeqEn;
				else
					AcmCtrl &= (~AcmHw_BeqEn);

				RTW_INFO("[HW_VAR_ACM_CTRL] Write 0x%X\n", AcmCtrl);
				rtw_write8(padapter, REG_ACMHWCTRL, AcmCtrl );
			}
			break;
		case HW_VAR_AMPDU_FACTOR:
			{
				u32	AMPDULen = *(u8*)pval;

				RTW_INFO("SetHwReg8814AU(): HW_VAR_AMPDU_FACTOR %x\n" ,AMPDULen);

				if(AMPDULen < VHT_AGG_SIZE_256K)
					AMPDULen = (0x2000 << (*((u8*)pval))) -1;
				else
					AMPDULen = 0x3ffff;
				rtw_write32(padapter, REG_AMPDU_MAX_LENGTH_8814A, AMPDULen);
				//RTW_INFO("SetHwReg8814AU(): HW_VAR_AMPDU_FACTOR %x\n" ,AMPDULen);
			}
			break;
		case HW_VAR_H2C_FW_PWRMODE:
			{
				u8 psmode = *pval;
				rtl8814_set_FwPwrMode_cmd(padapter, psmode);
			}
			break;

		case HW_VAR_H2C_FW_JOINBSSRPT:
			rtl8814_set_FwJoinBssReport_cmd(padapter, *pval);
			break;

#ifdef CONFIG_P2P_PS
		case HW_VAR_H2C_FW_P2P_PS_OFFLOAD:
			rtl8814_set_p2p_ps_offload_cmd(padapter, *pval);
			break;
#endif // CONFIG_P2P_PS

#ifdef CONFIG_SW_ANTENNA_DIVERSITY
		case HW_VAR_ANTENNA_DIVERSITY_LINK:
			//SwAntDivRestAfterLink8192C(padapter);
			ODM_SwAntDivRestAfterLink(podmpriv);
			break;

		case HW_VAR_ANTENNA_DIVERSITY_SELECT:
			{
				u8 Optimum_antenna = *pval;
				u8 	Ant;

				//switch antenna to Optimum_antenna
				//RTW_INFO("==> HW_VAR_ANTENNA_DIVERSITY_SELECT , Ant_(%s)\n",(Optimum_antenna==2)?"A":"B");
				if (pHalData->CurAntenna != Optimum_antenna)
				{
					Ant = (Optimum_antenna==2) ? MAIN_ANT : AUX_ANT;
					ODM_UpdateRxIdleAnt(podmpriv, Ant);

					pHalData->CurAntenna = Optimum_antenna;
					//RTW_INFO("==> HW_VAR_ANTENNA_DIVERSITY_SELECT , Ant_(%s)\n",(Optimum_antenna==2)?"A":"B");
				}
			}
			break;
#endif //CONFIG_SW_ANTENNA_DIVERSITY

		case HW_VAR_EFUSE_USAGE:
			pHalData->EfuseUsedPercentage = *pval;
			break;

		case HW_VAR_EFUSE_BYTES:
			pHalData->EfuseUsedBytes = *(u16*)pval;
			break;
#if 0
		case HW_VAR_EFUSE_BT_USAGE:
#ifdef HAL_EFUSE_MEMORY
			pHalData->EfuseHal.BTEfuseUsedPercentage = *pval;
#endif //HAL_EFUSE_MEMORY
			break;

		case HW_VAR_EFUSE_BT_BYTES:
#ifdef HAL_EFUSE_MEMORY
			pHalData->EfuseHal.BTEfuseUsedBytes = *(u16*)pval;
#else //HAL_EFUSE_MEMORY
			BTEfuseUsedBytes = *(u16*)pval;
#endif //HAL_EFUSE_MEMORY
			break;
#endif //0
		case HW_VAR_FIFO_CLEARN_UP:
			{
				struct pwrctrl_priv *pwrpriv;
				u8 trycnt = 100;	

				pwrpriv = adapter_to_pwrctl(padapter);

				// pause tx
				rtw_write8(padapter, REG_TXPAUSE, 0xff);

				// keep sn
				rtw_store_all_sta_hwseq(padapter);

				if (pwrpriv->bkeepfwalive != _TRUE)
				{
					// RX DMA stop
					val32 = rtw_read32(padapter, REG_RXPKT_NUM);
					val32 |= RW_RELEASE_EN;
					rtw_write32(padapter, REG_RXPKT_NUM, val32);
					do {
						val32 = rtw_read32(padapter, REG_RXPKT_NUM);
						val32 &= RXDMA_IDLE;
						if (val32)
							break;
					} while (--trycnt);
					if (trycnt == 0)
					{
						RTW_INFO("[HW_VAR_FIFO_CLEARN_UP] Stop RX DMA failed......\n");
					}

					//RQPN Load 0
					rtw_write16(padapter, REG_RQPN_NPQ, 0x0);
					rtw_write32(padapter, REG_RQPN, 0x80000000);
					rtw_mdelay_os(10);
				}
			}
			break;
		
		case HW_VAR_RESTORE_HW_SEQ:
			rtw_restore_all_sta_hwseq(padapter);
			break;

		case HW_VAR_CHECK_TXBUF:
			{
				u8 retry_limit;
				u32 reg_230 = 0, reg_234 = 0, reg_238 = 0, reg_23c = 0, reg_240 = 0;
				u32 init_reg_230 = 0, init_reg_234 = 0, init_reg_238 = 0, init_reg_23c = 0, init_reg_240 = 0;
				systime start = rtw_get_current_time();
				u32 pass_ms;
				int i = 0;

				retry_limit = 0x01;

				val16 = BIT_SRL(retry_limit) | BIT_LRL(retry_limit);
				rtw_write16(padapter, REG_RETRY_LIMIT, val16);

				while (rtw_get_passing_time_ms(start) < 2000
					&& !RTW_CANNOT_RUN(padapter)
				) {
					reg_230 = rtw_read32(padapter, REG_FIFOPAGE_INFO_1_8814A);
					reg_234 = rtw_read32(padapter, REG_FIFOPAGE_INFO_2_8814A);
					reg_238 = rtw_read32(padapter, REG_FIFOPAGE_INFO_3_8814A);
					reg_23c = rtw_read32(padapter, REG_FIFOPAGE_INFO_4_8814A);
					reg_240 = rtw_read32(padapter, REG_FIFOPAGE_INFO_5_8814A);

					if (i == 0) {
						init_reg_230 = reg_230;
						init_reg_234 = reg_234;
						init_reg_238 = reg_238;
						init_reg_23c = reg_23c;
						init_reg_240 = reg_240;
					}

					i++;
					if ((((reg_230 & 0x0c) != ((reg_230>>16) & 0x0c)) || ((reg_234 & 0x0c) != ((reg_234>>16) & 0x0c))
						|| ((reg_238 & 0x0c) != ((reg_238>>16) & 0x0c)) || ((reg_23c & 0x0c) != ((reg_23c>>16) & 0x0c))
						|| ((reg_240 & 0x0c) != ((reg_240>>16) & 0x0c)))) {
						/* RTW_INFO("%s: (HW_VAR_CHECK_TXBUF)TXBUF NOT empty - 0x230=0x%08x, 0x234=0x%08x 0x238=0x%08x,"
						" 0x23c=0x%08x, 0x240=0x%08x (%d)\n"
						, __FUNCTION__, reg_230, reg_234, reg_238, reg_23c, reg_240, i); */
						rtw_msleep_os(10);
					} else {
						break;
					}
				}

				pass_ms = rtw_get_passing_time_ms(start);

				if (RTW_CANNOT_RUN(padapter)) {
					RTW_INFO("bDriverStopped or bSurpriseRemoved\n");
				} else if (pass_ms >= 2000 || (((reg_230 & 0x0c) != ((reg_230>>16) & 0x0c)) || ((reg_234 & 0x0c) != ((reg_234>>16) & 0x0c))
						|| ((reg_238 & 0x0c) != ((reg_238>>16) & 0x0c)) || ((reg_23c & 0x0c) != ((reg_23c>>16) & 0x0c))
						|| ((reg_240 & 0x0c) != ((reg_240>>16) & 0x0c)))) {
					RTW_ERR("%s:(HW_VAR_CHECK_TXBUF)NOT empty(%d) in %d ms\n", __func__, i, pass_ms);
					RTW_ERR("%s:(HW_VAR_CHECK_TXBUF) 0x230=0x%08x, 0x234=0x%08x 0x238=0x%08x, 0x23c=0x%08x, 0x240=0x%08x (0x%08x, 0x%08x, 0x%08x, 0x%08x, 0x%08x)\n", __func__, reg_230, reg_234, reg_238, reg_23c, reg_240
					, init_reg_230, init_reg_234, init_reg_238, init_reg_23c, init_reg_240);
					//rtw_warn_on(1);
				} else {
					RTW_INFO("%s:(HW_VAR_CHECK_TXBUF)TXBUF Empty(%d) in %d ms\n", __FUNCTION__, i, pass_ms);
				}

				retry_limit = RL_VAL_STA;
				val16 = BIT_SRL(retry_limit) | BIT_LRL(retry_limit);
				rtw_write16(padapter, REG_RETRY_LIMIT, val16);
			}

			break;

		case HW_VAR_APFM_ON_MAC:
			pHalData->bMacPwrCtrlOn = *pval;
			RTW_INFO("%s: bMacPwrCtrlOn=%d\n", __FUNCTION__, pHalData->bMacPwrCtrlOn);
			break;

		case HW_VAR_NAV_UPPER:
			{
				u32 usNavUpper = *((u32*)pval);

				if (usNavUpper > HAL_NAV_UPPER_UNIT * 0xFF)
				{
					RTW_INFO("%s: [HW_VAR_NAV_UPPER] set value(0x%08X us) is larger than (%d * 0xFF)!\n",
						__FUNCTION__, usNavUpper, HAL_NAV_UPPER_UNIT);
					break;
				}

				// The value of ((usNavUpper + HAL_NAV_UPPER_UNIT - 1) / HAL_NAV_UPPER_UNIT)
				// is getting the upper integer.
				//usNavUpper = (usNavUpper + HAL_NAV_UPPER_UNIT - 1) / HAL_NAV_UPPER_UNIT;
				rtw_write8(padapter, REG_NAV_UPPER, (u8)usNavUpper);
			}
			break;

		case HW_VAR_BCN_VALID:
#ifdef CONFIG_CONCURRENT_MODE
			if (padapter->iface_type == IFACE_PORT1)
			{
				/* BCN_VALID, BIT31 of REG_FIFOPAGE_CTRL_2_8814A, write 1 to clear, Clear by sw */
				val8 = rtw_read8(padapter, REG_FIFOPAGE_CTRL_2_8814A+3);
				val8 |= BIT(7);
				rtw_write8(padapter, REG_FIFOPAGE_CTRL_2_8814A+3, val8);
			}
			else
#endif
			{
				/* BCN_VALID, BIT15 of REG_FIFOPAGE_CTRL_2_8814A, write 1 to clear, Clear by sw */
				val8 = rtw_read8(padapter, REG_FIFOPAGE_CTRL_2_8814A+1);
				val8 |= BIT(7);
				rtw_write8(padapter,  REG_FIFOPAGE_CTRL_2_8814A+1, val8);
			}
			break;

		case HW_VAR_DL_BCN_SEL:
#if 0 /* for MBSSID, so far we don't need this */
#ifdef CONFIG_CONCURRENT_MODE
			if (IS_HARDWARE_TYPE_8821(padapter) && padapter->iface_type == IFACE_PORT1)
			{
				// SW_BCN_SEL - Port1
				val8 = rtw_read8(padapter, REG_AUTO_LLT_8814A);
				val8 |= BIT(2);
				rtw_write8(padapter, REG_AUTO_LLT_8814A, val8);
			}
			else
#endif //CONFIG_CONCURRENT_MODE
			{
				/* SW_BCN_SEL - Port0 , BIT_r_EN_BCN_SW_HEAD_SEL */
				val8 = rtw_read8(padapter, REG_AUTO_LLT_8814A);
				val8 &= ~BIT(2);
				rtw_write8(padapter, REG_AUTO_LLT_8814A, val8);
			}
#endif /* for MBSSID, so far we don't need this */
			break;

		case HW_VAR_WIRELESS_MODE:
			{
				struct mlme_priv *pmlmepriv = &padapter->mlmepriv;
				struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
				struct mlme_ext_info *pmlmeinfo = &pmlmeext->mlmext_info;
				u8	R2T_SIFS = 0, SIFS_Timer = 0;
				u8	wireless_mode = *pval;

				if ((wireless_mode == WIRELESS_11BG) || (wireless_mode == WIRELESS_11G))
					SIFS_Timer = 0xa;
				else
					SIFS_Timer = 0xe;

				// SIFS for OFDM Data ACK
				rtw_write8(padapter, REG_SIFS_CTX+1, SIFS_Timer);
				// SIFS for OFDM consecutive tx like CTS data!
				rtw_write8(padapter, REG_SIFS_TRX+1, SIFS_Timer);
				
				rtw_write8(padapter,REG_SPEC_SIFS+1, SIFS_Timer);
				rtw_write8(padapter,REG_MAC_SPEC_SIFS+1, SIFS_Timer);

				// 20100719 Joseph: Revise SIFS setting due to Hardware register definition change.
				rtw_write8(padapter, REG_RESP_SIFS_OFDM+1, SIFS_Timer);
				rtw_write8(padapter, REG_RESP_SIFS_OFDM, SIFS_Timer);

				//
				// Adjust R2T SIFS for IOT issue. Add by hpfan 2013.01.25
				// Set R2T SIFS to 0x0a for Atheros IOT. Add by hpfan 2013.02.22
				//
				// Mac has 10 us delay so use 0xa value is enough.
				R2T_SIFS = 0xa;
#ifdef CONFIG_80211AC_VHT
				if (wireless_mode & WIRELESS_11_5AC &&
						//MgntLinkStatusQuery(Adapter)  && 
						TEST_FLAG(pmlmepriv->vhtpriv.ldpc_cap, LDPC_VHT_ENABLE_RX) && 
						TEST_FLAG(pmlmepriv->vhtpriv.stbc_cap, STBC_VHT_ENABLE_RX))
				{		
					if (pmlmeinfo->assoc_AP_vendor == HT_IOT_PEER_ATHEROS)			
						R2T_SIFS = 0x8;
					else
						R2T_SIFS = 0xa;
				}
#endif //CONFIG_80211AC_VHT

				rtw_write8(padapter, REG_RESP_SIFS_OFDM+1, R2T_SIFS);
			}
			break;

		case HW_VAR_DO_IQK:
			pHalData->bNeedIQK = _TRUE;
			break;
		case HW_VAR_DL_RSVD_PAGE:
#ifdef CONFIG_BT_COEXIST
        if (pHalData->EEPROMBluetoothCoexist == 1)
        {
			if (check_fwstate(&padapter->mlmepriv, WIFI_AP_STATE) == _TRUE)
			{
				rtl8814a_download_BTCoex_AP_mode_rsvd_page(padapter);
			}
        }
#endif // CONFIG_BT_COEXIST
                        break;
#ifdef CONFIG_BEAMFORMING
#if (BEAMFORMING_SUPPORT == 1) /*add by YuChen for PHYDM-TxBF AutoTest HW Timer*/
		case HW_VAR_HW_REG_TIMER_INIT:
		{
			HAL_HW_TIMER_TYPE TimerType = (*(PHAL_HW_TIMER_TYPE)pval)>>16;
				
			rtw_write8(padapter, 0x164, 1);

			if (TimerType == HAL_TIMER_TXBF)
				rtw_write32(padapter, 0x15C, (*(pu2Byte)pval));
			else if (TimerType == HAL_TIMER_EARLYMODE)
				rtw_write32(padapter, 0x160, 0x05000190);	
			break;
		}	
		case HW_VAR_HW_REG_TIMER_START:
		{
			HAL_HW_TIMER_TYPE TimerType = *(PHAL_HW_TIMER_TYPE)pval;
				
			if (TimerType == HAL_TIMER_TXBF)
				rtw_write8(padapter, 0x15F, 0x5);
			else if (TimerType == HAL_TIMER_EARLYMODE)
				rtw_write8(padapter, 0x163, 0x5);			
			break;	
		}	
		case HW_VAR_HW_REG_TIMER_RESTART:
		{
			HAL_HW_TIMER_TYPE TimerType = *(PHAL_HW_TIMER_TYPE)pval;
				
			if (TimerType == HAL_TIMER_TXBF) {
					rtw_write8(padapter, 0x15F, 0x0);
					rtw_write8(padapter, 0x15F, 0x5);
			} else if (TimerType == HAL_TIMER_EARLYMODE) {
					rtw_write8(padapter, 0x163, 0x0);
					rtw_write8(padapter, 0x163, 0x5);			
			}
			break;
		}	
		case HW_VAR_HW_REG_TIMER_STOP:
		{
			HAL_HW_TIMER_TYPE TimerType = *(PHAL_HW_TIMER_TYPE)pval;
				
			if (TimerType == HAL_TIMER_TXBF)
				rtw_write8(padapter, 0x15F, 0);
			else if (TimerType == HAL_TIMER_EARLYMODE)
				rtw_write8(padapter, 0x163, 0x0);		
			break;
		}
#endif/*#if (BEAMFORMING_SUPPORT == 1) - for PHYDM TxBF*/
#endif/*#ifdef CONFIG_BEAMFORMING*/

		
#ifdef CONFIG_GPIO_WAKEUP
		case HW_SET_GPIO_WL_CTRL:
		{
			u8 enable = *pval;
			u8 value = rtw_read8(padapter, 0x4e);
			if (enable && (value & BIT(6))) {
				value &= ~BIT(6);
				rtw_write8(padapter, 0x4e, value);
			} else if (enable == _FALSE){
				value |= BIT(6);
				rtw_write8(padapter, 0x4e, value);
			}
			RTW_INFO("%s: set WL control, 0x4E=0x%02X\n",
					__func__, rtw_read8(padapter, 0x4e));
		}
			break;
#endif
		default:
			ret = SetHwReg(padapter, variable, pval);
			break;
	}
	return ret;

}

struct qinfo_8814a {
	u32 head:8;
	u32 pkt_num:7;
	u32 tail:8;
	u32 ac:2;
	u32 macid:7;
};

struct bcn_qinfo_8814a {
	u16 head:8;
	u16 pkt_num:8;
};

void dump_qinfo_8814a(void *sel, struct qinfo_8814a *info, const char *tag)
{
	//if (info->pkt_num)
	RTW_PRINT_SEL(sel, "%shead:0x%02x, tail:0x%02x, pkt_num:%u, macid:%u, ac:%u\n"
		, tag ? tag : "", info->head, info->tail, info->pkt_num, info->macid, info->ac
	);
}

void dump_bcn_qinfo_8814a(void *sel, struct bcn_qinfo_8814a *info, const char *tag)
{
	//if (info->pkt_num)
	RTW_PRINT_SEL(sel, "%shead:0x%02x, pkt_num:%u\n"
		, tag ? tag : "", info->head, info->pkt_num
	);
}

void dump_mac_qinfo_8814a(void *sel, _adapter *adapter)
{
	u32 q0_info;
	u32 q1_info;
	u32 q2_info;
	u32 q3_info;
	u32 q4_info;
	u32 q5_info;
	u32 q6_info;
	u32 q7_info;
	u32 mg_q_info;
	u32 hi_q_info;
	u16 bcn_q_info;

	q0_info = rtw_read32(adapter, REG_Q0_INFO);
	q1_info = rtw_read32(adapter, REG_Q1_INFO);
	q2_info = rtw_read32(adapter, REG_Q2_INFO);
	q3_info = rtw_read32(adapter, REG_Q3_INFO);
	q4_info = rtw_read32(adapter, REG_Q4_INFO);
	q5_info = rtw_read32(adapter, REG_Q5_INFO);
	q6_info = rtw_read32(adapter, REG_Q6_INFO);
	q7_info = rtw_read32(adapter, REG_Q7_INFO);
	mg_q_info = rtw_read32(adapter, REG_MGQ_INFO);
	hi_q_info = rtw_read32(adapter, REG_HGQ_INFO);
	bcn_q_info = rtw_read16(adapter, REG_BCNQ_INFO);

	dump_qinfo_8814a(sel, (struct qinfo_8814a *)&q0_info, "Q0 ");
	dump_qinfo_8814a(sel, (struct qinfo_8814a *)&q1_info, "Q1 ");
	dump_qinfo_8814a(sel, (struct qinfo_8814a *)&q2_info, "Q2 ");
	dump_qinfo_8814a(sel, (struct qinfo_8814a *)&q3_info, "Q3 ");
	dump_qinfo_8814a(sel, (struct qinfo_8814a *)&q4_info, "Q4 ");
	dump_qinfo_8814a(sel, (struct qinfo_8814a *)&q5_info, "Q5 ");
	dump_qinfo_8814a(sel, (struct qinfo_8814a *)&q6_info, "Q6 ");
	dump_qinfo_8814a(sel, (struct qinfo_8814a *)&q7_info, "Q7 ");
	dump_qinfo_8814a(sel, (struct qinfo_8814a *)&mg_q_info, "MG ");
	dump_qinfo_8814a(sel, (struct qinfo_8814a *)&hi_q_info, "HI ");
	dump_bcn_qinfo_8814a(sel, (struct bcn_qinfo_8814a *)&bcn_q_info, "BCN ");
}

void GetHwReg8814A(PADAPTER padapter, u8 variable, u8 *pval)
{
	PHAL_DATA_TYPE pHalData;
	struct dm_struct* podmpriv;
	u8 val8;
	u16 val16;
	u32 val32;

	pHalData = GET_HAL_DATA(padapter);
	podmpriv = &pHalData->odmpriv;

	switch (variable)
	{
		case HW_VAR_TXPAUSE:
			*pval = rtw_read8(padapter, REG_TXPAUSE);
			break;

		case HW_VAR_BCN_VALID:
#ifdef CONFIG_CONCURRENT_MODE
			if (padapter->iface_type == IFACE_PORT1)
			{
				/* BCN_VALID, BIT31 of REG_FIFOPAGE_CTRL_2_8814A, write 1 to clear */
				val8 = rtw_read8(padapter, REG_FIFOPAGE_CTRL_2_8814A+3);
				*pval = (BIT(7) & val8) ? _TRUE:_FALSE;
			}
			else
#endif //CONFIG_CONCURRENT_MODE
			{
				/* BCN_VALID, BIT15 of REG_FIFOPAGE_CTRL_2_8814A, write 1 to clear */
				val8 = rtw_read8(padapter, REG_FIFOPAGE_CTRL_2_8814A+1);
				*pval = (BIT(7) & val8) ? _TRUE:_FALSE;
			}
			break;

		case HW_VAR_FWLPS_RF_ON:
			//When we halt NIC, we should check if FW LPS is leave.
			if(adapter_to_pwrctl(padapter)->rf_pwrstate == rf_off)
			{
				// If it is in HW/SW Radio OFF or IPS state, we do not check Fw LPS Leave,
				// because Fw is unload.
				*pval = _TRUE;
			}
			else
			{
				u32 valRCR;
				valRCR = rtw_read32(padapter, REG_RCR);
				valRCR &= 0x00070000;
				if(valRCR)
					*pval = _FALSE;
				else
					*pval = _TRUE;
			}
			
			break;

#ifdef CONFIG_ANTENNA_DIVERSITY
		case HW_VAR_CURRENT_ANTENNA:
			*pval = pHalData->CurAntenna;
			break;
#endif //CONFIG_ANTENNA_DIVERSITY

		case HW_VAR_EFUSE_BYTES: // To get EFUE total used bytes, added by Roger, 2008.12.22.
			*(u16*)pval = pHalData->EfuseUsedBytes;	
			break;

		case HW_VAR_APFM_ON_MAC:
			*pval = pHalData->bMacPwrCtrlOn;
			break;

		case HW_VAR_CHK_HI_QUEUE_EMPTY:
			val16 = rtw_read16(padapter, REG_TXPKT_EMPTY);
			*pval = (val16 & BIT(10)) ? _TRUE:_FALSE;
			break;

		case HW_VAR_DUMP_MAC_QUEUE_INFO:
			dump_mac_qinfo_8814a(pval, padapter);
			break;

		default:
			GetHwReg(padapter, variable, pval);
			break;
	}

}

/*
 *	Description:
 *		Change default setting of specified variable.
 */
u8 SetHalDefVar8814A(PADAPTER padapter, HAL_DEF_VARIABLE variable, void *pval)
{
	PHAL_DATA_TYPE pHalData;
	u8 bResult;


	pHalData = GET_HAL_DATA(padapter);
	bResult = _SUCCESS;

	switch (variable)
	{
		case HAL_DEF_EFUSE_BYTES:
			pHalData->EfuseUsedBytes = *((u16*)pval);
			break;
		case HAL_DEF_EFUSE_USAGE:
			pHalData->EfuseUsedPercentage = *((u8*)pval);	
			break;
		default:
			bResult = SetHalDefVar(padapter, variable, pval);
			break;
	}

	return bResult;
}

/*
 *	Description: 
 *		Query setting of specified variable.
 */
u8 GetHalDefVar8814A(PADAPTER padapter, HAL_DEF_VARIABLE variable, void *pval)
{
	PHAL_DATA_TYPE pHalData;
	u8 bResult;


	pHalData = GET_HAL_DATA(padapter);
	bResult = _SUCCESS;

	switch (variable)
	{
		

#ifdef CONFIG_ANTENNA_DIVERSITY
		case HAL_DEF_IS_SUPPORT_ANT_DIV:
			*((u8*)pval) = (pHalData->AntDivCfg==0) ? _FALSE : _TRUE;
			break;
#endif //CONFIG_ANTENNA_DIVERSITY

#ifdef CONFIG_ANTENNA_DIVERSITY
		case HAL_DEF_CURRENT_ANTENNA:
			*((u8*)pval) = pHalData->CurAntenna;
			break;
#endif //CONFIG_ANTENNA_DIVERSITY

		case HAL_DEF_DRVINFO_SZ:
			*((u32*)pval) = DRVINFO_SZ;
			break;

		case HAL_DEF_MAX_RECVBUF_SZ:
			*((u32*)pval) = MAX_RECVBUF_SZ;
			break;

		case HAL_DEF_RX_PACKET_OFFSET:
			*((u32*)pval) = RXDESC_SIZE + DRVINFO_SZ*8;
			break;

		case HW_VAR_MAX_RX_AMPDU_FACTOR:
			*((u32*)pval) = MAX_AMPDU_FACTOR_64K;
			break;

		case HW_VAR_BEST_AMPDU_DENSITY:
			*((u32 *)pval) = AMPDU_DENSITY_VALUE_4;
			break;

		case HAL_DEF_TX_LDPC:
				*(u8*)pval = _TRUE;
			break;

		case HAL_DEF_RX_LDPC:
				*(u8*)pval = _TRUE;
			break;

		case HAL_DEF_TX_STBC:
			if (pHalData->rf_type == RF_1T2R || pHalData->rf_type == RF_1T1R)
				*(u8 *)pval = 0;
			else
				*(u8 *)pval = 1;
			break;

		case HAL_DEF_RX_STBC:
			*(u8*)pval = 4;
			break;

		case HAL_DEF_EXPLICIT_BEAMFORMER:
			if (pHalData->rf_type != RF_1T2R || pHalData->rf_type != RF_1T1R)/*1T?R not support mer*/
				*((PBOOLEAN)pval) = _TRUE;
			else
				*((PBOOLEAN)pval) = _FALSE;
			break;		
		case HAL_DEF_EXPLICIT_BEAMFORMEE:
			*((PBOOLEAN)pval) = _TRUE;
			break;

		case HW_DEF_RA_INFO_DUMP:
#if 0
			{
				u8 mac_id = *(u8*)pval;
				u32 cmd ;
				u32 ra_info1, ra_info2;
				u32 rate_mask1, rate_mask2;
				u8 curr_tx_rate,curr_tx_sgi,hight_rate,lowest_rate;				
				
				RTW_INFO("============ RA status check  Mac_id:%d ===================\n", mac_id);

				cmd = 0x40000100 |mac_id;
				rtw_write32(padapter,REG_HMEBOX_E2_E3_8812,cmd);
				rtw_msleep_os(10);
				ra_info1 = rtw_read32(padapter,REG_RSVD5_8812);
				curr_tx_rate = ra_info1&0x7F;
				curr_tx_sgi = (ra_info1>>7)&0x01;
				RTW_INFO("[ ra_info1:0x%08x ] =>cur_tx_rate= %s,cur_sgi:%d, PWRSTS = 0x%02x  \n",
					ra_info1,						
					HDATA_RATE(curr_tx_rate),
					curr_tx_sgi,
					(ra_info1>>8)  & 0x07);

				cmd = 0x40000400 | mac_id;
				rtw_write32(padapter, REG_HMEBOX_E2_E3_8812,cmd);
				rtw_msleep_os(10);
				ra_info1 = rtw_read32(padapter, REG_RSVD5_8812);
				ra_info2 = rtw_read32(padapter, REG_RSVD6_8812);
				rate_mask1 = rtw_read32(padapter,REG_RSVD7_8812);
				rate_mask2 = rtw_read32(padapter,REG_RSVD8_8812);
				hight_rate = ra_info2&0xFF;
				lowest_rate = (ra_info2>>8)  & 0xFF;	
				RTW_INFO("[ ra_info1:0x%08x ] =>RSSI=%d, BW_setting=0x%02x, DISRA=0x%02x, VHT_EN=0x%02x\n",
					ra_info1,
					ra_info1&0xFF,
					(ra_info1>>8)  & 0xFF,
					(ra_info1>>16) & 0xFF,
					(ra_info1>>24) & 0xFF);
					
				RTW_INFO("[ ra_info2:0x%08x ] =>hight_rate=%s, lowest_rate=%s, SGI=0x%02x, RateID=%d\n",
					ra_info2,
					HDATA_RATE(hight_rate),
					HDATA_RATE(lowest_rate),
					(ra_info2>>16) & 0xFF,
					(ra_info2>>24) & 0xFF);
				RTW_INFO("rate_mask2=0x%08x, rate_mask1=0x%08x\n", rate_mask2, rate_mask1);				
			}
#else //0
			RTW_INFO("%s,%d, 8814 need to fix \n", __FUNCTION__,__LINE__);
#endif //0
			break;

		case HAL_DEF_TX_PAGE_SIZE:
			*(u32*)pval = PAGE_SIZE_128;
			break;

		case HAL_DEF_TX_PAGE_BOUNDARY:
			if (!padapter->registrypriv.wifi_spec)
			{
				*(u16*)pval = TX_PAGE_BOUNDARY_8814A;
			}
			else
			{
				*(u16*)pval = WMM_NORMAL_TX_PAGE_BOUNDARY_8814A;
			}
			break;

		case HAL_DEF_TX_PAGE_BOUNDARY_WOWLAN:
			*(u16*)pval = TX_PAGE_BOUNDARY_WOWLAN_8814A;
			break;

		case HAL_DEF_EFUSE_BYTES:
			*((u16*)(pval)) = pHalData->EfuseUsedBytes;
			break;
		case HAL_DEF_EFUSE_USAGE:
			*((u32*)(pval)) = (pHalData->EfuseUsedPercentage<<16)|(pHalData->EfuseUsedBytes);	
			break;
		case HAL_DEF_RX_DMA_SZ_WOW:
			 *((u32 *)pval) = RX_DMA_BOUNDARY_8814A + 1;
			break;
		case HAL_DEF_RX_DMA_SZ:
			 *((u32 *)pval) = RX_DMA_BOUNDARY_8814A + 1;
			break;
		case HAL_DEF_RX_PAGE_SIZE:
			 *((u32 *)pval) = 8;
			break;
		default:
			bResult = GetHalDefVar(padapter, variable, pval);
			break;
	}

	return bResult;
}


#ifdef CONFIG_BT_COEXIST
void rtl8812a_combo_card_WifiOnlyHwInit(PADAPTER pdapter)
{
 	u8  u1Tmp;
	RTW_INFO("%s !\n", __FUNCTION__);
	if(IS_HARDWARE_TYPE_8812(pdapter))
	{
		//0x790[5:0]=0x5
		u1Tmp = rtw_read8(pdapter,0x790);
		u1Tmp = (u1Tmp & 0xb0) | 0x05 ;
		rtw_write8(pdapter,0x790,u1Tmp);
		// PTA parameter
		//pBtCoexist->fBtcWrite1Byte(pBtCoexist, 0x6cc, 0x0);
		//pBtCoexist->fBtcWrite4Byte(pBtCoexist, 0x6c8, 0xffffff);
		//pBtCoexist->fBtcWrite4Byte(pBtCoexist, 0x6c4, 0x55555555);
		//pBtCoexist->fBtcWrite4Byte(pBtCoexist, 0x6c0, 0x55555555);
		rtw_write8(pdapter,0x6cc,0x0);
		rtw_write32(pdapter,0x6c8,0xffffff);
		rtw_write32(pdapter,0x6c4,0x55555555);
		rtw_write32(pdapter,0x6c0,0x55555555);

		// coex parameters
		//pBtCoexist->fBtcWrite1Byte(pBtCoexist, 0x778, 0x3);
		rtw_write8(pdapter,0x778,0x3);
		
		// enable counter statistics
		//pBtCoexist->fBtcWrite1Byte(pBtCoexist, 0x76e, 0xc);
		rtw_write8(pdapter,0x76e,0xc);

		// enable PTA
		//pBtCoexist->fBtcWrite1Byte(pBtCoexist, 0x40, 0x20);
		rtw_write8(pdapter,0x40, 0x20);

		// bt clock related
		//u1Tmp = pBtCoexist->fBtcRead1Byte(pBtCoexist, 0x4);
		//u1Tmp |= BIT7;
		//pBtCoexist->fBtcWrite1Byte(pBtCoexist, 0x4, u1Tmp);
		u1Tmp = rtw_read8(pdapter,0x4);
		u1Tmp |= BIT7;
		rtw_write8(pdapter,0x4, u1Tmp);

		// bt clock related
		//u1Tmp = pBtCoexist->fBtcRead1Byte(pBtCoexist, 0x7);
		//u1Tmp |= BIT1;
		//pBtCoexist->fBtcWrite1Byte(pBtCoexist, 0x7, u1Tmp);
		u1Tmp = rtw_read8(pdapter,0x7);
		u1Tmp |= BIT1;
		rtw_write8(pdapter,0x7, u1Tmp);
	}

 
}
#endif //CONFIG_BT_COEXIST

void rtl8814_set_hal_ops(struct hal_ops *pHalFunc)
{
	pHalFunc->dm_init = &rtl8814_init_dm_priv;
	pHalFunc->dm_deinit = &rtl8814_deinit_dm_priv;

	pHalFunc->SetBeaconRelatedRegistersHandler = &SetBeaconRelatedRegisters8814A;

	pHalFunc->read_chip_version = read_chip_version_8814a;

//	pHalFunc->set_bwmode_handler = &PHY_SetBWMode8814;
//	pHalFunc->set_channel_handler = &PHY_SwChnl8814;
	pHalFunc->set_chnl_bw_handler = &PHY_SetSwChnlBWMode8814;

	pHalFunc->set_tx_power_level_handler = &PHY_SetTxPowerLevel8814;
	pHalFunc->get_tx_power_level_handler = &PHY_GetTxPowerLevel8814;
	pHalFunc->set_tx_power_index_handler = &PHY_SetTxPowerIndex_8814A;
	pHalFunc->get_tx_power_index_handler = &PHY_GetTxPowerIndex8814A;

	pHalFunc->hal_dm_watchdog = &rtl8814_HalDmWatchDog;

//	pHalFunc->Add_RateATid = &rtl8814_Add_RateATid;

	pHalFunc->run_thread= &rtl8814_start_thread;
	pHalFunc->cancel_thread= &rtl8814_stop_thread;

#ifdef CONFIG_ANTENNA_DIVERSITY
	pHalFunc->AntDivBeforeLinkHandler = &AntDivBeforeLink8812;
	pHalFunc->AntDivCompareHandler = &AntDivCompare8812;
#endif //CONFIG_ANTENNA_DIVERSITY

	pHalFunc->read_bbreg = &PHY_QueryBBReg8814A;
	pHalFunc->write_bbreg = &PHY_SetBBReg8814A;
	pHalFunc->read_rfreg = &PHY_QueryRFReg8814A;
	pHalFunc->write_rfreg = &PHY_SetRFReg8814A;


	// Efuse related function
	pHalFunc->EfusePowerSwitch = &rtl8814_EfusePowerSwitch;
	pHalFunc->ReadEFuse = &rtl8814_ReadEFuse;
	pHalFunc->EFUSEGetEfuseDefinition = &rtl8814_EFUSE_GetEfuseDefinition;
	pHalFunc->EfuseGetCurrentSize = &rtl8814_EfuseGetCurrentSize;
	pHalFunc->Efuse_PgPacketRead = &rtl8814_Efuse_PgPacketRead;
	pHalFunc->Efuse_PgPacketWrite = &rtl8814_Efuse_PgPacketWrite;
	pHalFunc->Efuse_WordEnableDataWrite = &rtl8814_Efuse_WordEnableDataWrite;

#ifdef DBG_CONFIG_ERROR_DETECT
	pHalFunc->sreset_init_value = &sreset_init_value;
	pHalFunc->sreset_reset_value = &sreset_reset_value;
	pHalFunc->silentreset = &sreset_reset;
	pHalFunc->sreset_xmit_status_check = &rtl8814_sreset_xmit_status_check;
	pHalFunc->sreset_linked_status_check  = &rtl8814_sreset_linked_status_check;
	pHalFunc->sreset_get_wifi_status  = &sreset_get_wifi_status;
	pHalFunc->sreset_inprogress= &sreset_inprogress;
#endif //DBG_CONFIG_ERROR_DETECT

	pHalFunc->GetHalODMVarHandler = GetHalODMVar;
	pHalFunc->SetHalODMVarHandler = SetHalODMVar;
	pHalFunc->hal_notch_filter = &hal_notch_filter_8814;

	pHalFunc->c2h_handler = c2h_handler_8814a;

	pHalFunc->fill_h2c_cmd = &FillH2CCmd_8814;
	pHalFunc->fill_fake_txdesc = &rtl8814a_fill_fake_txdesc;
#ifdef CONFIG_WOWLAN
	pHalFunc->hal_set_wowlan_fw = &SetFwRelatedForWoWLAN8814;
#endif //CONFIG_WOWLAN
	pHalFunc->fw_dl = &FirmwareDownload8814A;
	pHalFunc->hal_get_tx_buff_rsvd_page_num = &GetTxBufferRsvdPageNum8814;
}