Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
// SPDX-License-Identifier: GPL-2.0
/* Copyright(c) 2007 - 2017 Realtek Corporation */

#include <drv_types.h>

#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 14, 0)) || defined(RTW_VENDOR_EXT_SUPPORT)

#include <net/rtnetlink.h>

static struct sk_buff *rtw_cfg80211_vendor_event_alloc(
	struct wiphy *wiphy, struct wireless_dev *wdev, int len, int event_id, gfp_t gfp)
{
	struct sk_buff *skb;

#if (LINUX_VERSION_CODE < KERNEL_VERSION(4, 1, 0))
	skb = cfg80211_vendor_event_alloc(wiphy, len, event_id, gfp);
#else
	skb = cfg80211_vendor_event_alloc(wiphy, wdev, len, event_id, gfp);
#endif
	return skb;
}

#define rtw_cfg80211_vendor_event(skb, gfp) \
	cfg80211_vendor_event(skb, gfp)

#define rtw_cfg80211_vendor_cmd_alloc_reply_skb(wiphy, len) \
	cfg80211_vendor_cmd_alloc_reply_skb(wiphy, len)

#define rtw_cfg80211_vendor_cmd_reply(skb) \
	cfg80211_vendor_cmd_reply(skb)

/*
 * This API is to be used for asynchronous vendor events. This
 * shouldn't be used in response to a vendor command from its
 * do_it handler context (instead rtw_cfgvendor_send_cmd_reply should
 * be used).
 */
int rtw_cfgvendor_send_async_event(struct wiphy *wiphy,
	   struct net_device *dev, int event_id, const void  *data, int len)
{
	gfp_t kflags;
	struct sk_buff *skb;

	kflags = in_atomic() ? GFP_ATOMIC : GFP_KERNEL;

	/* Alloc the SKB for vendor_event */
	skb = rtw_cfg80211_vendor_event_alloc(wiphy, ndev_to_wdev(dev), len, event_id, kflags);
	if (!skb) {
		RTW_ERR(FUNC_NDEV_FMT" skb alloc failed", FUNC_NDEV_ARG(dev));
		return -ENOMEM;
	}

	/* Push the data to the skb */
	nla_put_nohdr(skb, len, data);

	rtw_cfg80211_vendor_event(skb, kflags);

	return 0;
}

static int rtw_cfgvendor_send_cmd_reply(struct wiphy *wiphy,
			struct net_device *dev, const void  *data, int len)
{
	struct sk_buff *skb;

	/* Alloc the SKB for vendor_event */
	skb = rtw_cfg80211_vendor_cmd_alloc_reply_skb(wiphy, len);
	if (unlikely(!skb)) {
		RTW_ERR(FUNC_NDEV_FMT" skb alloc failed", FUNC_NDEV_ARG(dev));
		return -ENOMEM;
	}

	/* Push the data to the skb */
	nla_put_nohdr(skb, len, data);

	return rtw_cfg80211_vendor_cmd_reply(skb);
}

/* Feature enums */
#define WIFI_FEATURE_INFRA              0x0001      // Basic infrastructure mode
#define WIFI_FEATURE_INFRA_5G           0x0002      // Support for 5 GHz Band
#define WIFI_FEATURE_HOTSPOT            0x0004      // Support for GAS/ANQP
#define WIFI_FEATURE_P2P                0x0008      // Wifi-Direct
#define WIFI_FEATURE_SOFT_AP            0x0010      // Soft AP
#define WIFI_FEATURE_GSCAN              0x0020      // Google-Scan APIs
#define WIFI_FEATURE_NAN                0x0040      // Neighbor Awareness Networking
#define WIFI_FEATURE_D2D_RTT            0x0080      // Device-to-device RTT
#define WIFI_FEATURE_D2AP_RTT           0x0100      // Device-to-AP RTT
#define WIFI_FEATURE_BATCH_SCAN         0x0200      // Batched Scan (legacy)
#define WIFI_FEATURE_PNO                0x0400      // Preferred network offload
#define WIFI_FEATURE_ADDITIONAL_STA     0x0800      // Support for two STAs
#define WIFI_FEATURE_TDLS               0x1000      // Tunnel directed link setup
#define WIFI_FEATURE_TDLS_OFFCHANNEL    0x2000      // Support for TDLS off channel
#define WIFI_FEATURE_EPR                0x4000      // Enhanced power reporting
#define WIFI_FEATURE_AP_STA             0x8000      // Support for AP STA Concurrency
#define WIFI_FEATURE_LINK_LAYER_STATS   0x10000     // Link layer stats collection
#define WIFI_FEATURE_LOGGER             0x20000     // WiFi Logger
#define WIFI_FEATURE_HAL_EPNO           0x40000     // WiFi PNO enhanced
#define WIFI_FEATURE_RSSI_MONITOR       0x80000     // RSSI Monitor
#define WIFI_FEATURE_MKEEP_ALIVE        0x100000    // WiFi mkeep_alive
#define WIFI_FEATURE_CONFIG_NDO         0x200000    // ND offload configure
#define WIFI_FEATURE_TX_TRANSMIT_POWER  0x400000    // Capture Tx transmit power levels
#define WIFI_FEATURE_CONTROL_ROAMING    0x800000    // Enable/Disable firmware roaming
#define WIFI_FEATURE_IE_WHITELIST       0x1000000   // Support Probe IE white listing
#define WIFI_FEATURE_SCAN_RAND          0x2000000   // Support MAC & Probe Sequence Number randomization
// Add more features here

#define MAX_FEATURE_SET_CONCURRRENT_GROUPS  3

#include <hal_data.h>
static int rtw_dev_get_feature_set(struct net_device *dev)
{
	int feature_set;

	feature_set = WIFI_FEATURE_INFRA;

	feature_set |= WIFI_FEATURE_P2P;
	feature_set |= WIFI_FEATURE_SOFT_AP;

	feature_set |= WIFI_FEATURE_ADDITIONAL_STA;
	feature_set |= WIFI_FEATURE_LINK_LAYER_STATS;

	return feature_set;
}

static int *rtw_dev_get_feature_set_matrix(struct net_device *dev, int *num)
{
	int feature_set_full, mem_needed;
	int *ret;

	*num = 0;
	mem_needed = sizeof(int) * MAX_FEATURE_SET_CONCURRRENT_GROUPS;
	ret = (int *)rtw_malloc(mem_needed);

	if (!ret) {
		RTW_ERR(FUNC_NDEV_FMT" failed to allocate %d bytes\n"
			, FUNC_NDEV_ARG(dev), mem_needed);
		return ret;
	}

	feature_set_full = rtw_dev_get_feature_set(dev);

	ret[0] = (feature_set_full & WIFI_FEATURE_INFRA) |
		 (feature_set_full & WIFI_FEATURE_INFRA_5G) |
		 (feature_set_full & WIFI_FEATURE_NAN) |
		 (feature_set_full & WIFI_FEATURE_D2D_RTT) |
		 (feature_set_full & WIFI_FEATURE_D2AP_RTT) |
		 (feature_set_full & WIFI_FEATURE_PNO) |
		 (feature_set_full & WIFI_FEATURE_BATCH_SCAN) |
		 (feature_set_full & WIFI_FEATURE_GSCAN) |
		 (feature_set_full & WIFI_FEATURE_HOTSPOT) |
		 (feature_set_full & WIFI_FEATURE_ADDITIONAL_STA) |
		 (feature_set_full & WIFI_FEATURE_EPR);

	ret[1] = (feature_set_full & WIFI_FEATURE_INFRA) |
		 (feature_set_full & WIFI_FEATURE_INFRA_5G) |
		 /* Not yet verified NAN with P2P */
		 /* (feature_set_full & WIFI_FEATURE_NAN) | */
		 (feature_set_full & WIFI_FEATURE_P2P) |
		 (feature_set_full & WIFI_FEATURE_D2AP_RTT) |
		 (feature_set_full & WIFI_FEATURE_D2D_RTT) |
		 (feature_set_full & WIFI_FEATURE_EPR);

	ret[2] = (feature_set_full & WIFI_FEATURE_INFRA) |
		 (feature_set_full & WIFI_FEATURE_INFRA_5G) |
		 (feature_set_full & WIFI_FEATURE_NAN) |
		 (feature_set_full & WIFI_FEATURE_D2D_RTT) |
		 (feature_set_full & WIFI_FEATURE_D2AP_RTT) |
		 (feature_set_full & WIFI_FEATURE_TDLS) |
		 (feature_set_full & WIFI_FEATURE_TDLS_OFFCHANNEL) |
		 (feature_set_full & WIFI_FEATURE_EPR);
	*num = MAX_FEATURE_SET_CONCURRRENT_GROUPS;

	return ret;
}

static int rtw_cfgvendor_get_feature_set(struct wiphy *wiphy,
		struct wireless_dev *wdev, const void  *data, int len)
{
	int err = 0;
	int reply;

	reply = rtw_dev_get_feature_set(wdev_to_ndev(wdev));

	err =  rtw_cfgvendor_send_cmd_reply(wiphy, wdev_to_ndev(wdev), &reply, sizeof(int));

	if (unlikely(err))
		RTW_ERR(FUNC_NDEV_FMT" Vendor Command reply failed ret:%d\n"
			, FUNC_NDEV_ARG(wdev_to_ndev(wdev)), err);

	return err;
}

static int rtw_cfgvendor_get_feature_set_matrix(struct wiphy *wiphy,
		struct wireless_dev *wdev, const void  *data, int len)
{
	int err = 0;
	struct sk_buff *skb;
	int *reply;
	int num, mem_needed, i;

	reply = rtw_dev_get_feature_set_matrix(wdev_to_ndev(wdev), &num);

	if (!reply) {
		RTW_ERR(FUNC_NDEV_FMT" Could not get feature list matrix\n"
			, FUNC_NDEV_ARG(wdev_to_ndev(wdev)));
		err = -EINVAL;
		return err;
	}

	mem_needed = VENDOR_REPLY_OVERHEAD + (ATTRIBUTE_U32_LEN * num) +
		     ATTRIBUTE_U32_LEN;

	/* Alloc the SKB for vendor_event */
	skb = rtw_cfg80211_vendor_cmd_alloc_reply_skb(wiphy, mem_needed);
	if (unlikely(!skb)) {
		RTW_ERR(FUNC_NDEV_FMT" skb alloc failed", FUNC_NDEV_ARG(wdev_to_ndev(wdev)));
		err = -ENOMEM;
		goto exit;
	}

	nla_put_u32(skb, ANDR_WIFI_ATTRIBUTE_NUM_FEATURE_SET, num);
	for (i = 0; i < num; i++)
		nla_put_u32(skb, ANDR_WIFI_ATTRIBUTE_FEATURE_SET, reply[i]);

	err =  rtw_cfg80211_vendor_cmd_reply(skb);

	if (unlikely(err))
		RTW_ERR(FUNC_NDEV_FMT" Vendor Command reply failed ret:%d\n"
			, FUNC_NDEV_ARG(wdev_to_ndev(wdev)), err);
exit:
	rtw_mfree((u8 *)reply, sizeof(int) * num);
	return err;
}

#if defined(GSCAN_SUPPORT) && 0
int rtw_cfgvendor_send_hotlist_event(struct wiphy *wiphy,
	struct net_device *dev, void  *data, int len, enum rtw_vendor_event event)
{
	u16 kflags;
	const void *ptr;
	struct sk_buff *skb;
	int malloc_len, total, iter_cnt_to_send, cnt;
	gscan_results_cache_t *cache = (gscan_results_cache_t *)data;

	total = len / sizeof(wifi_gscan_result_t);
	while (total > 0) {
		malloc_len = (total * sizeof(wifi_gscan_result_t)) + VENDOR_DATA_OVERHEAD;
		if (malloc_len > NLMSG_DEFAULT_SIZE)
			malloc_len = NLMSG_DEFAULT_SIZE;
		iter_cnt_to_send =
			(malloc_len - VENDOR_DATA_OVERHEAD) / sizeof(wifi_gscan_result_t);
		total = total - iter_cnt_to_send;

		kflags = in_atomic() ? GFP_ATOMIC : GFP_KERNEL;

		/* Alloc the SKB for vendor_event */
		skb = rtw_cfg80211_vendor_event_alloc(wiphy, ndev_to_wdev(dev), malloc_len, event, kflags);
		if (!skb) {
			WL_ERR(("skb alloc failed"));
			return -ENOMEM;
		}

		while (cache && iter_cnt_to_send) {
			ptr = (const void *) &cache->results[cache->tot_consumed];

			if (iter_cnt_to_send < (cache->tot_count - cache->tot_consumed))
				cnt = iter_cnt_to_send;
			else
				cnt = (cache->tot_count - cache->tot_consumed);

			iter_cnt_to_send -= cnt;
			cache->tot_consumed += cnt;
			/* Push the data to the skb */
			nla_append(skb, cnt * sizeof(wifi_gscan_result_t), ptr);
			if (cache->tot_consumed == cache->tot_count)
				cache = cache->next;

		}

		rtw_cfg80211_vendor_event(skb, kflags);
	}

	return 0;
}


static int rtw_cfgvendor_gscan_get_capabilities(struct wiphy *wiphy,
		struct wireless_dev *wdev, const void  *data, int len)
{
	int err = 0;
	struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
	dhd_pno_gscan_capabilities_t *reply = NULL;
	uint32 reply_len = 0;


	reply = dhd_dev_pno_get_gscan(bcmcfg_to_prmry_ndev(cfg),
			      DHD_PNO_GET_CAPABILITIES, NULL, &reply_len);
	if (!reply) {
		WL_ERR(("Could not get capabilities\n"));
		err = -EINVAL;
		return err;
	}

	err =  rtw_cfgvendor_send_cmd_reply(wiphy, bcmcfg_to_prmry_ndev(cfg),
					    reply, reply_len);

	if (unlikely(err))
		WL_ERR(("Vendor Command reply failed ret:%d\n", err));

	kfree(reply);
	return err;
}

static int rtw_cfgvendor_gscan_get_channel_list(struct wiphy *wiphy,
		struct wireless_dev *wdev, const void  *data, int len)
{
	int err = 0, type, band;
	struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
	uint16 *reply = NULL;
	uint32 reply_len = 0, num_channels, mem_needed;
	struct sk_buff *skb;

	type = nla_type(data);

	if (type == GSCAN_ATTRIBUTE_BAND)
		band = nla_get_u32(data);
	else
		return -1;

	reply = dhd_dev_pno_get_gscan(bcmcfg_to_prmry_ndev(cfg),
			      DHD_PNO_GET_CHANNEL_LIST, &band, &reply_len);

	if (!reply) {
		WL_ERR(("Could not get channel list\n"));
		err = -EINVAL;
		return err;
	}
	num_channels =  reply_len / sizeof(uint32);
	mem_needed = reply_len + VENDOR_REPLY_OVERHEAD + (ATTRIBUTE_U32_LEN * 2);

	/* Alloc the SKB for vendor_event */
	skb = rtw_cfg80211_vendor_cmd_alloc_reply_skb(wiphy, mem_needed);
	if (unlikely(!skb)) {
		WL_ERR(("skb alloc failed"));
		err = -ENOMEM;
		goto exit;
	}

	nla_put_u32(skb, GSCAN_ATTRIBUTE_NUM_CHANNELS, num_channels);
	nla_put(skb, GSCAN_ATTRIBUTE_CHANNEL_LIST, reply_len, reply);

	err =  rtw_cfg80211_vendor_cmd_reply(skb);

	if (unlikely(err))
		WL_ERR(("Vendor Command reply failed ret:%d\n", err));
exit:
	kfree(reply);
	return err;
}

static int rtw_cfgvendor_gscan_get_batch_results(struct wiphy *wiphy,
		struct wireless_dev *wdev, const void  *data, int len)
{
	int err = 0;
	struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
	gscan_results_cache_t *results, *iter;
	uint32 reply_len, complete = 0, num_results_iter;
	int32 mem_needed;
	wifi_gscan_result_t *ptr;
	uint16 num_scan_ids, num_results;
	struct sk_buff *skb;
	struct nlattr *scan_hdr;

	dhd_dev_wait_batch_results_complete(bcmcfg_to_prmry_ndev(cfg));
	dhd_dev_pno_lock_access_batch_results(bcmcfg_to_prmry_ndev(cfg));
	results = dhd_dev_pno_get_gscan(bcmcfg_to_prmry_ndev(cfg),
				DHD_PNO_GET_BATCH_RESULTS, NULL, &reply_len);

	if (!results) {
		WL_ERR(("No results to send %d\n", err));
		err =  rtw_cfgvendor_send_cmd_reply(wiphy, bcmcfg_to_prmry_ndev(cfg),
						    results, 0);

		if (unlikely(err))
			WL_ERR(("Vendor Command reply failed ret:%d\n", err));
		dhd_dev_pno_unlock_access_batch_results(bcmcfg_to_prmry_ndev(cfg));
		return err;
	}
	num_scan_ids = reply_len & 0xFFFF;
	num_results = (reply_len & 0xFFFF0000) >> 16;
	mem_needed = (num_results * sizeof(wifi_gscan_result_t)) +
		     (num_scan_ids * GSCAN_BATCH_RESULT_HDR_LEN) +
		     VENDOR_REPLY_OVERHEAD + SCAN_RESULTS_COMPLETE_FLAG_LEN;

	if (mem_needed > (int32)NLMSG_DEFAULT_SIZE) {
		mem_needed = (int32)NLMSG_DEFAULT_SIZE;
		complete = 0;
	} else
		complete = 1;

	WL_TRACE(("complete %d mem_needed %d max_mem %d\n", complete, mem_needed,
		  (int)NLMSG_DEFAULT_SIZE));
	/* Alloc the SKB for vendor_event */
	skb = rtw_cfg80211_vendor_cmd_alloc_reply_skb(wiphy, mem_needed);
	if (unlikely(!skb)) {
		WL_ERR(("skb alloc failed"));
		dhd_dev_pno_unlock_access_batch_results(bcmcfg_to_prmry_ndev(cfg));
		return -ENOMEM;
	}
	iter = results;

	nla_put_u32(skb, GSCAN_ATTRIBUTE_SCAN_RESULTS_COMPLETE, complete);

	mem_needed = mem_needed - (SCAN_RESULTS_COMPLETE_FLAG_LEN + VENDOR_REPLY_OVERHEAD);

	while (iter && ((mem_needed - GSCAN_BATCH_RESULT_HDR_LEN)  > 0)) {
		scan_hdr = nla_nest_start(skb, GSCAN_ATTRIBUTE_SCAN_RESULTS);
		nla_put_u32(skb, GSCAN_ATTRIBUTE_SCAN_ID, iter->scan_id);
		nla_put_u8(skb, GSCAN_ATTRIBUTE_SCAN_FLAGS, iter->flag);
		num_results_iter =
			(mem_needed - GSCAN_BATCH_RESULT_HDR_LEN) / sizeof(wifi_gscan_result_t);

		if ((iter->tot_count - iter->tot_consumed) < num_results_iter)
			num_results_iter = iter->tot_count - iter->tot_consumed;

		nla_put_u32(skb, GSCAN_ATTRIBUTE_NUM_OF_RESULTS, num_results_iter);
		if (num_results_iter) {
			ptr = &iter->results[iter->tot_consumed];
			iter->tot_consumed += num_results_iter;
			nla_put(skb, GSCAN_ATTRIBUTE_SCAN_RESULTS,
				num_results_iter * sizeof(wifi_gscan_result_t), ptr);
		}
		nla_nest_end(skb, scan_hdr);
		mem_needed -= GSCAN_BATCH_RESULT_HDR_LEN +
			      (num_results_iter * sizeof(wifi_gscan_result_t));
		iter = iter->next;
	}

	dhd_dev_gscan_batch_cache_cleanup(bcmcfg_to_prmry_ndev(cfg));
	dhd_dev_pno_unlock_access_batch_results(bcmcfg_to_prmry_ndev(cfg));

	return rtw_cfg80211_vendor_cmd_reply(skb);
}

static int rtw_cfgvendor_initiate_gscan(struct wiphy *wiphy,
		       struct wireless_dev *wdev, const void  *data, int len)
{
	int err = 0;
	struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
	int type, tmp = len;
	int run = 0xFF;
	int flush = 0;
	const struct nlattr *iter;

	nla_for_each_attr(iter, data, len, tmp) {
		type = nla_type(iter);
		if (type == GSCAN_ATTRIBUTE_ENABLE_FEATURE)
			run = nla_get_u32(iter);
		else if (type == GSCAN_ATTRIBUTE_FLUSH_FEATURE)
			flush = nla_get_u32(iter);
	}

	if (run != 0xFF) {
		err = dhd_dev_pno_run_gscan(bcmcfg_to_prmry_ndev(cfg), run, flush);

		if (unlikely(err))
			WL_ERR(("Could not run gscan:%d\n", err));
		return err;
	} else
		return -1;


}

static int rtw_cfgvendor_enable_full_scan_result(struct wiphy *wiphy,
		struct wireless_dev *wdev, const void  *data, int len)
{
	int err = 0;
	struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
	int type;
	bool real_time = false;

	type = nla_type(data);

	if (type == GSCAN_ATTRIBUTE_ENABLE_FULL_SCAN_RESULTS) {
		real_time = nla_get_u32(data);

		err = dhd_dev_pno_enable_full_scan_result(bcmcfg_to_prmry_ndev(cfg), real_time);

		if (unlikely(err))
			WL_ERR(("Could not run gscan:%d\n", err));

	} else
		err = -1;

	return err;
}

static int rtw_cfgvendor_set_scan_cfg(struct wiphy *wiphy,
		     struct wireless_dev *wdev, const void  *data, int len)
{
	int err = 0;
	struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
	gscan_scan_params_t *scan_param;
	int j = 0;
	int type, tmp, tmp1, tmp2, k = 0;
	const struct nlattr *iter, *iter1, *iter2;
	struct dhd_pno_gscan_channel_bucket  *ch_bucket;

	scan_param = kzalloc(sizeof(gscan_scan_params_t), GFP_KERNEL);
	if (!scan_param) {
		WL_ERR(("Could not set GSCAN scan cfg, mem alloc failure\n"));
		err = -EINVAL;
		return err;

	}

	scan_param->scan_fr = PNO_SCAN_MIN_FW_SEC;
	nla_for_each_attr(iter, data, len, tmp) {
		type = nla_type(iter);

		if (j >= GSCAN_MAX_CH_BUCKETS)
			break;

		switch (type) {
		case GSCAN_ATTRIBUTE_BASE_PERIOD:
			scan_param->scan_fr = nla_get_u32(iter) / 1000;
			break;
		case GSCAN_ATTRIBUTE_NUM_BUCKETS:
			scan_param->nchannel_buckets = nla_get_u32(iter);
			break;
		case GSCAN_ATTRIBUTE_CH_BUCKET_1:
		case GSCAN_ATTRIBUTE_CH_BUCKET_2:
		case GSCAN_ATTRIBUTE_CH_BUCKET_3:
		case GSCAN_ATTRIBUTE_CH_BUCKET_4:
		case GSCAN_ATTRIBUTE_CH_BUCKET_5:
		case GSCAN_ATTRIBUTE_CH_BUCKET_6:
		case GSCAN_ATTRIBUTE_CH_BUCKET_7:
			nla_for_each_nested(iter1, iter, tmp1) {
				type = nla_type(iter1);
				ch_bucket =
					scan_param->channel_bucket;

				switch (type) {
				case GSCAN_ATTRIBUTE_BUCKET_ID:
					break;
				case GSCAN_ATTRIBUTE_BUCKET_PERIOD:
					ch_bucket[j].bucket_freq_multiple =
						nla_get_u32(iter1) / 1000;
					break;
				case GSCAN_ATTRIBUTE_BUCKET_NUM_CHANNELS:
					ch_bucket[j].num_channels =
						nla_get_u32(iter1);
					break;
				case GSCAN_ATTRIBUTE_BUCKET_CHANNELS:
					nla_for_each_nested(iter2, iter1, tmp2) {
						if (k >= PFN_SWC_RSSI_WINDOW_MAX)
							break;
						ch_bucket[j].chan_list[k] =
							nla_get_u32(iter2);
						k++;
					}
					k = 0;
					break;
				case GSCAN_ATTRIBUTE_BUCKETS_BAND:
					ch_bucket[j].band = (uint16)
							    nla_get_u32(iter1);
					break;
				case GSCAN_ATTRIBUTE_REPORT_EVENTS:
					ch_bucket[j].report_flag = (uint8)
							   nla_get_u32(iter1);
					break;
				}
			}
			j++;
			break;
		}
	}

	if (dhd_dev_pno_set_cfg_gscan(bcmcfg_to_prmry_ndev(cfg),
				      DHD_PNO_SCAN_CFG_ID, scan_param, 0) < 0) {
		WL_ERR(("Could not set GSCAN scan cfg\n"));
		err = -EINVAL;
	}

	kfree(scan_param);
	return err;

}

static int rtw_cfgvendor_hotlist_cfg(struct wiphy *wiphy,
		    struct wireless_dev *wdev, const void  *data, int len)
{
	int err = 0;
	struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
	gscan_hotlist_scan_params_t *hotlist_params;
	int tmp, tmp1, tmp2, type, j = 0, dummy;
	const struct nlattr *outer, *inner, *iter;
	uint8 flush = 0;
	struct bssid_t *pbssid;

	hotlist_params = (gscan_hotlist_scan_params_t *)kzalloc(len, GFP_KERNEL);
	if (!hotlist_params) {
		WL_ERR(("Cannot Malloc mem to parse config commands size - %d bytes\n", len));
		return -1;
	}

	hotlist_params->lost_ap_window = GSCAN_LOST_AP_WINDOW_DEFAULT;

	nla_for_each_attr(iter, data, len, tmp2) {
		type = nla_type(iter);
		switch (type) {
		case GSCAN_ATTRIBUTE_HOTLIST_BSSIDS:
			pbssid = hotlist_params->bssid;
			nla_for_each_nested(outer, iter, tmp) {
				nla_for_each_nested(inner, outer, tmp1) {
					type = nla_type(inner);

					switch (type) {
					case GSCAN_ATTRIBUTE_BSSID:
						memcpy(&(pbssid[j].macaddr),
						       nla_data(inner), ETHER_ADDR_LEN);
						break;
					case GSCAN_ATTRIBUTE_RSSI_LOW:
						pbssid[j].rssi_reporting_threshold =
							(int8) nla_get_u8(inner);
						break;
					case GSCAN_ATTRIBUTE_RSSI_HIGH:
						dummy = (int8) nla_get_u8(inner);
						break;
					}
				}
				j++;
			}
			hotlist_params->nbssid = j;
			break;
		case GSCAN_ATTRIBUTE_HOTLIST_FLUSH:
			flush = nla_get_u8(iter);
			break;
		case GSCAN_ATTRIBUTE_LOST_AP_SAMPLE_SIZE:
			hotlist_params->lost_ap_window = nla_get_u32(iter);
			break;
		}

	}

	if (dhd_dev_pno_set_cfg_gscan(bcmcfg_to_prmry_ndev(cfg),
		DHD_PNO_GEOFENCE_SCAN_CFG_ID, hotlist_params, flush) < 0) {
		WL_ERR(("Could not set GSCAN HOTLIST cfg\n"));
		err = -EINVAL;
		goto exit;
	}
exit:
	kfree(hotlist_params);
	return err;
}
static int rtw_cfgvendor_set_batch_scan_cfg(struct wiphy *wiphy,
		struct wireless_dev *wdev, const void  *data, int len)
{
	int err = 0, tmp, type;
	struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
	gscan_batch_params_t batch_param;
	const struct nlattr *iter;

	batch_param.mscan = batch_param.bestn = 0;
	batch_param.buffer_threshold = GSCAN_BATCH_NO_THR_SET;

	nla_for_each_attr(iter, data, len, tmp) {
		type = nla_type(iter);

		switch (type) {
		case GSCAN_ATTRIBUTE_NUM_AP_PER_SCAN:
			batch_param.bestn = nla_get_u32(iter);
			break;
		case GSCAN_ATTRIBUTE_NUM_SCANS_TO_CACHE:
			batch_param.mscan = nla_get_u32(iter);
			break;
		case GSCAN_ATTRIBUTE_REPORT_THRESHOLD:
			batch_param.buffer_threshold = nla_get_u32(iter);
			break;
		}
	}

	if (dhd_dev_pno_set_cfg_gscan(bcmcfg_to_prmry_ndev(cfg),
			      DHD_PNO_BATCH_SCAN_CFG_ID, &batch_param, 0) < 0) {
		WL_ERR(("Could not set batch cfg\n"));
		err = -EINVAL;
		return err;
	}

	return err;
}

static int rtw_cfgvendor_significant_change_cfg(struct wiphy *wiphy,
		struct wireless_dev *wdev, const void  *data, int len)
{
	int err = 0;
	struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
	gscan_swc_params_t *significant_params;
	int tmp, tmp1, tmp2, type, j = 0;
	const struct nlattr *outer, *inner, *iter;
	uint8 flush = 0;
	wl_pfn_significant_bssid_t *pbssid;

	significant_params = (gscan_swc_params_t *) kzalloc(len, GFP_KERNEL);
	if (!significant_params) {
		WL_ERR(("Cannot Malloc mem to parse config commands size - %d bytes\n", len));
		return -1;
	}


	nla_for_each_attr(iter, data, len, tmp2) {
		type = nla_type(iter);

		switch (type) {
		case GSCAN_ATTRIBUTE_SIGNIFICANT_CHANGE_FLUSH:
			flush = nla_get_u8(iter);
			break;
		case GSCAN_ATTRIBUTE_RSSI_SAMPLE_SIZE:
			significant_params->rssi_window = nla_get_u16(iter);
			break;
		case GSCAN_ATTRIBUTE_LOST_AP_SAMPLE_SIZE:
			significant_params->lost_ap_window = nla_get_u16(iter);
			break;
		case GSCAN_ATTRIBUTE_MIN_BREACHING:
			significant_params->swc_threshold = nla_get_u16(iter);
			break;
		case GSCAN_ATTRIBUTE_SIGNIFICANT_CHANGE_BSSIDS:
			pbssid = significant_params->bssid_elem_list;
			nla_for_each_nested(outer, iter, tmp) {
				nla_for_each_nested(inner, outer, tmp1) {
					switch (nla_type(inner)) {
					case GSCAN_ATTRIBUTE_BSSID:
						memcpy(&(pbssid[j].macaddr),
						       nla_data(inner),
						       ETHER_ADDR_LEN);
						break;
					case GSCAN_ATTRIBUTE_RSSI_HIGH:
						pbssid[j].rssi_high_threshold =
							(int8) nla_get_u8(inner);
						break;
					case GSCAN_ATTRIBUTE_RSSI_LOW:
						pbssid[j].rssi_low_threshold =
							(int8) nla_get_u8(inner);
						break;
					}
				}
				j++;
			}
			break;
		}
	}
	significant_params->nbssid = j;

	if (dhd_dev_pno_set_cfg_gscan(bcmcfg_to_prmry_ndev(cfg),
		DHD_PNO_SIGNIFICANT_SCAN_CFG_ID, significant_params, flush) < 0) {
		WL_ERR(("Could not set GSCAN significant cfg\n"));
		err = -EINVAL;
		goto exit;
	}
exit:
	kfree(significant_params);
	return err;
}
#endif /* GSCAN_SUPPORT */

#if defined(RTT_SUPPORT) && 0
void rtw_cfgvendor_rtt_evt(void *ctx, void *rtt_data)
{
	struct wireless_dev *wdev = (struct wireless_dev *)ctx;
	struct wiphy *wiphy;
	struct sk_buff *skb;
	uint32 tot_len = NLMSG_DEFAULT_SIZE, entry_len = 0;
	gfp_t kflags;
	rtt_report_t *rtt_report = NULL;
	rtt_result_t *rtt_result = NULL;
	struct list_head *rtt_list;
	wiphy = wdev->wiphy;

	WL_DBG(("In\n"));
	/* Push the data to the skb */
	if (!rtt_data) {
		WL_ERR(("rtt_data is NULL\n"));
		goto exit;
	}
	rtt_list = (struct list_head *)rtt_data;
	kflags = in_atomic() ? GFP_ATOMIC : GFP_KERNEL;
	/* Alloc the SKB for vendor_event */
	skb = rtw_cfg80211_vendor_event_alloc(wiphy, wdev, tot_len, GOOGLE_RTT_COMPLETE_EVENT, kflags);
	if (!skb) {
		WL_ERR(("skb alloc failed"));
		goto exit;
	}
	/* fill in the rtt results on each entry */
	list_for_each_entry(rtt_result, rtt_list, list) {
		entry_len = 0;
		if (rtt_result->TOF_type == TOF_TYPE_ONE_WAY) {
			entry_len = sizeof(rtt_report_t);
			rtt_report = kzalloc(entry_len, kflags);
			if (!rtt_report) {
				WL_ERR(("rtt_report alloc failed"));
				goto exit;
			}
			rtt_report->addr = rtt_result->peer_mac;
			rtt_report->num_measurement = 1; /* ONE SHOT */
			rtt_report->status = rtt_result->err_code;
			rtt_report->type = (rtt_result->TOF_type == TOF_TYPE_ONE_WAY) ? RTT_ONE_WAY : RTT_TWO_WAY;
			rtt_report->peer = rtt_result->target_info->peer;
			rtt_report->channel = rtt_result->target_info->channel;
			rtt_report->rssi = rtt_result->avg_rssi;
			/* tx_rate */
			rtt_report->tx_rate = rtt_result->tx_rate;
			/* RTT */
			rtt_report->rtt = rtt_result->meanrtt;
			rtt_report->rtt_sd = rtt_result->sdrtt;
			/* convert to centi meter */
			if (rtt_result->distance != 0xffffffff)
				rtt_report->distance = (rtt_result->distance >> 2) * 25;
			else /* invalid distance */
				rtt_report->distance = -1;

			rtt_report->ts = rtt_result->ts;
			nla_append(skb, entry_len, rtt_report);
			kfree(rtt_report);
		}
	}
	rtw_cfg80211_vendor_event(skb, kflags);
exit:
	return;
}

static int rtw_cfgvendor_rtt_set_config(struct wiphy *wiphy, struct wireless_dev *wdev,
				       const void *data, int len)
{
	int err = 0, rem, rem1, rem2, type;
	rtt_config_params_t rtt_param;
	rtt_target_info_t *rtt_target = NULL;
	const struct nlattr *iter, *iter1, *iter2;
	int8 eabuf[ETHER_ADDR_STR_LEN];
	int8 chanbuf[CHANSPEC_STR_LEN];
	struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);

	WL_DBG(("In\n"));
	err = dhd_dev_rtt_register_noti_callback(wdev->netdev, wdev, wl_cfgvendor_rtt_evt);
	if (err < 0) {
		WL_ERR(("failed to register rtt_noti_callback\n"));
		goto exit;
	}
	memset(&rtt_param, 0, sizeof(rtt_param));
	nla_for_each_attr(iter, data, len, rem) {
		type = nla_type(iter);
		switch (type) {
		case RTT_ATTRIBUTE_TARGET_CNT:
			rtt_param.rtt_target_cnt = nla_get_u8(iter);
			if (rtt_param.rtt_target_cnt > RTT_MAX_TARGET_CNT) {
				WL_ERR(("exceed max target count : %d\n",
					rtt_param.rtt_target_cnt));
				err = BCME_RANGE;
			}
			break;
		case RTT_ATTRIBUTE_TARGET_INFO:
			rtt_target = rtt_param.target_info;
			nla_for_each_nested(iter1, iter, rem1) {
				nla_for_each_nested(iter2, iter1, rem2) {
					type = nla_type(iter2);
					switch (type) {
					case RTT_ATTRIBUTE_TARGET_MAC:
						memcpy(&rtt_target->addr, nla_data(iter2), ETHER_ADDR_LEN);
						break;
					case RTT_ATTRIBUTE_TARGET_TYPE:
						rtt_target->type = nla_get_u8(iter2);
						break;
					case RTT_ATTRIBUTE_TARGET_PEER:
						rtt_target->peer = nla_get_u8(iter2);
						break;
					case RTT_ATTRIBUTE_TARGET_CHAN:
						memcpy(&rtt_target->channel, nla_data(iter2),
						       sizeof(rtt_target->channel));
						break;
					case RTT_ATTRIBUTE_TARGET_MODE:
						rtt_target->continuous = nla_get_u8(iter2);
						break;
					case RTT_ATTRIBUTE_TARGET_INTERVAL:
						rtt_target->interval = nla_get_u32(iter2);
						break;
					case RTT_ATTRIBUTE_TARGET_NUM_MEASUREMENT:
						rtt_target->measure_cnt = nla_get_u32(iter2);
						break;
					case RTT_ATTRIBUTE_TARGET_NUM_PKT:
						rtt_target->ftm_cnt = nla_get_u32(iter2);
						break;
					case RTT_ATTRIBUTE_TARGET_NUM_RETRY:
						rtt_target->retry_cnt = nla_get_u32(iter2);
					}
				}
				/* convert to chanspec value */
				rtt_target->chanspec = dhd_rtt_convert_to_chspec(rtt_target->channel);
				if (rtt_target->chanspec == 0) {
					WL_ERR(("Channel is not valid\n"));
					goto exit;
				}
				WL_INFORM(("Target addr %s, Channel : %s for RTT\n",
					bcm_ether_ntoa((const struct ether_addr *)&rtt_target->addr, eabuf),
					wf_chspec_ntoa(rtt_target->chanspec, chanbuf)));
				rtt_target++;
			}
			break;
		}
	}
	WL_DBG(("leave :target_cnt : %d\n", rtt_param.rtt_target_cnt));
	if (dhd_dev_rtt_set_cfg(bcmcfg_to_prmry_ndev(cfg), &rtt_param) < 0) {
		WL_ERR(("Could not set RTT configuration\n"));
		err = -EINVAL;
	}
exit:
	return err;
}

static int rtw_cfgvendor_rtt_cancel_config(struct wiphy *wiphy, struct wireless_dev *wdev,
		const void *data, int len)
{
	int err = 0, rem, type, target_cnt = 0;
	const struct nlattr *iter;
	struct ether_addr *mac_list = NULL, *mac_addr = NULL;
	struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);

	nla_for_each_attr(iter, data, len, rem) {
		type = nla_type(iter);
		switch (type) {
		case RTT_ATTRIBUTE_TARGET_CNT:
			target_cnt = nla_get_u8(iter);
			mac_list = (struct ether_addr *)kzalloc(target_cnt * ETHER_ADDR_LEN , GFP_KERNEL);
			if (!mac_list) {
				WL_ERR(("failed to allocate mem for mac list\n"));
				goto exit;
			}
			mac_addr = &mac_list[0];
			break;
		case RTT_ATTRIBUTE_TARGET_MAC:
			if (mac_addr)
				memcpy(mac_addr++, nla_data(iter), ETHER_ADDR_LEN);
			else {
				WL_ERR(("mac_list is NULL\n"));
				goto exit;
			}
			break;
		}
		if (dhd_dev_rtt_cancel_cfg(bcmcfg_to_prmry_ndev(cfg), mac_list, target_cnt) < 0) {
			WL_ERR(("Could not cancel RTT configuration\n"));
			err = -EINVAL;
			goto exit;
		}
	}
exit:
	if (mac_list)
		kfree(mac_list);
	return err;
}
static int rtw_cfgvendor_rtt_get_capability(struct wiphy *wiphy, struct wireless_dev *wdev,
		const void *data, int len)
{
	int err = 0;
	struct bcm_cfg80211 *cfg = wiphy_priv(wiphy);
	rtt_capabilities_t capability;

	err = dhd_dev_rtt_capability(bcmcfg_to_prmry_ndev(cfg), &capability);
	if (unlikely(err)) {
		WL_ERR(("Vendor Command reply failed ret:%d\n", err));
		goto exit;
	}
	err =  rtw_cfgvendor_send_cmd_reply(wiphy, bcmcfg_to_prmry_ndev(cfg),
					    &capability, sizeof(capability));

	if (unlikely(err))
		WL_ERR(("Vendor Command reply failed ret:%d\n", err));
exit:
	return err;
}

#endif /* RTT_SUPPORT */

enum {
    LSTATS_SUBCMD_GET_INFO = ANDROID_NL80211_SUBCMD_LSTATS_RANGE_START,
	LSTATS_SUBCMD_SET_INFO,
	LSTATS_SUBCMD_CLEAR_INFO,
};
static void LinkLayerStats(struct adapter *adapt)
{
	struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(adapt);
	struct dvobj_priv	*pdvobjpriv = adapter_to_dvobj(adapt);
	u32 ps_time, trx_total_time;
	u64 tx_bytes, rx_bytes, trx_total_bytes = 0;
	u64 tmp = 0;
	
	RTW_DBG("%s adapter type : %u\n", __func__, adapt->adapter_type);

	tx_bytes = 0;
	rx_bytes = 0;
	ps_time = 0;
	trx_total_time = 0;

	if (adapt->netif_up) {
		pwrpriv->on_time = rtw_get_passing_time_ms(pwrpriv->radio_on_start_time);

		if (rtw_mi_check_fwstate(adapt, _FW_LINKED)) {
			if (pwrpriv->bpower_saving) {
				pwrpriv->pwr_saving_time += rtw_get_passing_time_ms(pwrpriv->pwr_saving_start_time);
				pwrpriv->pwr_saving_start_time = rtw_get_current_time();
			}
		} else {		
			if (pwrpriv->bpower_saving) {
				pwrpriv->pwr_saving_time += rtw_get_passing_time_ms(pwrpriv->pwr_saving_start_time);
				pwrpriv->pwr_saving_start_time = rtw_get_current_time();
			}
		}

		ps_time = pwrpriv->pwr_saving_time;

		/* Deviation caused by caculation start time */
		if (ps_time > pwrpriv->on_time)
			ps_time = pwrpriv->on_time;

		tx_bytes = pdvobjpriv->traffic_stat.last_tx_bytes;
		rx_bytes = pdvobjpriv->traffic_stat.last_rx_bytes;		
		trx_total_bytes = tx_bytes + rx_bytes;

		trx_total_time = pwrpriv->on_time - ps_time;
		
		if (trx_total_bytes == 0) {
			pwrpriv->tx_time = 0;
			pwrpriv->rx_time = 0;
		} else {

			/* tx_time = (trx_total_time * tx_total_bytes) / trx_total_bytes; */
			/* rx_time = (trx_total_time * rx_total_bytes) / trx_total_bytes; */
		
			tmp = (tx_bytes * trx_total_time);
			tmp = rtw_division64(tmp, trx_total_bytes);
			pwrpriv->tx_time = tmp;

			tmp = (rx_bytes * trx_total_time);
			tmp = rtw_division64(tmp, trx_total_bytes);
			pwrpriv->rx_time = tmp;		

		}
		
	}
	else {
			pwrpriv->on_time = 0;
			pwrpriv->tx_time = 0;
			pwrpriv->rx_time = 0;	
	}
}

#define DUMMY_TIME_STATICS 99
static int rtw_cfgvendor_lstats_get_info(struct wiphy *wiphy,	
	struct wireless_dev *wdev, const void  *data, int len)
{
	int err = 0;
	struct adapter *adapt = GET_PRIMARY_ADAPTER(wiphy_to_adapter(wiphy));
	struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(adapt);
	struct wifi_radio_stat *radio;
	char *output;

	output = rtw_malloc(sizeof(struct wifi_radio_stat) + sizeof(struct wifi_iface_stat)+1);
	if (!output) {
		RTW_DBG("Allocate lstats info buffer fail!\n");
	}

	radio = (struct wifi_radio_stat *)output;

	radio->num_channels = 0;
	radio->radio = 1;

	/* to get on_time, tx_time, rx_time */
	LinkLayerStats(adapt); 
	
	radio->on_time = pwrpriv->on_time;
	radio->tx_time = pwrpriv->tx_time;
	radio->rx_time = pwrpriv->rx_time;
	
	radio->num_tx_levels = 1;
	radio->tx_time_per_levels = NULL;
	radio->tx_time_per_levels = (u32*)(output+sizeof(struct wifi_radio_stat) + sizeof(struct wifi_iface_stat));
	*(radio->tx_time_per_levels) = DUMMY_TIME_STATICS;

	radio->on_time_scan = 0;
	radio->on_time_nbd = 0;
	radio->on_time_gscan = 0;
	radio->on_time_pno_scan = 0;
	radio->on_time_hs20 = 0;
	
	RTW_DBG(FUNC_NDEV_FMT" %s\n", FUNC_NDEV_ARG(wdev_to_ndev(wdev)), (char*)data);
	err =  rtw_cfgvendor_send_cmd_reply(wiphy, wdev_to_ndev(wdev), 
		output, sizeof(struct wifi_iface_stat) + sizeof(struct wifi_radio_stat)+1);
	if (unlikely(err))
		RTW_ERR(FUNC_NDEV_FMT"Vendor Command reply failed ret:%d \n"
			, FUNC_NDEV_ARG(wdev_to_ndev(wdev)), err);
	rtw_mfree(output, sizeof(struct wifi_iface_stat) + sizeof(struct wifi_radio_stat)+1);
	return err;
}
static int rtw_cfgvendor_lstats_set_info(struct wiphy *wiphy,	
	struct wireless_dev *wdev, const void  *data, int len)
{
	int err = 0;
	RTW_INFO("%s\n", __func__);
	return err;
}
static int rtw_cfgvendor_lstats_clear_info(struct wiphy *wiphy,	
	struct wireless_dev *wdev, const void  *data, int len)
{
	int err = 0;
	RTW_INFO("%s\n", __func__);
	return err;
}

static const struct wiphy_vendor_command rtw_vendor_cmds[] = {
#if defined(GSCAN_SUPPORT) && 0
	{
		{
			.vendor_id = OUI_GOOGLE,
			.subcmd = GSCAN_SUBCMD_GET_CAPABILITIES
		},
		.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
		.policy = VENDOR_CMD_RAW_DATA,
#endif
		.doit = rtw_cfgvendor_gscan_get_capabilities
	},
	{
		{
			.vendor_id = OUI_GOOGLE,
			.subcmd = GSCAN_SUBCMD_SET_CONFIG
		},
		.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
		.policy = VENDOR_CMD_RAW_DATA,
#endif
		.doit = rtw_cfgvendor_set_scan_cfg
	},
	{
		{
			.vendor_id = OUI_GOOGLE,
			.subcmd = GSCAN_SUBCMD_SET_SCAN_CONFIG
		},
		.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
		.policy = VENDOR_CMD_RAW_DATA,
#endif
		.doit = rtw_cfgvendor_set_batch_scan_cfg
	},
	{
		{
			.vendor_id = OUI_GOOGLE,
			.subcmd = GSCAN_SUBCMD_ENABLE_GSCAN
		},
		.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
		.policy = VENDOR_CMD_RAW_DATA,
#endif
		.doit = rtw_cfgvendor_initiate_gscan
	},
	{
		{
			.vendor_id = OUI_GOOGLE,
			.subcmd = GSCAN_SUBCMD_ENABLE_FULL_SCAN_RESULTS
		},
		.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
		.policy = VENDOR_CMD_RAW_DATA,
#endif
		.doit = rtw_cfgvendor_enable_full_scan_result
	},
	{
		{
			.vendor_id = OUI_GOOGLE,
			.subcmd = GSCAN_SUBCMD_SET_HOTLIST
		},
		.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
		.policy = VENDOR_CMD_RAW_DATA,
#endif
		.doit = rtw_cfgvendor_hotlist_cfg
	},
	{
		{
			.vendor_id = OUI_GOOGLE,
			.subcmd = GSCAN_SUBCMD_SET_SIGNIFICANT_CHANGE_CONFIG
		},
		.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
		.policy = VENDOR_CMD_RAW_DATA,
#endif
		.doit = rtw_cfgvendor_significant_change_cfg
	},
	{
		{
			.vendor_id = OUI_GOOGLE,
			.subcmd = GSCAN_SUBCMD_GET_SCAN_RESULTS
		},
		.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
		.policy = VENDOR_CMD_RAW_DATA,
#endif
		.doit = rtw_cfgvendor_gscan_get_batch_results
	},
	{
		{
			.vendor_id = OUI_GOOGLE,
			.subcmd = GSCAN_SUBCMD_GET_CHANNEL_LIST
		},
		.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
		.policy = VENDOR_CMD_RAW_DATA,
#endif
		.doit = rtw_cfgvendor_gscan_get_channel_list
	},
#endif /* GSCAN_SUPPORT */
#if defined(RTT_SUPPORT) && 0
	{
		{
			.vendor_id = OUI_GOOGLE,
			.subcmd = RTT_SUBCMD_SET_CONFIG
		},
		.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
		.policy = VENDOR_CMD_RAW_DATA,
#endif
		.doit = rtw_cfgvendor_rtt_set_config
	},
	{
		{
			.vendor_id = OUI_GOOGLE,
			.subcmd = RTT_SUBCMD_CANCEL_CONFIG
		},
		.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
		.policy = VENDOR_CMD_RAW_DATA,
#endif
		.doit = rtw_cfgvendor_rtt_cancel_config
	},
	{
		{
			.vendor_id = OUI_GOOGLE,
			.subcmd = RTT_SUBCMD_GETCAPABILITY
		},
		.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
		.policy = VENDOR_CMD_RAW_DATA,
#endif
		.doit = rtw_cfgvendor_rtt_get_capability
	},
#endif /* RTT_SUPPORT */
	{
		{
			.vendor_id = OUI_GOOGLE,
			.subcmd = LSTATS_SUBCMD_GET_INFO
		},
		.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
		.policy = VENDOR_CMD_RAW_DATA,
#endif
		.doit = rtw_cfgvendor_lstats_get_info
	},
	{
		{
			.vendor_id = OUI_GOOGLE,
			.subcmd = LSTATS_SUBCMD_SET_INFO
		},
		.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
		.policy = VENDOR_CMD_RAW_DATA,
#endif
		.doit = rtw_cfgvendor_lstats_set_info
	},
	{
		{
			.vendor_id = OUI_GOOGLE,
			.subcmd = LSTATS_SUBCMD_CLEAR_INFO
		},
		.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
		.policy = VENDOR_CMD_RAW_DATA,
#endif
		.doit = rtw_cfgvendor_lstats_clear_info
	},
	{
		{
			.vendor_id = OUI_GOOGLE,
			.subcmd = WIFI_SUBCMD_GET_FEATURE_SET
		},
		.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
		.policy = VENDOR_CMD_RAW_DATA,
#endif
		.doit = rtw_cfgvendor_get_feature_set
	},
	{
		{
			.vendor_id = OUI_GOOGLE,
			.subcmd = WIFI_SUBCMD_GET_FEATURE_SET_MATRIX
		},
		.flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV,
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 3, 0))
		.policy = VENDOR_CMD_RAW_DATA,
#endif
		.doit = rtw_cfgvendor_get_feature_set_matrix
	}
};

static const struct  nl80211_vendor_cmd_info rtw_vendor_events[] = {
#if defined(GSCAN_SUPPORT) && 0
	{ OUI_GOOGLE, GSCAN_EVENT_SIGNIFICANT_CHANGE_RESULTS },
	{ OUI_GOOGLE, GSCAN_EVENT_HOTLIST_RESULTS_FOUND },
	{ OUI_GOOGLE, GSCAN_EVENT_SCAN_RESULTS_AVAILABLE },
	{ OUI_GOOGLE, GSCAN_EVENT_FULL_SCAN_RESULTS },
#endif /* GSCAN_SUPPORT */
#if defined(RTT_SUPPORT) && 0
	{ OUI_GOOGLE, RTT_EVENT_COMPLETE },
#endif /* RTT_SUPPORT */
#if defined(GSCAN_SUPPORT) && 0
	{ OUI_GOOGLE, GSCAN_EVENT_COMPLETE_SCAN },
	{ OUI_GOOGLE, GSCAN_EVENT_HOTLIST_RESULTS_LOST }
#endif /* GSCAN_SUPPORT */
};

int rtw_cfgvendor_attach(struct wiphy *wiphy)
{

	RTW_INFO("Register RTW cfg80211 vendor cmd(0x%x) interface\n", NL80211_CMD_VENDOR);

	wiphy->vendor_commands	= rtw_vendor_cmds;
	wiphy->n_vendor_commands = ARRAY_SIZE(rtw_vendor_cmds);
	wiphy->vendor_events	= rtw_vendor_events;
	wiphy->n_vendor_events	= ARRAY_SIZE(rtw_vendor_events);

	return 0;
}

int rtw_cfgvendor_detach(struct wiphy *wiphy)
{
	RTW_INFO("Vendor: Unregister RTW cfg80211 vendor interface\n");

	wiphy->vendor_commands  = NULL;
	wiphy->vendor_events    = NULL;
	wiphy->n_vendor_commands = 0;
	wiphy->n_vendor_events  = 0;

	return 0;
}

#endif /* (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 14, 0)) || defined(RTW_VENDOR_EXT_SUPPORT) */