// SPDX-License-Identifier: GPL-2.0
/* Copyright(c) 2007 - 2017 Realtek Corporation */
#define _RTL8723D_PHYCFG_C_
#include <rtl8723d_hal.h>
/*---------------------------Define Local Constant---------------------------*/
/* Channel switch:The size of command tables for switch channel*/
#define MAX_PRECMD_CNT 16
#define MAX_RFDEPENDCMD_CNT 16
#define MAX_POSTCMD_CNT 16
#define MAX_DOZE_WAITING_TIMES_9x 64
/*---------------------------Define Local Constant---------------------------*/
/*------------------------Define global variable-----------------------------*/
/*------------------------Define local variable------------------------------*/
/*--------------------Define export function prototype-----------------------*/
/* Please refer to header file
*--------------------Define export function prototype-----------------------*/
/*----------------------------Function Body----------------------------------*/
/*
* 1. BB register R/W API
* */
/**
* Function: phy_CalculateBitShift
*
* OverView: Get shifted position of the BitMask
*
* Input:
* u32 BitMask,
*
* Output: none
* Return: u32 Return the shift bit bit position of the mask
*/
static u32
phy_CalculateBitShift(
u32 BitMask
)
{
u32 i;
for (i = 0; i <= 31; i++) {
if (((BitMask >> i) & 0x1) == 1)
break;
}
return i;
}
/**
* Function: PHY_QueryBBReg
*
* OverView: Read "sepcific bits" from BB register
*
* Input:
* struct adapter * Adapter,
* u32 RegAddr,
* u32 BitMask
*
* Output: None
* Return: u32 Data
* Note: This function is equal to "GetRegSetting" in PHY programming guide
*/
u32
PHY_QueryBBReg_8723D(
struct adapter * Adapter,
u32 RegAddr,
u32 BitMask
)
{
u32 ReturnValue = 0, OriginalValue, BitShift;
#if (DISABLE_BB_RF == 1)
return 0;
#endif
OriginalValue = rtw_read32(Adapter, RegAddr);
BitShift = phy_CalculateBitShift(BitMask);
ReturnValue = (OriginalValue & BitMask) >> BitShift;
return ReturnValue;
}
/**
* Function: PHY_SetBBReg
*
* OverView: Write "Specific bits" to BB register (page 8~)
*
* Input:
* struct adapter * Adapter,
* u32 RegAddr,
* u32 BitMask
*
* u32 Data
*
*
* Output: None
* Return: None
* Note: This function is equal to "PutRegSetting" in PHY programming guide
*/
void
PHY_SetBBReg_8723D(
struct adapter * Adapter,
u32 RegAddr,
u32 BitMask,
u32 Data
)
{
u32 OriginalValue, BitShift;
#if (DISABLE_BB_RF == 1)
return;
#endif
if (BitMask != bMaskDWord) { /* if not "double word" write */
OriginalValue = rtw_read32(Adapter, RegAddr);
BitShift = phy_CalculateBitShift(BitMask);
Data = ((OriginalValue & (~BitMask)) | ((Data << BitShift) & BitMask));
}
rtw_write32(Adapter, RegAddr, Data);
}
/*
* 2. RF register R/W API
* */
static u32
phy_RFSerialRead_8723D(
struct adapter * Adapter,
enum rf_path eRFPath,
u32 Offset
)
{
u32 retValue = 0;
struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
struct bb_register_definition *pPhyReg = &pHalData->PHYRegDef[eRFPath];
u32 NewOffset;
u32 tmplong2;
u8 RfPiEnable = 0;
u32 MaskforPhySet = 0;
int i;
_enter_critical_mutex(&(adapter_to_dvobj(Adapter)->rf_read_reg_mutex) , NULL);
/* */
/* Make sure RF register offset is correct */
/* */
Offset &= 0xff;
NewOffset = Offset;
if (eRFPath == RF_PATH_A) {
tmplong2 = phy_query_bb_reg(Adapter, rFPGA0_XA_HSSIParameter2 | MaskforPhySet, bMaskDWord);
tmplong2 = (tmplong2 & (~bLSSIReadAddress)) | (NewOffset << 23) | bLSSIReadEdge; /* T65 RF */
phy_set_bb_reg(Adapter, rFPGA0_XA_HSSIParameter2 | MaskforPhySet, bMaskDWord, tmplong2 & (~bLSSIReadEdge));
} else {
tmplong2 = phy_query_bb_reg(Adapter, rFPGA0_XB_HSSIParameter2 | MaskforPhySet, bMaskDWord);
tmplong2 = (tmplong2 & (~bLSSIReadAddress)) | (NewOffset << 23) | bLSSIReadEdge; /* T65 RF */
phy_set_bb_reg(Adapter, rFPGA0_XB_HSSIParameter2 | MaskforPhySet, bMaskDWord, tmplong2 & (~bLSSIReadEdge));
}
tmplong2 = phy_query_bb_reg(Adapter, rFPGA0_XA_HSSIParameter2 | MaskforPhySet, bMaskDWord);
phy_set_bb_reg(Adapter, rFPGA0_XA_HSSIParameter2 | MaskforPhySet, bMaskDWord, tmplong2 & (~bLSSIReadEdge));
phy_set_bb_reg(Adapter, rFPGA0_XA_HSSIParameter2 | MaskforPhySet, bMaskDWord, tmplong2 | bLSSIReadEdge);
rtw_udelay_os(10);
for (i = 0; i < 2; i++)
rtw_udelay_os(MAX_STALL_TIME);
rtw_udelay_os(10);
if (eRFPath == RF_PATH_A)
RfPiEnable = (u8)phy_query_bb_reg(Adapter, rFPGA0_XA_HSSIParameter1 | MaskforPhySet, BIT(8));
else if (eRFPath == RF_PATH_B)
RfPiEnable = (u8)phy_query_bb_reg(Adapter, rFPGA0_XB_HSSIParameter1 | MaskforPhySet, BIT(8));
if (RfPiEnable) {
/* Read from BBreg8b8, 12 bits for 8190, 20bits for T65 RF */
retValue = phy_query_bb_reg(Adapter, pPhyReg->rfLSSIReadBackPi | MaskforPhySet, bLSSIReadBackData);
/* RT_DISP(FINIT, INIT_RF, ("Readback from RF-PI : 0x%x\n", retValue)); */
} else {
/* Read from BBreg8a0, 12 bits for 8190, 20 bits for T65 RF */
retValue = phy_query_bb_reg(Adapter, pPhyReg->rfLSSIReadBack | MaskforPhySet, bLSSIReadBackData);
/* RT_DISP(FINIT, INIT_RF,("Readback from RF-SI : 0x%x\n", retValue)); */
}
_exit_critical_mutex(&(adapter_to_dvobj(Adapter)->rf_read_reg_mutex) , NULL);
return retValue;
}
/**
* Function: phy_RFSerialWrite_8723D
*
* OverView: Write data to RF register (page 8~)
*
* Input:
* struct adapter * Adapter,
enum rf_path eRFPath,
* u32 Offset,
* u32 Data
*
*
* Output: None
* Return: None
* Note: Threre are three types of serial operations:
* 1. Software serial write
* 2. Hardware LSSI-Low Speed Serial Interface
* 3. Hardware HSSI-High speed
* serial write. Driver need to implement (1) and (2).
* This function is equal to the combination of RF_ReadReg() and RFLSSIRead()
*
* Note: For RF8256 only
* The total count of RTL8256(Zebra4) register is around 36 bit it only employs
* 4-bit RF address. RTL8256 uses "register mode control bit" (Reg00[12], Reg00[10])
* to access register address bigger than 0xf. See "Appendix-4 in PHY Configuration
* programming guide" for more details.
* Thus, we define a sub-finction for RTL8526 register address conversion
* ===========================================================
* Register Mode RegCTL[1] RegCTL[0] Note
* (Reg00[12]) (Reg00[10])
* ===========================================================
* Reg_Mode0 0 x Reg 0 ~15(0x0 ~ 0xf)
* ------------------------------------------------------------------
* Reg_Mode1 1 0 Reg 16 ~30(0x1 ~ 0xf)
* ------------------------------------------------------------------
* Reg_Mode2 1 1 Reg 31 ~ 45(0x1 ~ 0xf)
* ------------------------------------------------------------------
*
* 2008/09/02 MH Add 92S RF definition
*
*
*
*/
static void
phy_RFSerialWrite_8723D(
struct adapter * Adapter,
enum rf_path eRFPath,
u32 Offset,
u32 Data
)
{
u32 DataAndAddr = 0;
struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
struct bb_register_definition *pPhyReg = &pHalData->PHYRegDef[eRFPath];
u32 NewOffset;
Offset &= 0xff;
/* */
/* Shadow Update */
/* */
/* PHY_RFShadowWrite(Adapter, eRFPath, Offset, Data); */
/* */
/* Switch page for 8256 RF IC */
/* */
NewOffset = Offset;
/* */
/* Put write addr in [5:0] and write data in [31:16] */
/* */
/* DataAndAddr = (Data<<16) | (NewOffset&0x3f); */
DataAndAddr = ((NewOffset << 20) | (Data & 0x000fffff)) & 0x0fffffff; /* T65 RF */
/* */
/* Write Operation */
/* */
phy_set_bb_reg(Adapter, pPhyReg->rf3wireOffset, bMaskDWord, DataAndAddr);
/* RTPRINT(FPHY, PHY_RFW, ("RFW-%d Addr[0x%lx]=0x%lx\n", eRFPath, pPhyReg->rf3wireOffset, DataAndAddr)); */
}
/**
* Function: PHY_QueryRFReg
*
* OverView: Query "Specific bits" to RF register (page 8~)
*
* Input:
* struct adapter * Adapter,
enum rf_path eRFPath,
* u32 RegAddr,
* u32 BitMask
*
*
* Output: None
* Return: u32 Readback value
* Note: This function is equal to "GetRFRegSetting" in PHY programming guide
*/
u32
PHY_QueryRFReg_8723D(
struct adapter * Adapter,
enum rf_path eRFPath,
u32 RegAddr,
u32 BitMask
)
{
u32 Original_Value, Readback_Value, BitShift;
#if (DISABLE_BB_RF == 1)
return 0;
#endif
Original_Value = phy_RFSerialRead_8723D(Adapter, eRFPath, RegAddr);
BitShift = phy_CalculateBitShift(BitMask);
Readback_Value = (Original_Value & BitMask) >> BitShift;
return Readback_Value;
}
/**
* Function: PHY_SetRFReg
*
* OverView: Write "Specific bits" to RF register (page 8~)
*
* Input:
* struct adapter * Adapter,
* RF_PATH eRFPath,
* u32 RegAddr,
* u32 BitMask
*
* u32 Data
*
*
* Output: None
* Return: None
* Note: This function is equal to "PutRFRegSetting" in PHY programming guide
*/
void
PHY_SetRFReg_8723D(
struct adapter * Adapter,
enum rf_path eRFPath,
u32 RegAddr,
u32 BitMask,
u32 Data
)
{
u32 Original_Value, BitShift;
#if (DISABLE_BB_RF == 1)
return;
#endif
/* RF data is 12 bits only */
if (BitMask != bRFRegOffsetMask) {
Original_Value = phy_RFSerialRead_8723D(Adapter, eRFPath, RegAddr);
BitShift = phy_CalculateBitShift(BitMask);
Data = ((Original_Value & (~BitMask)) | (Data << BitShift));
}
phy_RFSerialWrite_8723D(Adapter, eRFPath, RegAddr, Data);
}
/*
* 3. Initial MAC/BB/RF config by reading MAC/BB/RF txt.
* */
/*-----------------------------------------------------------------------------
* Function: PHY_MACConfig8192C
*
* Overview: Condig MAC by header file or parameter file.
*
* Input: NONE
*
* Output: NONE
*
* Return: NONE
*
* Revised History:
* When Who Remark
* 08/12/2008 MHC Create Version 0.
*
*---------------------------------------------------------------------------*/
int PHY_MACConfig8723D(struct adapter * Adapter)
{
int rtStatus = _SUCCESS;
struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
/* */
/* Config MAC */
/* */
#ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE
rtStatus = phy_ConfigMACWithParaFile(Adapter, PHY_FILE_MAC_REG);
if (rtStatus == _FAIL)
#endif
{
#ifdef CONFIG_EMBEDDED_FWIMG
odm_config_mac_with_header_file(&pHalData->odmpriv);
rtStatus = _SUCCESS;
#endif/* CONFIG_EMBEDDED_FWIMG */
}
return rtStatus;
}
/**
* Function: phy_InitBBRFRegisterDefinition
*
* OverView: Initialize Register definition offset for Radio Path A/B/C/D
*
* Input:
* struct adapter * Adapter,
*
* Output: None
* Return: None
* Note: The initialization value is constant and it should never be changes
*/
static void
phy_InitBBRFRegisterDefinition(
struct adapter * Adapter
)
{
struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
/* RF Interface Sowrtware Control */
pHalData->PHYRegDef[RF_PATH_A].rfintfs = rFPGA0_XAB_RFInterfaceSW; /* 16 LSBs if read 32-bit from 0x870 */
pHalData->PHYRegDef[RF_PATH_B].rfintfs = rFPGA0_XAB_RFInterfaceSW; /* 16 MSBs if read 32-bit from 0x870 (16-bit for 0x872) */
/* RF Interface Output (and Enable) */
pHalData->PHYRegDef[RF_PATH_A].rfintfo = rFPGA0_XA_RFInterfaceOE; /* 16 LSBs if read 32-bit from 0x860 */
pHalData->PHYRegDef[RF_PATH_B].rfintfo = rFPGA0_XB_RFInterfaceOE; /* 16 LSBs if read 32-bit from 0x864 */
/* RF Interface (Output and) Enable */
pHalData->PHYRegDef[RF_PATH_A].rfintfe = rFPGA0_XA_RFInterfaceOE; /* 16 MSBs if read 32-bit from 0x860 (16-bit for 0x862) */
pHalData->PHYRegDef[RF_PATH_B].rfintfe = rFPGA0_XB_RFInterfaceOE; /* 16 MSBs if read 32-bit from 0x864 (16-bit for 0x866) */
pHalData->PHYRegDef[RF_PATH_A].rf3wireOffset = rFPGA0_XA_LSSIParameter; /* LSSI Parameter */
pHalData->PHYRegDef[RF_PATH_B].rf3wireOffset = rFPGA0_XB_LSSIParameter;
pHalData->PHYRegDef[RF_PATH_A].rfHSSIPara2 = rFPGA0_XA_HSSIParameter2; /* wire control parameter2 */
pHalData->PHYRegDef[RF_PATH_B].rfHSSIPara2 = rFPGA0_XB_HSSIParameter2; /* wire control parameter2 */
/* Tranceiver Readback LSSI/HSPI mode */
pHalData->PHYRegDef[RF_PATH_A].rfLSSIReadBack = rFPGA0_XA_LSSIReadBack;
pHalData->PHYRegDef[RF_PATH_B].rfLSSIReadBack = rFPGA0_XB_LSSIReadBack;
pHalData->PHYRegDef[RF_PATH_A].rfLSSIReadBackPi = TransceiverA_HSPI_Readback;
pHalData->PHYRegDef[RF_PATH_B].rfLSSIReadBackPi = TransceiverB_HSPI_Readback;
}
static int
phy_BB8723d_Config_ParaFile(
struct adapter * Adapter
)
{
struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
int rtStatus = _SUCCESS;
/* */
/* 1. Read PHY_REG.TXT BB INIT!! */
/* */
#ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE
if (phy_ConfigBBWithParaFile(Adapter, PHY_FILE_PHY_REG, CONFIG_BB_PHY_REG) == _FAIL)
#endif
{
#ifdef CONFIG_EMBEDDED_FWIMG
if (HAL_STATUS_SUCCESS != odm_config_bb_with_header_file(&pHalData->odmpriv, CONFIG_BB_PHY_REG))
rtStatus = _FAIL;
#endif
}
if (rtStatus != _SUCCESS) {
RTW_INFO("%s():Write BB Reg Fail!!", __func__);
goto phy_BB8190_Config_ParaFile_Fail;
}
#if MP_DRIVER == 1
if (Adapter->registrypriv.mp_mode == 1) {
/*20160504, Suggested by jessica_wang. To Fix CCK ACPR issue*/
phy_set_bb_reg(Adapter, 0xCE0, BIT1|BIT0, 0);/*RXHP=low corner*/
phy_set_bb_reg(Adapter, 0xC3C, 0xFF, 0xCC);/*make sure low rate sensitivity*/
}
#endif /* #if (MP_DRIVER == 1) */
/* */
/* 2. Read BB AGC table Initialization */
/* */
#ifdef CONFIG_LOAD_PHY_PARA_FROM_FILE
if (phy_ConfigBBWithParaFile(Adapter, PHY_FILE_AGC_TAB, CONFIG_BB_AGC_TAB) == _FAIL)
#endif
{
#ifdef CONFIG_EMBEDDED_FWIMG
if (HAL_STATUS_SUCCESS != odm_config_bb_with_header_file(&pHalData->odmpriv, CONFIG_BB_AGC_TAB))
rtStatus = _FAIL;
#endif
}
if (rtStatus != _SUCCESS) {
RTW_INFO("%s():AGC Table Fail\n", __func__);
goto phy_BB8190_Config_ParaFile_Fail;
}
phy_BB8190_Config_ParaFile_Fail:
return rtStatus;
}
int
PHY_BBConfig8723D(
struct adapter * Adapter
)
{
int rtStatus = _SUCCESS;
struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
u32 RegVal;
phy_InitBBRFRegisterDefinition(Adapter);
/* Enable BB and RF */
RegVal = rtw_read16(Adapter, REG_SYS_FUNC_EN);
rtw_write16(Adapter, REG_SYS_FUNC_EN, (u16)(RegVal | BIT(13) | BIT(0) | BIT(1)));
rtw_write8(Adapter, REG_RF_CTRL, RF_EN | RF_RSTB | RF_SDMRSTB);
rtw_write8(Adapter, REG_SYS_FUNC_EN, FEN_USBA | FEN_USBD | FEN_BB_GLB_RSTn | FEN_BBRSTB);
/* To Fix MAC loopback mode fail. Suggested by SD4 Johnny. 2010.03.23. */
PlatformEFIOWrite1Byte(Adapter, REG_LDOHCI12_CTRL, 0x0f);
PlatformEFIOWrite1Byte(Adapter, 0x15, 0xe9);
rtw_write8(Adapter, REG_AFE_XTAL_CTRL + 1, 0x80);
/*
* Config BB and AGC
*/
rtStatus = phy_BB8723d_Config_ParaFile(Adapter);
hal_set_crystal_cap(Adapter, pHalData->crystal_cap);
return rtStatus;
}
int
PHY_RFConfig8723D(
struct adapter * Adapter
)
{
int rtStatus = _SUCCESS;
/* */
/* RF config */
/* */
rtStatus = PHY_RF6052_Config8723D(Adapter);
/* 20151207 LCK done at RadioA table */
/* PHY_BB8723D_Config_1T(Adapter); */
return rtStatus;
}
/*-----------------------------------------------------------------------------
* Function: PHY_ConfigRFWithParaFile()
*
* Overview: This function read RF parameters from general file format, and do RF 3-wire
*
* Input: struct adapter * Adapter
* u8 *pFileName
* enum rf_path eRFPath
*
* Output: NONE
*
* Return: RT_STATUS_SUCCESS: configuration file exist
*
* Note: Delay may be required for RF configuration
*---------------------------------------------------------------------------*/
int
PHY_ConfigRFWithParaFile_8723D(
struct adapter * Adapter,
u8 *pFileName,
enum rf_path eRFPath
)
{
return _SUCCESS;
}
/**************************************************************************************************************
* Description:
* The low-level interface to set TxAGC , called by both MP and Normal Driver.
*
* <20120830, Kordan>
**************************************************************************************************************/
void
PHY_SetTxPowerIndex_8723D(
struct adapter * Adapter,
u32 PowerIndex,
enum rf_path RFPath,
u8 Rate
)
{
if (RFPath == RF_PATH_A || RFPath == RF_PATH_B) {
switch (Rate) {
case MGN_1M:
phy_set_bb_reg(Adapter, rTxAGC_A_CCK1_Mcint, bMaskByte1, PowerIndex);
break;
case MGN_2M:
phy_set_bb_reg(Adapter, rTxAGC_B_CCK11_A_CCK2_11, bMaskByte1, PowerIndex);
break;
case MGN_5_5M:
phy_set_bb_reg(Adapter, rTxAGC_B_CCK11_A_CCK2_11, bMaskByte2, PowerIndex);
break;
case MGN_11M:
phy_set_bb_reg(Adapter, rTxAGC_B_CCK11_A_CCK2_11, bMaskByte3, PowerIndex);
break;
case MGN_6M:
phy_set_bb_reg(Adapter, rTxAGC_A_Rate18_06, bMaskByte0, PowerIndex);
break;
case MGN_9M:
phy_set_bb_reg(Adapter, rTxAGC_A_Rate18_06, bMaskByte1, PowerIndex);
break;
case MGN_12M:
phy_set_bb_reg(Adapter, rTxAGC_A_Rate18_06, bMaskByte2, PowerIndex);
break;
case MGN_18M:
phy_set_bb_reg(Adapter, rTxAGC_A_Rate18_06, bMaskByte3, PowerIndex);
break;
case MGN_24M:
phy_set_bb_reg(Adapter, rTxAGC_A_Rate54_24, bMaskByte0, PowerIndex);
break;
case MGN_36M:
phy_set_bb_reg(Adapter, rTxAGC_A_Rate54_24, bMaskByte1, PowerIndex);
break;
case MGN_48M:
phy_set_bb_reg(Adapter, rTxAGC_A_Rate54_24, bMaskByte2, PowerIndex);
break;
case MGN_54M:
phy_set_bb_reg(Adapter, rTxAGC_A_Rate54_24, bMaskByte3, PowerIndex);
break;
case MGN_MCS0:
phy_set_bb_reg(Adapter, rTxAGC_A_Mcs03_Mcs00, bMaskByte0, PowerIndex);
break;
case MGN_MCS1:
phy_set_bb_reg(Adapter, rTxAGC_A_Mcs03_Mcs00, bMaskByte1, PowerIndex);
break;
case MGN_MCS2:
phy_set_bb_reg(Adapter, rTxAGC_A_Mcs03_Mcs00, bMaskByte2, PowerIndex);
break;
case MGN_MCS3:
phy_set_bb_reg(Adapter, rTxAGC_A_Mcs03_Mcs00, bMaskByte3, PowerIndex);
break;
case MGN_MCS4:
phy_set_bb_reg(Adapter, rTxAGC_A_Mcs07_Mcs04, bMaskByte0, PowerIndex);
break;
case MGN_MCS5:
phy_set_bb_reg(Adapter, rTxAGC_A_Mcs07_Mcs04, bMaskByte1, PowerIndex);
break;
case MGN_MCS6:
phy_set_bb_reg(Adapter, rTxAGC_A_Mcs07_Mcs04, bMaskByte2, PowerIndex);
break;
case MGN_MCS7:
phy_set_bb_reg(Adapter, rTxAGC_A_Mcs07_Mcs04, bMaskByte3, PowerIndex);
break;
default:
RTW_INFO("Invalid Rate!!\n");
break;
}
}
}
u8
PHY_GetTxPowerIndex_8723D(
struct adapter * pAdapter,
enum rf_path RFPath,
u8 Rate,
u8 BandWidth,
u8 Channel,
struct txpwr_idx_comp *tic
)
{
s16 power_idx;
u8 base_idx = 0;
s8 by_rate_diff = 0, limit = 0, tpt_offset = 0, extra_bias = 0;
bool bIn24G = false;
base_idx = PHY_GetTxPowerIndexBase(pAdapter, RFPath, Rate, RF_1TX, BandWidth, Channel, &bIn24G);
by_rate_diff = PHY_GetTxPowerByRate(pAdapter, BAND_ON_2_4G, RF_PATH_A, Rate);
limit = PHY_GetTxPowerLimit(pAdapter, NULL, (u8)(!bIn24G), pHalData->current_channel_bw, RFPath, Rate, RF_1TX, pHalData->current_channel);
tpt_offset = PHY_GetTxPowerTrackingOffset(pAdapter, RFPath, Rate);
if (tic) {
tic->ntx_idx = RF_1TX;
tic->base = base_idx;
tic->by_rate = by_rate_diff;
tic->limit = limit;
tic->tpt = tpt_offset;
tic->ebias = extra_bias;
}
by_rate_diff = by_rate_diff > limit ? limit : by_rate_diff;
power_idx = base_idx + by_rate_diff + tpt_offset + extra_bias;
if (power_idx < 0)
power_idx = 0;
else if (power_idx > MAX_POWER_INDEX)
power_idx = MAX_POWER_INDEX;
return power_idx;
}
void
PHY_SetTxPowerLevel8723D(
struct adapter * Adapter,
u8 Channel
)
{
struct hal_com_data * pHalData = GET_HAL_DATA(Adapter);
enum rf_path RFPath = RF_PATH_A;
RFPath = pHalData->ant_path;
phy_set_tx_power_level_by_path(Adapter, Channel, RFPath);
}
void
PHY_GetTxPowerLevel8723D(
struct adapter * Adapter,
int *powerlevel
)
{
}
/* <20160217, Jessica> A workaround to eliminate the 2472MHz & 2484MHz spur of 8723D. */
static void
phy_SpurCalibration_8723D(
struct adapter * pAdapter,
u8 ToChannel,
u8 threshold
)
{
u32 freq[2] = {0xFCCD, 0xFF9A}; /* {chnl 13, 14} */
u8 idx = 0xFF;
u8 b_doNotch = false;
u8 initial_gain;
/* add for notch */
u32 wlan_channel, CurrentChannel;
struct hal_com_data *pHalData = GET_HAL_DATA(pAdapter);
struct PHY_DM_STRUCT *pDM_Odm = &(pHalData->odmpriv);
/* check threshold */
if (threshold <= 0x0)
threshold = 0x16;
RTW_DBG("===>phy_SpurCalibration_8723D: Channel = %d\n", ToChannel);
if (ToChannel == 13)
idx = 0;
else if (ToChannel == 14)
idx = 1;
/* If current channel=13,14 */
if (idx < 0xFF) {
initial_gain = (u8)(odm_get_bb_reg(pDM_Odm, rOFDM0_XAAGCCore1, bMaskByte0) & 0x7f);
odm_pause_dig(pDM_Odm, PHYDM_PAUSE, PHYDM_PAUSE_LEVEL_1, 0x30);
phy_set_bb_reg(pAdapter, rFPGA0_AnalogParameter4, bMaskDWord, 0xccf000c0); /* disable 3-wire */
phy_set_bb_reg(pAdapter, rFPGA0_PSDFunction, bMaskDWord, freq[idx]); /* Setup PSD */
phy_set_bb_reg(pAdapter, rFPGA0_PSDFunction, bMaskDWord, 0x400000 | freq[idx]); /* Start PSD */
rtw_msleep_os(30);
if (phy_query_bb_reg(pAdapter, rFPGA0_PSDReport, bMaskDWord) >= threshold)
b_doNotch = true;
phy_set_bb_reg(pAdapter, rFPGA0_PSDFunction, bMaskDWord, freq[idx]); /* turn off PSD */
phy_set_bb_reg(pAdapter, rFPGA0_AnalogParameter4, bMaskDWord, 0xccc000c0); /* enable 3-wire */
odm_pause_dig(pDM_Odm, PHYDM_RESUME, PHYDM_PAUSE_LEVEL_1, NONE);
}
/* --- Notch Filter --- Asked by Rock */
if (b_doNotch) {
CurrentChannel = odm_get_rf_reg(pDM_Odm, RF_PATH_A, RF_CHNLBW, bRFRegOffsetMask);
wlan_channel = CurrentChannel & 0x0f; /* Get center frequency */
switch (wlan_channel) { /* Set notch filter */
case 13:
odm_set_bb_reg(pDM_Odm, 0xC40, BIT(28) | BIT(27) | BIT(26) | BIT(25) | BIT(24), 0xB);
odm_set_bb_reg(pDM_Odm, 0xC40, BIT(9), 0x1); /* enable notch filter */
odm_set_bb_reg(pDM_Odm, 0xD40, bMaskDWord, 0x04000000);
odm_set_bb_reg(pDM_Odm, 0xD44, bMaskDWord, 0x00000000);
odm_set_bb_reg(pDM_Odm, 0xD48, bMaskDWord, 0x00000000);
odm_set_bb_reg(pDM_Odm, 0xD4C, bMaskDWord, 0x00000000);
odm_set_bb_reg(pDM_Odm, 0xD2C, BIT(28), 0x1); /* enable CSI mask */
break;
case 14:
odm_set_bb_reg(pDM_Odm, 0xC40, BIT(28) | BIT(27) | BIT(26) | BIT(25) | BIT(24), 0x5);
odm_set_bb_reg(pDM_Odm, 0xC40, BIT(9), 0x1); /* enable notch filter */
odm_set_bb_reg(pDM_Odm, 0xD40, bMaskDWord, 0x00000000);
odm_set_bb_reg(pDM_Odm, 0xD44, bMaskDWord, 0x00000000);
odm_set_bb_reg(pDM_Odm, 0xD48, bMaskDWord, 0x00000000);
odm_set_bb_reg(pDM_Odm, 0xD4C, bMaskDWord, 0x00080000);
odm_set_bb_reg(pDM_Odm, 0xD2C, BIT(28), 0x1); /* enable CSI mask */
break;
default:
odm_set_bb_reg(pDM_Odm, 0xC40, BIT(9), 0x0); /* disable notch filter */
odm_set_bb_reg(pDM_Odm, 0xD2C, BIT(28), 0x0); /* disable CSI mask function */
break;
} /* switch(wlan_channel) */
return;
}
odm_set_bb_reg(pDM_Odm, 0xC40, BIT(28) | BIT(27) | BIT(26) | BIT(25) | BIT(24), 0x1f);
odm_set_bb_reg(pDM_Odm, 0xC40, BIT(9), 0x0); /* disable notch filter */
odm_set_bb_reg(pDM_Odm, 0xD40, bMaskDWord, 0x00000000);
odm_set_bb_reg(pDM_Odm, 0xD44, bMaskDWord, 0x00000000);
odm_set_bb_reg(pDM_Odm, 0xD48, bMaskDWord, 0x00000000);
odm_set_bb_reg(pDM_Odm, 0xD4C, bMaskDWord, 0x00000000);
odm_set_bb_reg(pDM_Odm, 0xD2C, BIT(28), 0x0); /* disable CSI mask */
}
static void
phy_SetRegBW_8723D(
struct adapter * Adapter,
enum channel_width CurrentBW
)
{
u16 RegRfMod_BW, u2tmp = 0;
RegRfMod_BW = rtw_read16(Adapter, REG_TRXPTCL_CTL_8723D);
switch (CurrentBW) {
case CHANNEL_WIDTH_20:
rtw_write16(Adapter, REG_TRXPTCL_CTL_8723D, (RegRfMod_BW & 0xFE7F)); /* BIT 7 = 0, BIT 8 = 0 */
break;
case CHANNEL_WIDTH_40:
u2tmp = RegRfMod_BW | BIT(7);
rtw_write16(Adapter, REG_TRXPTCL_CTL_8723D, (u2tmp & 0xFEFF)); /* BIT 7 = 1, BIT 8 = 0 */
break;
case CHANNEL_WIDTH_80:
u2tmp = RegRfMod_BW | BIT(8);
rtw_write16(Adapter, REG_TRXPTCL_CTL_8723D, (u2tmp & 0xFF7F)); /* BIT 7 = 0, BIT 8 = 1 */
break;
default:
RTW_INFO("phy_PostSetBWMode8723D(): unknown Bandwidth: %#X\n", CurrentBW);
break;
}
}
static u8
phy_GetSecondaryChnl_8723D(
struct adapter * Adapter
)
{
u8 SCSettingOf40 = 0, SCSettingOf20 = 0;
struct hal_com_data * pHalData = GET_HAL_DATA(Adapter);
if (pHalData->current_channel_bw == CHANNEL_WIDTH_80) {
if (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER)
SCSettingOf40 = VHT_DATA_SC_40_LOWER_OF_80MHZ;
else if (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER)
SCSettingOf40 = VHT_DATA_SC_40_UPPER_OF_80MHZ;
if ((pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER) && (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER))
SCSettingOf20 = VHT_DATA_SC_20_LOWEST_OF_80MHZ;
else if ((pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER) && (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER))
SCSettingOf20 = VHT_DATA_SC_20_LOWER_OF_80MHZ;
else if ((pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER) && (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER))
SCSettingOf20 = VHT_DATA_SC_20_UPPER_OF_80MHZ;
else if ((pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER) && (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER))
SCSettingOf20 = VHT_DATA_SC_20_UPPERST_OF_80MHZ;
} else if (pHalData->current_channel_bw == CHANNEL_WIDTH_40) {
if (pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER)
SCSettingOf20 = VHT_DATA_SC_20_UPPER_OF_80MHZ;
else if (pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER)
SCSettingOf20 = VHT_DATA_SC_20_LOWER_OF_80MHZ;
}
return (SCSettingOf40 << 4) | SCSettingOf20;
}
static void
phy_PostSetBwMode8723D(
struct adapter * adapt
)
{
u8 SubChnlNum = 0;
struct hal_com_data *pHalData = GET_HAL_DATA(adapt);
/* 2 Set Reg668 Reg440 BW */
phy_SetRegBW_8723D(adapt, pHalData->current_channel_bw);
/* 3 Set Reg483 */
SubChnlNum = phy_GetSecondaryChnl_8723D(adapt);
rtw_write8(adapt, REG_DATA_SC_8723D, SubChnlNum);
switch (pHalData->current_channel_bw) {
/* 20 MHz channel*/
case CHANNEL_WIDTH_20:
/*
0x800[0]=1'b0
0x900[0]=1'b0
0x954[19]=1'b1
0x954[27:24]= 10
*/
phy_set_bb_reg(adapt, rFPGA0_RFMOD, bRFMOD, 0x0);
phy_set_bb_reg(adapt, rFPGA1_RFMOD, bRFMOD, 0x0);
phy_set_bb_reg(adapt, rBBrx_DFIR, BIT(19), 1);
phy_set_bb_reg(adapt, rBBrx_DFIR,
(BIT(27) | BIT(26) | BIT(25) | BIT(24)), 0xa);
break;
/* 40 MHz channel*/
case CHANNEL_WIDTH_40:
/*
0x800[0]=1'b1
0x900[0]=1'b1
0x954[19]=1'b0
0x954[23:20]=2'b11(For ACPR)
0xa00[4]=1/0
*/
phy_set_bb_reg(adapt, rFPGA0_RFMOD, bRFMOD, 0x1);
phy_set_bb_reg(adapt, rFPGA1_RFMOD, bRFMOD, 0x1);
phy_set_bb_reg(adapt, rBBrx_DFIR, BIT(19), 0);
phy_set_bb_reg(adapt, rCCK0_System, bCCKSideBand,
(pHalData->nCur40MhzPrimeSC >> 1));
break;
default:
break;
}
/*3<3>Set RF related register */
PHY_RF6052SetBandwidth8723D(adapt, pHalData->current_channel_bw);
}
static void
phy_SwChnl8723D(
struct adapter * pAdapter
)
{
struct hal_com_data *pHalData = GET_HAL_DATA(pAdapter);
u8 channelToSW = pHalData->current_channel;
u8 i = 0;
if (pHalData->rf_chip == RF_PSEUDO_11N) {
RTW_WARN("phy_SwChnl8723D: return for PSEUDO\n");
return;
}
pHalData->RfRegChnlVal[0] =
((pHalData->RfRegChnlVal[0] & 0xfffff00) | channelToSW);
phy_set_rf_reg(pAdapter, RF_PATH_A, RF_CHNLBW,
0x3FF, pHalData->RfRegChnlVal[0]);
phy_set_rf_reg(pAdapter, RF_PATH_B, RF_CHNLBW,
0x3FF, pHalData->RfRegChnlVal[0]);
phy_SpurCalibration_8723D(pAdapter, channelToSW, 0x16);
/* 2.4G CCK TX DFIR */
/* 2016.01.20 Suggest from RS BB mingzhi*/
if (channelToSW >= 1 && channelToSW <= 13) {
if (pHalData->need_restore) {
for (i = 0 ; i < 3 ; i++) {
phy_set_bb_reg(pAdapter,
pHalData->RegForRecover[i].offset,
bMaskDWord,
pHalData->RegForRecover[i].value);
}
pHalData->need_restore = false;
}
} else if (channelToSW == 14) {
pHalData->need_restore = true;
phy_set_bb_reg(pAdapter, rCCK0_TxFilter2, bMaskDWord, 0x0000B81C);
phy_set_bb_reg(pAdapter, rCCK0_DebugPort, bMaskDWord, 0x00000000);
phy_set_bb_reg(pAdapter, 0xAAC, bMaskDWord, 0x00003667);
}
RTW_DBG("===>phy_SwChnl8723D: Channel = %d\n", channelToSW);
}
static void
phy_SwChnlAndSetBwMode8723D(
struct adapter * Adapter
)
{
struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
if (Adapter->bNotifyChannelChange) {
RTW_INFO("[%s] bSwChnl=%d, ch=%d, bSetChnlBW=%d, bw=%d\n",
__func__,
pHalData->bSwChnl,
pHalData->current_channel,
pHalData->bSetChnlBW,
pHalData->current_channel_bw);
}
if (RTW_CANNOT_RUN(Adapter))
return;
if (pHalData->bSwChnl) {
phy_SwChnl8723D(Adapter);
pHalData->bSwChnl = false;
}
if (pHalData->bSetChnlBW) {
phy_PostSetBwMode8723D(Adapter);
pHalData->bSetChnlBW = false;
}
PHY_SetTxPowerLevel8723D(Adapter, pHalData->current_channel);
}
static void
PHY_HandleSwChnlAndSetBW8723D(
struct adapter * Adapter,
bool bSwitchChannel,
bool bSetBandWidth,
u8 ChannelNum,
enum channel_width ChnlWidth,
enum EXTCHNL_OFFSET ExtChnlOffsetOf40MHz,
enum EXTCHNL_OFFSET ExtChnlOffsetOf80MHz,
u8 CenterFrequencyIndex1
)
{
/* static bool bInitialzed = false; */
struct hal_com_data * pHalData = GET_HAL_DATA(Adapter);
u8 tmpChannel = pHalData->current_channel;
enum channel_width tmpBW = pHalData->current_channel_bw;
u8 tmpnCur40MhzPrimeSC = pHalData->nCur40MhzPrimeSC;
u8 tmpnCur80MhzPrimeSC = pHalData->nCur80MhzPrimeSC;
u8 tmpCenterFrequencyIndex1 = pHalData->CurrentCenterFrequencyIndex1;
/* check is swchnl or setbw */
if (!bSwitchChannel && !bSetBandWidth) {
RTW_INFO("PHY_HandleSwChnlAndSetBW8812: not switch channel and not set bandwidth\n");
return;
}
/* skip change for channel or bandwidth is the same */
if (bSwitchChannel) {
if (HAL_IsLegalChannel(Adapter, ChannelNum))
pHalData->bSwChnl = true;
}
if (bSetBandWidth)
pHalData->bSetChnlBW = true;
if (!pHalData->bSetChnlBW && !pHalData->bSwChnl)
return;
if (pHalData->bSwChnl) {
pHalData->current_channel = ChannelNum;
pHalData->CurrentCenterFrequencyIndex1 = ChannelNum;
}
if (pHalData->bSetChnlBW) {
pHalData->current_channel_bw = ChnlWidth;
pHalData->nCur40MhzPrimeSC = ExtChnlOffsetOf40MHz;
pHalData->nCur80MhzPrimeSC = ExtChnlOffsetOf80MHz;
pHalData->CurrentCenterFrequencyIndex1 = CenterFrequencyIndex1;
}
/* Switch workitem or set timer to do switch channel or setbandwidth operation */
if (!RTW_CANNOT_RUN(Adapter))
phy_SwChnlAndSetBwMode8723D(Adapter);
else {
if (pHalData->bSwChnl) {
pHalData->current_channel = tmpChannel;
pHalData->CurrentCenterFrequencyIndex1 = tmpChannel;
}
if (pHalData->bSetChnlBW) {
pHalData->current_channel_bw = tmpBW;
pHalData->nCur40MhzPrimeSC = tmpnCur40MhzPrimeSC;
pHalData->nCur80MhzPrimeSC = tmpnCur80MhzPrimeSC;
pHalData->CurrentCenterFrequencyIndex1 = tmpCenterFrequencyIndex1;
}
}
/* RTW_INFO("Channel %d ChannelBW %d ",pHalData->current_channel, pHalData->current_channel_bw); */
/* RTW_INFO("40MhzPrimeSC %d 80MhzPrimeSC %d ",pHalData->nCur40MhzPrimeSC, pHalData->nCur80MhzPrimeSC); */
/* RTW_INFO("CenterFrequencyIndex1 %d\n",pHalData->CurrentCenterFrequencyIndex1); */
/* RTW_INFO("<= PHY_HandleSwChnlAndSetBW8812: bSwChnl %d, bSetChnlBW %d\n",pHalData->bSwChnl,pHalData->bSetChnlBW); */
}
void
PHY_SetSwChnlBWMode8723D(
struct adapter * Adapter,
u8 channel,
enum channel_width Bandwidth,
u8 Offset40,
u8 Offset80
)
{
/* RTW_INFO("%s()===>\n",__func__); */
PHY_HandleSwChnlAndSetBW8723D(Adapter, true, true, channel, Bandwidth, Offset40, Offset80, channel);
/* RTW_INFO("<==%s()\n",__func__); */
}