// SPDX-License-Identifier: GPL-2.0
/* Copyright(c) 2007 - 2017 Realtek Corporation */
#define _HAL_INIT_C_
#include <rtl8723d_hal.h>
#include "hal_com_h2c.h"
#include <hal_com.h>
#include "hal8723d_fw.h"
#ifndef CONFIG_DLFW_TXPKT
#define DL_FW_MAX 15
#else
#define FW_DOWNLOAD_SIZE_8723D 8192
#endif
static void
_FWDownloadEnable(
struct adapter * adapt,
bool enable
)
{
u8 tmp, count = 0;
if (enable) {
/* 8051 enable */
tmp = rtw_read8(adapt, REG_SYS_FUNC_EN + 1);
rtw_write8(adapt, REG_SYS_FUNC_EN + 1, tmp | 0x04);
tmp = rtw_read8(adapt, REG_MCUFWDL);
rtw_write8(adapt, REG_MCUFWDL, tmp | 0x01);
do {
tmp = rtw_read8(adapt, REG_MCUFWDL);
if (tmp & 0x01)
break;
rtw_write8(adapt, REG_MCUFWDL, tmp | 0x01);
rtw_msleep_os(1);
} while (count++ < 100);
if (count > 0)
RTW_INFO("%s: !!!!!!!!Write 0x80 Fail!: count = %d\n", __func__, count);
/* 8051 reset */
tmp = rtw_read8(adapt, REG_MCUFWDL + 2);
rtw_write8(adapt, REG_MCUFWDL + 2, tmp & 0xf7);
} else {
/* MCU firmware download disable. */
tmp = rtw_read8(adapt, REG_MCUFWDL);
rtw_write8(adapt, REG_MCUFWDL, tmp & 0xfe);
}
}
static int
_BlockWrite(
struct adapter * adapt,
void * buffer,
u32 buffSize
)
{
int ret = _SUCCESS;
u32 blockSize_p1 = 4; /* (Default) Phase #1 : PCI muse use 4-byte write to download FW */
u32 blockSize_p2 = 8; /* Phase #2 : Use 8-byte, if Phase#1 use big size to write FW. */
u32 blockSize_p3 = 1; /* Phase #3 : Use 1-byte, the remnant of FW image. */
u32 blockCount_p1 = 0, blockCount_p2 = 0, blockCount_p3 = 0;
u32 remainSize_p1 = 0, remainSize_p2 = 0;
u8 *bufferPtr = (u8 *)buffer;
u32 i = 0, offset = 0;
blockSize_p1 = 254;
/* 3 Phase #1 */
blockCount_p1 = buffSize / blockSize_p1;
remainSize_p1 = buffSize % blockSize_p1;
for (i = 0; i < blockCount_p1; i++) {
ret = rtw_writeN(adapt, (FW_8723D_START_ADDRESS + i * blockSize_p1), blockSize_p1, (bufferPtr + i * blockSize_p1));
if (ret == _FAIL) {
printk(KERN_ERR "====>%s %d i:%d\n", __func__, __LINE__, i);
goto exit;
}
}
/* 3 Phase #2 */
if (remainSize_p1) {
offset = blockCount_p1 * blockSize_p1;
blockCount_p2 = remainSize_p1 / blockSize_p2;
remainSize_p2 = remainSize_p1 % blockSize_p2;
for (i = 0; i < blockCount_p2; i++) {
ret = rtw_writeN(adapt, (FW_8723D_START_ADDRESS + offset + i * blockSize_p2), blockSize_p2, (bufferPtr + offset + i * blockSize_p2));
if (ret == _FAIL)
goto exit;
}
}
/* 3 Phase #3 */
if (remainSize_p2) {
offset = (blockCount_p1 * blockSize_p1) + (blockCount_p2 * blockSize_p2);
blockCount_p3 = remainSize_p2 / blockSize_p3;
for (i = 0 ; i < blockCount_p3 ; i++) {
ret = rtw_write8(adapt, (FW_8723D_START_ADDRESS + offset + i), *(bufferPtr + offset + i));
if (ret == _FAIL) {
printk(KERN_ERR "====>%s %d i:%d\n", __func__, __LINE__, i);
goto exit;
}
}
}
exit:
return ret;
}
static int
_PageWrite(
struct adapter * adapt,
u32 page,
void * buffer,
u32 size
)
{
u8 value8;
u8 u8Page = (u8)(page & 0x07);
value8 = (rtw_read8(adapt, REG_MCUFWDL + 2) & 0xF8) | u8Page;
rtw_write8(adapt, REG_MCUFWDL + 2, value8);
return _BlockWrite(adapt, buffer, size);
}
static int
_WriteFW(
struct adapter * adapt,
void * buffer,
u32 size
)
{
/* Since we need dynamic decide method of dwonload fw, so we call this function to get chip version. */
int ret = _SUCCESS;
u32 pageNums, remainSize;
u32 page, offset;
u8 *bufferPtr = (u8 *)buffer;
pageNums = size / MAX_DLFW_PAGE_SIZE;
/* RT_ASSERT((pageNums <= 4), ("Page numbers should not greater then 4\n")); */
remainSize = size % MAX_DLFW_PAGE_SIZE;
for (page = 0; page < pageNums; page++) {
offset = page * MAX_DLFW_PAGE_SIZE;
ret = _PageWrite(adapt, page, bufferPtr + offset, MAX_DLFW_PAGE_SIZE);
if (ret == _FAIL) {
printk(KERN_ERR "====>%s %d\n", __func__, __LINE__);
goto exit;
}
}
if (remainSize) {
offset = pageNums * MAX_DLFW_PAGE_SIZE;
page = pageNums;
ret = _PageWrite(adapt, page, bufferPtr + offset, remainSize);
if (ret == _FAIL) {
printk(KERN_ERR "====>%s %d\n", __func__, __LINE__);
goto exit;
}
}
exit:
return ret;
}
void _8051Reset8723(struct adapter * adapt)
{
u8 cpu_rst;
u8 io_rst;
/* Reset 8051(WLMCU) IO wrapper */
/* 0x1c[8] = 0 */
/* Suggested by Isaac@SD1 and Gimmy@SD1, coding by Lucas@20130624 */
io_rst = rtw_read8(adapt, REG_RSV_CTRL + 1);
io_rst &= ~BIT(0);
rtw_write8(adapt, REG_RSV_CTRL + 1, io_rst);
cpu_rst = rtw_read8(adapt, REG_SYS_FUNC_EN + 1);
cpu_rst &= ~BIT(2);
rtw_write8(adapt, REG_SYS_FUNC_EN + 1, cpu_rst);
/* Enable 8051 IO wrapper */
/* 0x1c[8] = 1 */
io_rst = rtw_read8(adapt, REG_RSV_CTRL + 1);
io_rst |= BIT(0);
rtw_write8(adapt, REG_RSV_CTRL + 1, io_rst);
cpu_rst = rtw_read8(adapt, REG_SYS_FUNC_EN + 1);
cpu_rst |= BIT(2);
rtw_write8(adapt, REG_SYS_FUNC_EN + 1, cpu_rst);
RTW_INFO("%s: Finish\n", __func__);
}
static int polling_fwdl_chksum(struct adapter *adapter, u32 min_cnt, u32 timeout_ms)
{
int ret = _FAIL;
u32 value32;
unsigned long start = rtw_get_current_time();
u32 cnt = 0;
/* polling CheckSum report */
do {
cnt++;
value32 = rtw_read32(adapter, REG_MCUFWDL);
if (value32 & FWDL_ChkSum_rpt || RTW_CANNOT_IO(adapter))
break;
rtw_yield_os();
} while (rtw_get_passing_time_ms(start) < timeout_ms || cnt < min_cnt);
if (!(value32 & FWDL_ChkSum_rpt))
goto exit;
if (rtw_fwdl_test_trigger_chksum_fail())
goto exit;
ret = _SUCCESS;
exit:
RTW_INFO("%s: Checksum report %s! (%u, %dms), REG_MCUFWDL:0x%08x\n", __func__
, (ret == _SUCCESS) ? "OK" : "Fail", cnt, rtw_get_passing_time_ms(start), value32);
return ret;
}
static int _FWFreeToGo(struct adapter *adapter, u32 min_cnt, u32 timeout_ms)
{
int ret = _FAIL;
u32 value32;
unsigned long start = rtw_get_current_time();
u32 cnt = 0;
u32 value_to_check = 0;
u32 value_expected = (MCUFWDL_RDY | FWDL_ChkSum_rpt | WINTINI_RDY | RAM_DL_SEL);
value32 = rtw_read32(adapter, REG_MCUFWDL);
value32 |= MCUFWDL_RDY;
value32 &= ~WINTINI_RDY;
rtw_write32(adapter, REG_MCUFWDL, value32);
_8051Reset8723(adapter);
/* polling for FW ready */
do {
cnt++;
value32 = rtw_read32(adapter, REG_MCUFWDL);
value_to_check = value32 & value_expected;
if ((value_to_check == value_expected) || RTW_CANNOT_IO(adapter))
break;
rtw_yield_os();
} while (rtw_get_passing_time_ms(start) < timeout_ms || cnt < min_cnt);
if (value_to_check != value_expected)
goto exit;
if (rtw_fwdl_test_trigger_wintint_rdy_fail())
goto exit;
ret = _SUCCESS;
exit:
RTW_INFO("%s: Polling FW ready %s! (%u, %dms), REG_MCUFWDL:0x%08x\n", __func__
, (ret == _SUCCESS) ? "OK" : "Fail", cnt, rtw_get_passing_time_ms(start), value32);
return ret;
}
#define IS_FW_81xxC(adapt) (((GET_HAL_DATA(adapt))->FirmwareSignature & 0xFFF0) == 0x88C0)
void rtl8723d_FirmwareSelfReset(struct adapter * adapt)
{
struct hal_com_data *pHalData = GET_HAL_DATA(adapt);
u8 u1bTmp;
u8 Delay = 100;
if (!(IS_FW_81xxC(adapt) &&
((pHalData->firmware_version < 0x21) ||
(pHalData->firmware_version == 0x21 &&
pHalData->firmware_sub_version < 0x01)))) { /* after 88C Fw v33.1 */
/* 0x1cf=0x20. Inform 8051 to reset. 2009.12.25. tynli_test */
rtw_write8(adapt, REG_HMETFR + 3, 0x20);
u1bTmp = rtw_read8(adapt, REG_SYS_FUNC_EN + 1);
while (u1bTmp & BIT(2)) {
Delay--;
if (Delay == 0)
break;
rtw_udelay_os(50);
u1bTmp = rtw_read8(adapt, REG_SYS_FUNC_EN + 1);
}
if (Delay == 0) {
/* force firmware reset */
u1bTmp = rtw_read8(adapt, REG_SYS_FUNC_EN + 1);
rtw_write8(adapt, REG_SYS_FUNC_EN + 1, u1bTmp & (~BIT(2)));
}
}
}
/*
* Description:
* Download 8192C firmware code.
*
* */
int rtl8723d_FirmwareDownload(struct adapter * adapt, bool bUsedWoWLANFw)
{
int rtStatus = _SUCCESS;
u8 write_fw = 0;
unsigned long fwdl_start_time;
struct hal_com_data * pHalData = GET_HAL_DATA(adapt);
struct rt_firmware *pFirmware = NULL;
struct rt_8723d_firmware_hdr *pFwHdr = NULL;
u8 *pFirmwareBuf;
u32 FirmwareLen;
#ifdef CONFIG_FILE_FWIMG
u8 *fwfilepath;
#endif /* CONFIG_FILE_FWIMG */
u8 value8;
struct dvobj_priv *psdpriv = adapt->dvobj;
struct debug_priv *pdbgpriv = &psdpriv->drv_dbg;
pFirmware = rtw_zmalloc(sizeof(struct rt_firmware));
if (!pFirmware) {
rtStatus = _FAIL;
goto exit;
}
{
u8 tmp_ps = 0;
tmp_ps = rtw_read8(adapt, 0xa3);
tmp_ps &= 0xf8;
tmp_ps |= 0x02;
/* 1. write 0xA3[:2:0] = 3b'010 */
rtw_write8(adapt, 0xa3, tmp_ps);
/* 2. read power_state = 0xA0[1:0] */
tmp_ps = rtw_read8(adapt, 0xa0);
tmp_ps &= 0x03;
if (tmp_ps != 0x01) {
RTW_INFO(FUNC_ADPT_FMT" tmp_ps=%x\n",
FUNC_ADPT_ARG(adapt), tmp_ps);
pdbgpriv->dbg_downloadfw_pwr_state_cnt++;
}
}
rtw_btcoex_PreLoadFirmware(adapt);
#ifdef CONFIG_FILE_FWIMG
fwfilepath = rtw_fw_file_path;
#endif /* CONFIG_FILE_FWIMG */
#ifdef CONFIG_FILE_FWIMG
if (rtw_is_file_readable(fwfilepath)) {
RTW_INFO("%s acquire FW from file:%s\n", __func__, fwfilepath);
pFirmware->eFWSource = FW_SOURCE_IMG_FILE;
} else
#endif /* CONFIG_FILE_FWIMG */
{
#ifdef CONFIG_EMBEDDED_FWIMG
pFirmware->eFWSource = FW_SOURCE_HEADER_FILE;
#else /* !CONFIG_EMBEDDED_FWIMG */
pFirmware->eFWSource = FW_SOURCE_IMG_FILE; /* We should decided by Reg. */
#endif /* !CONFIG_EMBEDDED_FWIMG */
}
switch (pFirmware->eFWSource) {
case FW_SOURCE_IMG_FILE:
#ifdef CONFIG_FILE_FWIMG
rtStatus = rtw_retrieve_from_file(fwfilepath, FwBuffer, FW_8723D_SIZE);
pFirmware->ulFwLength = rtStatus >= 0 ? rtStatus : 0;
pFirmware->szFwBuffer = FwBuffer;
#endif /* CONFIG_FILE_FWIMG */
break;
case FW_SOURCE_HEADER_FILE:
if (bUsedWoWLANFw) {
} else {
pFirmware->szFwBuffer = array_mp_8723d_fw_nic;
pFirmware->ulFwLength = array_length_mp_8723d_fw_nic;
RTW_INFO("%s fw: %s, size: %d\n", __func__, "FW_NIC", pFirmware->ulFwLength);
}
break;
}
if ((pFirmware->ulFwLength - 32) > FW_8723D_SIZE) {
rtStatus = _FAIL;
RTW_ERR("Firmware size:%u exceed %u\n",
pFirmware->ulFwLength, FW_8723D_SIZE);
goto exit;
}
pFirmwareBuf = pFirmware->szFwBuffer;
FirmwareLen = pFirmware->ulFwLength;
/* To Check Fw header. Added by tynli. 2009.12.04. */
pFwHdr = (struct rt_8723d_firmware_hdr *)pFirmwareBuf;
pHalData->firmware_version = le16_to_cpu(pFwHdr->Version);
pHalData->firmware_sub_version = le16_to_cpu(pFwHdr->Subversion);
pHalData->FirmwareSignature = le16_to_cpu(pFwHdr->Signature);
RTW_INFO("%s: fw_ver=%x fw_subver=%04x sig=0x%x, Month=%02x, Date=%02x, Hour=%02x, Minute=%02x\n",
__func__, pHalData->firmware_version,
pHalData->firmware_sub_version, pHalData->FirmwareSignature
, pFwHdr->Month, pFwHdr->Date, pFwHdr->Hour, pFwHdr->Minute);
if (IS_FW_HEADER_EXIST_8723D(pFwHdr)) {
RTW_INFO("%s(): Shift for fw header!\n", __func__);
/* Shift 32 bytes for FW header */
pFirmwareBuf = pFirmwareBuf + 32;
FirmwareLen = FirmwareLen - 32;
}
fwdl_start_time = rtw_get_current_time();
/* To check if FW already exists before download FW */
if (rtw_read8(adapt, REG_MCUFWDL) & RAM_DL_SEL) {
RTW_INFO("%s: FW exists before download FW\n", __func__);
rtw_write8(adapt, REG_MCUFWDL, 0x00);
_8051Reset8723(adapt);
}
#ifndef CONFIG_DLFW_TXPKT
RTW_INFO("%s by IO write!\n", __func__);
_FWDownloadEnable(adapt, true);
while (!RTW_CANNOT_IO(adapt) &&
(write_fw++ < DL_FW_MAX ||
rtw_get_passing_time_ms(fwdl_start_time) < 500)) {
/* reset FWDL chksum */
rtw_write8(adapt, REG_MCUFWDL,
rtw_read8(adapt, REG_MCUFWDL) | FWDL_ChkSum_rpt);
rtStatus = _WriteFW(adapt, pFirmwareBuf, FirmwareLen);
if (rtStatus != _SUCCESS)
continue;
rtStatus = polling_fwdl_chksum(adapt, 2, 10);
if (rtStatus == _SUCCESS) {
RTW_INFO("%s: download FW count:%d\n", __func__,
write_fw);
break;
} else {
rtw_mdelay_os(10);
}
}
#else
RTW_INFO("%s by Tx pkt write!\n", __func__);
if ((rtw_read8(adapt, REG_MCUFWDL) & MCUFWDL_RDY) == 0) {
/*
* SDIO DMA condition:
* all queue must be 256 (0x100 = 0x20 + 0xE0)
*/
value32 = 0x802000E0;
rtw_write32(adapt, REG_RQPN, value32);
/* Set beacon boundary to TXFIFO header */
rtw_write8(adapt, REG_BCNQ_BDNY, 0);
rtw_write16(adapt, REG_DWBCN0_CTRL_8723D + 1, BIT(8));
/* SDIO need read this register before send packet */
rtw_read32(adapt, 0x10250020);
_FWDownloadEnable(adapt, true);
/* Get original check sum */
new_chk_sum = *(pFirmwareBuf + FirmwareLen - 2) |
((u16)*(pFirmwareBuf + FirmwareLen - 1) << 8);
/* Send ram code flow */
dma_iram_sel = 0;
mem_offset = 0;
pkt_size_tmp = FirmwareLen;
while (0 != pkt_size_tmp) {
if (pkt_size_tmp >= FW_DOWNLOAD_SIZE_8723D) {
send_pkt_size = FW_DOWNLOAD_SIZE_8723D;
/* Modify check sum value */
new_chk_sum = (u16)(new_chk_sum ^ (((send_pkt_size - 1) << 2) - TXDESC_SIZE));
} else {
send_pkt_size = pkt_size_tmp;
new_chk_sum = (u16)(new_chk_sum ^ ((send_pkt_size << 2) - TXDESC_SIZE));
}
if (send_pkt_size == pkt_size_tmp) {
/* last partition packet, write new check sum to ram code file */
*(pFirmwareBuf + FirmwareLen - 2) = new_chk_sum & 0xFF;
*(pFirmwareBuf + FirmwareLen - 1) = (new_chk_sum & 0xFF00) >> 8;
}
/* IRAM select */
rtw_write8(adapt, REG_MCUFWDL + 1,
(rtw_read8(adapt, REG_MCUFWDL + 1) & 0x3F) | (dma_iram_sel << 6));
/* Enable DMA */
rtw_write8(adapt, REG_MCUFWDL + 1,
rtw_read8(adapt, REG_MCUFWDL + 1) | BIT(5));
if (false == send_fw_packet(adapt, pFirmwareBuf + mem_offset, send_pkt_size)) {
RTW_INFO("%s: Send FW fail !\n", __func__);
rtStatus = _FAIL;
goto DLFW_FAIL;
}
dma_iram_sel++;
mem_offset += send_pkt_size;
pkt_size_tmp -= send_pkt_size;
}
} else {
RTW_INFO("%s: Download FW fail since MCUFWDL_RDY is not set!\n", __func__);
rtStatus = _FAIL;
goto DLFW_FAIL;
}
#endif
_FWDownloadEnable(adapt, false);
if (rtStatus == _SUCCESS)
rtStatus = _FWFreeToGo(adapt, 10, 200);
else
goto DLFW_FAIL;
if (_SUCCESS != rtStatus)
goto DLFW_FAIL;
DLFW_FAIL:
if (rtStatus == _FAIL) {
/* Disable FWDL_EN */
value8 = rtw_read8(adapt, REG_MCUFWDL);
value8 = (value8 & ~(BIT(0)) & ~(BIT(1)));
rtw_write8(adapt, REG_MCUFWDL, value8);
}
RTW_INFO("%s %s. write_fw:%u, %dms\n"
, __func__, (rtStatus == _SUCCESS) ? "success" : "fail"
, write_fw
, rtw_get_passing_time_ms(fwdl_start_time)
);
exit:
if (pFirmware)
rtw_mfree((u8 *)pFirmware, sizeof(struct rt_firmware));
rtl8723d_InitializeFirmwareVars(adapt);
RTW_INFO(" <=== %s()\n", __func__);
return rtStatus;
}
void rtl8723d_InitializeFirmwareVars(struct adapter * adapt)
{
struct hal_com_data * pHalData = GET_HAL_DATA(adapt);
/* Init Fw LPS related. */
adapter_to_pwrctl(adapt)->bFwCurrentInPSMode = false;
/* Init H2C cmd. */
rtw_write8(adapt, REG_HMETFR, 0x0f);
/* Init H2C counter. by tynli. 2009.12.09. */
pHalData->LastHMEBoxNum = 0;
/* pHalData->H2CQueueHead = 0;
* pHalData->H2CQueueTail = 0;
* pHalData->H2CStopInsertQueue = false; */
}
/* ***********************************************************
* Efuse related code
* *********************************************************** */
static u8
hal_EfuseSwitchToBank(
struct adapter * adapt,
u8 bank,
u8 bPseudoTest)
{
u8 bRet = false;
u32 value32 = 0;
#ifdef HAL_EFUSE_MEMORY
struct hal_com_data * pHalData = GET_HAL_DATA(adapt);
struct efuse_hal * pEfuseHal = &pHalData->EfuseHal;
#endif
RTW_INFO("%s: Efuse switch bank to %d\n", __func__, bank);
if (bPseudoTest) {
#ifdef HAL_EFUSE_MEMORY
pEfuseHal->fakeEfuseBank = bank;
#else
fakeEfuseBank = bank;
#endif
bRet = true;
} else {
value32 = rtw_read32(adapt, EFUSE_TEST);
bRet = true;
switch (bank) {
case 0:
value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_WIFI_SEL_0);
break;
case 1:
value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_0);
break;
case 2:
value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_1);
break;
case 3:
value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_2);
break;
default:
value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_WIFI_SEL_0);
bRet = false;
break;
}
rtw_write32(adapt, EFUSE_TEST, value32);
}
return bRet;
}
static void Hal_GetEfuseDefinition(struct adapter * adapt, u8 efuseType, u8 type,
void *pOut, bool bPseudoTest)
{
switch (type) {
case TYPE_EFUSE_MAX_SECTION: {
u8 *pMax_section;
pMax_section = (u8 *)pOut;
if (efuseType == EFUSE_WIFI)
*pMax_section = EFUSE_MAX_SECTION_8723D;
else
*pMax_section = EFUSE_BT_MAX_SECTION;
}
break;
case TYPE_EFUSE_REAL_CONTENT_LEN: {
u16 *pu2Tmp;
pu2Tmp = (u16 *)pOut;
if (efuseType == EFUSE_WIFI)
*pu2Tmp = EFUSE_REAL_CONTENT_LEN_8723D;
else
*pu2Tmp = EFUSE_BT_REAL_CONTENT_LEN;
}
break;
case TYPE_AVAILABLE_EFUSE_BYTES_BANK: {
u16 *pu2Tmp;
pu2Tmp = (u16 *)pOut;
if (efuseType == EFUSE_WIFI)
*pu2Tmp = (EFUSE_REAL_CONTENT_LEN_8723D - EFUSE_OOB_PROTECT_BYTES);
else
*pu2Tmp = (EFUSE_BT_REAL_BANK_CONTENT_LEN - EFUSE_PROTECT_BYTES_BANK);
}
break;
case TYPE_AVAILABLE_EFUSE_BYTES_TOTAL: {
u16 *pu2Tmp;
pu2Tmp = (u16 *)pOut;
if (efuseType == EFUSE_WIFI)
*pu2Tmp = (EFUSE_REAL_CONTENT_LEN_8723D - EFUSE_OOB_PROTECT_BYTES);
else
*pu2Tmp = (EFUSE_BT_REAL_CONTENT_LEN - (EFUSE_PROTECT_BYTES_BANK * 3));
}
break;
case TYPE_EFUSE_MAP_LEN: {
u16 *pu2Tmp;
pu2Tmp = (u16 *)pOut;
if (efuseType == EFUSE_WIFI)
*pu2Tmp = EFUSE_MAP_LEN_8723D;
else
*pu2Tmp = EFUSE_BT_MAP_LEN;
}
break;
case TYPE_EFUSE_PROTECT_BYTES_BANK: {
u8 *pu1Tmp;
pu1Tmp = (u8 *)pOut;
if (efuseType == EFUSE_WIFI)
*pu1Tmp = EFUSE_OOB_PROTECT_BYTES;
else
*pu1Tmp = EFUSE_PROTECT_BYTES_BANK;
}
break;
case TYPE_EFUSE_CONTENT_LEN_BANK: {
u16 *pu2Tmp;
pu2Tmp = (u16 *)pOut;
if (efuseType == EFUSE_WIFI)
*pu2Tmp = EFUSE_REAL_CONTENT_LEN_8723D;
else
*pu2Tmp = EFUSE_BT_REAL_BANK_CONTENT_LEN;
}
break;
default: {
u8 *pu1Tmp;
pu1Tmp = (u8 *)pOut;
*pu1Tmp = 0;
}
break;
}
}
#define VOLTAGE_V25 0x03
#define LDOE25_SHIFT 28
/* *****************************************************************
* The following is for compile ok
* That should be merged with the original in the future
* ***************************************************************** */
#define EFUSE_ACCESS_ON_8723 0x69 /* For RTL8723 only. */
#define EFUSE_ACCESS_OFF_8723 0x00 /* For RTL8723 only. */
#define REG_EFUSE_ACCESS_8723 0x00CF /* Efuse access protection for RTL8723 */
/* ***************************************************************** */
static void Hal_BT_EfusePowerSwitch(
struct adapter * adapt,
u8 bWrite,
u8 PwrState)
{
u8 tempval;
if (PwrState) {
/* enable BT power cut */
/* 0x6A[14] = 1 */
tempval = rtw_read8(adapt, 0x6B);
tempval |= BIT(6);
rtw_write8(adapt, 0x6B, tempval);
/* Attention!! Between 0x6A[14] and 0x6A[15] setting need 100us delay */
/* So don't write 0x6A[14]=1 and 0x6A[15]=0 together! */
rtw_usleep_os(100);
/* disable BT output isolation */
/* 0x6A[15] = 0 */
tempval = rtw_read8(adapt, 0x6B);
tempval &= ~BIT(7);
rtw_write8(adapt, 0x6B, tempval);
} else {
/* enable BT output isolation */
/* 0x6A[15] = 1 */
tempval = rtw_read8(adapt, 0x6B);
tempval |= BIT(7);
rtw_write8(adapt, 0x6B, tempval);
/* Attention!! Between 0x6A[14] and 0x6A[15] setting need 100us delay */
/* So don't write 0x6A[14]=1 and 0x6A[15]=0 together! */
/* disable BT power cut */
/* 0x6A[14] = 1 */
tempval = rtw_read8(adapt, 0x6B);
tempval &= ~BIT(6);
rtw_write8(adapt, 0x6B, tempval);
}
}
static void
Hal_EfusePowerSwitch(
struct adapter * adapt,
u8 bWrite,
u8 PwrState)
{
u8 tempval;
u16 tmpV16;
if (PwrState) {
rtw_write8(adapt, REG_EFUSE_ACCESS_8723, EFUSE_ACCESS_ON_8723);
/* Reset: 0x0000h[28], default valid */
tmpV16 = rtw_read16(adapt, REG_SYS_FUNC_EN);
if (!(tmpV16 & FEN_ELDR)) {
tmpV16 |= FEN_ELDR;
rtw_write16(adapt, REG_SYS_FUNC_EN, tmpV16);
}
/* Clock: Gated(0x0008h[5]) 8M(0x0008h[1]) clock from ANA, default valid */
tmpV16 = rtw_read16(adapt, REG_SYS_CLKR);
if ((!(tmpV16 & LOADER_CLK_EN)) || (!(tmpV16 & ANA8M))) {
tmpV16 |= (LOADER_CLK_EN | ANA8M);
rtw_write16(adapt, REG_SYS_CLKR, tmpV16);
}
if (bWrite) {
/* Enable LDO 2.5V before read/write action */
tempval = rtw_read8(adapt, EFUSE_TEST + 3);
tempval &= 0x0F;
tempval |= (VOLTAGE_V25 << 4);
rtw_write8(adapt, EFUSE_TEST + 3, (tempval | 0x80));
/* rtw_write8(adapt, REG_EFUSE_ACCESS, EFUSE_ACCESS_ON); */
}
} else {
rtw_write8(adapt, REG_EFUSE_ACCESS, EFUSE_ACCESS_OFF);
if (bWrite) {
/* Disable LDO 2.5V after read/write action */
tempval = rtw_read8(adapt, EFUSE_TEST + 3);
rtw_write8(adapt, EFUSE_TEST + 3, (tempval & 0x7F));
}
}
}
static void hal_ReadEFuse_WiFi(struct adapter * adapt, u16 _offset, u16 _size_byte,
u8 *pbuf, bool bPseudoTest)
{
#ifdef HAL_EFUSE_MEMORY
struct hal_com_data * pHalData = GET_HAL_DATA(adapt);
struct efuse_hal * pEfuseHal = &pHalData->EfuseHal;
#endif
u8 *efuseTbl = NULL;
u16 eFuse_Addr = 0;
u8 offset, wden;
u8 efuseHeader, efuseExtHdr, efuseData;
u16 i, total, used;
u8 efuse_usage = 0;
/* RTW_INFO("YJ: ====>%s():_offset=%d _size_byte=%d bPseudoTest=%d\n", __func__, _offset, _size_byte, bPseudoTest); */
/* */
/* Do NOT excess total size of EFuse table. Added by Roger, 2008.11.10. */
/* */
if ((_offset + _size_byte) > EFUSE_MAX_MAP_LEN) {
RTW_INFO("%s: Invalid offset(%#x) with read bytes(%#x)!!\n", __func__, _offset, _size_byte);
return;
}
efuseTbl = (u8 *)rtw_malloc(EFUSE_MAX_MAP_LEN);
if (!efuseTbl) {
RTW_INFO("%s: alloc efuseTbl fail!\n", __func__);
return;
}
/* 0xff will be efuse default value instead of 0x00. */
memset(efuseTbl, 0xFF, EFUSE_MAX_MAP_LEN);
/* switch bank back to bank 0 for later BT and wifi use. */
hal_EfuseSwitchToBank(adapt, 0, bPseudoTest);
while (AVAILABLE_EFUSE_ADDR(eFuse_Addr)) {
/* ReadEFuseByte(adapt, eFuse_Addr++, &efuseHeader, bPseudoTest); */
efuse_OneByteRead(adapt, eFuse_Addr++, &efuseHeader, bPseudoTest);
if (efuseHeader == 0xFF) {
RTW_INFO("%s: data end at address=%#x\n", __func__, eFuse_Addr - 1);
break;
}
/* RTW_INFO("%s: efuse[0x%X]=0x%02X\n", __func__, eFuse_Addr-1, efuseHeader); */
/* Check PG header for section num. */
if (EXT_HEADER(efuseHeader)) { /* extended header */
offset = GET_HDR_OFFSET_2_0(efuseHeader);
/* RTW_INFO("%s: extended header offset=0x%X\n", __func__, offset); */
/* ReadEFuseByte(adapt, eFuse_Addr++, &efuseExtHdr, bPseudoTest); */
efuse_OneByteRead(adapt, eFuse_Addr++, &efuseExtHdr, bPseudoTest);
/* RTW_INFO("%s: efuse[0x%X]=0x%02X\n", __func__, eFuse_Addr-1, efuseExtHdr); */
if (ALL_WORDS_DISABLED(efuseExtHdr))
continue;
offset |= ((efuseExtHdr & 0xF0) >> 1);
wden = (efuseExtHdr & 0x0F);
} else {
offset = ((efuseHeader >> 4) & 0x0f);
wden = (efuseHeader & 0x0f);
}
/* RTW_INFO("%s: Offset=%d Worden=0x%X\n", __func__, offset, wden); */
if (offset < EFUSE_MAX_SECTION_8723D) {
u16 addr;
/* Get word enable value from PG header
* RTW_INFO("%s: Offset=%d Worden=0x%X\n", __func__, offset, wden); */
addr = offset * PGPKT_DATA_SIZE;
for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
/* Check word enable condition in the section */
if (!(wden & (0x01 << i))) {
efuseData = 0;
/* ReadEFuseByte(adapt, eFuse_Addr++, &efuseData, bPseudoTest); */
efuse_OneByteRead(adapt, eFuse_Addr++, &efuseData, bPseudoTest);
/* RTW_INFO("%s: efuse[%#X]=0x%02X\n", __func__, eFuse_Addr-1, efuseData); */
efuseTbl[addr] = efuseData;
efuseData = 0;
/* ReadEFuseByte(adapt, eFuse_Addr++, &efuseData, bPseudoTest); */
efuse_OneByteRead(adapt, eFuse_Addr++, &efuseData, bPseudoTest);
/* RTW_INFO("%s: efuse[%#X]=0x%02X\n", __func__, eFuse_Addr-1, efuseData); */
efuseTbl[addr + 1] = efuseData;
}
addr += 2;
}
} else {
RTW_INFO(KERN_ERR "%s: offset(%d) is illegal!!\n", __func__, offset);
eFuse_Addr += Efuse_CalculateWordCnts(wden) * 2;
}
}
/* Copy from Efuse map to output pointer memory!!! */
for (i = 0; i < _size_byte; i++)
pbuf[i] = efuseTbl[_offset + i];
/* Calculate Efuse utilization */
total = 0;
EFUSE_GetEfuseDefinition(adapt, EFUSE_WIFI, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &total, bPseudoTest);
used = eFuse_Addr - 1;
if (total)
efuse_usage = (u8)((used * 100) / total);
else
efuse_usage = 100;
if (bPseudoTest) {
#ifdef HAL_EFUSE_MEMORY
pEfuseHal->fakeEfuseUsedBytes = used;
#else
fakeEfuseUsedBytes = used;
#endif
} else {
rtw_hal_set_hwreg(adapt, HW_VAR_EFUSE_BYTES, (u8 *)&used);
rtw_hal_set_hwreg(adapt, HW_VAR_EFUSE_USAGE, (u8 *)&efuse_usage);
}
if (efuseTbl)
rtw_mfree(efuseTbl, EFUSE_MAX_MAP_LEN);
}
static void hal_ReadEFuse_BT(struct adapter * adapt, u16 _offset, u16 _size_byte,
u8 *pbuf, bool bPseudoTest)
{
#ifdef HAL_EFUSE_MEMORY
struct hal_com_data * pHalData = GET_HAL_DATA(adapt);
struct efuse_hal * pEfuseHal = &pHalData->EfuseHal;
#endif
u8 *efuseTbl;
u8 bank;
u16 eFuse_Addr;
u8 efuseHeader, efuseExtHdr, efuseData;
u8 offset, wden;
u16 i, total, used;
u8 efuse_usage;
/* */
/* Do NOT excess total size of EFuse table. Added by Roger, 2008.11.10. */
/* */
if ((_offset + _size_byte) > EFUSE_BT_MAP_LEN) {
RTW_INFO("%s: Invalid offset(%#x) with read bytes(%#x)!!\n", __func__, _offset, _size_byte);
return;
}
efuseTbl = rtw_malloc(EFUSE_BT_MAP_LEN);
if (!efuseTbl) {
RTW_INFO("%s: efuseTbl malloc fail!\n", __func__);
return;
}
/* 0xff will be efuse default value instead of 0x00. */
memset(efuseTbl, 0xFF, EFUSE_BT_MAP_LEN);
total = 0;
EFUSE_GetEfuseDefinition(adapt, EFUSE_BT, TYPE_AVAILABLE_EFUSE_BYTES_BANK, &total, bPseudoTest);
for (bank = 1; bank < 3; bank++) { /* 8723d Max bake 0~2 */
if (!hal_EfuseSwitchToBank(adapt, bank, bPseudoTest)) {
RTW_INFO("%s: hal_EfuseSwitchToBank Fail!!\n", __func__);
goto exit;
}
eFuse_Addr = 0;
while (AVAILABLE_EFUSE_ADDR(eFuse_Addr)) {
/* ReadEFuseByte(adapt, eFuse_Addr++, &efuseHeader, bPseudoTest); */
efuse_OneByteRead(adapt, eFuse_Addr++, &efuseHeader, bPseudoTest);
if (efuseHeader == 0xFF)
break;
RTW_INFO("%s: efuse[%#X]=0x%02x (header)\n", __func__, (((bank - 1) * EFUSE_REAL_CONTENT_LEN_8723D) + eFuse_Addr - 1), efuseHeader);
/* Check PG header for section num. */
if (EXT_HEADER(efuseHeader)) { /* extended header */
offset = GET_HDR_OFFSET_2_0(efuseHeader);
RTW_INFO("%s: extended header offset_2_0=0x%X\n", __func__, offset);
/* ReadEFuseByte(adapt, eFuse_Addr++, &efuseExtHdr, bPseudoTest); */
efuse_OneByteRead(adapt, eFuse_Addr++, &efuseExtHdr, bPseudoTest);
RTW_INFO("%s: efuse[%#X]=0x%02x (ext header)\n", __func__, (((bank - 1) * EFUSE_REAL_CONTENT_LEN_8723D) + eFuse_Addr - 1), efuseExtHdr);
if (ALL_WORDS_DISABLED(efuseExtHdr))
continue;
offset |= ((efuseExtHdr & 0xF0) >> 1);
wden = (efuseExtHdr & 0x0F);
} else {
offset = ((efuseHeader >> 4) & 0x0f);
wden = (efuseHeader & 0x0f);
}
if (offset < EFUSE_BT_MAX_SECTION) {
u16 addr;
/* Get word enable value from PG header */
RTW_INFO("%s: Offset=%d Worden=%#X\n", __func__, offset, wden);
addr = offset * PGPKT_DATA_SIZE;
for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
/* Check word enable condition in the section */
if (!(wden & (0x01 << i))) {
efuseData = 0;
/* ReadEFuseByte(adapt, eFuse_Addr++, &efuseData, bPseudoTest); */
efuse_OneByteRead(adapt, eFuse_Addr++, &efuseData, bPseudoTest);
RTW_INFO("%s: efuse[%#X]=0x%02X\n", __func__, eFuse_Addr - 1, efuseData);
efuseTbl[addr] = efuseData;
efuseData = 0;
/* ReadEFuseByte(adapt, eFuse_Addr++, &efuseData, bPseudoTest); */
efuse_OneByteRead(adapt, eFuse_Addr++, &efuseData, bPseudoTest);
RTW_INFO("%s: efuse[%#X]=0x%02X\n", __func__, eFuse_Addr - 1, efuseData);
efuseTbl[addr + 1] = efuseData;
}
addr += 2;
}
} else {
RTW_INFO("%s: offset(%d) is illegal!!\n", __func__, offset);
eFuse_Addr += Efuse_CalculateWordCnts(wden) * 2;
}
}
if ((eFuse_Addr - 1) < total) {
RTW_INFO("%s: bank(%d) data end at %#x\n", __func__, bank, eFuse_Addr - 1);
break;
}
}
/* switch bank back to bank 0 for later BT and wifi use. */
hal_EfuseSwitchToBank(adapt, 0, bPseudoTest);
/* Copy from Efuse map to output pointer memory!!! */
for (i = 0; i < _size_byte; i++)
pbuf[i] = efuseTbl[_offset + i];
/* */
/* Calculate Efuse utilization. */
/* */
EFUSE_GetEfuseDefinition(adapt, EFUSE_BT, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &total, bPseudoTest);
used = (EFUSE_BT_REAL_BANK_CONTENT_LEN * (bank - 1)) + eFuse_Addr - 1;
RTW_INFO("%s: bank(%d) data end at %#x ,used =%d\n", __func__, bank, eFuse_Addr - 1, used);
efuse_usage = (u8)((used * 100) / total);
if (bPseudoTest) {
#ifdef HAL_EFUSE_MEMORY
pEfuseHal->fakeBTEfuseUsedBytes = used;
#else
fakeBTEfuseUsedBytes = used;
#endif
} else {
rtw_hal_set_hwreg(adapt, HW_VAR_EFUSE_BT_BYTES, (u8 *)&used);
rtw_hal_set_hwreg(adapt, HW_VAR_EFUSE_BT_USAGE, (u8 *)&efuse_usage);
}
exit:
if (efuseTbl)
rtw_mfree(efuseTbl, EFUSE_BT_MAP_LEN);
}
static void Hal_ReadEFuse(struct adapter * adapt, u8 efuseType, u16 _offset,
u16 _size_byte, u8 *pbuf, bool bPseudoTest)
{
if (efuseType == EFUSE_WIFI)
hal_ReadEFuse_WiFi(adapt, _offset, _size_byte, pbuf, bPseudoTest);
else
hal_ReadEFuse_BT(adapt, _offset, _size_byte, pbuf, bPseudoTest);
}
static u16 hal_EfuseGetCurrentSize_WiFi(struct adapter * adapt, bool bPseudoTest)
{
#ifdef HAL_EFUSE_MEMORY
struct hal_com_data * pHalData = GET_HAL_DATA(adapt);
struct efuse_hal * pEfuseHal = &pHalData->EfuseHal;
#endif
u16 efuse_addr = 0;
u16 start_addr = 0; /* for debug */
u8 hoffset = 0, hworden = 0;
u8 efuse_data, word_cnts = 0;
u32 count = 0; /* for debug */
if (bPseudoTest) {
#ifdef HAL_EFUSE_MEMORY
efuse_addr = (u16)pEfuseHal->fakeEfuseUsedBytes;
#else
efuse_addr = (u16)fakeEfuseUsedBytes;
#endif
} else
rtw_hal_get_hwreg(adapt, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_addr);
start_addr = efuse_addr;
RTW_INFO("%s: start_efuse_addr=0x%X\n", __func__, efuse_addr);
/* switch bank back to bank 0 for later BT and wifi use. */
hal_EfuseSwitchToBank(adapt, 0, bPseudoTest);
count = 0;
while (AVAILABLE_EFUSE_ADDR(efuse_addr)) {
if (!efuse_OneByteRead(adapt, efuse_addr, &efuse_data, bPseudoTest)) {
RTW_INFO(KERN_ERR "%s: efuse_OneByteRead Fail! addr=0x%X !!\n", __func__, efuse_addr);
goto error;
}
if (efuse_data == 0xFF)
break;
if ((start_addr != 0) && (efuse_addr == start_addr)) {
count++;
RTW_INFO(FUNC_ADPT_FMT ": [WARNING] efuse raw 0x%X=0x%02X not 0xFF!!(%d times)\n",
FUNC_ADPT_ARG(adapt), efuse_addr, efuse_data, count);
efuse_data = 0xFF;
if (count < 4) {
/* try again! */
if (count > 2) {
/* try again form address 0 */
efuse_addr = 0;
start_addr = 0;
}
continue;
}
goto error;
}
if (EXT_HEADER(efuse_data)) {
hoffset = GET_HDR_OFFSET_2_0(efuse_data);
efuse_addr++;
efuse_OneByteRead(adapt, efuse_addr, &efuse_data, bPseudoTest);
if (ALL_WORDS_DISABLED(efuse_data))
continue;
hoffset |= ((efuse_data & 0xF0) >> 1);
hworden = efuse_data & 0x0F;
} else {
hoffset = (efuse_data >> 4) & 0x0F;
hworden = efuse_data & 0x0F;
}
word_cnts = Efuse_CalculateWordCnts(hworden);
efuse_addr += (word_cnts * 2) + 1;
}
if (bPseudoTest) {
#ifdef HAL_EFUSE_MEMORY
pEfuseHal->fakeEfuseUsedBytes = efuse_addr;
#else
fakeEfuseUsedBytes = efuse_addr;
#endif
} else
rtw_hal_set_hwreg(adapt, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_addr);
goto exit;
error:
/* report max size to prevent write efuse */
EFUSE_GetEfuseDefinition(adapt, EFUSE_WIFI, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &efuse_addr, bPseudoTest);
exit:
RTW_INFO("%s: CurrentSize=%d\n", __func__, efuse_addr);
return efuse_addr;
}
static u16
hal_EfuseGetCurrentSize_BT(
struct adapter * adapt,
u8 bPseudoTest)
{
#ifdef HAL_EFUSE_MEMORY
struct hal_com_data * pHalData = GET_HAL_DATA(adapt);
struct efuse_hal * pEfuseHal = &pHalData->EfuseHal;
#endif
u16 btusedbytes;
u16 efuse_addr;
u8 bank, startBank;
u8 hoffset = 0, hworden = 0;
u8 efuse_data, word_cnts = 0;
u16 retU2 = 0;
if (bPseudoTest) {
#ifdef HAL_EFUSE_MEMORY
btusedbytes = pEfuseHal->fakeBTEfuseUsedBytes;
#else
btusedbytes = fakeBTEfuseUsedBytes;
#endif
} else {
btusedbytes = 0;
rtw_hal_get_hwreg(adapt, HW_VAR_EFUSE_BT_BYTES, (u8 *)&btusedbytes);
}
efuse_addr = (u16)((btusedbytes % EFUSE_BT_REAL_BANK_CONTENT_LEN));
startBank = (u8)(1 + (btusedbytes / EFUSE_BT_REAL_BANK_CONTENT_LEN));
RTW_INFO("%s: start from bank=%d addr=0x%X\n", __func__, startBank, efuse_addr);
EFUSE_GetEfuseDefinition(adapt, EFUSE_BT, TYPE_AVAILABLE_EFUSE_BYTES_BANK, &retU2, bPseudoTest);
for (bank = startBank; bank < 3; bank++) {
if (!hal_EfuseSwitchToBank(adapt, bank, bPseudoTest)) {
RTW_INFO(KERN_ERR "%s: switch bank(%d) Fail!!\n", __func__, bank);
/* bank = EFUSE_MAX_BANK; */
break;
}
/* only when bank is switched we have to reset the efuse_addr. */
if (bank != startBank)
efuse_addr = 0;
while (AVAILABLE_EFUSE_ADDR(efuse_addr)) {
if (!efuse_OneByteRead(adapt, efuse_addr, &efuse_data, bPseudoTest)) {
RTW_INFO(KERN_ERR "%s: efuse_OneByteRead Fail! addr=0x%X !!\n", __func__, efuse_addr);
/* bank = EFUSE_MAX_BANK; */
break;
}
RTW_INFO("%s: efuse_OneByteRead ! addr=0x%X !efuse_data=0x%X! bank =%d\n", __func__, efuse_addr, efuse_data, bank);
if (efuse_data == 0xFF)
break;
if (EXT_HEADER(efuse_data)) {
hoffset = GET_HDR_OFFSET_2_0(efuse_data);
efuse_addr++;
efuse_OneByteRead(adapt, efuse_addr, &efuse_data, bPseudoTest);
RTW_INFO("%s: efuse_OneByteRead EXT_HEADER ! addr=0x%X !efuse_data=0x%X! bank =%d\n", __func__, efuse_addr, efuse_data, bank);
if (ALL_WORDS_DISABLED(efuse_data)) {
efuse_addr++;
continue;
}
/* hoffset = ((hoffset & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1); */
hoffset |= ((efuse_data & 0xF0) >> 1);
hworden = efuse_data & 0x0F;
} else {
hoffset = (efuse_data >> 4) & 0x0F;
hworden = efuse_data & 0x0F;
}
RTW_INFO(FUNC_ADPT_FMT": Offset=%d Worden=%#X\n",
FUNC_ADPT_ARG(adapt), hoffset, hworden);
word_cnts = Efuse_CalculateWordCnts(hworden);
/* read next header */
efuse_addr += (word_cnts * 2) + 1;
}
/* Check if we need to check next bank efuse */
if (efuse_addr < retU2)
break;/* don't need to check next bank. */
}
retU2 = ((bank - 1) * EFUSE_BT_REAL_BANK_CONTENT_LEN) + efuse_addr;
if (bPseudoTest) {
pEfuseHal->fakeBTEfuseUsedBytes = retU2;
} else {
pEfuseHal->BTEfuseUsedBytes = retU2;
}
RTW_INFO("%s: CurrentSize=%d\n", __func__, retU2);
return retU2;
}
static u16 Hal_EfuseGetCurrentSize(struct adapter * pAdapter, u8 efuseType,
bool bPseudoTest)
{
u16 ret = 0;
if (efuseType == EFUSE_WIFI)
ret = hal_EfuseGetCurrentSize_WiFi(pAdapter, bPseudoTest);
else
ret = hal_EfuseGetCurrentSize_BT(pAdapter, bPseudoTest);
return ret;
}
static u8
Hal_EfuseWordEnableDataWrite(
struct adapter * adapt,
u16 efuse_addr,
u8 word_en,
u8 *data,
bool bPseudoTest)
{
u16 tmpaddr = 0;
u16 start_addr = efuse_addr;
u8 badworden = 0x0F;
u8 tmpdata[PGPKT_DATA_SIZE];
/* RTW_INFO("%s: efuse_addr=%#x word_en=%#x\n", __func__, efuse_addr, word_en); */
memset(tmpdata, 0xFF, PGPKT_DATA_SIZE);
if (!(word_en & BIT(0))) {
tmpaddr = start_addr;
efuse_OneByteWrite(adapt, start_addr++, data[0], bPseudoTest);
efuse_OneByteWrite(adapt, start_addr++, data[1], bPseudoTest);
efuse_OneByteRead(adapt, tmpaddr, &tmpdata[0], bPseudoTest);
efuse_OneByteRead(adapt, tmpaddr + 1, &tmpdata[1], bPseudoTest);
if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1]))
badworden &= (~BIT(0));
}
if (!(word_en & BIT(1))) {
tmpaddr = start_addr;
efuse_OneByteWrite(adapt, start_addr++, data[2], bPseudoTest);
efuse_OneByteWrite(adapt, start_addr++, data[3], bPseudoTest);
efuse_OneByteRead(adapt, tmpaddr, &tmpdata[2], bPseudoTest);
efuse_OneByteRead(adapt, tmpaddr + 1, &tmpdata[3], bPseudoTest);
if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3]))
badworden &= (~BIT(1));
}
if (!(word_en & BIT(2))) {
tmpaddr = start_addr;
efuse_OneByteWrite(adapt, start_addr++, data[4], bPseudoTest);
efuse_OneByteWrite(adapt, start_addr++, data[5], bPseudoTest);
efuse_OneByteRead(adapt, tmpaddr, &tmpdata[4], bPseudoTest);
efuse_OneByteRead(adapt, tmpaddr + 1, &tmpdata[5], bPseudoTest);
if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5]))
badworden &= (~BIT(2));
}
if (!(word_en & BIT(3))) {
tmpaddr = start_addr;
efuse_OneByteWrite(adapt, start_addr++, data[6], bPseudoTest);
efuse_OneByteWrite(adapt, start_addr++, data[7], bPseudoTest);
efuse_OneByteRead(adapt, tmpaddr, &tmpdata[6], bPseudoTest);
efuse_OneByteRead(adapt, tmpaddr + 1, &tmpdata[7], bPseudoTest);
if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7]))
badworden &= (~BIT(3));
}
return badworden;
}
static bool Hal_EfusePgPacketRead(struct adapter * adapt,
u8 offset,
u8 *data,
bool bPseudoTest)
{
u8 efuse_data, word_cnts = 0;
u16 efuse_addr = 0;
u8 hoffset = 0, hworden = 0;
u8 i;
u8 max_section = 0;
bool ret;
if (!data)
return false;
EFUSE_GetEfuseDefinition(adapt, EFUSE_WIFI, TYPE_EFUSE_MAX_SECTION, &max_section, bPseudoTest);
if (offset > max_section) {
RTW_INFO("%s: Packet offset(%d) is illegal(>%d)!\n", __func__, offset, max_section);
return false;
}
memset(data, 0xFF, PGPKT_DATA_SIZE);
ret = true;
/* */
/* <Roger_TODO> Efuse has been pre-programmed dummy 5Bytes at the end of Efuse by CP. */
/* Skip dummy parts to prevent unexpected data read from Efuse. */
/* By pass right now. 2009.02.19. */
/* */
while (AVAILABLE_EFUSE_ADDR(efuse_addr)) {
if (!efuse_OneByteRead(adapt, efuse_addr++, &efuse_data, bPseudoTest)) {
ret = false;
break;
}
if (efuse_data == 0xFF)
break;
if (EXT_HEADER(efuse_data)) {
hoffset = GET_HDR_OFFSET_2_0(efuse_data);
efuse_OneByteRead(adapt, efuse_addr++, &efuse_data, bPseudoTest);
if (ALL_WORDS_DISABLED(efuse_data)) {
RTW_INFO("%s: Error!! All words disabled!\n", __func__);
continue;
}
hoffset |= ((efuse_data & 0xF0) >> 1);
hworden = efuse_data & 0x0F;
} else {
hoffset = (efuse_data >> 4) & 0x0F;
hworden = efuse_data & 0x0F;
}
if (hoffset == offset) {
for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
/* Check word enable condition in the section */
if (!(hworden & (0x01 << i))) {
/* ReadEFuseByte(adapt, efuse_addr++, &efuse_data, bPseudoTest); */
efuse_OneByteRead(adapt, efuse_addr++, &efuse_data, bPseudoTest);
/* RTW_INFO("%s: efuse[%#X]=0x%02X\n", __func__, efuse_addr+tmpidx, efuse_data); */
data[i * 2] = efuse_data;
/* ReadEFuseByte(adapt, efuse_addr++, &efuse_data, bPseudoTest); */
efuse_OneByteRead(adapt, efuse_addr++, &efuse_data, bPseudoTest);
/* RTW_INFO("%s: efuse[%#X]=0x%02X\n", __func__, efuse_addr+tmpidx, efuse_data); */
data[(i * 2) + 1] = efuse_data;
}
}
} else {
word_cnts = Efuse_CalculateWordCnts(hworden);
efuse_addr += word_cnts * 2;
}
}
return ret;
}
static bool
hal_EfusePgCheckAvailableAddr(
struct adapter * pAdapter,
u8 efuseType,
u8 bPseudoTest)
{
u16 max_available = 0;
u16 current_size;
EFUSE_GetEfuseDefinition(pAdapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &max_available, bPseudoTest);
/* RTW_INFO("%s: max_available=%d\n", __func__, max_available); */
current_size = Efuse_GetCurrentSize(pAdapter, efuseType, bPseudoTest);
if (current_size >= max_available) {
RTW_INFO("%s: Error!! current_size(%d)>max_available(%d)\n", __func__, current_size, max_available);
return false;
}
return true;
}
static void
hal_EfuseConstructPGPkt(
u8 offset,
u8 word_en,
u8 *pData,
struct pg_pkt_struct * pTargetPkt)
{
memset(pTargetPkt->data, 0xFF, PGPKT_DATA_SIZE);
pTargetPkt->offset = offset;
pTargetPkt->word_en = word_en;
efuse_WordEnableDataRead(word_en, pData, pTargetPkt->data);
pTargetPkt->word_cnts = Efuse_CalculateWordCnts(pTargetPkt->word_en);
}
static u8
hal_EfusePartialWriteCheck(
struct adapter * adapt,
u8 efuseType,
u16 *pAddr,
struct pg_pkt_struct * pTargetPkt,
u8 bPseudoTest)
{
struct hal_com_data * pHalData = GET_HAL_DATA(adapt);
struct efuse_hal * pEfuseHal = &pHalData->EfuseHal;
u8 bRet = false;
u16 startAddr = 0, efuse_max_available_len = 0, efuse_max = 0;
u8 efuse_data = 0;
EFUSE_GetEfuseDefinition(adapt, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &efuse_max_available_len, bPseudoTest);
EFUSE_GetEfuseDefinition(adapt, efuseType, TYPE_EFUSE_CONTENT_LEN_BANK, &efuse_max, bPseudoTest);
if (efuseType == EFUSE_WIFI) {
if (bPseudoTest) {
#ifdef HAL_EFUSE_MEMORY
startAddr = (u16)pEfuseHal->fakeEfuseUsedBytes;
#else
startAddr = (u16)fakeEfuseUsedBytes;
#endif
} else
rtw_hal_get_hwreg(adapt, HW_VAR_EFUSE_BYTES, (u8 *)&startAddr);
} else {
if (bPseudoTest) {
#ifdef HAL_EFUSE_MEMORY
startAddr = (u16)pEfuseHal->fakeBTEfuseUsedBytes;
#else
startAddr = (u16)fakeBTEfuseUsedBytes;
#endif
} else
rtw_hal_get_hwreg(adapt, HW_VAR_EFUSE_BT_BYTES, (u8 *)&startAddr);
}
startAddr %= efuse_max;
RTW_INFO("%s: startAddr=%#X\n", __func__, startAddr);
while (1) {
if (startAddr >= efuse_max_available_len) {
bRet = false;
RTW_INFO("%s: startAddr(%d) >= efuse_max_available_len(%d)\n",
__func__, startAddr, efuse_max_available_len);
break;
}
if (efuse_OneByteRead(adapt, startAddr, &efuse_data, bPseudoTest) && (efuse_data != 0xFF)) {
bRet = false;
RTW_INFO("%s: Something Wrong! last bytes(%#X=0x%02X) is not 0xFF\n",
__func__, startAddr, efuse_data);
break;
} else {
/* not used header, 0xff */
*pAddr = startAddr;
/* RTW_INFO("%s: Started from unused header offset=%d\n", __func__, startAddr)); */
bRet = true;
break;
}
}
return bRet;
}
static bool
hal_EfusePgPacketWrite1ByteHeader(
struct adapter * pAdapter,
u8 efuseType,
u16 *pAddr,
struct pg_pkt_struct * pTargetPkt,
u8 bPseudoTest)
{
u8 pg_header = 0, tmp_header = 0;
u16 efuse_addr = *pAddr;
u8 repeatcnt = 0;
/* RTW_INFO("%s\n", __func__); */
pg_header = ((pTargetPkt->offset << 4) & 0xf0) | pTargetPkt->word_en;
do {
efuse_OneByteWrite(pAdapter, efuse_addr, pg_header, bPseudoTest);
efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header, bPseudoTest);
if (tmp_header != 0xFF)
break;
if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) {
RTW_INFO("%s: Repeat over limit for pg_header!!\n", __func__);
return false;
}
} while (1);
if (tmp_header != pg_header) {
RTW_INFO(KERN_ERR "%s: PG Header Fail!!(pg=0x%02X read=0x%02X)\n", __func__, pg_header, tmp_header);
return false;
}
*pAddr = efuse_addr;
return true;
}
static bool
hal_EfusePgPacketWrite2ByteHeader(
struct adapter * adapt,
u8 efuseType,
u16 *pAddr,
struct pg_pkt_struct * pTargetPkt,
u8 bPseudoTest)
{
u16 efuse_addr, efuse_max_available_len = 0;
u8 pg_header = 0, tmp_header = 0;
u8 repeatcnt = 0;
/* RTW_INFO("%s\n", __func__); */
EFUSE_GetEfuseDefinition(adapt, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_BANK, &efuse_max_available_len, bPseudoTest);
efuse_addr = *pAddr;
if (efuse_addr >= efuse_max_available_len) {
RTW_INFO("%s: addr(%d) over available(%d)!!\n", __func__, efuse_addr, efuse_max_available_len);
return false;
}
pg_header = ((pTargetPkt->offset & 0x07) << 5) | 0x0F;
/* RTW_INFO("%s: pg_header=0x%x\n", __func__, pg_header); */
do {
efuse_OneByteWrite(adapt, efuse_addr, pg_header, bPseudoTest);
efuse_OneByteRead(adapt, efuse_addr, &tmp_header, bPseudoTest);
if (tmp_header != 0xFF)
break;
if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) {
RTW_INFO("%s: Repeat over limit for pg_header!!\n", __func__);
return false;
}
} while (1);
if (tmp_header != pg_header) {
RTW_INFO(KERN_ERR "%s: PG Header Fail!!(pg=0x%02X read=0x%02X)\n", __func__, pg_header, tmp_header);
return false;
}
/* to write ext_header */
efuse_addr++;
pg_header = ((pTargetPkt->offset & 0x78) << 1) | pTargetPkt->word_en;
do {
efuse_OneByteWrite(adapt, efuse_addr, pg_header, bPseudoTest);
efuse_OneByteRead(adapt, efuse_addr, &tmp_header, bPseudoTest);
if (tmp_header != 0xFF)
break;
if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) {
RTW_INFO("%s: Repeat over limit for ext_header!!\n", __func__);
return false;
}
} while (1);
if (tmp_header != pg_header) { /* offset PG fail */
RTW_INFO(KERN_ERR "%s: PG EXT Header Fail!!(pg=0x%02X read=0x%02X)\n", __func__, pg_header, tmp_header);
return false;
}
*pAddr = efuse_addr;
return true;
}
static u8
hal_EfusePgPacketWriteHeader(
struct adapter * adapt,
u8 efuseType,
u16 *pAddr,
struct pg_pkt_struct * pTargetPkt,
u8 bPseudoTest)
{
u8 bRet = false;
if (pTargetPkt->offset >= EFUSE_MAX_SECTION_BASE)
bRet = hal_EfusePgPacketWrite2ByteHeader(adapt, efuseType, pAddr, pTargetPkt, bPseudoTest);
else
bRet = hal_EfusePgPacketWrite1ByteHeader(adapt, efuseType, pAddr, pTargetPkt, bPseudoTest);
return bRet;
}
static bool
hal_EfusePgPacketWriteData(
struct adapter * pAdapter,
u8 efuseType,
u16 *pAddr,
struct pg_pkt_struct * pTargetPkt,
u8 bPseudoTest)
{
u16 efuse_addr;
u8 badworden;
efuse_addr = *pAddr;
badworden = Efuse_WordEnableDataWrite(pAdapter, efuse_addr + 1, pTargetPkt->word_en, pTargetPkt->data, bPseudoTest);
if (badworden != 0x0F) {
RTW_INFO("%s: Fail!!\n", __func__);
return false;
}
/* RTW_INFO("%s: ok\n", __func__); */
return true;
}
static bool Hal_EfusePgPacketWrite(struct adapter * adapt,
u8 offset,
u8 word_en,
u8 *pData,
bool bPseudoTest)
{
struct pg_pkt_struct targetPkt;
u16 startAddr = 0;
u8 efuseType = EFUSE_WIFI;
if (!hal_EfusePgCheckAvailableAddr(adapt, efuseType, bPseudoTest))
return false;
hal_EfuseConstructPGPkt(offset, word_en, pData, &targetPkt);
if (!hal_EfusePartialWriteCheck(adapt, efuseType, &startAddr, &targetPkt, bPseudoTest))
return false;
if (!hal_EfusePgPacketWriteHeader(adapt, efuseType, &startAddr, &targetPkt, bPseudoTest))
return false;
if (!hal_EfusePgPacketWriteData(adapt, efuseType, &startAddr, &targetPkt, bPseudoTest))
return false;
return true;
}
static bool
Hal_EfusePgPacketWrite_BT(
struct adapter * pAdapter,
u8 offset,
u8 word_en,
u8 *pData,
bool bPseudoTest)
{
struct pg_pkt_struct targetPkt;
u16 startAddr = 0;
u8 efuseType = EFUSE_BT;
if (!hal_EfusePgCheckAvailableAddr(pAdapter, efuseType, bPseudoTest))
return false;
hal_EfuseConstructPGPkt(offset, word_en, pData, &targetPkt);
if (!hal_EfusePartialWriteCheck(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
return false;
if (!hal_EfusePgPacketWriteHeader(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
return false;
if (!hal_EfusePgPacketWriteData(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
return false;
return true;
}
static void read_chip_version_8723d(struct adapter * adapt)
{
u32 value32;
struct hal_com_data *pHalData;
pHalData = GET_HAL_DATA(adapt);
value32 = rtw_read32(adapt, REG_SYS_CFG);
pHalData->version_id.ICType = CHIP_8723D;
pHalData->version_id.ChipType = ((value32 & RTL_ID) ? TEST_CHIP : NORMAL_CHIP);
pHalData->version_id.RFType = RF_TYPE_1T1R;
pHalData->version_id.VendorType = ((value32 & VENDOR_ID) ? CHIP_VENDOR_UMC : CHIP_VENDOR_TSMC);
pHalData->version_id.CUTVersion = (value32 & CHIP_VER_RTL_MASK) >> CHIP_VER_RTL_SHIFT; /* IC version (CUT) */
/* For regulator mode. by tynli. 2011.01.14 */
pHalData->RegulatorMode = ((value32 & SPS_SEL) ? RT_LDO_REGULATOR : RT_SWITCHING_REGULATOR);
value32 = rtw_read32(adapt, REG_GPIO_OUTSTS);
pHalData->version_id.ROMVer = ((value32 & RF_RL_ID) >> 20); /* ROM code version. */
/* For multi-function consideration. Added by Roger, 2010.10.06. */
pHalData->MultiFunc = RT_MULTI_FUNC_NONE;
value32 = rtw_read32(adapt, REG_MULTI_FUNC_CTRL);
pHalData->MultiFunc |= ((value32 & WL_FUNC_EN) ? RT_MULTI_FUNC_WIFI : 0);
pHalData->MultiFunc |= ((value32 & BT_FUNC_EN) ? RT_MULTI_FUNC_BT : 0);
pHalData->MultiFunc |= ((value32 & GPS_FUNC_EN) ? RT_MULTI_FUNC_GPS : 0);
pHalData->PolarityCtl = ((value32 & WL_HWPDN_SL) ? RT_POLARITY_HIGH_ACT : RT_POLARITY_LOW_ACT);
rtw_hal_config_rftype(adapt);
/*
if( IS_B_CUT(pHalData->version_id) || IS_C_CUT(pHalData->version_id))
{
RTW_INFO(" IS_B/C_CUT SWR up 1 level !!!!!!!!!!!!!!!!!\n");
phy_set_mac_reg(adapt, 0x14, BIT(23)|BIT(22)|BIT(21)|BIT(20), 0x5);
}else if ( IS_D_CUT(pHalData->version_id))
{
RTW_INFO(" IS_D_CUT SKIP SWR !!!!!!!!!!!!!!!!!\n");
}
*/
dump_chip_info(pHalData->version_id);
}
void rtl8723d_InitBeaconParameters(struct adapter * adapt)
{
u16 val16;
u8 val8;
val8 = DIS_TSF_UDT;
val16 = val8 | (val8 << 8); /* port0 and port1 */
/* Enable prot0 beacon function for PSTDMA */
val16 |= EN_BCN_FUNCTION;
#ifdef CONFIG_CONCURRENT_MODE
val16 |= (EN_BCN_FUNCTION << 8);
#endif
rtw_write16(adapt, REG_BCN_CTRL, val16);
/* TBTT setup time */
rtw_write8(adapt, REG_TBTT_PROHIBIT, TBTT_PROHIBIT_SETUP_TIME);
/* TBTT hold time: 0x540[19:8] */
rtw_write8(adapt, REG_TBTT_PROHIBIT + 1, TBTT_PROHIBIT_HOLD_TIME_STOP_BCN & 0xFF);
rtw_write8(adapt, REG_TBTT_PROHIBIT + 2,
(rtw_read8(adapt, REG_TBTT_PROHIBIT + 2) & 0xF0) | (TBTT_PROHIBIT_HOLD_TIME_STOP_BCN >> 8));
/* Firmware will control REG_DRVERLYINT when power saving is enable, */
/* so don't set this register on STA mode. */
if (!check_fwstate(&adapt->mlmepriv, WIFI_STATION_STATE))
rtw_write8(adapt, REG_DRVERLYINT, DRIVER_EARLY_INT_TIME_8723D); /* 5ms */
rtw_write8(adapt, REG_BCNDMATIM, BCN_DMA_ATIME_INT_TIME_8723D); /* 2ms */
/* Suggested by designer timchen. Change beacon AIFS to the largest number */
/* beacause test chip does not contension before sending beacon. by tynli. 2009.11.03 */
rtw_write16(adapt, REG_BCNTCFG, 0x660F);
}
void rtl8723d_InitBeaconMaxError(struct adapter * adapt, u8 InfraMode)
{
#ifdef CONFIG_ADHOC_WORKAROUND_SETTING
rtw_write8(adapt, REG_BCN_MAX_ERR, 0xFF);
#else
/* rtw_write8(Adapter, REG_BCN_MAX_ERR, (InfraMode ? 0xFF : 0x10)); */
#endif
}
void _InitMacAPLLSetting_8723D(struct adapter * Adapter)
{
struct hal_com_data * pHalData = GET_HAL_DATA(Adapter);
u16 RegValue;
u8 afe;
RegValue = rtw_read16(Adapter, REG_AFE_CTRL_4_8723D);
RegValue |= BIT(4);
RegValue |= BIT(15);
rtw_write16(Adapter, REG_AFE_CTRL_4_8723D, RegValue);
/*
* 8723D with 24MHz xtal has VCO noise issue
* This will cause some TRx test fail
* Therefore, set MAC GM parameter for 24MHz xtal
* AFE[0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ] =
* [ 40M 25M 13M 19.2M 20M 26M 38.4M 17.664M 16M 14.318M 12M 52M 48M 27M 24M ]
*/
afe = (pHalData->efuse_eeprom_data[4] >>4);
if( afe == 14) {
rtw_write32(Adapter, 0x2c, (rtw_read32(Adapter, 0x2c) | BIT28));
rtw_write32(Adapter, 0x24, (rtw_read32(Adapter, 0x24) & 0xFFFFFF0F));
rtw_write32(Adapter, 0x7c, ((rtw_read32(Adapter, 0x7c) | BIT29) & (~BIT28)));
}
}
static void _BeaconFunctionEnable(struct adapter * adapt, u8 Enable, u8 Linked)
{
rtw_write8(adapt, REG_BCN_CTRL, DIS_TSF_UDT | EN_BCN_FUNCTION | DIS_BCNQ_SUB);
rtw_write8(adapt, REG_RD_CTRL + 1, 0x6F);
}
static void rtl8723d_SetBeaconRelatedRegisters(struct adapter * adapt)
{
u8 val8;
u32 value32;
struct mlme_ext_priv *pmlmeext = &adapt->mlmeextpriv;
struct mlme_ext_info *pmlmeinfo = &pmlmeext->mlmext_info;
u32 bcn_ctrl_reg;
/* reset TSF, enable update TSF, correcting TSF On Beacon */
/* REG_BCN_INTERVAL */
/* REG_BCNDMATIM */
/* REG_ATIMWND */
/* REG_TBTT_PROHIBIT */
/* REG_DRVERLYINT */
/* REG_BCN_MAX_ERR */
/* REG_BCNTCFG //(0x510) */
/* REG_DUAL_TSF_RST */
/* REG_BCN_CTRL //(0x550) */
bcn_ctrl_reg = REG_BCN_CTRL;
#ifdef CONFIG_CONCURRENT_MODE
if (adapt->hw_port == HW_PORT1)
bcn_ctrl_reg = REG_BCN_CTRL_1;
#endif
/* */
/* ATIM window */
/* */
rtw_write16(adapt, REG_ATIMWND, 2);
/* */
/* Beacon interval (in unit of TU). */
/* */
rtw_write16(adapt, REG_BCN_INTERVAL, pmlmeinfo->bcn_interval);
rtl8723d_InitBeaconParameters(adapt);
rtw_write8(adapt, REG_SLOT, 0x09);
/* */
/* Reset TSF Timer to zero, added by Roger. 2008.06.24 */
/* */
value32 = rtw_read32(adapt, REG_TCR);
value32 &= ~TSFRST;
rtw_write32(adapt, REG_TCR, value32);
value32 |= TSFRST;
rtw_write32(adapt, REG_TCR, value32);
/* NOTE: Fix test chip's bug (about contention windows's randomness) */
if (check_fwstate(&adapt->mlmepriv, WIFI_ADHOC_STATE | WIFI_ADHOC_MASTER_STATE | WIFI_AP_STATE | WIFI_MESH_STATE)) {
rtw_write8(adapt, REG_RXTSF_OFFSET_CCK, 0x50);
rtw_write8(adapt, REG_RXTSF_OFFSET_OFDM, 0x50);
}
_BeaconFunctionEnable(adapt, true, true);
ResumeTxBeacon(adapt);
val8 = rtw_read8(adapt, bcn_ctrl_reg);
val8 |= DIS_BCNQ_SUB;
rtw_write8(adapt, bcn_ctrl_reg, val8);
}
static void hal_notch_filter_8723d(struct adapter *adapter, bool enable)
{
if (enable) {
RTW_INFO("Enable notch filter\n");
rtw_write8(adapter, rOFDM0_RxDSP + 1, rtw_read8(adapter, rOFDM0_RxDSP + 1) | BIT(1));
} else {
RTW_INFO("Disable notch filter\n");
rtw_write8(adapter, rOFDM0_RxDSP + 1, rtw_read8(adapter, rOFDM0_RxDSP + 1) & ~BIT(1));
}
}
/*
* Description: In normal chip, we should send some packet to Hw which will be used by Fw
* in FW LPS mode. The function is to fill the Tx descriptor of this packets, then
* Fw can tell Hw to send these packet derectly.
* Added by tynli. 2009.10.15.
*
* type1:pspoll, type2:null */
void rtl8723d_fill_fake_txdesc(
struct adapter * adapt,
u8 *pDesc,
u32 BufferLen,
u8 IsPsPoll,
u8 IsBTQosNull,
u8 bDataFrame)
{
/* Clear all status */
memset(pDesc, 0, TXDESC_SIZE);
SET_TX_DESC_OFFSET_8723D(pDesc, 0x28); /* Offset = 32 */
SET_TX_DESC_PKT_SIZE_8723D(pDesc, BufferLen); /* Buffer size + command header */
SET_TX_DESC_QUEUE_SEL_8723D(pDesc, QSLT_MGNT); /* Fixed queue of Mgnt queue */
/* Set NAVUSEHDR to prevent Ps-poll AId filed to be changed to error vlaue by Hw. */
if (IsPsPoll) {
SET_TX_DESC_NAV_USE_HDR_8723D(pDesc, 1);
} else {
SET_TX_DESC_HWSEQ_EN_8723D(pDesc, 1); /* Hw set sequence number */
SET_TX_DESC_HWSEQ_SEL_8723D(pDesc, 0);
}
if (IsBTQosNull)
SET_TX_DESC_BT_INT_8723D(pDesc, 1);
SET_TX_DESC_USE_RATE_8723D(pDesc, 1); /* use data rate which is set by Sw */
SET_TX_DESC_TX_RATE_8723D(pDesc, DESC8723D_RATE1M);
/* */
/* Encrypt the data frame if under security mode excepct null data. Suggested by CCW. */
/* */
if (bDataFrame) {
u32 EncAlg;
EncAlg = adapt->securitypriv.dot11PrivacyAlgrthm;
switch (EncAlg) {
case _NO_PRIVACY_:
SET_TX_DESC_SEC_TYPE_8723D(pDesc, 0x0);
break;
case _WEP40_:
case _WEP104_:
case _TKIP_:
SET_TX_DESC_SEC_TYPE_8723D(pDesc, 0x1);
break;
case _SMS4_:
SET_TX_DESC_SEC_TYPE_8723D(pDesc, 0x2);
break;
case _AES_:
SET_TX_DESC_SEC_TYPE_8723D(pDesc, 0x3);
break;
default:
SET_TX_DESC_SEC_TYPE_8723D(pDesc, 0x0);
break;
}
}
/*
* USB interface drop packet if the checksum of descriptor isn't correct.
* Using this checksum can let hardware recovery from packet bulk out error (e.g. Cancel URC, Bulk out error.).
*/
rtl8723d_cal_txdesc_chksum((struct tx_desc *)pDesc);
}
void rtl8723d_InitAntenna_Selection(struct adapter * adapt)
{
rtw_write8(adapt, REG_LEDCFG2, 0x82);
}
void rtl8723d_CheckAntenna_Selection(struct adapter * adapt)
{
}
void rtl8723d_DeinitAntenna_Selection(struct adapter * adapt)
{
}
void init_hal_spec_8723d(struct adapter *adapter)
{
struct hal_spec_t *hal_spec = GET_HAL_SPEC(adapter);
hal_spec->ic_name = "rtl8723d";
hal_spec->macid_num = 16;
hal_spec->sec_cam_ent_num = 32;
hal_spec->sec_cap = SEC_CAP_CHK_BMC;
hal_spec->rfpath_num_2g = 2;
hal_spec->rfpath_num_5g = 0;
hal_spec->max_tx_cnt = 1;
hal_spec->tx_nss_num = 1;
hal_spec->rx_nss_num = 1;
hal_spec->band_cap = BAND_CAP_2G;
hal_spec->bw_cap = BW_CAP_20M | BW_CAP_40M;
hal_spec->port_num = 3;
hal_spec->proto_cap = PROTO_CAP_11B | PROTO_CAP_11G | PROTO_CAP_11N;
hal_spec->wl_func = 0
| WL_FUNC_P2P
| WL_FUNC_MIRACAST
| WL_FUNC_TDLS
;
rtw_macid_ctl_init_sleep_reg(adapter_to_macidctl(adapter)
, REG_MACID_SLEEP, 0, 0, 0);
}
void rtl8723d_init_default_value(struct adapter * adapt)
{
struct hal_com_data * pHalData;
u8 i;
pHalData = GET_HAL_DATA(adapt);
adapt->registrypriv.wireless_mode = WIRELESS_11BG_24N;
/* init default value */
pHalData->fw_ractrl = false;
if (!adapter_to_pwrctl(adapt)->bkeepfwalive)
pHalData->LastHMEBoxNum = 0;
/* init phydm default value */
pHalData->bIQKInitialized = false;
pHalData->odmpriv.rf_calibrate_info.tm_trigger = 0;/* for IQK */
pHalData->odmpriv.rf_calibrate_info.thermal_value_hp_index = 0;
for (i = 0; i < HP_THERMAL_NUM; i++)
pHalData->odmpriv.rf_calibrate_info.thermal_value_hp[i] = 0;
/* init Efuse variables */
pHalData->EfuseUsedBytes = 0;
pHalData->EfuseUsedPercentage = 0;
#ifdef HAL_EFUSE_MEMORY
pHalData->EfuseHal.fakeEfuseBank = 0;
pHalData->EfuseHal.fakeEfuseUsedBytes = 0;
memset(pHalData->EfuseHal.fakeEfuseContent, 0xFF, EFUSE_MAX_HW_SIZE);
memset(pHalData->EfuseHal.fakeEfuseInitMap, 0xFF, EFUSE_MAX_MAP_LEN);
memset(pHalData->EfuseHal.fakeEfuseModifiedMap, 0xFF, EFUSE_MAX_MAP_LEN);
pHalData->EfuseHal.BTEfuseUsedBytes = 0;
pHalData->EfuseHal.BTEfuseUsedPercentage = 0;
memset(pHalData->EfuseHal.BTEfuseContent, 0xFF, EFUSE_MAX_BT_BANK * EFUSE_MAX_HW_SIZE);
memset(pHalData->EfuseHal.BTEfuseInitMap, 0xFF, EFUSE_BT_MAX_MAP_LEN);
memset(pHalData->EfuseHal.BTEfuseModifiedMap, 0xFF, EFUSE_BT_MAX_MAP_LEN);
pHalData->EfuseHal.fakeBTEfuseUsedBytes = 0;
memset(pHalData->EfuseHal.fakeBTEfuseContent, 0xFF, EFUSE_MAX_BT_BANK * EFUSE_MAX_HW_SIZE);
memset(pHalData->EfuseHal.fakeBTEfuseInitMap, 0xFF, EFUSE_BT_MAX_MAP_LEN);
memset(pHalData->EfuseHal.fakeBTEfuseModifiedMap, 0xFF, EFUSE_BT_MAX_MAP_LEN);
#endif
pHalData->need_restore = false;
}
u8 GetEEPROMSize8723D(struct adapter * adapt)
{
u8 size = 0;
u32 cr;
cr = rtw_read16(adapt, REG_9346CR);
/* 6: EEPROM used is 93C46, 4: boot from E-Fuse. */
size = (cr & BOOT_FROM_EEPROM) ? 6 : 4;
RTW_INFO("EEPROM type is %s\n", size == 4 ? "E-FUSE" : "93C46");
return size;
}
/* -------------------------------------------------------------------------
*
* LLT R/W/Init function
*
* ------------------------------------------------------------------------- */
int rtl8723d_InitLLTTable(struct adapter * adapt)
{
unsigned long start;
u32 passing_time;
u32 val32;
int ret;
ret = _FAIL;
val32 = rtw_read32(adapt, REG_AUTO_LLT);
val32 |= BIT_AUTO_INIT_LLT;
rtw_write32(adapt, REG_AUTO_LLT, val32);
start = rtw_get_current_time();
do {
val32 = rtw_read32(adapt, REG_AUTO_LLT);
if (!(val32 & BIT_AUTO_INIT_LLT)) {
ret = _SUCCESS;
break;
}
passing_time = rtw_get_passing_time_ms(start);
if (passing_time > 1000) {
RTW_INFO("%s: FAIL!! REG_AUTO_LLT(0x%X)=%08x\n",
__func__, REG_AUTO_LLT, val32);
break;
}
rtw_usleep_os(2);
} while (1);
return ret;
}
static void _DisableGPIO(struct adapter * adapt)
{
/***************************************
j. GPIO_PIN_CTRL 0x44[31:0]=0x000
k.Value = GPIO_PIN_CTRL[7:0]
l. GPIO_PIN_CTRL 0x44[31:0] = 0x00FF0000 | (value <<8);
m. GPIO_MUXCFG 0x42 [15:0] = 0x0780
n. LEDCFG 0x4C[15:0] = 0x8080
***************************************/
u8 value8;
u16 value16;
u32 value32;
u32 u4bTmp;
/* 1. Disable GPIO[7:0] */
rtw_write16(adapt, REG_GPIO_PIN_CTRL + 2, 0x0000);
value32 = rtw_read32(adapt, REG_GPIO_PIN_CTRL) & 0xFFFF00FF;
u4bTmp = value32 & 0x000000FF;
value32 |= ((u4bTmp << 8) | 0x00FF0000);
rtw_write32(adapt, REG_GPIO_PIN_CTRL, value32);
/* 2. Disable GPIO[10:8] */
rtw_write8(adapt, REG_MAC_PINMUX_CFG, 0x00);
value16 = rtw_read16(adapt, REG_GPIO_IO_SEL) & 0xFF0F;
value8 = (u8)(value16 & 0x000F);
value16 |= ((value8 << 4) | 0x0780);
rtw_write16(adapt, REG_GPIO_IO_SEL, value16);
/* 3. Disable LED0 & 1 */
rtw_write16(adapt, REG_LEDCFG0, 0x8080);
} /* end of _DisableGPIO() */
static void _DisableRFAFEAndResetBB8723D(struct adapter * adapt)
{
/**************************************
a. TXPAUSE 0x522[7:0] = 0xFF
b. RF path 0 offset 0x00 = 0x00
c. APSD_CTRL 0x600[7:0] = 0x40
d. SYS_FUNC_EN 0x02[7:0] = 0x16
e. SYS_FUNC_EN 0x02[7:0] = 0x14
***************************************/
enum rf_path eRFPath = RF_PATH_A, value8 = 0;
rtw_write8(adapt, REG_TXPAUSE, 0xFF);
phy_set_rf_reg(adapt, eRFPath, 0x0, bMaskByte0, 0x0);
value8 |= APSDOFF;
rtw_write8(adapt, REG_APSD_CTRL, value8);/* 0x40 */
/* Set BB reset at first */
value8 = 0;
value8 |= (FEN_USBD | FEN_USBA | FEN_BB_GLB_RSTn);
rtw_write8(adapt, REG_SYS_FUNC_EN, value8); /* 0x16 */
/* Set global reset. */
value8 &= ~FEN_BB_GLB_RSTn;
rtw_write8(adapt, REG_SYS_FUNC_EN, value8); /* 0x14 */
/* 2010/08/12 MH We need to set BB/GLBAL reset to save power for SS mode. */
}
static void _DisableRFAFEAndResetBB(struct adapter * adapt)
{
_DisableRFAFEAndResetBB8723D(adapt);
}
static void _ResetDigitalProcedure1_8723D(struct adapter * adapt, bool bWithoutHWSM)
{
struct hal_com_data *pHalData = GET_HAL_DATA(adapt);
if (IS_FW_81xxC(adapt) && (pHalData->firmware_version <= 0x20)) {
/*****************************
f. MCUFWDL 0x80[7:0]=0
g. SYS_FUNC_EN 0x02[10]= 0
h. SYS_FUNC_EN 0x02[15-12]= 5
i. SYS_FUNC_EN 0x02[10]= 1
******************************/
u16 valu16 = 0;
rtw_write8(adapt, REG_MCUFWDL, 0);
valu16 = rtw_read16(adapt, REG_SYS_FUNC_EN);
rtw_write16(adapt, REG_SYS_FUNC_EN, (valu16 & (~FEN_CPUEN)));/* reset MCU ,8051 */
valu16 = rtw_read16(adapt, REG_SYS_FUNC_EN) & 0x0FFF;
rtw_write16(adapt, REG_SYS_FUNC_EN, (valu16 | (FEN_HWPDN | FEN_ELDR))); /* reset MAC */
valu16 = rtw_read16(adapt, REG_SYS_FUNC_EN);
rtw_write16(adapt, REG_SYS_FUNC_EN, (valu16 | FEN_CPUEN));/* enable MCU ,8051 */
} else {
u8 retry_cnts = 0;
/* 2010/08/12 MH For USB SS, we can not stop 8051 when we are trying to */
/* enter IPS/HW&SW radio off. For S3/S4/S5/Disable, we can stop 8051 because */
/* we will init FW when power on again. */
/* if(!pDevice->RegUsbSS) */
{ /* If we want to SS mode, we can not reset 8051. */
if (rtw_read8(adapt, REG_MCUFWDL) & BIT(1)) {
/* IF fw in RAM code, do reset */
if (pHalData->bFWReady) {
/* 2010/08/25 MH According to RD alfred's suggestion, we need to disable other */
/* HRCV INT to influence 8051 reset. */
rtw_write8(adapt, REG_FWIMR, 0x20);
/* 2011/02/15 MH According to Alex's suggestion, close mask to prevent incorrect FW write operation. */
rtw_write8(adapt, REG_FTIMR, 0x00);
rtw_write8(adapt, REG_FSIMR, 0x00);
rtw_write8(adapt, REG_HMETFR + 3, 0x20); /* 8051 reset by self */
while ((retry_cnts++ < 100) && (FEN_CPUEN & rtw_read16(adapt, REG_SYS_FUNC_EN))) {
rtw_udelay_os(50);/* us */
/* 2010/08/25 For test only We keep on reset 5051 to prevent fail. */
/* rtw_write8(adapt, REG_HMETFR+3, 0x20);//8051 reset by self */
}
/* RT_ASSERT((retry_cnts < 100), ("8051 reset failed!\n")); */
if (retry_cnts >= 100) {
/* if 8051 reset fail we trigger GPIO 0 for LA */
/* rtw_write32( adapt, */
/* REG_GPIO_PIN_CTRL, */
/* 0x00010100); */
/* 2010/08/31 MH According to Filen's info, if 8051 reset fail, reset MAC directly. */
rtw_write8(adapt, REG_SYS_FUNC_EN + 1, 0x50); /* Reset MAC and Enable 8051 */
rtw_mdelay_os(10);
}
}
}
rtw_write8(adapt, REG_SYS_FUNC_EN + 1, 0x54); /* Reset MAC and Enable 8051 */
rtw_write8(adapt, REG_MCUFWDL, 0);
}
}
/* if(pDevice->RegUsbSS) */
/* bWithoutHWSM = true; // Sugest by Filen and Issau. */
if (bWithoutHWSM) {
/* struct hal_com_data *pHalData = GET_HAL_DATA(adapt); */
/*****************************
Without HW auto state machine
g. SYS_CLKR 0x08[15:0] = 0x30A3
h. AFE_PLL_CTRL 0x28[7:0] = 0x80
i. AFE_XTAL_CTRL 0x24[15:0] = 0x880F
j. SYS_ISO_CTRL 0x00[7:0] = 0xF9
******************************/
/* rtw_write16(adapt, REG_SYS_CLKR, 0x30A3); */
/* if(!pDevice->RegUsbSS) */
/* 2011/01/26 MH SD4 Scott suggest to fix UNC-B cut bug. */
rtw_write16(adapt, REG_SYS_CLKR, 0x70A3); /* modify to 0x70A3 by Scott. */
rtw_write8(adapt, REG_AFE_PLL_CTRL, 0x80);
rtw_write16(adapt, REG_AFE_XTAL_CTRL, 0x880F);
/* if(!pDevice->RegUsbSS) */
rtw_write8(adapt, REG_SYS_ISO_CTRL, 0xF9);
} else {
/* Disable all RF/BB power */
rtw_write8(adapt, REG_RF_CTRL, 0x00);
}
}
static void _ResetDigitalProcedure1(struct adapter * adapt, bool bWithoutHWSM)
{
_ResetDigitalProcedure1_8723D(adapt, bWithoutHWSM);
}
static void _ResetDigitalProcedure2(struct adapter * adapt)
{
/* struct hal_com_data *pHalData = GET_HAL_DATA(adapt);
*****************************
k. SYS_FUNC_EN 0x03[7:0] = 0x44
l. SYS_CLKR 0x08[15:0] = 0x3083
m. SYS_ISO_CTRL 0x01[7:0] = 0x83
******************************/
/* rtw_write8(adapt, REG_SYS_FUNC_EN+1, 0x44); //marked by Scott. */
/* 2011/01/26 MH SD4 Scott suggest to fix UNC-B cut bug. */
rtw_write16(adapt, REG_SYS_CLKR, 0x70a3); /* modify to 0x70a3 by Scott. */
rtw_write8(adapt, REG_SYS_ISO_CTRL + 1, 0x82); /* modify to 0x82 by Scott. */
}
static void _DisableAnalog(struct adapter * adapt, bool bWithoutHWSM)
{
u16 value16 = 0;
u8 value8 = 0;
if (bWithoutHWSM) {
/*****************************
n. LDOA15_CTRL 0x20[7:0] = 0x04
o. LDOV12D_CTRL 0x21[7:0] = 0x54
r. When driver call disable, the ASIC will turn off remaining clock automatically
******************************/
rtw_write8(adapt, REG_LDOA15_CTRL, 0x04);
/* rtw_write8(adapt, REG_LDOV12D_CTRL, 0x54); */
value8 = rtw_read8(adapt, REG_LDOV12D_CTRL);
value8 &= (~LDV12_EN);
rtw_write8(adapt, REG_LDOV12D_CTRL, value8);
}
/*****************************
h. SPS0_CTRL 0x11[7:0] = 0x23
i. APS_FSMCO 0x04[15:0] = 0x4802
******************************/
value8 = 0x23;
rtw_write8(adapt, REG_SPS0_CTRL, value8);
if (bWithoutHWSM) {
/* value16 |= (APDM_HOST | AFSM_HSUS |PFM_ALDN); */
/* 2010/08/31 According to Filen description, we need to use HW to shut down 8051 automatically. */
/* Because suspend operation need the asistance of 8051 to wait for 3ms. */
value16 |= (APDM_HOST | AFSM_HSUS | PFM_ALDN);
} else
value16 |= (APDM_HOST | AFSM_HSUS | PFM_ALDN);
rtw_write16(adapt, REG_APS_FSMCO, value16);/* 0x4802 */
rtw_write8(adapt, REG_RSV_CTRL, 0x0e);
}
/* HW Auto state machine */
int CardDisableHWSM(struct adapter * adapt, u8 resetMCU)
{
int rtStatus = _SUCCESS;
if (RTW_CANNOT_RUN(adapt))
return rtStatus;
/* ==== RF Off Sequence ==== */
_DisableRFAFEAndResetBB(adapt);
/* ==== Reset digital sequence ====== */
_ResetDigitalProcedure1(adapt, false);
/* ==== Pull GPIO PIN to balance level and LED control ====== */
_DisableGPIO(adapt);
/* ==== Disable analog sequence === */
_DisableAnalog(adapt, false);
return rtStatus;
}
/* without HW Auto state machine */
int CardDisableWithoutHWSM(struct adapter * adapt)
{
int rtStatus = _SUCCESS;
if (RTW_CANNOT_RUN(adapt))
return rtStatus;
/* ==== RF Off Sequence ==== */
_DisableRFAFEAndResetBB(adapt);
/* ==== Reset digital sequence ====== */
_ResetDigitalProcedure1(adapt, true);
/* ==== Pull GPIO PIN to balance level and LED control ====== */
_DisableGPIO(adapt);
/* ==== Reset digital sequence ====== */
_ResetDigitalProcedure2(adapt);
/* ==== Disable analog sequence === */
_DisableAnalog(adapt, true);
return rtStatus;
}
void
Hal_InitPGData(
struct adapter * adapt,
u8 *PROMContent)
{
struct hal_com_data *pHalData = GET_HAL_DATA(adapt);
u32 i;
if (false == pHalData->bautoload_fail_flag) {
/* autoload OK.
* if (IS_BOOT_FROM_EEPROM(adapt)) */
if (pHalData->EepromOrEfuse) {
/* Read all Content from EEPROM or EFUSE. */
for (i = 0; i < HWSET_MAX_SIZE_8723D; i += 2) {
/* value16 = EF2Byte(ReadEEprom(pAdapter, (u16) (i>>1)));
* *((u16*)(&PROMContent[i])) = value16; */
}
} else {
/* Read EFUSE real map to shadow. */
EFUSE_ShadowMapUpdate(adapt, EFUSE_WIFI, false);
memcpy((void *)PROMContent, (void *)pHalData->efuse_eeprom_data, HWSET_MAX_SIZE_8723D);
}
} else {
/* autoload fail */
/* pHalData->AutoloadFailFlag = true; */
/* update to default value 0xFF */
if (false == pHalData->EepromOrEfuse)
EFUSE_ShadowMapUpdate(adapt, EFUSE_WIFI, false);
memcpy((void *)PROMContent, (void *)pHalData->efuse_eeprom_data, HWSET_MAX_SIZE_8723D);
}
#ifdef CONFIG_EFUSE_CONFIG_FILE
if (!check_phy_efuse_tx_power_info_valid(adapt)) {
if (Hal_readPGDataFromConfigFile(adapt) != _SUCCESS)
RTW_ERR("invalid phy efuse and read from file fail, will use driver default!!\n");
}
#endif
}
void
Hal_EfuseParseIDCode(
struct adapter * adapt,
u8 *hwinfo
)
{
struct hal_com_data *pHalData = GET_HAL_DATA(adapt);
u16 EEPROMId;
/* Checl 0x8129 again for making sure autoload status!! */
EEPROMId = le16_to_cpu(*((__le16 *)hwinfo));
if (EEPROMId != RTL_EEPROM_ID) {
RTW_INFO("EEPROM ID(%#x) is invalid!!\n", EEPROMId);
pHalData->bautoload_fail_flag = true;
} else
pHalData->bautoload_fail_flag = false;
}
void
Hal_EfuseParseTxPowerInfo_8723D(
struct adapter * adapt,
u8 *PROMContent,
bool AutoLoadFail
)
{
struct hal_com_data *pHalData = GET_HAL_DATA(adapt);
struct TxPowerInfo24G pwrInfo24G;
hal_load_txpwr_info(adapt, &pwrInfo24G, NULL, PROMContent);
/* 2010/10/19 MH Add Regulator recognize for CU. */
if (!AutoLoadFail) {
pHalData->EEPROMRegulatory = (PROMContent[EEPROM_RF_BOARD_OPTION_8723D] & 0x7); /* bit0~2 */
if (PROMContent[EEPROM_RF_BOARD_OPTION_8723D] == 0xFF)
pHalData->EEPROMRegulatory = (EEPROM_DEFAULT_BOARD_OPTION & 0x7); /* bit0~2 */
} else
pHalData->EEPROMRegulatory = 0;
}
void
Hal_EfuseParseBoardType_8723D(
struct adapter * Adapter,
u8 *PROMContent,
bool AutoloadFail
)
{
struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
if (!AutoloadFail) {
pHalData->InterfaceSel = (PROMContent[EEPROM_RF_BOARD_OPTION_8723D] & 0xE0) >> 5;
if (PROMContent[EEPROM_RF_BOARD_OPTION_8723D] == 0xFF)
pHalData->InterfaceSel = (EEPROM_DEFAULT_BOARD_OPTION & 0xE0) >> 5;
} else
pHalData->InterfaceSel = 0;
}
void
Hal_EfuseParseBTCoexistInfo_8723D(
struct adapter * adapt,
u8 *hwinfo,
bool AutoLoadFail
)
{
struct hal_com_data * pHalData = GET_HAL_DATA(adapt);
u8 tempval;
u32 tmpu4;
if (!AutoLoadFail) {
tmpu4 = rtw_read32(adapt, REG_MULTI_FUNC_CTRL);
if (tmpu4 & BT_FUNC_EN)
pHalData->EEPROMBluetoothCoexist = true;
else
pHalData->EEPROMBluetoothCoexist = false;
pHalData->EEPROMBluetoothType = BT_RTL8723D;
tempval = hwinfo[EEPROM_RF_BT_SETTING_8723D];
if (tempval != 0xFF) {
/* 0:Ant_x2, 1:Ant_x1 */
pHalData->EEPROMBluetoothAntNum = tempval & BIT(0);
/*
* EFUSE_0xC3[6] == 0, Wi-Fi at BTGS1(Main, Ant2) - RF_PATH_A (default)
* EFUSE_0xC3[6] == 1, Wi-Fi at BTGS0( Aux, Ant1) - RF_PATH_B
*/
pHalData->ant_path = (tempval & BIT(6)) ? RF_PATH_B : RF_PATH_A;
} else {
pHalData->EEPROMBluetoothAntNum = Ant_x1;
pHalData->ant_path = RF_PATH_A;
}
} else {
if (adapt->registrypriv.mp_mode == 1)
pHalData->EEPROMBluetoothCoexist = true;
else
pHalData->EEPROMBluetoothCoexist = false;
pHalData->EEPROMBluetoothType = BT_RTL8723D;
pHalData->EEPROMBluetoothAntNum = Ant_x1;
pHalData->ant_path = RF_PATH_A;
}
if (adapt->registrypriv.ant_num > 0) {
RTW_INFO("%s: Apply driver defined antenna number(%d) to replace origin(%d)\n"
, __func__
, adapt->registrypriv.ant_num
, pHalData->EEPROMBluetoothAntNum == Ant_x2 ? 2 : 1);
switch (adapt->registrypriv.ant_num) {
case 1:
pHalData->EEPROMBluetoothAntNum = Ant_x1;
break;
case 2:
pHalData->EEPROMBluetoothAntNum = Ant_x2;
break;
default:
RTW_INFO("%s: Discard invalid driver defined antenna number(%d)!\n"
, __func__, adapt->registrypriv.ant_num);
break;
}
}
RTW_INFO("%s: %s BT-coex, ant_num=%d\n"
, __func__
, pHalData->EEPROMBluetoothCoexist ? "Enable" : "Disable"
, pHalData->EEPROMBluetoothAntNum == Ant_x2 ? 2 : 1);
}
void
Hal_EfuseParseEEPROMVer_8723D(
struct adapter * adapt,
u8 *hwinfo,
bool AutoLoadFail
)
{
struct hal_com_data *pHalData = GET_HAL_DATA(adapt);
if (!AutoLoadFail)
pHalData->EEPROMVersion = hwinfo[EEPROM_VERSION_8723D];
else
pHalData->EEPROMVersion = 1;
}
void
Hal_EfuseParsePackageType_8723D(
struct adapter * pAdapter,
u8 *hwinfo,
bool AutoLoadFail
)
{
struct hal_com_data *pHalData = GET_HAL_DATA(pAdapter);
u8 package;
u8 efuseContent;
Efuse_PowerSwitch(pAdapter, false, true);
efuse_OneByteRead(pAdapter, 0x1FB, &efuseContent, false);
RTW_INFO("%s phy efuse read 0x1FB =%x\n", __func__, efuseContent);
Efuse_PowerSwitch(pAdapter, false, false);
package = efuseContent & 0x7;
switch (package) {
case 0x4:
pHalData->PackageType = PACKAGE_TFBGA79;
break;
case 0x5:
pHalData->PackageType = PACKAGE_TFBGA90;
break;
case 0x6:
pHalData->PackageType = PACKAGE_QFN68;
break;
case 0x7:
pHalData->PackageType = PACKAGE_TFBGA80;
break;
default:
pHalData->PackageType = PACKAGE_DEFAULT;
break;
}
RTW_INFO("PackageType = 0x%X\n", pHalData->PackageType);
}
void
Hal_EfuseParseVoltage_8723D(
struct adapter * pAdapter,
u8 *hwinfo,
bool AutoLoadFail
)
{
struct hal_com_data *pHalData = GET_HAL_DATA(pAdapter);
/* memcpy(pHalData->adjuseVoltageVal, &hwinfo[EEPROM_Voltage_ADDR_8723D], 1); */
RTW_INFO("%s hwinfo[EEPROM_Voltage_ADDR_8723D] =%02x\n", __func__, hwinfo[EEPROM_Voltage_ADDR_8723D]);
pHalData->adjuseVoltageVal = (hwinfo[EEPROM_Voltage_ADDR_8723D] & 0xf0) >> 4;
RTW_INFO("%s pHalData->adjuseVoltageVal =%x\n", __func__, pHalData->adjuseVoltageVal);
}
void
Hal_EfuseParseChnlPlan_8723D(
struct adapter * adapt,
u8 *hwinfo,
bool AutoLoadFail
)
{
hal_com_config_channel_plan(
adapt
, hwinfo ? &hwinfo[EEPROM_COUNTRY_CODE_8723D] : NULL
, hwinfo ? hwinfo[EEPROM_ChannelPlan_8723D] : 0xFF
, adapt->registrypriv.alpha2
, adapt->registrypriv.channel_plan
, RTW_CHPLAN_WORLD_NULL
, AutoLoadFail
);
}
void
Hal_EfuseParseCustomerID_8723D(
struct adapter * adapt,
u8 *hwinfo,
bool AutoLoadFail
)
{
struct hal_com_data *pHalData = GET_HAL_DATA(adapt);
if (!AutoLoadFail)
pHalData->EEPROMCustomerID = hwinfo[EEPROM_CustomID_8723D];
else
pHalData->EEPROMCustomerID = 0;
}
void
Hal_EfuseParseAntennaDiversity_8723D(
struct adapter * pAdapter,
u8 *hwinfo,
bool AutoLoadFail
)
{
}
void
Hal_EfuseParseXtal_8723D(
struct adapter * pAdapter,
u8 *hwinfo,
bool AutoLoadFail
)
{
struct hal_com_data *pHalData = GET_HAL_DATA(pAdapter);
if (!AutoLoadFail) {
pHalData->crystal_cap = hwinfo[EEPROM_XTAL_8723D];
if (pHalData->crystal_cap == 0xFF)
pHalData->crystal_cap = EEPROM_Default_CrystalCap_8723D; /* what value should 8812 set? */
} else
pHalData->crystal_cap = EEPROM_Default_CrystalCap_8723D;
}
void Hal_EfuseParseThermalMeter_8723D(struct adapter * adapt, u8 *PROMContent,
bool AutoLoadFail)
{
struct hal_com_data * pHalData = GET_HAL_DATA(adapt);
/* */
/* ThermalMeter from EEPROM */
/* */
if (false == AutoLoadFail)
pHalData->eeprom_thermal_meter = PROMContent[EEPROM_THERMAL_METER_8723D];
else
pHalData->eeprom_thermal_meter = EEPROM_Default_ThermalMeter_8723D;
if ((pHalData->eeprom_thermal_meter == 0xff) || (AutoLoadFail)) {
pHalData->odmpriv.rf_calibrate_info.is_apk_thermal_meter_ignore = true;
pHalData->eeprom_thermal_meter = EEPROM_Default_ThermalMeter_8723D;
}
}
void Hal_ReadRFGainOffset(
struct adapter * Adapter,
u8 *PROMContent,
bool AutoloadFail)
{
struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
struct kfree_data_t *kfree_data = &pHalData->kfree_data;
u8 pg_pwrtrim = 0xFF, pg_therm = 0xFF;
efuse_OneByteRead(Adapter,
PPG_BB_GAIN_2G_TX_OFFSET_8723D, &pg_pwrtrim, false);
efuse_OneByteRead(Adapter,
PPG_THERMAL_OFFSET_8723D, &pg_therm, false);
if (pg_pwrtrim != 0xFF) {
kfree_data->bb_gain[BB_GAIN_2G][PPG_8723D_S1]
= KFREE_BB_GAIN_2G_TX_OFFSET(pg_pwrtrim & PPG_BB_GAIN_2G_TX_OFFSET_MASK);
kfree_data->bb_gain[BB_GAIN_2G][PPG_8723D_S0]
= KFREE_BB_GAIN_2G_TXB_OFFSET(pg_pwrtrim & PPG_BB_GAIN_2G_TXB_OFFSET_MASK);
kfree_data->flag |= KFREE_FLAG_ON;
}
if (pg_therm != 0xFF) {
kfree_data->thermal
= KFREE_THERMAL_OFFSET(pg_therm & PPG_THERMAL_OFFSET_MASK);
/* kfree_data->flag |= KFREE_FLAG_THERMAL_K_ON; */ /* Default disable thermel kfree by realsil Alan 20160428 */
}
if (kfree_data->flag & KFREE_FLAG_THERMAL_K_ON)
pHalData->eeprom_thermal_meter += kfree_data->thermal;
RTW_INFO("kfree Pwr Trim flag:%u\n", kfree_data->flag);
if (kfree_data->flag & KFREE_FLAG_ON) {
RTW_INFO("bb_gain(S1):%d\n", kfree_data->bb_gain[BB_GAIN_2G][PPG_8723D_S1]);
RTW_INFO("bb_gain(S0):%d\n", kfree_data->bb_gain[BB_GAIN_2G][PPG_8723D_S0]);
}
if (kfree_data->flag & KFREE_FLAG_THERMAL_K_ON)
RTW_INFO("thermal:%d\n", kfree_data->thermal);
}
u8 BWMapping_8723D(struct adapter * Adapter, struct pkt_attrib *pattrib)
{
u8 BWSettingOfDesc = 0;
struct hal_com_data * pHalData = GET_HAL_DATA(Adapter);
/* RTW_INFO("BWMapping pHalData->current_channel_bw %d, pattrib->bwmode %d\n",pHalData->current_channel_bw,pattrib->bwmode); */
if (pHalData->current_channel_bw == CHANNEL_WIDTH_80) {
if (pattrib->bwmode == CHANNEL_WIDTH_80)
BWSettingOfDesc = 2;
else if (pattrib->bwmode == CHANNEL_WIDTH_40)
BWSettingOfDesc = 1;
else
BWSettingOfDesc = 0;
} else if (pHalData->current_channel_bw == CHANNEL_WIDTH_40) {
if ((pattrib->bwmode == CHANNEL_WIDTH_40) || (pattrib->bwmode == CHANNEL_WIDTH_80))
BWSettingOfDesc = 1;
else
BWSettingOfDesc = 0;
} else
BWSettingOfDesc = 0;
/* if(pTcb->bBTTxPacket) */
/* BWSettingOfDesc = 0; */
return BWSettingOfDesc;
}
u8 SCMapping_8723D(struct adapter * Adapter, struct pkt_attrib *pattrib)
{
u8 desc_setting = 0;
struct hal_com_data * pHalData = GET_HAL_DATA(Adapter);
if (pHalData->current_channel_bw == CHANNEL_WIDTH_80) {
if (pattrib->bwmode == CHANNEL_WIDTH_80)
desc_setting = VHT_DATA_SC_DONOT_CARE;
else if (pattrib->bwmode == CHANNEL_WIDTH_40) {
if (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER)
desc_setting = VHT_DATA_SC_40_LOWER_OF_80MHZ;
else if (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER)
desc_setting = VHT_DATA_SC_40_UPPER_OF_80MHZ;
else
RTW_INFO("SCMapping: DONOT CARE Mode Setting\n");
} else {
if ((pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER) && (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER))
desc_setting = VHT_DATA_SC_20_LOWEST_OF_80MHZ;
else if ((pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER) && (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER))
desc_setting = VHT_DATA_SC_20_LOWER_OF_80MHZ;
else if ((pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER) && (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER))
desc_setting = VHT_DATA_SC_20_UPPER_OF_80MHZ;
else if ((pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER) && (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER))
desc_setting = VHT_DATA_SC_20_UPPERST_OF_80MHZ;
else
RTW_INFO("SCMapping: DONOT CARE Mode Setting\n");
}
} else if (pHalData->current_channel_bw == CHANNEL_WIDTH_40) {
if (pattrib->bwmode == CHANNEL_WIDTH_40)
desc_setting = VHT_DATA_SC_DONOT_CARE;
else if (pattrib->bwmode == CHANNEL_WIDTH_20) {
if (pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER)
desc_setting = VHT_DATA_SC_20_UPPER_OF_80MHZ;
else if (pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER)
desc_setting = VHT_DATA_SC_20_LOWER_OF_80MHZ;
else
desc_setting = VHT_DATA_SC_DONOT_CARE;
}
} else {
desc_setting = VHT_DATA_SC_DONOT_CARE;
}
return desc_setting;
}
#if defined(CONFIG_CONCURRENT_MODE)
void fill_txdesc_force_bmc_camid(struct pkt_attrib *pattrib, u8 *ptxdesc)
{
if ((pattrib->encrypt > 0) && (!pattrib->bswenc)
&& (pattrib->bmc_camid != INVALID_SEC_MAC_CAM_ID)) {
SET_TX_DESC_EN_DESC_ID_8723D(ptxdesc, 1);
SET_TX_DESC_MACID_8723D(ptxdesc, pattrib->bmc_camid);
}
}
#endif
void fill_txdesc_bmc_tx_rate(struct pkt_attrib *pattrib, u8 *ptxdesc)
{
SET_TX_DESC_USE_RATE_8723D(ptxdesc, 1);
SET_TX_DESC_TX_RATE_8723D(ptxdesc, MRateToHwRate(pattrib->rate));
SET_TX_DESC_DISABLE_FB_8723D(ptxdesc, 1);
}
static u8 fill_txdesc_sectype(struct pkt_attrib *pattrib)
{
u8 sectype = 0;
if ((pattrib->encrypt > 0) && !pattrib->bswenc) {
switch (pattrib->encrypt) {
/* SEC_TYPE */
case _WEP40_:
case _WEP104_:
case _TKIP_:
case _TKIP_WTMIC_:
sectype = 1;
break;
case _AES_:
sectype = 3;
break;
case _NO_PRIVACY_:
default:
break;
}
}
return sectype;
}
static void fill_txdesc_vcs_8723d(struct adapter * adapt, struct pkt_attrib *pattrib, u8 *ptxdesc)
{
/* RTW_INFO("cvs_mode=%d\n", pattrib->vcs_mode); */
if (pattrib->vcs_mode) {
switch (pattrib->vcs_mode) {
case RTS_CTS:
SET_TX_DESC_RTS_ENABLE_8723D(ptxdesc, 1);
SET_TX_DESC_HW_RTS_ENABLE_8723D(ptxdesc, 1);
break;
case CTS_TO_SELF:
SET_TX_DESC_CTS2SELF_8723D(ptxdesc, 1);
break;
case NONE_VCS:
default:
break;
}
SET_TX_DESC_RTS_RATE_8723D(ptxdesc, 8); /* RTS Rate=24M */
SET_TX_DESC_RTS_RATE_FB_LIMIT_8723D(ptxdesc, 0xF);
if (adapt->mlmeextpriv.mlmext_info.preamble_mode == PREAMBLE_SHORT)
SET_TX_DESC_RTS_SHORT_8723D(ptxdesc, 1);
/* Set RTS BW */
if (pattrib->ht_en)
SET_TX_DESC_RTS_SC_8723D(ptxdesc, SCMapping_8723D(adapt, pattrib));
}
}
static void fill_txdesc_phy_8723d(struct adapter * adapt, struct pkt_attrib *pattrib, u8 *ptxdesc)
{
/* RTW_INFO("bwmode=%d, ch_off=%d\n", pattrib->bwmode, pattrib->ch_offset); */
if (pattrib->ht_en) {
SET_TX_DESC_DATA_BW_8723D(ptxdesc, BWMapping_8723D(adapt, pattrib));
SET_TX_DESC_DATA_SC_8723D(ptxdesc, SCMapping_8723D(adapt, pattrib));
}
}
static void rtl8723d_fill_default_txdesc(
struct xmit_frame *pxmitframe,
u8 *pbuf)
{
struct adapter * adapt;
struct hal_com_data *pHalData;
struct mlme_ext_priv *pmlmeext;
struct mlme_ext_info *pmlmeinfo;
struct pkt_attrib *pattrib;
int bmcst;
memset(pbuf, 0, TXDESC_SIZE);
adapt = pxmitframe->adapt;
pHalData = GET_HAL_DATA(adapt);
pmlmeext = &adapt->mlmeextpriv;
pmlmeinfo = &(pmlmeext->mlmext_info);
pattrib = &pxmitframe->attrib;
bmcst = IS_MCAST(pattrib->ra);
if (pHalData->rf_type == RF_1T1R)
SET_TX_DESC_PATH_A_EN_8723D(pbuf, 1);
if (pxmitframe->frame_tag == DATA_FRAMETAG) {
u8 drv_userate = 0;
SET_TX_DESC_MACID_8723D(pbuf, pattrib->mac_id);
SET_TX_DESC_RATE_ID_8723D(pbuf, pattrib->raid);
SET_TX_DESC_QUEUE_SEL_8723D(pbuf, pattrib->qsel);
SET_TX_DESC_SEQ_8723D(pbuf, pattrib->seqnum);
SET_TX_DESC_SEC_TYPE_8723D(pbuf, fill_txdesc_sectype(pattrib));
#if defined(CONFIG_CONCURRENT_MODE)
if (bmcst)
fill_txdesc_force_bmc_camid(pattrib, pbuf);
#endif
fill_txdesc_vcs_8723d(adapt, pattrib, pbuf);
if (!rtw_p2p_chk_state(&adapt->wdinfo, P2P_STATE_NONE)) {
if (pattrib->icmp_pkt == 1 && adapt->registrypriv.wifi_spec == 1)
drv_userate = 1;
}
if ((pattrib->ether_type != 0x888e) &&
(pattrib->ether_type != 0x0806) &&
(pattrib->ether_type != 0x88B4) &&
(pattrib->dhcp_pkt != 1) &&
(drv_userate != 1)) {
/* Non EAP & ARP & DHCP type data packet */
if (pattrib->ampdu_en) {
SET_TX_DESC_AGG_ENABLE_8723D(pbuf, 1);
SET_TX_DESC_MAX_AGG_NUM_8723D(pbuf, 0x1F);
SET_TX_DESC_AMPDU_DENSITY_8723D(pbuf, pattrib->ampdu_spacing);
} else
SET_TX_DESC_BK_8723D(pbuf, 1);
fill_txdesc_phy_8723d(adapt, pattrib, pbuf);
SET_TX_DESC_DATA_RATE_FB_LIMIT_8723D(pbuf, 0x1F);
if (!pHalData->fw_ractrl) {
SET_TX_DESC_USE_RATE_8723D(pbuf, 1);
if (pHalData->INIDATA_RATE[pattrib->mac_id] & BIT(7))
SET_TX_DESC_DATA_SHORT_8723D(pbuf, 1);
SET_TX_DESC_TX_RATE_8723D(pbuf, pHalData->INIDATA_RATE[pattrib->mac_id] & 0x7F);
}
if (bmcst)
fill_txdesc_bmc_tx_rate(pattrib, pbuf);
/* modify data rate by iwpriv */
if (adapt->fix_rate != 0xFF) {
SET_TX_DESC_USE_RATE_8723D(pbuf, 1);
if (adapt->fix_rate & BIT(7))
SET_TX_DESC_DATA_SHORT_8723D(pbuf, 1);
SET_TX_DESC_TX_RATE_8723D(pbuf, adapt->fix_rate & 0x7F);
if (!adapt->data_fb)
SET_TX_DESC_DISABLE_FB_8723D(pbuf, 1);
}
if (pattrib->stbc)
SET_TX_DESC_DATA_STBC_8723D(pbuf, 1);
#ifdef CONFIG_CMCC_TEST
SET_TX_DESC_DATA_SHORT_8723D(pbuf, 1); /* use cck short premble */
#endif
} else {
/* EAP data packet and ARP packet. */
/* Use the 1M data rate to send the EAP/ARP packet. */
/* This will maybe make the handshake smooth. */
SET_TX_DESC_BK_8723D(pbuf, 1);
SET_TX_DESC_USE_RATE_8723D(pbuf, 1);
if (pmlmeinfo->preamble_mode == PREAMBLE_SHORT)
SET_TX_DESC_DATA_SHORT_8723D(pbuf, 1);
SET_TX_DESC_TX_RATE_8723D(pbuf, MRateToHwRate(pmlmeext->tx_rate));
RTW_INFO(FUNC_ADPT_FMT ": SP Packet(0x%04X) rate=0x%x\n",
FUNC_ADPT_ARG(adapt), pattrib->ether_type, MRateToHwRate(pmlmeext->tx_rate));
}
} else if (pxmitframe->frame_tag == MGNT_FRAMETAG) {
SET_TX_DESC_MACID_8723D(pbuf, pattrib->mac_id);
SET_TX_DESC_QUEUE_SEL_8723D(pbuf, pattrib->qsel);
SET_TX_DESC_RATE_ID_8723D(pbuf, pattrib->raid);
SET_TX_DESC_SEQ_8723D(pbuf, pattrib->seqnum);
SET_TX_DESC_USE_RATE_8723D(pbuf, 1);
SET_TX_DESC_MBSSID_8723D(pbuf, pattrib->mbssid & 0xF);
SET_TX_DESC_RETRY_LIMIT_ENABLE_8723D(pbuf, 1);
if (pattrib->retry_ctrl)
SET_TX_DESC_DATA_RETRY_LIMIT_8723D(pbuf, 6);
else
SET_TX_DESC_DATA_RETRY_LIMIT_8723D(pbuf, 12);
SET_TX_DESC_TX_RATE_8723D(pbuf, MRateToHwRate(pattrib->rate));
/* CCX-TXRPT ack for xmit mgmt frames. */
if (pxmitframe->ack_report) {
SET_TX_DESC_CCX_8723D(pbuf, 1);
SET_TX_DESC_SW_DEFINE_8723D(pbuf, (u8)(GET_PRIMARY_ADAPTER(adapt)->xmitpriv.seq_no));
}
} else if (pxmitframe->frame_tag == TXAGG_FRAMETAG) {
} else {
SET_TX_DESC_MACID_8723D(pbuf, pattrib->mac_id);
SET_TX_DESC_RATE_ID_8723D(pbuf, pattrib->raid);
SET_TX_DESC_QUEUE_SEL_8723D(pbuf, pattrib->qsel);
SET_TX_DESC_SEQ_8723D(pbuf, pattrib->seqnum);
SET_TX_DESC_USE_RATE_8723D(pbuf, 1);
SET_TX_DESC_TX_RATE_8723D(pbuf, MRateToHwRate(pmlmeext->tx_rate));
}
SET_TX_DESC_PKT_SIZE_8723D(pbuf, pattrib->last_txcmdsz);
{
u8 pkt_offset, offset;
pkt_offset = 0;
offset = TXDESC_SIZE;
pkt_offset = pxmitframe->pkt_offset;
offset += (pxmitframe->pkt_offset >> 3);
SET_TX_DESC_PKT_OFFSET_8723D(pbuf, pkt_offset);
SET_TX_DESC_OFFSET_8723D(pbuf, offset);
}
if (bmcst)
SET_TX_DESC_BMC_8723D(pbuf, 1);
/* 2009.11.05. tynli_test. Suggested by SD4 Filen for FW LPS. */
/* (1) The sequence number of each non-Qos frame / broadcast / multicast / */
/* mgnt frame should be controlled by Hw because Fw will also send null data */
/* which we cannot control when Fw LPS enable. */
/* --> default enable non-Qos data sequense number. 2010.06.23. by tynli. */
/* (2) Enable HW SEQ control for beacon packet, because we use Hw beacon. */
/* (3) Use HW Qos SEQ to control the seq num of Ext port non-Qos packets. */
/* 2010.06.23. Added by tynli. */
if (!pattrib->qos_en)
SET_TX_DESC_HWSEQ_EN_8723D(pbuf, 1);
}
/*
* Description:
*
* Parameters:
* pxmitframe xmitframe
* pbuf where to fill tx desc
*/
void rtl8723d_update_txdesc(struct xmit_frame *pxmitframe, u8 *pbuf)
{
rtl8723d_fill_default_txdesc(pxmitframe, pbuf);
rtl8723d_cal_txdesc_chksum((struct tx_desc *)pbuf);
}
static void hw_var_set_monitor(struct adapter * Adapter, u8 variable, u8 *val)
{
u32 rcr_bits;
u16 value_rxfltmap2;
struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
if (*((u8 *)val) == _HW_STATE_MONITOR_) {
/* Receive all type */
rcr_bits = RCR_AAP | RCR_APM | RCR_AM | RCR_AB | RCR_APWRMGT | RCR_ADF | RCR_ACF | RCR_AMF | RCR_APP_PHYST_RXFF;
/* Append FCS */
rcr_bits |= RCR_APPFCS;
rtw_hal_get_hwreg(Adapter, HW_VAR_RCR, (u8 *)&pHalData->rcr_backup);
rtw_hal_set_hwreg(Adapter, HW_VAR_RCR, (u8 *)&rcr_bits);
/* Receive all data frames */
value_rxfltmap2 = 0xFFFF;
rtw_write16(Adapter, REG_RXFLTMAP2, value_rxfltmap2);
} else {
/* do nothing */
}
}
static void hw_var_set_opmode(struct adapter * adapt, u8 variable, u8 *val)
{
u8 val8;
u8 mode = *((u8 *)val);
static u8 isMonitor = false;
struct hal_com_data *pHalData = GET_HAL_DATA(adapt);
if (isMonitor) {
/* reset RCR from backup */
rtw_hal_set_hwreg(adapt, HW_VAR_RCR, (u8 *)&pHalData->rcr_backup);
rtw_hal_rcr_set_chk_bssid(adapt, MLME_ACTION_NONE);
isMonitor = false;
}
if (mode == _HW_STATE_MONITOR_) {
isMonitor = true;
/* set net_type */
Set_MSR(adapt, _HW_STATE_NOLINK_);
hw_var_set_monitor(adapt, variable, val);
return;
}
/* set mac addr to mac register */
rtw_hal_set_hwreg(adapt, HW_VAR_MAC_ADDR,
adapter_mac_addr(adapt));
#ifdef CONFIG_CONCURRENT_MODE
if (adapt->hw_port == HW_PORT1) {
/* disable Port1 TSF update */
val8 = rtw_read8(adapt, REG_BCN_CTRL_1);
val8 |= DIS_TSF_UDT;
rtw_write8(adapt, REG_BCN_CTRL_1, val8);
Set_MSR(adapt, mode);
RTW_INFO("#### %s()-%d hw_port(%d) mode=%d ####\n",
__func__, __LINE__, adapt->hw_port, mode);
if ((mode == _HW_STATE_STATION_) || (mode == _HW_STATE_NOLINK_)) {
if (!rtw_mi_get_ap_num(adapt) && !rtw_mi_get_mesh_num(adapt))
StopTxBeacon(adapt);
/* disable atim wnd */
rtw_write8(adapt, REG_BCN_CTRL_1, DIS_TSF_UDT | DIS_ATIM | EN_BCN_FUNCTION);
} else if (mode == _HW_STATE_ADHOC_) {
ResumeTxBeacon(adapt);
rtw_write8(adapt, REG_BCN_CTRL_1, DIS_TSF_UDT | EN_BCN_FUNCTION | DIS_BCNQ_SUB);
} else if (mode == _HW_STATE_AP_) {
ResumeTxBeacon(adapt);
rtw_write8(adapt, REG_BCN_CTRL_1, DIS_TSF_UDT | DIS_BCNQ_SUB);
/* enable to rx data frame*/
rtw_write16(adapt, REG_RXFLTMAP2, 0xFFFF);
/* enable to rx ps-poll */
rtw_write16(adapt, REG_RXFLTMAP1, 0x0400);
/* Beacon Control related register for first time */
rtw_write8(adapt, REG_BCNDMATIM, 0x02); /* 2ms */
/* rtw_write8(adapt, REG_BCN_MAX_ERR, 0xFF); */
rtw_write8(adapt, REG_ATIMWND_1, 0x0c); /* 13ms for port1 */
rtw_write16(adapt, REG_BCNTCFG, 0x00);
rtw_write16(adapt, REG_TSFTR_SYN_OFFSET, 0x7fff);/* +32767 (~32ms) */
/* reset TSF2 */
rtw_write8(adapt, REG_DUAL_TSF_RST, BIT(1));
/* enable BCN1 Function for if2 */
/* don't enable update TSF1 for if2 (due to TSF update when beacon/probe rsp are received) */
rtw_write8(adapt, REG_BCN_CTRL_1, (DIS_TSF_UDT | EN_BCN_FUNCTION | EN_TXBCN_RPT | DIS_BCNQ_SUB));
/* SW_BCN_SEL - Port1 */
/* rtw_write8(Adapter, REG_DWBCN1_CTRL_8192E+2, rtw_read8(Adapter, REG_DWBCN1_CTRL_8192E+2)|BIT4); */
rtw_hal_set_hwreg(adapt, HW_VAR_DL_BCN_SEL, NULL);
/* select BCN on port 1 */
rtw_write8(adapt, REG_CCK_CHECK_8723D,
(rtw_read8(adapt, REG_CCK_CHECK_8723D) | BIT_BCN_PORT_SEL));
/* BCN1 TSF will sync to BCN0 TSF with offset(0x518) if if1_sta linked */
/* rtw_write8(adapt, REG_BCN_CTRL_1, rtw_read8(adapt, REG_BCN_CTRL_1)|BIT(5)); */
/* rtw_write8(adapt, REG_DUAL_TSF_RST, BIT(3)); */
/* dis BCN0 ATIM WND if if1 is station */
rtw_write8(adapt, REG_BCN_CTRL, rtw_read8(adapt, REG_BCN_CTRL) | DIS_ATIM);
#ifdef CONFIG_TSF_RESET_OFFLOAD
/* Reset TSF for STA+AP concurrent mode */
if (rtw_mi_buddy_check_fwstate(adapt,
(WIFI_STATION_STATE | WIFI_ASOC_STATE))) {
if (rtw_hal_reset_tsf(adapt, HW_PORT1) == _FAIL)
RTW_INFO("ERROR! %s()-%d: Reset port1 TSF fail\n",
__func__, __LINE__);
}
#endif /* CONFIG_TSF_RESET_OFFLOAD */
}
} else /* else for port0 */
#endif /* CONFIG_CONCURRENT_MODE */
{
#ifdef CONFIG_MI_WITH_MBSSID_CAM /*For Port0 - MBSS CAM*/
hw_var_set_opmode_mbid(adapt, mode);
#else
/* disable Port0 TSF update */
val8 = rtw_read8(adapt, REG_BCN_CTRL);
val8 |= DIS_TSF_UDT;
rtw_write8(adapt, REG_BCN_CTRL, val8);
/* set net_type */
Set_MSR(adapt, mode);
RTW_INFO("#### %s() -%d hw_port(0) mode = %d ####\n",
__func__, __LINE__, mode);
if ((mode == _HW_STATE_STATION_) || (mode == _HW_STATE_NOLINK_)) {
#ifdef CONFIG_CONCURRENT_MODE
if (!rtw_mi_get_ap_num(adapt) && !rtw_mi_get_mesh_num(adapt)) {
#else
{
#endif /* CONFIG_CONCURRENT_MODE */
StopTxBeacon(adapt);
}
/* disable atim wnd */
rtw_write8(adapt, REG_BCN_CTRL, DIS_TSF_UDT | EN_BCN_FUNCTION | DIS_ATIM);
/* rtw_write8(adapt,REG_BCN_CTRL, 0x18); */
} else if (mode == _HW_STATE_ADHOC_) {
ResumeTxBeacon(adapt);
rtw_write8(adapt, REG_BCN_CTRL, DIS_TSF_UDT | EN_BCN_FUNCTION | DIS_BCNQ_SUB);
} else if (mode == _HW_STATE_AP_) {
ResumeTxBeacon(adapt);
rtw_write8(adapt, REG_BCN_CTRL, DIS_TSF_UDT | DIS_BCNQ_SUB);
/* enable to rx data frame */
rtw_write16(adapt, REG_RXFLTMAP2, 0xFFFF);
/* enable to rx ps-poll */
rtw_write16(adapt, REG_RXFLTMAP1, 0x0400);
/* Beacon Control related register for first time */
rtw_write8(adapt, REG_BCNDMATIM, 0x02); /* 2ms */
/* rtw_write8(adapt, REG_BCN_MAX_ERR, 0xFF); */
rtw_write8(adapt, REG_ATIMWND, 0x0c); /* 13ms */
rtw_write16(adapt, REG_BCNTCFG, 0x00);
rtw_write16(adapt, REG_TSFTR_SYN_OFFSET, 0x7fff);/* +32767 (~32ms) */
/* reset TSF */
rtw_write8(adapt, REG_DUAL_TSF_RST, BIT(0));
/* enable BCN0 Function for if1 */
/* don't enable update TSF0 for if1 (due to TSF update when beacon/probe rsp are received) */
rtw_write8(adapt, REG_BCN_CTRL, (DIS_TSF_UDT | EN_BCN_FUNCTION | EN_TXBCN_RPT | DIS_BCNQ_SUB));
/* SW_BCN_SEL - Port0 */
/* rtw_write8(Adapter, REG_DWBCN1_CTRL_8192E+2, rtw_read8(Adapter, REG_DWBCN1_CTRL_8192E+2) & ~BIT4); */
rtw_hal_set_hwreg(adapt, HW_VAR_DL_BCN_SEL, NULL);
/* select BCN on port 0 */
rtw_write8(adapt, REG_CCK_CHECK_8723D,
(rtw_read8(adapt, REG_CCK_CHECK_8723D) & ~BIT_BCN_PORT_SEL));
/* dis BCN1 ATIM WND if if2 is station */
val8 = rtw_read8(adapt, REG_BCN_CTRL_1);
val8 |= DIS_ATIM;
rtw_write8(adapt, REG_BCN_CTRL_1, val8);
#ifdef CONFIG_TSF_RESET_OFFLOAD
/* Reset TSF for STA+AP concurrent mode */
if (rtw_mi_buddy_check_fwstate(adapt,
(WIFI_STATION_STATE | WIFI_ASOC_STATE))) {
if (rtw_hal_reset_tsf(adapt, HW_PORT0) == _FAIL)
RTW_INFO("ERROR! %s()-%d: Reset port0 TSF fail\n",
__func__, __LINE__);
}
#endif /* CONFIG_TSF_RESET_OFFLOAD */
}
#endif /* !CONFIG_MI_WITH_MBSSID_CAM */
}
}
static void hw_var_set_bcn_func(struct adapter * adapt, u8 variable, u8 *val)
{
u32 bcn_ctrl_reg;
#ifdef CONFIG_CONCURRENT_MODE
if (adapt->hw_port == HW_PORT1)
bcn_ctrl_reg = REG_BCN_CTRL_1;
else
#endif
{
bcn_ctrl_reg = REG_BCN_CTRL;
}
if (*(u8 *)val)
rtw_write8(adapt, bcn_ctrl_reg, (EN_BCN_FUNCTION | EN_TXBCN_RPT));
else {
u8 val8;
val8 = rtw_read8(adapt, bcn_ctrl_reg);
val8 &= ~(EN_BCN_FUNCTION | EN_TXBCN_RPT);
/* Always enable port0 beacon function for PSTDMA */
if (REG_BCN_CTRL == bcn_ctrl_reg)
val8 |= EN_BCN_FUNCTION;
rtw_write8(adapt, bcn_ctrl_reg, val8);
}
}
static void hw_var_set_mlme_disconnect(struct adapter * adapt, u8 variable, u8 *val)
{
u8 val8;
/* reject all data frames */
#ifdef CONFIG_CONCURRENT_MODE
if (!rtw_mi_check_status(adapt, MI_LINKED))
#endif
rtw_write16(adapt, REG_RXFLTMAP2, 0);
#ifdef CONFIG_CONCURRENT_MODE
if (adapt->hw_port == HW_PORT1) {
/* reset TSF1 */
rtw_write8(adapt, REG_DUAL_TSF_RST, BIT(1));
/* disable update TSF1 */
val8 = rtw_read8(adapt, REG_BCN_CTRL_1);
val8 |= DIS_TSF_UDT;
rtw_write8(adapt, REG_BCN_CTRL_1, val8);
} else
#endif
{
/* reset TSF */
rtw_write8(adapt, REG_DUAL_TSF_RST, BIT(0));
/* disable update TSF */
val8 = rtw_read8(adapt, REG_BCN_CTRL);
val8 |= DIS_TSF_UDT;
rtw_write8(adapt, REG_BCN_CTRL, val8);
}
}
static void hw_var_set_mlme_join(struct adapter * adapt, u8 variable, u8 *val)
{
u8 val8;
u16 val16;
u8 RetryLimit;
u8 type;
struct hal_com_data * pHalData;
struct mlme_priv *pmlmepriv;
RetryLimit = RL_VAL_STA;
type = *(u8 *)val;
pHalData = GET_HAL_DATA(adapt);
pmlmepriv = &adapt->mlmepriv;
#ifdef CONFIG_CONCURRENT_MODE
if (type == 0) {
/* prepare to join */
if (rtw_mi_get_ap_num(adapt) || rtw_mi_get_mesh_num(adapt))
StopTxBeacon(adapt);
/* enable to rx data frame.Accept all data frame */
rtw_write16(adapt, REG_RXFLTMAP2, 0xFFFF);
if (check_fwstate(pmlmepriv, WIFI_STATION_STATE))
RetryLimit = (pHalData->CustomerID == RT_CID_CCX) ? RL_VAL_AP : RL_VAL_STA;
else /* Ad-hoc Mode */
RetryLimit = RL_VAL_AP;
} else if (type == 1) {
/* joinbss_event call back when join res < 0 */
if (!rtw_mi_check_status(adapt, MI_LINKED))
rtw_write16(adapt, REG_RXFLTMAP2, 0x00);
if (rtw_mi_get_ap_num(adapt) || rtw_mi_get_mesh_num(adapt)) {
ResumeTxBeacon(adapt);
/* reset TSF 1/2 after ResumeTxBeacon */
rtw_write8(adapt, REG_DUAL_TSF_RST, BIT(1) | BIT(0));
}
} else if (type == 2) {
/* sta add event call back */
#ifdef CONFIG_MI_WITH_MBSSID_CAM
/*if (check_fwstate(pmlmepriv, WIFI_STATION_STATE) && (rtw_mi_get_assoced_sta_num(adapt) == 1))
rtw_write8(adapt, REG_BCN_CTRL, rtw_read8(adapt, REG_BCN_CTRL)&(~DIS_TSF_UDT));*/
#else
/* enable update TSF */
if (adapt->hw_port == HW_PORT1) {
val8 = rtw_read8(adapt, REG_BCN_CTRL_1);
val8 &= ~DIS_TSF_UDT;
rtw_write8(adapt, REG_BCN_CTRL_1, val8);
} else {
val8 = rtw_read8(adapt, REG_BCN_CTRL);
val8 &= ~DIS_TSF_UDT;
rtw_write8(adapt, REG_BCN_CTRL, val8);
}
#endif
if (check_fwstate(pmlmepriv,
WIFI_ADHOC_STATE | WIFI_ADHOC_MASTER_STATE)) {
rtw_write8(adapt, 0x542 , 0x02);
RetryLimit = RL_VAL_AP;
}
if (rtw_mi_get_ap_num(adapt) || rtw_mi_get_mesh_num(adapt)) {
ResumeTxBeacon(adapt);
/* reset TSF 1/2 after ResumeTxBeacon */
rtw_write8(adapt, REG_DUAL_TSF_RST, BIT(1) | BIT(0));
}
}
val16 = (RetryLimit << RETRY_LIMIT_SHORT_SHIFT) | (RetryLimit << RETRY_LIMIT_LONG_SHIFT);
rtw_write16(adapt, REG_RL, val16);
#else /* !CONFIG_CONCURRENT_MODE */
if (type == 0) { /* prepare to join */
/* enable to rx data frame.Accept all data frame */
rtw_write16(adapt, REG_RXFLTMAP2, 0xFFFF);
if (check_fwstate(pmlmepriv, WIFI_STATION_STATE))
RetryLimit = (pHalData->CustomerID == RT_CID_CCX) ? RL_VAL_AP : RL_VAL_STA;
else /* Ad-hoc Mode */
RetryLimit = RL_VAL_AP;
} else if (type == 1) /* joinbss_event call back when join res < 0 */
rtw_write16(adapt, REG_RXFLTMAP2, 0x00);
else if (type == 2) { /* sta add event call back */
/* enable update TSF */
val8 = rtw_read8(adapt, REG_BCN_CTRL);
val8 &= ~DIS_TSF_UDT;
rtw_write8(adapt, REG_BCN_CTRL, val8);
if (check_fwstate(pmlmepriv, WIFI_ADHOC_STATE | WIFI_ADHOC_MASTER_STATE))
RetryLimit = RL_VAL_AP;
}
val16 = (RetryLimit << RETRY_LIMIT_SHORT_SHIFT) | (RetryLimit << RETRY_LIMIT_LONG_SHIFT);
rtw_write16(adapt, REG_RL, val16);
#endif /* !CONFIG_CONCURRENT_MODE */
}
void CCX_FwC2HTxRpt_8723d(struct adapter * adapt, u8 *pdata, u8 len)
{
u8 seq_no;
#define GET_8723D_C2H_TX_RPT_LIFE_TIME_OVER(_Header) LE_BITS_TO_1BYTE((_Header + 0), 6, 1)
#define GET_8723D_C2H_TX_RPT_RETRY_OVER(_Header) LE_BITS_TO_1BYTE((_Header + 0), 7, 1)
/* RTW_INFO("%s, 0x%x, 0x%x, 0x%x, 0x%x, 0x%x, 0x%x, 0x%x, 0x%x\n", __func__, */
/**pdata, *(pdata+1), *(pdata+2), *(pdata+3), *(pdata+4), *(pdata+5), *(pdata+6), *(pdata+7)); */
seq_no = *(pdata + 6);
if (GET_8723D_C2H_TX_RPT_RETRY_OVER(pdata) | GET_8723D_C2H_TX_RPT_LIFE_TIME_OVER(pdata))
rtw_ack_tx_done(&adapt->xmitpriv, RTW_SCTX_DONE_CCX_PKT_FAIL);
else
rtw_ack_tx_done(&adapt->xmitpriv, RTW_SCTX_DONE_SUCCESS);
}
static int c2h_handler_8723d(struct adapter *adapter, u8 id, u8 seq, u8 plen, u8 *payload)
{
int ret = _SUCCESS;
switch (id) {
case C2H_CCX_TX_RPT:
CCX_FwC2HTxRpt_8723d(adapter, payload, plen);
break;
default:
ret = _FAIL;
break;
}
return ret;
}
u8 SetHwReg8723D(struct adapter * adapt, u8 variable, u8 *val)
{
struct hal_com_data * pHalData = GET_HAL_DATA(adapt);
u8 ret = _SUCCESS;
u8 val8;
u32 val32;
switch (variable) {
case HW_VAR_SET_OPMODE:
hw_var_set_opmode(adapt, variable, val);
break;
case HW_VAR_BASIC_RATE:
{
struct mlme_ext_info *mlmext_info = &adapt->mlmeextpriv.mlmext_info;
u16 input_b = 0, masked = 0, ioted = 0, BrateCfg = 0;
u16 rrsr_2g_force_mask = RRSR_CCK_RATES;
u16 rrsr_2g_allow_mask = (RRSR_24M | RRSR_12M | RRSR_6M | RRSR_CCK_RATES);
HalSetBrateCfg(adapt, val, &BrateCfg);
input_b = BrateCfg;
/* apply force and allow mask */
BrateCfg |= rrsr_2g_force_mask;
BrateCfg &= rrsr_2g_allow_mask;
masked = BrateCfg;
#ifdef CONFIG_CMCC_TEST
BrateCfg |= (RRSR_11M | RRSR_5_5M | RRSR_1M); /* use 11M to send ACK */
BrateCfg |= (RRSR_24M | RRSR_18M | RRSR_12M); /* CMCC_OFDM_ACK 12/18/24M */
#endif
/* IOT consideration */
if (mlmext_info->assoc_AP_vendor == HT_IOT_PEER_CISCO) {
/* if peer is cisco and didn't use ofdm rate, we enable 6M ack */
if ((BrateCfg & (RRSR_24M | RRSR_12M | RRSR_6M)) == 0)
BrateCfg |= RRSR_6M;
}
ioted = BrateCfg;
pHalData->BasicRateSet = BrateCfg;
RTW_INFO("HW_VAR_BASIC_RATE: %#x->%#x->%#x\n", input_b, masked, ioted);
/* Set RRSR rate table. */
rtw_write16(adapt, REG_RRSR, BrateCfg);
rtw_write8(adapt, REG_RRSR + 2, rtw_read8(adapt, REG_RRSR + 2) & 0xf0);
}
break;
case HW_VAR_TXPAUSE:
rtw_write8(adapt, REG_TXPAUSE, *val);
break;
case HW_VAR_BCN_FUNC:
hw_var_set_bcn_func(adapt, variable, val);
break;
case HW_VAR_MLME_DISCONNECT:
hw_var_set_mlme_disconnect(adapt, variable, val);
break;
case HW_VAR_MLME_JOIN:
hw_var_set_mlme_join(adapt, variable, val);
switch (*val) {
case 0:
/* Notify coex. mechanism before join */
rtw_btcoex_ConnectNotify(adapt, true);
break;
case 1:
case 2:
/* Notify coex. mechanism after join, whether successful or failed */
rtw_btcoex_ConnectNotify(adapt, false);
break;
}
break;
case HW_VAR_BEACON_INTERVAL:
{
u16 bcn_interval = *((u16 *)val);
rtw_write16(adapt, REG_BCN_INTERVAL, bcn_interval);
}
break;
case HW_VAR_SLOT_TIME:
rtw_write8(adapt, REG_SLOT, *val);
break;
case HW_VAR_RESP_SIFS:
/* SIFS_Timer = 0x0a0a0808; */
/* RESP_SIFS for CCK */
rtw_write8(adapt, REG_RESP_SIFS_CCK, val[0]); /* SIFS_T2T_CCK (0x08) */
rtw_write8(adapt, REG_RESP_SIFS_CCK + 1, val[1]); /* SIFS_R2T_CCK(0x08) */
/* RESP_SIFS for OFDM */
rtw_write8(adapt, REG_RESP_SIFS_OFDM, val[2]); /* SIFS_T2T_OFDM (0x0a) */
rtw_write8(adapt, REG_RESP_SIFS_OFDM + 1, val[3]); /* SIFS_R2T_OFDM(0x0a) */
break;
case HW_VAR_ACK_PREAMBLE: {
u8 regTmp;
u8 bShortPreamble = *val;
/* Joseph marked out for Netgear 3500 TKIP channel 7 issue.(Temporarily) */
/* regTmp = (pHalData->nCur40MhzPrimeSC)<<5; */
regTmp = 0;
if (bShortPreamble)
regTmp |= 0x80;
rtw_write8(adapt, REG_RRSR + 2, regTmp);
}
break;
case HW_VAR_CAM_EMPTY_ENTRY: {
u8 ucIndex = *val;
u8 i;
u32 ulCommand = 0;
u32 ulContent = 0;
u32 ulEncAlgo = CAM_AES;
for (i = 0; i < CAM_CONTENT_COUNT; i++) {
/* filled id in CAM config 2 byte */
if (i == 0) {
ulContent |= (ucIndex & 0x03) | ((u16)(ulEncAlgo) << 2);
/* ulContent |= CAM_VALID; */
} else
ulContent = 0;
/* polling bit, and No Write enable, and address */
ulCommand = CAM_CONTENT_COUNT * ucIndex + i;
ulCommand = ulCommand | CAM_POLLINIG | CAM_WRITE;
/* write content 0 is equall to mark invalid */
rtw_write32(adapt, WCAMI, ulContent); /* delay_ms(40); */
rtw_write32(adapt, RWCAM, ulCommand); /* delay_ms(40); */
}
}
break;
case HW_VAR_CAM_INVALID_ALL:
rtw_write32(adapt, RWCAM, BIT(31) | BIT(30));
break;
case HW_VAR_AC_PARAM_VO:
rtw_write32(adapt, REG_EDCA_VO_PARAM, *((u32 *)val));
break;
case HW_VAR_AC_PARAM_VI:
rtw_write32(adapt, REG_EDCA_VI_PARAM, *((u32 *)val));
break;
case HW_VAR_AC_PARAM_BE:
pHalData->ac_param_be = ((u32 *)(val))[0];
rtw_write32(adapt, REG_EDCA_BE_PARAM, *((u32 *)val));
break;
case HW_VAR_AC_PARAM_BK:
rtw_write32(adapt, REG_EDCA_BK_PARAM, *((u32 *)val));
break;
case HW_VAR_ACM_CTRL: {
u8 ctrl = *((u8 *)val);
u8 hwctrl = 0;
if (ctrl != 0) {
hwctrl |= AcmHw_HwEn;
if (ctrl & BIT(3)) /* BE */
hwctrl |= AcmHw_BeqEn;
if (ctrl & BIT(2)) /* VI */
hwctrl |= AcmHw_ViqEn;
if (ctrl & BIT(1)) /* VO */
hwctrl |= AcmHw_VoqEn;
}
RTW_INFO("[HW_VAR_ACM_CTRL] Write 0x%02X\n", hwctrl);
rtw_write8(adapt, REG_ACMHWCTRL, hwctrl);
}
break;
case HW_VAR_AMPDU_FACTOR: {
u32 AMPDULen = (*((u8 *)val));
if (AMPDULen < HT_AGG_SIZE_32K)
AMPDULen = (0x2000 << (*((u8 *)val))) - 1;
else
AMPDULen = 0x7fff;
rtw_write32(adapt, REG_AMPDU_MAX_LENGTH_8723D, AMPDULen);
}
break;
case HW_VAR_H2C_FW_PWRMODE: {
u8 psmode = *val;
/* if (psmode != PS_MODE_ACTIVE) { */
/*rtl8723d_set_lowpwr_lps_cmd(adapt, true); */
/* } else { */
/* rtl8723d_set_lowpwr_lps_cmd(adapt, false); */
/* } */
rtl8723d_set_FwPwrMode_cmd(adapt, psmode);
}
break;
case HW_VAR_H2C_PS_TUNE_PARAM:
rtl8723d_set_FwPsTuneParam_cmd(adapt);
break;
case HW_VAR_H2C_FW_JOINBSSRPT:
rtl8723d_set_FwJoinBssRpt_cmd(adapt, *val);
break;
case HW_VAR_H2C_FW_P2P_PS_OFFLOAD:
rtl8723d_set_p2p_ps_offload_cmd(adapt, *val);
break;
case HW_VAR_EFUSE_USAGE:
pHalData->EfuseUsedPercentage = *val;
break;
case HW_VAR_EFUSE_BYTES:
pHalData->EfuseUsedBytes = *((u16 *)val);
break;
case HW_VAR_EFUSE_BT_USAGE:
#ifdef HAL_EFUSE_MEMORY
pHalData->EfuseHal.BTEfuseUsedPercentage = *val;
#endif
break;
case HW_VAR_EFUSE_BT_BYTES:
#ifdef HAL_EFUSE_MEMORY
pHalData->EfuseHal.BTEfuseUsedBytes = *((u16 *)val);
#else
BTEfuseUsedBytes = *((u16 *)val);
#endif
break;
case HW_VAR_FIFO_CLEARN_UP: {
#define RW_RELEASE_EN BIT(18)
#define RXDMA_IDLE BIT(17)
struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(adapt);
u8 trycnt = 100;
/* pause tx */
rtw_write8(adapt, REG_TXPAUSE, 0xff);
/* keep sn */
adapt->xmitpriv.nqos_ssn = rtw_read16(adapt, REG_NQOS_SEQ);
if (!pwrpriv->bkeepfwalive) {
/* RX DMA stop */
val32 = rtw_read32(adapt, REG_RXPKT_NUM);
val32 |= RW_RELEASE_EN;
rtw_write32(adapt, REG_RXPKT_NUM, val32);
do {
val32 = rtw_read32(adapt, REG_RXPKT_NUM);
val32 &= RXDMA_IDLE;
if (val32)
break;
RTW_INFO("%s: [HW_VAR_FIFO_CLEARN_UP] val=%x times:%d\n", __func__, val32, trycnt);
} while (--trycnt);
if (trycnt == 0)
RTW_INFO("[HW_VAR_FIFO_CLEARN_UP] Stop RX DMA failed......\n");
/* RQPN Load 0 */
rtw_write16(adapt, REG_RQPN_NPQ, 0);
rtw_write32(adapt, REG_RQPN, 0x80000000);
rtw_mdelay_os(2);
}
}
break;
case HW_VAR_RESTORE_HW_SEQ:
/* restore Sequence No. */
rtw_write8(adapt, 0x4dc, adapt->xmitpriv.nqos_ssn);
break;
#ifdef CONFIG_CONCURRENT_MODE
case HW_VAR_CHECK_TXBUF: {
u32 i;
u8 RetryLimit = 0x01;
u32 reg_200, reg_204;
u16 val16;
val16 = RetryLimit << RETRY_LIMIT_SHORT_SHIFT | RetryLimit << RETRY_LIMIT_LONG_SHIFT;
rtw_write16(adapt, REG_RL, val16);
for (i = 0; i < 200; i++) { /* polling 200x10=2000 msec */
reg_200 = rtw_read32(adapt, 0x200);
reg_204 = rtw_read32(adapt, 0x204);
if (reg_200 != reg_204) {
/* RTW_INFO("packet in tx packet buffer - 0x204=%x, 0x200=%x (%d)\n", rtw_read32(adapt, 0x204), rtw_read32(adapt, 0x200), i); */
rtw_msleep_os(10);
} else {
RTW_INFO("[HW_VAR_CHECK_TXBUF] no packet in tx packet buffer (%d)\n", i);
break;
}
}
if (reg_200 != reg_204)
RTW_INFO("packets in tx buffer - 0x204=%x, 0x200=%x\n", reg_204, reg_200);
RetryLimit = RL_VAL_STA;
val16 = RetryLimit << RETRY_LIMIT_SHORT_SHIFT | RetryLimit << RETRY_LIMIT_LONG_SHIFT;
rtw_write16(adapt, REG_RL, val16);
}
break;
#endif /* CONFIG_CONCURRENT_MODE */
case HW_VAR_NAV_UPPER: {
u32 usNavUpper = *((u32 *)val);
if (usNavUpper > HAL_NAV_UPPER_UNIT_8723D * 0xFF) {
break;
}
/* The value of ((usNavUpper + HAL_NAV_UPPER_UNIT_8723D - 1) / HAL_NAV_UPPER_UNIT_8723D) */
/* is getting the upper integer. */
usNavUpper = (usNavUpper + HAL_NAV_UPPER_UNIT_8723D - 1) / HAL_NAV_UPPER_UNIT_8723D;
rtw_write8(adapt, REG_NAV_UPPER, (u8)usNavUpper);
}
break;
case HW_VAR_BCN_VALID:
#ifdef CONFIG_CONCURRENT_MODE
if (adapt->hw_port == HW_PORT1) {
val8 = rtw_read8(adapt, REG_DWBCN1_CTRL_8723D + 2);
val8 |= BIT(0);
rtw_write8(adapt, REG_DWBCN1_CTRL_8723D + 2, val8);
} else
#endif /* CONFIG_CONCURRENT_MODE */
{
/* BCN_VALID, BIT16 of REG_TDECTRL = BIT0 of REG_TDECTRL+2, write 1 to clear, Clear by sw */
val8 = rtw_read8(adapt, REG_TDECTRL + 2);
val8 |= BIT(0);
rtw_write8(adapt, REG_TDECTRL + 2, val8);
}
break;
case HW_VAR_DL_BCN_SEL:
#ifdef CONFIG_CONCURRENT_MODE
if (adapt->hw_port == HW_PORT1) {
/* SW_BCN_SEL - Port1 */
val8 = rtw_read8(adapt, REG_DWBCN1_CTRL_8723D + 2);
val8 |= BIT(4);
rtw_write8(adapt, REG_DWBCN1_CTRL_8723D + 2, val8);
} else
#endif /* CONFIG_CONCURRENT_MODE */
{
/* SW_BCN_SEL - Port0 */
val8 = rtw_read8(adapt, REG_DWBCN1_CTRL_8723D + 2);
val8 &= ~BIT(4);
rtw_write8(adapt, REG_DWBCN1_CTRL_8723D + 2, val8);
}
break;
case HW_VAR_DO_IQK:
if (*val)
pHalData->bNeedIQK = true;
else
pHalData->bNeedIQK = false;
break;
case HW_VAR_DL_RSVD_PAGE:
if (check_fwstate(&adapt->mlmepriv, WIFI_AP_STATE))
rtl8723d_download_BTCoex_AP_mode_rsvd_page(adapt);
else
rtl8723d_download_rsvd_page(adapt, RT_MEDIA_CONNECT);
break;
default:
ret = SetHwReg(adapt, variable, val);
break;
}
return ret;
}
struct qinfo_8723d {
u32 head:8;
u32 pkt_num:7;
u32 tail:8;
u32 ac:2;
u32 macid:7;
};
struct bcn_qinfo_8723d {
u16 head:8;
u16 pkt_num:8;
};
static void dump_qinfo_8723d(void *sel, struct qinfo_8723d *info, const char *tag)
{
/* if (info->pkt_num) */
RTW_PRINT_SEL(sel, "%shead:0x%02x, tail:0x%02x, pkt_num:%u, macid:%u, ac:%u\n"
, tag ? tag : "", info->head, info->tail,
info->pkt_num, info->macid, info->ac);
}
static void dump_bcn_qinfo_8723d(void *sel, struct bcn_qinfo_8723d *info, const char *tag)
{
/* if (info->pkt_num) */
RTW_PRINT_SEL(sel, "%shead:0x%02x, pkt_num:%u\n"
, tag ? tag : "", info->head, info->pkt_num);
}
static void dump_mac_qinfo_8723d(void *sel, struct adapter *adapter)
{
u32 q0_info;
u32 q1_info;
u32 q2_info;
u32 q3_info;
u32 q4_info;
u32 q5_info;
u32 q6_info;
u32 q7_info;
u32 mg_q_info;
u32 hi_q_info;
u16 bcn_q_info;
q0_info = rtw_read32(adapter, REG_Q0_INFO);
q1_info = rtw_read32(adapter, REG_Q1_INFO);
q2_info = rtw_read32(adapter, REG_Q2_INFO);
q3_info = rtw_read32(adapter, REG_Q3_INFO);
q4_info = rtw_read32(adapter, REG_Q4_INFO);
q5_info = rtw_read32(adapter, REG_Q5_INFO);
q6_info = rtw_read32(adapter, REG_Q6_INFO);
q7_info = rtw_read32(adapter, REG_Q7_INFO);
mg_q_info = rtw_read32(adapter, REG_MGQ_INFO);
hi_q_info = rtw_read32(adapter, REG_HGQ_INFO);
bcn_q_info = rtw_read16(adapter, REG_BCNQ_INFO);
dump_qinfo_8723d(sel, (struct qinfo_8723d *)&q0_info, "Q0 ");
dump_qinfo_8723d(sel, (struct qinfo_8723d *)&q1_info, "Q1 ");
dump_qinfo_8723d(sel, (struct qinfo_8723d *)&q2_info, "Q2 ");
dump_qinfo_8723d(sel, (struct qinfo_8723d *)&q3_info, "Q3 ");
dump_qinfo_8723d(sel, (struct qinfo_8723d *)&q4_info, "Q4 ");
dump_qinfo_8723d(sel, (struct qinfo_8723d *)&q5_info, "Q5 ");
dump_qinfo_8723d(sel, (struct qinfo_8723d *)&q6_info, "Q6 ");
dump_qinfo_8723d(sel, (struct qinfo_8723d *)&q7_info, "Q7 ");
dump_qinfo_8723d(sel, (struct qinfo_8723d *)&mg_q_info, "MG ");
dump_qinfo_8723d(sel, (struct qinfo_8723d *)&hi_q_info, "HI ");
dump_bcn_qinfo_8723d(sel, (struct bcn_qinfo_8723d *)&bcn_q_info, "BCN ");
}
static void dump_mac_txfifo_8723d(void *sel, struct adapter *adapter)
{
u32 rqpn, rqpn_npq;
u32 hpq, lpq, npq, epq, pubq;
rqpn = rtw_read32(adapter, REG_FIFOPAGE);
rqpn_npq = rtw_read32(adapter, REG_RQPN_NPQ);
hpq = (rqpn & 0xFF);
lpq = ((rqpn & 0xFF00)>>8);
pubq = ((rqpn & 0xFF0000)>>16);
npq = ((rqpn_npq & 0xFF00)>>8);
epq = ((rqpn_npq & 0xFF000000)>>24);
RTW_PRINT_SEL(sel, "Tx: available page num: ");
if ((hpq == 0xEA) && (hpq == lpq) && (hpq == pubq))
RTW_PRINT_SEL(sel, "N/A (reg val = 0xea)\n");
else
RTW_PRINT_SEL(sel, "HPQ: %d, LPQ: %d, NPQ: %d, EPQ: %d, PUBQ: %d\n"
, hpq, lpq, npq, epq, pubq);
}
void GetHwReg8723D(struct adapter * adapt, u8 variable, u8 *val)
{
struct hal_com_data * pHalData = GET_HAL_DATA(adapt);
u8 val8;
u16 val16;
switch (variable) {
case HW_VAR_TXPAUSE:
*val = rtw_read8(adapt, REG_TXPAUSE);
break;
case HW_VAR_BCN_VALID:
#ifdef CONFIG_CONCURRENT_MODE
if (adapt->hw_port == HW_PORT1) {
val8 = rtw_read8(adapt, REG_DWBCN1_CTRL_8723D + 2);
*val = (BIT(0) & val8) ? true : false;
} else
#endif
{
/* BCN_VALID, BIT16 of REG_TDECTRL = BIT0 of REG_TDECTRL+2 */
val8 = rtw_read8(adapt, REG_TDECTRL + 2);
*val = (BIT(0) & val8) ? true : false;
}
break;
case HW_VAR_EFUSE_USAGE:
*val = pHalData->EfuseUsedPercentage;
break;
case HW_VAR_EFUSE_BYTES:
*((u16 *)val) = pHalData->EfuseUsedBytes;
break;
case HW_VAR_EFUSE_BT_USAGE:
#ifdef HAL_EFUSE_MEMORY
*val = pHalData->EfuseHal.BTEfuseUsedPercentage;
#endif
break;
case HW_VAR_EFUSE_BT_BYTES:
#ifdef HAL_EFUSE_MEMORY
*((u16 *)val) = pHalData->EfuseHal.BTEfuseUsedBytes;
#else
*((u16 *)val) = BTEfuseUsedBytes;
#endif
break;
case HW_VAR_CHK_HI_QUEUE_EMPTY:
val16 = rtw_read16(adapt, REG_TXPKT_EMPTY);
*val = (val16 & BIT(10)) ? true : false;
break;
case HW_VAR_CHK_MGQ_CPU_EMPTY:
val16 = rtw_read16(adapt, REG_TXPKT_EMPTY);
*val = (val16 & BIT(8)) ? true : false;
break;
case HW_VAR_DUMP_MAC_QUEUE_INFO:
dump_mac_qinfo_8723d(val, adapt);
break;
case HW_VAR_DUMP_MAC_TXFIFO:
dump_mac_txfifo_8723d(val, adapt);
break;
default:
GetHwReg(adapt, variable, val);
break;
}
}
/*
* Description:
* Change default setting of specified variable.
*/
u8 SetHalDefVar8723D(struct adapter * adapt, enum hal_def_variable variable, void *pval)
{
u8 bResult;
bResult = _SUCCESS;
switch (variable) {
default:
bResult = SetHalDefVar(adapt, variable, pval);
break;
}
return bResult;
}
static void hal_ra_info_dump(struct adapter *adapt , void *sel)
{
int i;
u8 mac_id;
u32 cmd;
u32 ra_info1, ra_info2, bw_set;
u32 rate_mask1, rate_mask2;
u8 curr_tx_rate, curr_tx_sgi, hight_rate, lowest_rate;
struct dvobj_priv *dvobj = adapter_to_dvobj(adapt);
struct macid_ctl_t *macid_ctl = dvobj_to_macidctl(dvobj);
for (i = 0; i < macid_ctl->num; i++) {
if (rtw_macid_is_used(macid_ctl, i) && !rtw_macid_is_bmc(macid_ctl, i)) {
mac_id = (u8) i;
_RTW_PRINT_SEL(sel , "============ RA status check Mac_id:%d ===================\n", mac_id);
cmd = 0x40000100 | mac_id;
rtw_write32(adapt, REG_HMEBOX_DBG_2_8723D, cmd);
rtw_msleep_os(10);
ra_info1 = rtw_read32(adapt, 0x2F0);
curr_tx_rate = ra_info1 & 0x7F;
curr_tx_sgi = (ra_info1 >> 7) & 0x01;
_RTW_PRINT_SEL(sel , "[ ra_info1:0x%08x ] =>cur_tx_rate= %s,cur_sgi:%d\n", ra_info1, HDATA_RATE(curr_tx_rate), curr_tx_sgi);
_RTW_PRINT_SEL(sel , "[ ra_info1:0x%08x ] => PWRSTS = 0x%02x\n", ra_info1, (ra_info1 >> 8) & 0x07);
cmd = 0x40000400 | mac_id;
rtw_write32(adapt, REG_HMEBOX_DBG_2_8723D, cmd);
rtw_msleep_os(10);
ra_info1 = rtw_read32(adapt, 0x2F0);
ra_info2 = rtw_read32(adapt, 0x2F4);
rate_mask1 = rtw_read32(adapt, 0x2F8);
rate_mask2 = rtw_read32(adapt, 0x2FC);
hight_rate = ra_info2 & 0xFF;
lowest_rate = (ra_info2 >> 8) & 0xFF;
bw_set = (ra_info1 >> 8) & 0xFF;
_RTW_PRINT_SEL(sel , "[ ra_info1:0x%08x ] => VHT_EN=0x%02x, ", ra_info1, (ra_info1 >> 24) & 0xFF);
switch (bw_set) {
case CHANNEL_WIDTH_20:
_RTW_PRINT_SEL(sel , "BW_setting=20M\n");
break;
case CHANNEL_WIDTH_40:
_RTW_PRINT_SEL(sel , "BW_setting=40M\n");
break;
case CHANNEL_WIDTH_80:
_RTW_PRINT_SEL(sel , "BW_setting=80M\n");
break;
case CHANNEL_WIDTH_160:
_RTW_PRINT_SEL(sel , "BW_setting=160M\n");
break;
default:
_RTW_PRINT_SEL(sel , "BW_setting=0x%02x\n", bw_set);
break;
}
_RTW_PRINT_SEL(sel , "[ ra_info1:0x%08x ] =>RSSI=%d, DISRA=0x%02x\n",
ra_info1,
ra_info1 & 0xFF,
(ra_info1 >> 16) & 0xFF);
_RTW_PRINT_SEL(sel , "[ ra_info2:0x%08x ] =>hight_rate=%s, lowest_rate=%s, SGI=0x%02x, RateID=%d\n",
ra_info2,
HDATA_RATE(hight_rate),
HDATA_RATE(lowest_rate),
(ra_info2 >> 16) & 0xFF,
(ra_info2 >> 24) & 0xFF);
_RTW_PRINT_SEL(sel , "rate_mask2=0x%08x, rate_mask1=0x%08x\n", rate_mask2, rate_mask1);
}
}
}
/*
* Description:
* Query setting of specified variable.
*/
u8 GetHalDefVar8723D(struct adapter * adapt, enum hal_def_variable variable, void *pval)
{
struct hal_com_data * pHalData;
u8 bResult;
pHalData = GET_HAL_DATA(adapt);
bResult = _SUCCESS;
switch (variable) {
case HAL_DEF_MAX_RECVBUF_SZ:
*((u32 *)pval) = MAX_RECVBUF_SZ;
break;
case HAL_DEF_RX_PACKET_OFFSET:
#ifdef CONFIG_TRX_BD_ARCH
*((u32 *)pval) = RX_WIFI_INFO_SIZE + DRVINFO_SZ * 8;
#else
*((u32 *)pval) = RXDESC_SIZE + DRVINFO_SZ * 8;
#endif
break;
case HW_VAR_MAX_RX_AMPDU_FACTOR:
/* Stanley@BB.SD3 suggests 16K can get stable performance */
/* The experiment was done on SDIO interface */
/* coding by Lucas@20130730 */
*(enum ht_cap_ampdu_factor *)pval = MAX_AMPDU_FACTOR_16K;
break;
case HW_VAR_BEST_AMPDU_DENSITY:
*((u32 *)pval) = AMPDU_DENSITY_VALUE_7;
break;
case HAL_DEF_TX_LDPC:
case HAL_DEF_RX_LDPC:
*((u8 *)pval) = false;
break;
case HAL_DEF_TX_STBC:
*((u8 *)pval) = 0;
break;
case HAL_DEF_RX_STBC:
*((u8 *)pval) = 1;
break;
case HAL_DEF_EXPLICIT_BEAMFORMER:
case HAL_DEF_EXPLICIT_BEAMFORMEE:
*((u8 *)pval) = false;
break;
case HW_DEF_RA_INFO_DUMP:
hal_ra_info_dump(adapt, pval);
break;
case HAL_DEF_TX_PAGE_BOUNDARY:
if (!adapt->registrypriv.wifi_spec)
*(u8 *)pval = TX_PAGE_BOUNDARY_8723D;
else
*(u8 *)pval = WMM_NORMAL_TX_PAGE_BOUNDARY_8723D;
break;
case HAL_DEF_TX_PAGE_SIZE:
*((u32 *)pval) = PAGE_SIZE_128;
break;
case HAL_DEF_RX_DMA_SZ_WOW:
*(u32 *)pval = RX_DMA_SIZE_8723D - RESV_FMWF;
break;
case HAL_DEF_RX_DMA_SZ:
*(u32 *)pval = RX_DMA_BOUNDARY_8723D + 1;
break;
case HAL_DEF_RX_PAGE_SIZE:
*((u32 *)pval) = 8;
break;
default:
bResult = GetHalDefVar(adapt, variable, pval);
break;
}
return bResult;
}
void rtl8723d_start_thread(struct adapter *adapt)
{
}
void rtl8723d_stop_thread(struct adapter *adapt)
{
}
#if defined(CONFIG_CHECK_BT_HANG)
void rtl8723ds_init_checkbthang_workqueue(struct adapter *adapter)
{
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 37))
adapter->priv_checkbt_wq = alloc_workqueue("sdio_wq", 0, 0);
#else
adapter->priv_checkbt_wq = create_workqueue("sdio_wq");
#endif
INIT_DELAYED_WORK(&adapter->checkbt_work, (void *)check_bt_status_work);
}
void rtl8723ds_free_checkbthang_workqueue(struct adapter *adapter)
{
if (adapter->priv_checkbt_wq) {
cancel_delayed_work_sync(&adapter->checkbt_work);
flush_workqueue(adapter->priv_checkbt_wq);
destroy_workqueue(adapter->priv_checkbt_wq);
adapter->priv_checkbt_wq = NULL;
}
}
void rtl8723ds_cancle_checkbthang_workqueue(struct adapter *adapter)
{
if (adapter->priv_checkbt_wq)
cancel_delayed_work_sync(&adapter->checkbt_work);
}
void rtl8723ds_hal_check_bt_hang(struct adapter *adapter)
{
if (adapter->priv_checkbt_wq)
queue_delayed_work(adapter->priv_checkbt_wq, &(adapter->checkbt_work), 0);
}
#endif
void rtl8723d_set_hal_ops(struct hal_ops *pHalFunc)
{
pHalFunc->dm_init = &rtl8723d_init_dm_priv;
pHalFunc->dm_deinit = &rtl8723d_deinit_dm_priv;
pHalFunc->read_chip_version = read_chip_version_8723d;
pHalFunc->set_chnl_bw_handler = &PHY_SetSwChnlBWMode8723D;
pHalFunc->set_tx_power_level_handler = &PHY_SetTxPowerLevel8723D;
pHalFunc->get_tx_power_level_handler = &PHY_GetTxPowerLevel8723D;
pHalFunc->get_tx_power_index_handler = &PHY_GetTxPowerIndex_8723D;
pHalFunc->hal_dm_watchdog = &rtl8723d_HalDmWatchDog;
pHalFunc->SetBeaconRelatedRegistersHandler = &rtl8723d_SetBeaconRelatedRegisters;
pHalFunc->run_thread = &rtl8723d_start_thread;
pHalFunc->cancel_thread = &rtl8723d_stop_thread;
pHalFunc->read_bbreg = &PHY_QueryBBReg_8723D;
pHalFunc->write_bbreg = &PHY_SetBBReg_8723D;
pHalFunc->read_rfreg = &PHY_QueryRFReg_8723D;
pHalFunc->write_rfreg = &PHY_SetRFReg_8723D;
/* Efuse related function */
pHalFunc->BTEfusePowerSwitch = &Hal_BT_EfusePowerSwitch;
pHalFunc->EfusePowerSwitch = &Hal_EfusePowerSwitch;
pHalFunc->ReadEFuse = &Hal_ReadEFuse;
pHalFunc->EFUSEGetEfuseDefinition = &Hal_GetEfuseDefinition;
pHalFunc->EfuseGetCurrentSize = &Hal_EfuseGetCurrentSize;
pHalFunc->Efuse_PgPacketRead = &Hal_EfusePgPacketRead;
pHalFunc->Efuse_PgPacketWrite = &Hal_EfusePgPacketWrite;
pHalFunc->Efuse_WordEnableDataWrite = &Hal_EfuseWordEnableDataWrite;
pHalFunc->Efuse_PgPacketWrite_BT = &Hal_EfusePgPacketWrite_BT;
pHalFunc->GetHalODMVarHandler = GetHalODMVar;
pHalFunc->SetHalODMVarHandler = SetHalODMVar;
pHalFunc->hal_notch_filter = &hal_notch_filter_8723d;
pHalFunc->c2h_handler = c2h_handler_8723d;
pHalFunc->fill_h2c_cmd = &FillH2CCmd8723D;
pHalFunc->fill_fake_txdesc = &rtl8723d_fill_fake_txdesc;
pHalFunc->fw_dl = &rtl8723d_FirmwareDownload;
pHalFunc->hal_get_tx_buff_rsvd_page_num = &GetTxBufferRsvdPageNum8723D;
}