Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags   |
/******************************************************************************
*
* Copyright(c) 2007 - 2012 Realtek Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
*
******************************************************************************/
#define _OSDEP_SERVICE_C_
#include <drv_types.h>
#define RT_TAG '1178'
#ifdef DBG_MEMORY_LEAK
atomic_t _malloc_cnt = ATOMIC_INIT(0);
atomic_t _malloc_size = ATOMIC_INIT(0);
#endif /* DBG_MEMORY_LEAK */
MODULE_IMPORT_NS(VFS_internal_I_am_really_a_filesystem_and_am_NOT_a_driver);
/*
* Translate the OS dependent @param error_code to OS independent RTW_STATUS_CODE
* @return: one of RTW_STATUS_CODE
*/
inline int RTW_STATUS_CODE(int error_code)
{
<------>if (error_code >= 0)
<------><------>return _SUCCESS;
<------>switch (error_code) {
<------>/* case -ETIMEDOUT: */
<------>/* return RTW_STATUS_TIMEDOUT; */
<------>default:
<------><------>return _FAIL;
<------>}
}
u32 rtw_atoi(u8 *s)
{
<------>int num = 0, flag = 0;
<------>int i;
<------>for (i = 0; i <= strlen(s); i++) {
<------><------>if (s[i] >= '0' && s[i] <= '9')
<------><------><------>num = num * 10 + s[i] - '0';
<------><------>else if (s[0] == '-' && i == 0)
<------><------><------>flag = 1;
<------><------>else
<------><------><------>break;
<------>}
<------>if (flag == 1)
<------><------>num = num * -1;
<------>return num;
}
inline u8 *_rtw_vmalloc(u32 sz)
{
<------>u8 *pbuf;
<------>pbuf = vmalloc(sz);
#ifdef DBG_MEMORY_LEAK
<------>if (pbuf != NULL) {
<------><------>atomic_inc(&_malloc_cnt);
<------><------>atomic_add(sz, &_malloc_size);
<------>}
#endif /* DBG_MEMORY_LEAK */
<------>return pbuf;
}
inline u8 *_rtw_zvmalloc(u32 sz)
{
<------>u8 *pbuf;
<------>pbuf = _rtw_vmalloc(sz);
<------>if (pbuf != NULL)
<------><------>memset(pbuf, 0, sz);
<------>return pbuf;
}
inline void _rtw_vmfree(u8 *pbuf, u32 sz)
{
<------>vfree(pbuf);
#ifdef DBG_MEMORY_LEAK
<------>atomic_dec(&_malloc_cnt);
<------>atomic_sub(sz, &_malloc_size);
#endif /* DBG_MEMORY_LEAK */
}
u8 *_rtw_malloc(u32 sz)
{
<------>u8 *pbuf = NULL;
#ifdef RTK_DMP_PLATFORM
<------>if (sz > 0x4000)
<------><------>pbuf = (u8 *)dvr_malloc(sz);
<------>else
#endif
<------><------>pbuf = kmalloc(sz, in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
#ifdef DBG_MEMORY_LEAK
<------>if (pbuf != NULL) {
<------><------>atomic_inc(&_malloc_cnt);
<------><------>atomic_add(sz, &_malloc_size);
<------>}
#endif /* DBG_MEMORY_LEAK */
<------>return pbuf;
}
u8 *_rtw_zmalloc(u32 sz)
{
<------>u8 *pbuf = _rtw_malloc(sz);
<------>if (pbuf != NULL) {
<------><------>memset(pbuf, 0, sz);
<------>}
<------>return pbuf;
}
void _rtw_mfree(u8 *pbuf, u32 sz)
{
#ifdef RTK_DMP_PLATFORM
<------>if (sz > 0x4000)
<------><------>dvr_free(pbuf);
<------>else
#endif
<------><------>kfree(pbuf);
#ifdef DBG_MEMORY_LEAK
<------>atomic_dec(&_malloc_cnt);
<------>atomic_sub(sz, &_malloc_size);
#endif /* DBG_MEMORY_LEAK */
}
inline struct sk_buff *_rtw_skb_alloc(u32 sz)
{
<------>return __dev_alloc_skb(sz, in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
}
inline void _rtw_skb_free(struct sk_buff *skb)
{
<------>dev_kfree_skb_any(skb);
}
inline struct sk_buff *_rtw_skb_copy(const struct sk_buff *skb)
{
<------>return skb_copy(skb, in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
}
inline struct sk_buff *_rtw_skb_clone(struct sk_buff *skb)
{
<------>return skb_clone(skb, in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
}
inline struct sk_buff *_rtw_pskb_copy(struct sk_buff *skb)
{
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 36))
<------>return pskb_copy(skb, in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
#else
<------>return skb_clone(skb, in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
#endif
}
inline int _rtw_netif_rx(_nic_hdl ndev, struct sk_buff *skb)
{
<------>skb->dev = ndev;
<------>return netif_rx(skb);
}
#ifdef CONFIG_RTW_NAPI
inline int _rtw_netif_receive_skb(_nic_hdl ndev, struct sk_buff *skb)
{
<------>skb->dev = ndev;
<------>return netif_receive_skb(skb);
}
#ifdef CONFIG_RTW_GRO
inline gro_result_t _rtw_napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
{
<------>return napi_gro_receive(napi, skb);
}
#endif /* CONFIG_RTW_GRO */
#endif /* CONFIG_RTW_NAPI */
void _rtw_skb_queue_purge(struct sk_buff_head *list)
{
<------>struct sk_buff *skb;
<------>while ((skb = skb_dequeue(list)) != NULL)
<------><------>_rtw_skb_free(skb);
}
#ifdef CONFIG_USB_HCI
inline void *_rtw_usb_buffer_alloc(struct usb_device *dev, size_t size, dma_addr_t *dma)
{
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 35))
<------>return usb_alloc_coherent(dev, size, (in_interrupt() ? GFP_ATOMIC : GFP_KERNEL), dma);
#else
<------>return usb_buffer_alloc(dev, size, (in_interrupt() ? GFP_ATOMIC : GFP_KERNEL), dma);
#endif
inline void _rtw_usb_buffer_free(struct usb_device *dev, size_t size, void *addr, dma_addr_t dma)
{
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 35))
<------>usb_free_coherent(dev, size, addr, dma);
#else
<------>usb_buffer_free(dev, size, addr, dma);
#endif
}
#endif /* CONFIG_USB_HCI */
#if defined(DBG_MEM_ALLOC)
struct rtw_mem_stat {
<------>ATOMIC_T alloc; /* the memory bytes we allocate currently */
<------>ATOMIC_T peak; /* the peak memory bytes we allocate */
<------>ATOMIC_T alloc_cnt; /* the alloc count for alloc currently */
<------>ATOMIC_T alloc_err_cnt; /* the error times we fail to allocate memory */
};
struct rtw_mem_stat rtw_mem_type_stat[mstat_tf_idx(MSTAT_TYPE_MAX)];
#ifdef RTW_MEM_FUNC_STAT
struct rtw_mem_stat rtw_mem_func_stat[mstat_ff_idx(MSTAT_FUNC_MAX)];
#endif
char *MSTAT_TYPE_str[] = {
<------>"VIR",
<------>"PHY",
<------>"SKB",
<------>"USB",
};
#ifdef RTW_MEM_FUNC_STAT
char *MSTAT_FUNC_str[] = {
<------>"UNSP",
<------>"IO",
<------>"TXIO",
<------>"RXIO",
<------>"TX",
<------>"RX",
};
#endif
void rtw_mstat_dump(void *sel)
{
<------>int i;
<------>int value_t[4][mstat_tf_idx(MSTAT_TYPE_MAX)];
#ifdef RTW_MEM_FUNC_STAT
<------>int value_f[4][mstat_ff_idx(MSTAT_FUNC_MAX)];
#endif
<------>int vir_alloc, vir_peak, vir_alloc_err, phy_alloc, phy_peak, phy_alloc_err;
<------>int tx_alloc, tx_peak, tx_alloc_err, rx_alloc, rx_peak, rx_alloc_err;
<------>for (i = 0; i < mstat_tf_idx(MSTAT_TYPE_MAX); i++) {
<------><------>value_t[0][i] = ATOMIC_READ(&(rtw_mem_type_stat[i].alloc));
<------><------>value_t[1][i] = ATOMIC_READ(&(rtw_mem_type_stat[i].peak));
<------><------>value_t[2][i] = ATOMIC_READ(&(rtw_mem_type_stat[i].alloc_cnt));
<------><------>value_t[3][i] = ATOMIC_READ(&(rtw_mem_type_stat[i].alloc_err_cnt));
<------>}
#ifdef RTW_MEM_FUNC_STAT
<------>for (i = 0; i < mstat_ff_idx(MSTAT_FUNC_MAX); i++) {
<------><------>value_f[0][i] = ATOMIC_READ(&(rtw_mem_func_stat[i].alloc));
<------><------>value_f[1][i] = ATOMIC_READ(&(rtw_mem_func_stat[i].peak));
<------><------>value_f[2][i] = ATOMIC_READ(&(rtw_mem_func_stat[i].alloc_cnt));
<------><------>value_f[3][i] = ATOMIC_READ(&(rtw_mem_func_stat[i].alloc_err_cnt));
<------>}
#endif
<------>RTW_PRINT_SEL(sel, "===================== MSTAT =====================\n");
<------>RTW_PRINT_SEL(sel, "%4s %10s %10s %10s %10s\n", "TAG", "alloc", "peak", "aloc_cnt", "err_cnt");
<------>RTW_PRINT_SEL(sel, "-------------------------------------------------\n");
<------>for (i = 0; i < mstat_tf_idx(MSTAT_TYPE_MAX); i++)
<------><------>RTW_PRINT_SEL(sel, "%4s %10d %10d %10d %10d\n", MSTAT_TYPE_str[i], value_t[0][i], value_t[1][i], value_t[2][i], value_t[3][i]);
#ifdef RTW_MEM_FUNC_STAT
<------>RTW_PRINT_SEL(sel, "-------------------------------------------------\n");
<------>for (i = 0; i < mstat_ff_idx(MSTAT_FUNC_MAX); i++)
<------><------>RTW_PRINT_SEL(sel, "%4s %10d %10d %10d %10d\n", MSTAT_FUNC_str[i], value_f[0][i], value_f[1][i], value_f[2][i], value_f[3][i]);
#endif
}
void rtw_mstat_update(const enum mstat_f flags, const MSTAT_STATUS status, u32 sz)
{
<------>static u32 update_time = 0;
<------>int peak, alloc;
<------>int i;
<------>/* initialization */
<------>if (!update_time) {
<------><------>for (i = 0; i < mstat_tf_idx(MSTAT_TYPE_MAX); i++) {
<------><------><------>ATOMIC_SET(&(rtw_mem_type_stat[i].alloc), 0);
<------><------><------>ATOMIC_SET(&(rtw_mem_type_stat[i].peak), 0);
<------><------><------>ATOMIC_SET(&(rtw_mem_type_stat[i].alloc_cnt), 0);
<------><------><------>ATOMIC_SET(&(rtw_mem_type_stat[i].alloc_err_cnt), 0);
<------><------>}
<------><------>#ifdef RTW_MEM_FUNC_STAT
<------><------>for (i = 0; i < mstat_ff_idx(MSTAT_FUNC_MAX); i++) {
<------><------><------>ATOMIC_SET(&(rtw_mem_func_stat[i].alloc), 0);
<------><------><------>ATOMIC_SET(&(rtw_mem_func_stat[i].peak), 0);
<------><------><------>ATOMIC_SET(&(rtw_mem_func_stat[i].alloc_cnt), 0);
<------><------><------>ATOMIC_SET(&(rtw_mem_func_stat[i].alloc_err_cnt), 0);
<------><------>}
<------><------>#endif
<------>}
<------>switch (status) {
<------>case MSTAT_ALLOC_SUCCESS:
<------><------>ATOMIC_INC(&(rtw_mem_type_stat[mstat_tf_idx(flags)].alloc_cnt));
<------><------>alloc = ATOMIC_ADD_RETURN(&(rtw_mem_type_stat[mstat_tf_idx(flags)].alloc), sz);
<------><------>peak = ATOMIC_READ(&(rtw_mem_type_stat[mstat_tf_idx(flags)].peak));
<------><------>if (peak < alloc)
<------><------><------>ATOMIC_SET(&(rtw_mem_type_stat[mstat_tf_idx(flags)].peak), alloc);
<------><------>#ifdef RTW_MEM_FUNC_STAT
<------><------>ATOMIC_INC(&(rtw_mem_func_stat[mstat_ff_idx(flags)].alloc_cnt));
<------><------>alloc = ATOMIC_ADD_RETURN(&(rtw_mem_func_stat[mstat_ff_idx(flags)].alloc), sz);
<------><------>peak = ATOMIC_READ(&(rtw_mem_func_stat[mstat_ff_idx(flags)].peak));
<------><------>if (peak < alloc)
<------><------><------>ATOMIC_SET(&(rtw_mem_func_stat[mstat_ff_idx(flags)].peak), alloc);
<------><------>#endif
<------><------>break;
<------>case MSTAT_ALLOC_FAIL:
<------><------>ATOMIC_INC(&(rtw_mem_type_stat[mstat_tf_idx(flags)].alloc_err_cnt));
<------><------>#ifdef RTW_MEM_FUNC_STAT
<------><------>ATOMIC_INC(&(rtw_mem_func_stat[mstat_ff_idx(flags)].alloc_err_cnt));
<------><------>#endif
<------><------>break;
<------>case MSTAT_FREE:
<------><------>ATOMIC_DEC(&(rtw_mem_type_stat[mstat_tf_idx(flags)].alloc_cnt));
<------><------>ATOMIC_SUB(&(rtw_mem_type_stat[mstat_tf_idx(flags)].alloc), sz);
<------><------>#ifdef RTW_MEM_FUNC_STAT
<------><------>ATOMIC_DEC(&(rtw_mem_func_stat[mstat_ff_idx(flags)].alloc_cnt));
<------><------>ATOMIC_SUB(&(rtw_mem_func_stat[mstat_ff_idx(flags)].alloc), sz);
<------><------>#endif
<------><------>break;
<------>};
<------>/* if (rtw_get_passing_time_ms(update_time) > 5000) { */
<------>/* rtw_mstat_dump(RTW_DBGDUMP); */
<------>update_time = rtw_get_current_time();
<------>/* } */
}
#ifndef SIZE_MAX
<------>#define SIZE_MAX (~(size_t)0)
#endif
struct mstat_sniff_rule {
<------>enum mstat_f flags;
<------>size_t lb;
<------>size_t hb;
};
struct mstat_sniff_rule mstat_sniff_rules[] = {
<------>{MSTAT_TYPE_PHY, 4097, SIZE_MAX},
};
int mstat_sniff_rule_num = sizeof(mstat_sniff_rules) / sizeof(struct mstat_sniff_rule);
bool match_mstat_sniff_rules(const enum mstat_f flags, const size_t size)
{
<------>int i;
<------>for (i = 0; i < mstat_sniff_rule_num; i++) {
<------><------>if (mstat_sniff_rules[i].flags == flags
<------><------><------>&& mstat_sniff_rules[i].lb <= size
<------><------><------>&& mstat_sniff_rules[i].hb >= size)
<------><------><------>return _TRUE;
<------>}
<------>return _FALSE;
}
inline u8 *dbg_rtw_vmalloc(u32 sz, const enum mstat_f flags, const char *func, const int line)
{
<------>u8 *p;
<------>if (match_mstat_sniff_rules(flags, sz))
<------><------>RTW_INFO("DBG_MEM_ALLOC %s:%d %s(%d)\n", func, line, __FUNCTION__, (sz));
<------>p = _rtw_vmalloc((sz));
<------>rtw_mstat_update(
<------><------>flags
<------><------>, p ? MSTAT_ALLOC_SUCCESS : MSTAT_ALLOC_FAIL
<------><------>, sz
<------>);
<------>return p;
}
inline u8 *dbg_rtw_zvmalloc(u32 sz, const enum mstat_f flags, const char *func, const int line)
{
<------>u8 *p;
<------>if (match_mstat_sniff_rules(flags, sz))
<------><------>RTW_INFO("DBG_MEM_ALLOC %s:%d %s(%d)\n", func, line, __FUNCTION__, (sz));
<------>p = _rtw_zvmalloc((sz));
<------>rtw_mstat_update(
<------><------>flags
<------><------>, p ? MSTAT_ALLOC_SUCCESS : MSTAT_ALLOC_FAIL
<------><------>, sz
<------>);
<------>return p;
}
inline void dbg_rtw_vmfree(u8 *pbuf, u32 sz, const enum mstat_f flags, const char *func, const int line)
{
<------>if (match_mstat_sniff_rules(flags, sz))
<------><------>RTW_INFO("DBG_MEM_ALLOC %s:%d %s(%d)\n", func, line, __FUNCTION__, (sz));
<------>_rtw_vmfree((pbuf), (sz));
<------>rtw_mstat_update(
<------><------>flags
<------><------>, MSTAT_FREE
<------><------>, sz
<------>);
}
inline u8 *dbg_rtw_malloc(u32 sz, const enum mstat_f flags, const char *func, const int line)
{
<------>u8 *p;
<------>if (match_mstat_sniff_rules(flags, sz))
<------><------>RTW_INFO("DBG_MEM_ALLOC %s:%d %s(%d)\n", func, line, __FUNCTION__, (sz));
<------>p = _rtw_malloc((sz));
<------>rtw_mstat_update(
<------><------>flags
<------><------>, p ? MSTAT_ALLOC_SUCCESS : MSTAT_ALLOC_FAIL
<------><------>, sz
<------>);
<------>return p;
}
inline u8 *dbg_rtw_zmalloc(u32 sz, const enum mstat_f flags, const char *func, const int line)
{
<------>u8 *p;
<------>if (match_mstat_sniff_rules(flags, sz))
<------><------>RTW_INFO("DBG_MEM_ALLOC %s:%d %s(%d)\n", func, line, __FUNCTION__, (sz));
<------>p = _rtw_zmalloc((sz));
<------>rtw_mstat_update(
<------><------>flags
<------><------>, p ? MSTAT_ALLOC_SUCCESS : MSTAT_ALLOC_FAIL
<------><------>, sz
<------>);
<------>return p;
}
inline void dbg_rtw_mfree(u8 *pbuf, u32 sz, const enum mstat_f flags, const char *func, const int line)
{
<------>if (match_mstat_sniff_rules(flags, sz))
<------><------>RTW_INFO("DBG_MEM_ALLOC %s:%d %s(%d)\n", func, line, __FUNCTION__, (sz));
<------>_rtw_mfree((pbuf), (sz));
<------>rtw_mstat_update(
<------><------>flags
<------><------>, MSTAT_FREE
<------><------>, sz
<------>);
}
inline struct sk_buff *dbg_rtw_skb_alloc(unsigned int size, const enum mstat_f flags, const char *func, int line)
{
<------>struct sk_buff *skb;
<------>unsigned int truesize = 0;
<------>skb = _rtw_skb_alloc(size);
<------>if (skb)
<------><------>truesize = skb->truesize;
<------>if (!skb || truesize < size || match_mstat_sniff_rules(flags, truesize))
<------><------>RTW_INFO("DBG_MEM_ALLOC %s:%d %s(%d), skb:%p, truesize=%u\n", func, line, __FUNCTION__, size, skb, truesize);
<------>rtw_mstat_update(
<------><------>flags
<------><------>, skb ? MSTAT_ALLOC_SUCCESS : MSTAT_ALLOC_FAIL
<------><------>, truesize
<------>);
<------>return skb;
}
inline void dbg_rtw_skb_free(struct sk_buff *skb, const enum mstat_f flags, const char *func, int line)
{
<------>unsigned int truesize = skb->truesize;
<------>if (match_mstat_sniff_rules(flags, truesize))
<------><------>RTW_INFO("DBG_MEM_ALLOC %s:%d %s, truesize=%u\n", func, line, __FUNCTION__, truesize);
<------>_rtw_skb_free(skb);
<------>rtw_mstat_update(
<------><------>flags
<------><------>, MSTAT_FREE
<------><------>, truesize
<------>);
}
inline struct sk_buff *dbg_rtw_skb_copy(const struct sk_buff *skb, const enum mstat_f flags, const char *func, const int line)
{
<------>struct sk_buff *skb_cp;
<------>unsigned int truesize = skb->truesize;
<------>unsigned int cp_truesize = 0;
<------>skb_cp = _rtw_skb_copy(skb);
<------>if (skb_cp)
<------><------>cp_truesize = skb_cp->truesize;
<------>if (!skb_cp || cp_truesize < truesize || match_mstat_sniff_rules(flags, cp_truesize))
<------><------>RTW_INFO("DBG_MEM_ALLOC %s:%d %s(%u), skb_cp:%p, cp_truesize=%u\n", func, line, __FUNCTION__, truesize, skb_cp, cp_truesize);
<------>rtw_mstat_update(
<------><------>flags
<------><------>, skb_cp ? MSTAT_ALLOC_SUCCESS : MSTAT_ALLOC_FAIL
<------><------>, truesize
<------>);
<------>return skb_cp;
}
inline struct sk_buff *dbg_rtw_skb_clone(struct sk_buff *skb, const enum mstat_f flags, const char *func, const int line)
{
<------>struct sk_buff *skb_cl;
<------>unsigned int truesize = skb->truesize;
<------>unsigned int cl_truesize = 0;
<------>skb_cl = _rtw_skb_clone(skb);
<------>if (skb_cl)
<------><------>cl_truesize = skb_cl->truesize;
<------>if (!skb_cl || cl_truesize < truesize || match_mstat_sniff_rules(flags, cl_truesize))
<------><------>RTW_INFO("DBG_MEM_ALLOC %s:%d %s(%u), skb_cl:%p, cl_truesize=%u\n", func, line, __FUNCTION__, truesize, skb_cl, cl_truesize);
<------>rtw_mstat_update(
<------><------>flags
<------><------>, skb_cl ? MSTAT_ALLOC_SUCCESS : MSTAT_ALLOC_FAIL
<------><------>, truesize
<------>);
<------>return skb_cl;
}
inline int dbg_rtw_netif_rx(_nic_hdl ndev, struct sk_buff *skb, const enum mstat_f flags, const char *func, int line)
{
<------>int ret;
<------>unsigned int truesize = skb->truesize;
<------>if (match_mstat_sniff_rules(flags, truesize))
<------><------>RTW_INFO("DBG_MEM_ALLOC %s:%d %s, truesize=%u\n", func, line, __FUNCTION__, truesize);
<------>ret = _rtw_netif_rx(ndev, skb);
<------>rtw_mstat_update(
<------><------>flags
<------><------>, MSTAT_FREE
<------><------>, truesize
<------>);
<------>return ret;
}
#ifdef CONFIG_RTW_NAPI
inline int dbg_rtw_netif_receive_skb(_nic_hdl ndev, struct sk_buff *skb, const enum mstat_f flags, const char *func, int line)
{
<------>int ret;
<------>unsigned int truesize = skb->truesize;
<------>if (match_mstat_sniff_rules(flags, truesize))
<------><------>RTW_INFO("DBG_MEM_ALLOC %s:%d %s, truesize=%u\n", func, line, __FUNCTION__, truesize);
<------>ret = _rtw_netif_receive_skb(ndev, skb);
<------>rtw_mstat_update(
<------><------>flags
<------><------>, MSTAT_FREE
<------><------>, truesize
<------>);
<------>return ret;
}
#ifdef CONFIG_RTW_GRO
inline gro_result_t dbg_rtw_napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb, const enum mstat_f flags, const char *func, int line)
{
<------>int ret;
<------>unsigned int truesize = skb->truesize;
<------>if (match_mstat_sniff_rules(flags, truesize))
<------><------>RTW_INFO("DBG_MEM_ALLOC %s:%d %s, truesize=%u\n", func, line, __FUNCTION__, truesize);
<------>ret = _rtw_napi_gro_receive(napi, skb);
<------>rtw_mstat_update(
<------><------>flags
<------><------>, MSTAT_FREE
<------><------>, truesize
<------>);
<------>return ret;
}
#endif /* CONFIG_RTW_GRO */
#endif /* CONFIG_RTW_NAPI */
inline void dbg_rtw_skb_queue_purge(struct sk_buff_head *list, enum mstat_f flags, const char *func, int line)
{
<------>struct sk_buff *skb;
<------>while ((skb = skb_dequeue(list)) != NULL)
<------><------>dbg_rtw_skb_free(skb, flags, func, line);
}
#ifdef CONFIG_USB_HCI
inline void *dbg_rtw_usb_buffer_alloc(struct usb_device *dev, size_t size, dma_addr_t *dma, const enum mstat_f flags, const char *func, int line)
{
<------>void *p;
<------>if (match_mstat_sniff_rules(flags, size))
<------><------>RTW_INFO("DBG_MEM_ALLOC %s:%d %s(%zu)\n", func, line, __FUNCTION__, size);
<------>p = _rtw_usb_buffer_alloc(dev, size, dma);
<------>rtw_mstat_update(
<------><------>flags
<------><------>, p ? MSTAT_ALLOC_SUCCESS : MSTAT_ALLOC_FAIL
<------><------>, size
<------>);
<------>return p;
}
inline void dbg_rtw_usb_buffer_free(struct usb_device *dev, size_t size, void *addr, dma_addr_t dma, const enum mstat_f flags, const char *func, int line)
{
<------>if (match_mstat_sniff_rules(flags, size))
<------><------>RTW_INFO("DBG_MEM_ALLOC %s:%d %s(%zu)\n", func, line, __FUNCTION__, size);
<------>_rtw_usb_buffer_free(dev, size, addr, dma);
<------>rtw_mstat_update(
<------><------>flags
<------><------>, MSTAT_FREE
<------><------>, size
<------>);
}
#endif /* CONFIG_USB_HCI */
#endif /* defined(DBG_MEM_ALLOC) */
void *rtw_malloc2d(int h, int w, size_t size)
{
<------>int j;
<------>void **a = (void **) rtw_zmalloc(h * sizeof(void *) + h * w * size);
<------>if (a == NULL) {
<------><------>RTW_INFO("%s: alloc memory fail!\n", __FUNCTION__);
<------><------>return NULL;
<------>}
<------>for (j = 0; j < h; j++)
<------><------>a[j] = ((char *)(a + h)) + j * w * size;
<------>return a;
}
void rtw_mfree2d(void *pbuf, int h, int w, int size)
{
<------>rtw_mfree((u8 *)pbuf, h * sizeof(void *) + w * h * size);
}
void _rtw_memcpy(void *dst, const void *src, u32 sz)
{
<------>memcpy(dst, src, sz);
}
inline void _rtw_memmove(void *dst, const void *src, u32 sz)
{
<------>memmove(dst, src, sz);
}
int _rtw_memcmp(const void *dst, const void *src, u32 sz)
{
<------>/* under Linux/GNU/GLibc, the return value of memcmp for two same mem. chunk is 0 */
<------>if (!(memcmp(dst, src, sz)))
<------><------>return _TRUE;
<------>else
<------><------>return _FALSE;
}
void _rtw_memset(void *pbuf, int c, u32 sz)
{
<------>memset(pbuf, c, sz);
}
void _rtw_init_listhead(_list *list)
{
<------>INIT_LIST_HEAD(list);
}
/*
For the following list_xxx operations,
caller must guarantee the atomic context.
Otherwise, there will be racing condition.
*/
u32 rtw_is_list_empty(_list *phead)
{
<------>if (list_empty(phead))
<------><------>return _TRUE;
<------>else
<------><------>return _FALSE;
}
void rtw_list_insert_head(_list *plist, _list *phead)
{
<------>list_add(plist, phead);
}
void rtw_list_insert_tail(_list *plist, _list *phead)
{
<------>list_add_tail(plist, phead);
}
#if LINUX_VERSION_CODE < KERNEL_VERSION(4, 15, 0)
void rtw_init_timer(_timer *ptimer, void *padapter, void *pfunc)
{
<------>_adapter *adapter = (_adapter *)padapter;
<------>_init_timer(ptimer, adapter->pnetdev, pfunc, adapter);
}
#endif
/*
Caller must check if the list is empty before calling rtw_list_delete
*/
void _rtw_init_sema(_sema *sema, int init_val)
{
<------>sema_init(sema, init_val);
}
void _rtw_free_sema(_sema *sema)
{
}
void _rtw_up_sema(_sema *sema)
{
<------>up(sema);
}
u32 _rtw_down_sema(_sema *sema)
{
<------>if (down_interruptible(sema))
<------><------>return _FAIL;
<------>else
<------><------>return _SUCCESS;
}
void _rtw_mutex_init(_mutex *pmutex)
{
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 37))
<------>mutex_init(pmutex);
#else
<------>init_MUTEX(pmutex);
#endif
}
void _rtw_mutex_free(_mutex *pmutex);
void _rtw_mutex_free(_mutex *pmutex)
{
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 37))
<------>mutex_destroy(pmutex);
#endif
}
void _rtw_spinlock_init(_lock *plock)
{
<------>spin_lock_init(plock);
}
void _rtw_spinlock_free(_lock *plock)
{
}
void _rtw_spinlock(_lock *plock)
{
<------>spin_lock(plock);
}
void _rtw_spinunlock(_lock *plock)
{
<------>spin_unlock(plock);
}
void _rtw_spinlock_ex(_lock *plock)
{
<------>spin_lock(plock);
}
void _rtw_spinunlock_ex(_lock *plock)
{
<------>spin_unlock(plock);
}
void _rtw_init_queue(_queue *pqueue)
{
<------>_rtw_init_listhead(&(pqueue->queue));
<------>_rtw_spinlock_init(&(pqueue->lock));
}
void _rtw_deinit_queue(_queue *pqueue)
{
<------>_rtw_spinlock_free(&(pqueue->lock));
}
u32 _rtw_queue_empty(_queue *pqueue)
{
<------>return rtw_is_list_empty(&(pqueue->queue));
}
u32 rtw_end_of_queue_search(_list *head, _list *plist)
{
<------>if (head == plist)
<------><------>return _TRUE;
<------>else
<------><------>return _FALSE;
}
u32 rtw_get_current_time(void)
{
<------>return jiffies;
}
inline u32 rtw_systime_to_ms(u32 systime)
{
<------>return systime * 1000 / HZ;
}
inline u32 rtw_ms_to_systime(u32 ms)
{
<------>return ms * HZ / 1000;
}
/* the input parameter start use the same unit as returned by rtw_get_current_time */
inline s32 rtw_get_passing_time_ms(u32 start)
{
<------>return rtw_systime_to_ms(jiffies - start);
}
inline s32 rtw_get_time_interval_ms(u32 start, u32 end)
{
<------>return rtw_systime_to_ms(end - start);
}
void rtw_sleep_schedulable(int ms)
{
<------>u32 delta;
<------>delta = (ms * HZ) / 1000; /* (ms) */
<------>if (delta == 0) {
<------><------>delta = 1;/* 1 ms */
<------>}
<------>set_current_state(TASK_INTERRUPTIBLE);
<------>if (schedule_timeout(delta) != 0)
<------><------>return ;
<------>return;
}
void rtw_msleep_os(int ms)
{
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 36))
<------>if (ms < 20) {
<------><------>unsigned long us = ms * 1000UL;
<------><------>usleep_range(us, us + 1000UL);
<------>} else
#endif
<------><------>msleep((unsigned int)ms);
}
void rtw_usleep_os(int us)
{
<------>/* msleep((unsigned int)us); */
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 36))
<------>usleep_range(us, us + 1);
#else
<------>if (1 < (us / 1000))
<------><------>msleep(1);
<------>else
<------><------>msleep((us / 1000) + 1);
#endif
}
#ifdef DBG_DELAY_OS
void _rtw_mdelay_os(int ms, const char *func, const int line)
{
<------>RTW_INFO("%s:%d %s(%d)\n", func, line, __FUNCTION__, ms);
<------>mdelay((unsigned long)ms);
}
void _rtw_udelay_os(int us, const char *func, const int line)
{
<------>RTW_INFO("%s:%d %s(%d)\n", func, line, __FUNCTION__, us);
<------>udelay((unsigned long)us);
}
#else
void rtw_mdelay_os(int ms)
{
<------>mdelay((unsigned long)ms);
}
void rtw_udelay_os(int us)
{
<------>udelay((unsigned long)us);
}
#endif
void rtw_yield_os(void)
{
<------>yield();
}
#define RTW_SUSPEND_LOCK_NAME "rtw_wifi"
#define RTW_SUSPEND_EXT_LOCK_NAME "rtw_wifi_ext"
#define RTW_SUSPEND_RX_LOCK_NAME "rtw_wifi_rx"
#define RTW_SUSPEND_TRAFFIC_LOCK_NAME "rtw_wifi_traffic"
#define RTW_SUSPEND_RESUME_LOCK_NAME "rtw_wifi_resume"
#define RTW_RESUME_SCAN_LOCK_NAME "rtw_wifi_scan"
#ifdef CONFIG_WAKELOCK
static struct wake_lock rtw_suspend_lock;
static struct wake_lock rtw_suspend_ext_lock;
static struct wake_lock rtw_suspend_rx_lock;
static struct wake_lock rtw_suspend_traffic_lock;
static struct wake_lock rtw_suspend_resume_lock;
static struct wake_lock rtw_resume_scan_lock;
#elif defined(CONFIG_ANDROID_POWER)
static android_suspend_lock_t rtw_suspend_lock = {
<------>.name = RTW_SUSPEND_LOCK_NAME
};
static android_suspend_lock_t rtw_suspend_ext_lock = {
<------>.name = RTW_SUSPEND_EXT_LOCK_NAME
};
static android_suspend_lock_t rtw_suspend_rx_lock = {
<------>.name = RTW_SUSPEND_RX_LOCK_NAME
};
static android_suspend_lock_t rtw_suspend_traffic_lock = {
<------>.name = RTW_SUSPEND_TRAFFIC_LOCK_NAME
};
static android_suspend_lock_t rtw_suspend_resume_lock = {
<------>.name = RTW_SUSPEND_RESUME_LOCK_NAME
};
static android_suspend_lock_t rtw_resume_scan_lock = {
<------>.name = RTW_RESUME_SCAN_LOCK_NAME
};
#endif
inline void rtw_suspend_lock_init(void)
{
#ifdef CONFIG_WAKELOCK
<------>wake_lock_init(&rtw_suspend_lock, WAKE_LOCK_SUSPEND, RTW_SUSPEND_LOCK_NAME);
<------>wake_lock_init(&rtw_suspend_ext_lock, WAKE_LOCK_SUSPEND, RTW_SUSPEND_EXT_LOCK_NAME);
<------>wake_lock_init(&rtw_suspend_rx_lock, WAKE_LOCK_SUSPEND, RTW_SUSPEND_RX_LOCK_NAME);
<------>wake_lock_init(&rtw_suspend_traffic_lock, WAKE_LOCK_SUSPEND, RTW_SUSPEND_TRAFFIC_LOCK_NAME);
<------>wake_lock_init(&rtw_suspend_resume_lock, WAKE_LOCK_SUSPEND, RTW_SUSPEND_RESUME_LOCK_NAME);
<------>wake_lock_init(&rtw_resume_scan_lock, WAKE_LOCK_SUSPEND, RTW_RESUME_SCAN_LOCK_NAME);
#elif defined(CONFIG_ANDROID_POWER)
<------>android_init_suspend_lock(&rtw_suspend_lock);
<------>android_init_suspend_lock(&rtw_suspend_ext_lock);
<------>android_init_suspend_lock(&rtw_suspend_rx_lock);
<------>android_init_suspend_lock(&rtw_suspend_traffic_lock);
<------>android_init_suspend_lock(&rtw_suspend_resume_lock);
<------>android_init_suspend_lock(&rtw_resume_scan_lock);
#endif
}
inline void rtw_suspend_lock_uninit(void)
{
#ifdef CONFIG_WAKELOCK
<------>wake_lock_destroy(&rtw_suspend_lock);
<------>wake_lock_destroy(&rtw_suspend_ext_lock);
<------>wake_lock_destroy(&rtw_suspend_rx_lock);
<------>wake_lock_destroy(&rtw_suspend_traffic_lock);
<------>wake_lock_destroy(&rtw_suspend_resume_lock);
<------>wake_lock_destroy(&rtw_resume_scan_lock);
#elif defined(CONFIG_ANDROID_POWER)
<------>android_uninit_suspend_lock(&rtw_suspend_lock);
<------>android_uninit_suspend_lock(&rtw_suspend_ext_lock);
<------>android_uninit_suspend_lock(&rtw_suspend_rx_lock);
<------>android_uninit_suspend_lock(&rtw_suspend_traffic_lock);
<------>android_uninit_suspend_lock(&rtw_suspend_resume_lock);
<------>android_uninit_suspend_lock(&rtw_resume_scan_lock);
#endif
}
inline void rtw_lock_suspend(void)
{
#ifdef CONFIG_WAKELOCK
<------>wake_lock(&rtw_suspend_lock);
#elif defined(CONFIG_ANDROID_POWER)
<------>android_lock_suspend(&rtw_suspend_lock);
#endif
#if defined(CONFIG_WAKELOCK) || defined(CONFIG_ANDROID_POWER)
<------>/* RTW_INFO("####%s: suspend_lock_count:%d####\n", __FUNCTION__, rtw_suspend_lock.stat.count); */
#endif
}
inline void rtw_unlock_suspend(void)
{
#ifdef CONFIG_WAKELOCK
<------>wake_unlock(&rtw_suspend_lock);
#elif defined(CONFIG_ANDROID_POWER)
<------>android_unlock_suspend(&rtw_suspend_lock);
#endif
#if defined(CONFIG_WAKELOCK) || defined(CONFIG_ANDROID_POWER)
<------>/* RTW_INFO("####%s: suspend_lock_count:%d####\n", __FUNCTION__, rtw_suspend_lock.stat.count); */
#endif
}
inline void rtw_resume_lock_suspend(void)
{
#ifdef CONFIG_WAKELOCK
<------>wake_lock(&rtw_suspend_resume_lock);
#elif defined(CONFIG_ANDROID_POWER)
<------>android_lock_suspend(&rtw_suspend_resume_lock);
#endif
#if defined(CONFIG_WAKELOCK) || defined(CONFIG_ANDROID_POWER)
<------>/* RTW_INFO("####%s: suspend_lock_count:%d####\n", __FUNCTION__, rtw_suspend_lock.stat.count); */
#endif
}
inline void rtw_resume_unlock_suspend(void)
{
#ifdef CONFIG_WAKELOCK
<------>wake_unlock(&rtw_suspend_resume_lock);
#elif defined(CONFIG_ANDROID_POWER)
<------>android_unlock_suspend(&rtw_suspend_resume_lock);
#endif
#if defined(CONFIG_WAKELOCK) || defined(CONFIG_ANDROID_POWER)
<------>/* RTW_INFO("####%s: suspend_lock_count:%d####\n", __FUNCTION__, rtw_suspend_lock.stat.count); */
#endif
}
inline void rtw_lock_suspend_timeout(u32 timeout_ms)
{
#ifdef CONFIG_WAKELOCK
<------>wake_lock_timeout(&rtw_suspend_lock, rtw_ms_to_systime(timeout_ms));
#elif defined(CONFIG_ANDROID_POWER)
<------>android_lock_suspend_auto_expire(&rtw_suspend_lock, rtw_ms_to_systime(timeout_ms));
#endif
}
inline void rtw_lock_ext_suspend_timeout(u32 timeout_ms)
{
#ifdef CONFIG_WAKELOCK
<------>wake_lock_timeout(&rtw_suspend_ext_lock, rtw_ms_to_systime(timeout_ms));
#elif defined(CONFIG_ANDROID_POWER)
<------>android_lock_suspend_auto_expire(&rtw_suspend_ext_lock, rtw_ms_to_systime(timeout_ms));
#endif
<------>/* RTW_INFO("EXT lock timeout:%d\n", timeout_ms); */
}
inline void rtw_lock_rx_suspend_timeout(u32 timeout_ms)
{
#ifdef CONFIG_WAKELOCK
<------>wake_lock_timeout(&rtw_suspend_rx_lock, rtw_ms_to_systime(timeout_ms));
#elif defined(CONFIG_ANDROID_POWER)
<------>android_lock_suspend_auto_expire(&rtw_suspend_rx_lock, rtw_ms_to_systime(timeout_ms));
#endif
<------>/* RTW_INFO("RX lock timeout:%d\n", timeout_ms); */
}
inline void rtw_lock_traffic_suspend_timeout(u32 timeout_ms)
{
#ifdef CONFIG_WAKELOCK
<------>wake_lock_timeout(&rtw_suspend_traffic_lock, rtw_ms_to_systime(timeout_ms));
#elif defined(CONFIG_ANDROID_POWER)
<------>android_lock_suspend_auto_expire(&rtw_suspend_traffic_lock, rtw_ms_to_systime(timeout_ms));
#endif
<------>/* RTW_INFO("traffic lock timeout:%d\n", timeout_ms); */
}
inline void rtw_lock_resume_scan_timeout(u32 timeout_ms)
{
#ifdef CONFIG_WAKELOCK
<------>wake_lock_timeout(&rtw_resume_scan_lock, rtw_ms_to_systime(timeout_ms));
#elif defined(CONFIG_ANDROID_POWER)
<------>android_lock_suspend_auto_expire(&rtw_resume_scan_lock, rtw_ms_to_systime(timeout_ms));
#endif
<------>/* RTW_INFO("resume scan lock:%d\n", timeout_ms); */
}
inline void ATOMIC_SET(ATOMIC_T *v, int i)
{
<------>atomic_set(v, i);
}
inline int ATOMIC_READ(ATOMIC_T *v)
{
<------>return atomic_read(v);
}
inline void ATOMIC_ADD(ATOMIC_T *v, int i)
{
<------>atomic_add(i, v);
}
inline void ATOMIC_SUB(ATOMIC_T *v, int i)
{
<------>atomic_sub(i, v);
}
inline void ATOMIC_INC(ATOMIC_T *v)
{
<------>atomic_inc(v);
}
inline void ATOMIC_DEC(ATOMIC_T *v)
{
<------>atomic_dec(v);
}
inline int ATOMIC_ADD_RETURN(ATOMIC_T *v, int i)
{
<------>return atomic_add_return(i, v);
}
inline int ATOMIC_SUB_RETURN(ATOMIC_T *v, int i)
{
<------>return atomic_sub_return(i, v);
}
inline int ATOMIC_INC_RETURN(ATOMIC_T *v)
{
<------>return atomic_inc_return(v);
}
inline int ATOMIC_DEC_RETURN(ATOMIC_T *v)
{
<------>return atomic_dec_return(v);
}
/*
* Open a file with the specific @param path, @param flag, @param mode
* @param fpp the pointer of struct file pointer to get struct file pointer while file opening is success
* @param path the path of the file to open
* @param flag file operation flags, please refer to linux document
* @param mode please refer to linux document
* @return Linux specific error code
*/
static int openFile(struct file **fpp, const char *path, int flag, int mode)
{
<------>struct file *fp;
<------>fp = filp_open(path, flag, mode);
<------>if (IS_ERR(fp)) {
<------><------>*fpp = NULL;
<------><------>return PTR_ERR(fp);
<------>} else {
<------><------>*fpp = fp;
<------><------>return 0;
<------>}
}
/*
* Close the file with the specific @param fp
* @param fp the pointer of struct file to close
* @return always 0
*/
static int closeFile(struct file *fp)
{
<------>filp_close(fp, NULL);
<------>return 0;
}
static int readFile(struct file *fp, char *buf, int len)
{
<------>int rlen = 0, sum = 0;
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 1, 0))
<------>if (!(fp->f_mode & FMODE_CAN_READ))
#else
<------>if (!fp->f_op || !fp->f_op->read)
#endif
<------><------>return -EPERM;
<------>while (sum < len) {
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 14, 0))
<------><------>rlen = kernel_read(fp, buf + sum, len - sum, &fp->f_pos);
#elif (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 1, 0))
<------><------>rlen = __vfs_read(fp, buf + sum, len - sum, &fp->f_pos);
#else
<------><------>rlen = fp->f_op->read(fp, buf + sum, len - sum, &fp->f_pos);
#endif
<------><------>if (rlen > 0)
<------><------><------>sum += rlen;
<------><------>else if (0 != rlen)
<------><------><------>return rlen;
<------><------>else
<------><------><------>break;
<------>}
<------>return sum;
}
static int writeFile(struct file *fp, char *buf, int len)
{
<------>int wlen = 0, sum = 0;
<------>if (!fp->f_op || !fp->f_op->write)
<------><------>return -EPERM;
<------>while (sum < len) {
<------><------>wlen = fp->f_op->write(fp, buf + sum, len - sum, &fp->f_pos);
<------><------>if (wlen > 0)
<------><------><------>sum += wlen;
<------><------>else if (0 != wlen)
<------><------><------>return wlen;
<------><------>else
<------><------><------>break;
<------>}
<------>return sum;
}
/*
* Test if the specifi @param path is a file and readable
* If readable, @param sz is got
* @param path the path of the file to test
* @return Linux specific error code
*/
static int isFileReadable(const char *path, u32 *sz)
{
<------>struct file *fp;
<------>int ret = 0;
#ifdef set_fs
<------>mm_segment_t oldfs;
#endif
<------>char buf;
<------>fp = filp_open(path, O_RDONLY, 0);
<------>if (IS_ERR(fp))
<------><------>ret = PTR_ERR(fp);
<------>else {
#ifdef set_fs
<------><------>oldfs = get_fs();
<------><------>set_fs(KERNEL_DS);
#endif
<------><------>if (1 != readFile(fp, &buf, 1))
<------><------><------>ret = PTR_ERR(fp);
<------><------>if (ret == 0 && sz) {
<------><------><------>#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 19, 0))
<------><------><------>*sz = i_size_read(fp->f_path.dentry->d_inode);
<------><------><------>#else
<------><------><------>*sz = i_size_read(fp->f_dentry->d_inode);
<------><------><------>#endif
<------><------>}
#ifdef set_fs
<------><------>set_fs(oldfs);
#endif
<------><------>filp_close(fp, NULL);
<------>}
<------>return ret;
}
/*
* Open the file with @param path and retrive the file content into memory starting from @param buf for @param sz at most
* @param path the path of the file to open and read
* @param buf the starting address of the buffer to store file content
* @param sz how many bytes to read at most
* @return the byte we've read, or Linux specific error code
*/
static int retriveFromFile(const char *path, u8 *buf, u32 sz)
{
<------>int ret = -1;
#ifdef set_fs
<------>mm_segment_t oldfs;
#endif
<------>struct file *fp;
<------>if (path && buf) {
<------><------>ret = openFile(&fp, path, O_RDONLY, 0);
<------><------>if (0 == ret) {
<------><------><------>RTW_INFO("%s openFile path:%s fp=%p\n", __FUNCTION__, path , fp);
#ifdef set_fs
<------><------><------>oldfs = get_fs();
<------><------><------>set_fs(KERNEL_DS);
#endif
<------><------><------>ret = readFile(fp, buf, sz);
#ifdef set_fs
<------><------><------>set_fs(oldfs);
#endif
<------><------><------>closeFile(fp);
<------><------><------>RTW_INFO("%s readFile, ret:%d\n", __FUNCTION__, ret);
<------><------>} else
<------><------><------>RTW_INFO("%s openFile path:%s Fail, ret:%d\n", __FUNCTION__, path, ret);
<------>} else {
<------><------>RTW_INFO("%s NULL pointer\n", __FUNCTION__);
<------><------>ret = -EINVAL;
<------>}
<------>return ret;
}
/*
* Open the file with @param path and wirte @param sz byte of data starting from @param buf into the file
* @param path the path of the file to open and write
* @param buf the starting address of the data to write into file
* @param sz how many bytes to write at most
* @return the byte we've written, or Linux specific error code
*/
static int storeToFile(const char *path, u8 *buf, u32 sz)
{
<------>int ret = 0;
#ifdef set_fs
<------>mm_segment_t oldfs;
#endif
<------>struct file *fp;
<------>if (path && buf) {
<------><------>ret = openFile(&fp, path, O_CREAT | O_WRONLY, 0666);
<------><------>if (0 == ret) {
<------><------><------>RTW_INFO("%s openFile path:%s fp=%p\n", __FUNCTION__, path , fp);
#ifdef set_fs
<------><------><------>oldfs = get_fs();
<------><------><------>set_fs(KERNEL_DS);
#endif
<------><------><------>ret = writeFile(fp, buf, sz);
#ifdef set_fs
<------><------><------>set_fs(oldfs);
#endif
<------><------><------>closeFile(fp);
<------><------><------>RTW_INFO("%s writeFile, ret:%d\n", __FUNCTION__, ret);
<------><------>} else
<------><------><------>RTW_INFO("%s openFile path:%s Fail, ret:%d\n", __FUNCTION__, path, ret);
<------>} else {
<------><------>RTW_INFO("%s NULL pointer\n", __FUNCTION__);
<------><------>ret = -EINVAL;
<------>}
<------>return ret;
}
/*
* Test if the specifi @param path is a file and readable
* @param path the path of the file to test
* @return _TRUE or _FALSE
*/
int rtw_is_file_readable(const char *path)
{
<------>if (isFileReadable(path, NULL) == 0)
<------><------>return _TRUE;
<------>else
<------><------>return _FALSE;
}
/*
* Test if the specifi @param path is a file and readable.
* If readable, @param sz is got
* @param path the path of the file to test
* @return _TRUE or _FALSE
*/
int rtw_is_file_readable_with_size(const char *path, u32 *sz)
{
<------>if (isFileReadable(path, sz) == 0)
<------><------>return _TRUE;
<------>else
<------><------>return _FALSE;
}
/*
* Open the file with @param path and retrive the file content into memory starting from @param buf for @param sz at most
* @param path the path of the file to open and read
* @param buf the starting address of the buffer to store file content
* @param sz how many bytes to read at most
* @return the byte we've read
*/
int rtw_retrieve_from_file(const char *path, u8 *buf, u32 sz)
{
<------>int ret = retriveFromFile(path, buf, sz);
<------>return ret >= 0 ? ret : 0;
}
/*
* Open the file with @param path and wirte @param sz byte of data starting from @param buf into the file
* @param path the path of the file to open and write
* @param buf the starting address of the data to write into file
* @param sz how many bytes to write at most
* @return the byte we've written
*/
int rtw_store_to_file(const char *path, u8 *buf, u32 sz)
{
<------>int ret = storeToFile(path, buf, sz);
<------>return ret >= 0 ? ret : 0;
}
struct net_device *rtw_alloc_etherdev_with_old_priv(int sizeof_priv, void *old_priv)
{
<------>struct net_device *pnetdev;
<------>struct rtw_netdev_priv_indicator *pnpi;
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 35))
<------>pnetdev = alloc_etherdev_mq(sizeof(struct rtw_netdev_priv_indicator), 4);
#else
<------>pnetdev = alloc_etherdev(sizeof(struct rtw_netdev_priv_indicator));
#endif
<------>if (!pnetdev)
<------><------>goto RETURN;
<------>pnpi = netdev_priv(pnetdev);
<------>pnpi->priv = old_priv;
<------>pnpi->sizeof_priv = sizeof_priv;
RETURN:
<------>return pnetdev;
}
struct net_device *rtw_alloc_etherdev(int sizeof_priv)
{
<------>struct net_device *pnetdev;
<------>struct rtw_netdev_priv_indicator *pnpi;
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 35))
<------>pnetdev = alloc_etherdev_mq(sizeof(struct rtw_netdev_priv_indicator), 4);
#else
<------>pnetdev = alloc_etherdev(sizeof(struct rtw_netdev_priv_indicator));
#endif
<------>if (!pnetdev)
<------><------>goto RETURN;
<------>pnpi = netdev_priv(pnetdev);
<------>pnpi->priv = rtw_zvmalloc(sizeof_priv);
<------>if (!pnpi->priv) {
<------><------>free_netdev(pnetdev);
<------><------>pnetdev = NULL;
<------><------>goto RETURN;
<------>}
<------>pnpi->sizeof_priv = sizeof_priv;
RETURN:
<------>return pnetdev;
}
void rtw_free_netdev(struct net_device *netdev)
{
<------>struct rtw_netdev_priv_indicator *pnpi;
<------>if (!netdev)
<------><------>goto RETURN;
<------>pnpi = netdev_priv(netdev);
<------>if (!pnpi->priv)
<------><------>goto RETURN;
<------>free_netdev(netdev);
RETURN:
<------>return;
}
/*
* Jeff: this function should be called under ioctl (rtnl_lock is accquired) while
* LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 26)
*/
int rtw_change_ifname(_adapter *padapter, const char *ifname)
{
<------>struct net_device *pnetdev;
<------>struct net_device *cur_pnetdev;
<------>struct rereg_nd_name_data *rereg_priv;
<------>int ret;
<------>if (!padapter)
<------><------>goto error;
<------>cur_pnetdev = padapter->pnetdev;
<------>rereg_priv = &padapter->rereg_nd_name_priv;
<------>/* free the old_pnetdev */
<------>if (rereg_priv->old_pnetdev) {
<------><------>free_netdev(rereg_priv->old_pnetdev);
<------><------>rereg_priv->old_pnetdev = NULL;
<------>}
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 26))
<------>if (!rtnl_is_locked())
<------><------>unregister_netdev(cur_pnetdev);
<------>else
#endif
<------><------>unregister_netdevice(cur_pnetdev);
<------>rereg_priv->old_pnetdev = cur_pnetdev;
<------>pnetdev = rtw_init_netdev(padapter);
<------>if (!pnetdev) {
<------><------>ret = -1;
<------><------>goto error;
<------>}
<------>SET_NETDEV_DEV(pnetdev, dvobj_to_dev(adapter_to_dvobj(padapter)));
<------>rtw_init_netdev_name(pnetdev, ifname);
#if LINUX_VERSION_CODE < KERNEL_VERSION(5, 17, 0)
<------>_rtw_memcpy(pnetdev->dev_addr, adapter_mac_addr(padapter), ETH_ALEN);
#else
<------>dev_addr_set(pnetdev, adapter_mac_addr(padapter));
#endif
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 26))
<------>if (!rtnl_is_locked())
<------><------>ret = register_netdev(pnetdev);
<------>else
#endif
<------><------>ret = register_netdevice(pnetdev);
<------>if (ret != 0) {
<------><------>goto error;
<------>}
<------>return 0;
error:
<------>return -1;
}
#ifdef CONFIG_PLATFORM_SPRD
<------>#ifdef do_div
<------><------>#undef do_div
<------>#endif
<------>#include <asm-generic/div64.h>
#endif
u64 rtw_modular64(u64 x, u64 y)
{
<------>return do_div(x, y);
}
u64 rtw_division64(u64 x, u64 y)
{
<------>do_div(x, y);
<------>return x;
}
inline u32 rtw_random32(void)
{
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 8, 0))
#if LINUX_VERSION_CODE >= KERNEL_VERSION(6, 1, 0)
<------>return get_random_u32();
#else
<------>return prandom_u32();
#endif
#elif (LINUX_VERSION_CODE <= KERNEL_VERSION(2, 6, 18))
<------>u32 random_int;
<------>get_random_bytes(&random_int , 4);
<------>return random_int;
#else
<------>return random32();
#endif
}
void rtw_buf_free(u8 **buf, u32 *buf_len)
{
<------>u32 ori_len;
<------>if (!buf || !buf_len)
<------><------>return;
<------>ori_len = *buf_len;
<------>if (*buf) {
<------><------>u32 tmp_buf_len = *buf_len;
<------><------>*buf_len = 0;
<------><------>rtw_mfree(*buf, tmp_buf_len);
<------><------>*buf = NULL;
<------>}
}
void rtw_buf_update(u8 **buf, u32 *buf_len, u8 *src, u32 src_len)
{
<------>u32 ori_len = 0, dup_len = 0;
<------>u8 *ori = NULL;
<------>u8 *dup = NULL;
<------>if (!buf || !buf_len)
<------><------>return;
<------>if (!src || !src_len)
<------><------>goto keep_ori;
<------>/* duplicate src */
<------>dup = rtw_malloc(src_len);
<------>if (dup) {
<------><------>dup_len = src_len;
<------><------>_rtw_memcpy(dup, src, dup_len);
<------>}
keep_ori:
<------>ori = *buf;
<------>ori_len = *buf_len;
<------>/* replace buf with dup */
<------>*buf_len = 0;
<------>*buf = dup;
<------>*buf_len = dup_len;
<------>/* free ori */
<------>if (ori && ori_len > 0)
<------><------>rtw_mfree(ori, ori_len);
}
/**
* rtw_cbuf_full - test if cbuf is full
* @cbuf: pointer of struct rtw_cbuf
*
* Returns: _TRUE if cbuf is full
*/
inline bool rtw_cbuf_full(struct rtw_cbuf *cbuf)
{
<------>return (cbuf->write == cbuf->read - 1) ? _TRUE : _FALSE;
}
/**
* rtw_cbuf_empty - test if cbuf is empty
* @cbuf: pointer of struct rtw_cbuf
*
* Returns: _TRUE if cbuf is empty
*/
inline bool rtw_cbuf_empty(struct rtw_cbuf *cbuf)
{
<------>return (cbuf->write == cbuf->read) ? _TRUE : _FALSE;
}
/**
* rtw_cbuf_push - push a pointer into cbuf
* @cbuf: pointer of struct rtw_cbuf
* @buf: pointer to push in
*
* Lock free operation, be careful of the use scheme
* Returns: _TRUE push success
*/
bool rtw_cbuf_push(struct rtw_cbuf *cbuf, void *buf)
{
<------>if (rtw_cbuf_full(cbuf))
<------><------>return _FAIL;
<------>if (0)
<------><------>RTW_INFO("%s on %u\n", __func__, cbuf->write);
<------>cbuf->bufs[cbuf->write] = buf;
<------>cbuf->write = (cbuf->write + 1) % cbuf->size;
<------>return _SUCCESS;
}
/**
* rtw_cbuf_pop - pop a pointer from cbuf
* @cbuf: pointer of struct rtw_cbuf
*
* Lock free operation, be careful of the use scheme
* Returns: pointer popped out
*/
void *rtw_cbuf_pop(struct rtw_cbuf *cbuf)
{
<------>void *buf;
<------>if (rtw_cbuf_empty(cbuf))
<------><------>return NULL;
<------>if (0)
<------><------>RTW_INFO("%s on %u\n", __func__, cbuf->read);
<------>buf = cbuf->bufs[cbuf->read];
<------>cbuf->read = (cbuf->read + 1) % cbuf->size;
<------>return buf;
}
/**
* rtw_cbuf_alloc - allocte a rtw_cbuf with given size and do initialization
* @size: size of pointer
*
* Returns: pointer of srtuct rtw_cbuf, NULL for allocation failure
*/
struct rtw_cbuf *rtw_cbuf_alloc(u32 size)
{
<------>struct rtw_cbuf *cbuf;
<------>cbuf = (struct rtw_cbuf *)rtw_malloc(sizeof(*cbuf) + sizeof(void *) * size);
<------>if (cbuf) {
<------><------>cbuf->write = cbuf->read = 0;
<------><------>cbuf->size = size;
<------>}
<------>return cbuf;
}
/**
* rtw_cbuf_free - free the given rtw_cbuf
* @cbuf: pointer of struct rtw_cbuf to free
*/
void rtw_cbuf_free(struct rtw_cbuf *cbuf)
{
<------>rtw_mfree((u8 *)cbuf, sizeof(*cbuf) + sizeof(void *) * cbuf->size);
}
/**
* map_readN - read a range of map data
* @map: map to read
* @offset: start address to read
* @len: length to read
* @buf: pointer of buffer to store data read
*
* Returns: _SUCCESS or _FAIL
*/
int map_readN(const struct map_t *map, u16 offset, u16 len, u8 *buf)
{
<------>const struct map_seg_t *seg;
<------>int ret = _FAIL;
<------>int i;
<------>if (len == 0) {
<------><------>rtw_warn_on(1);
<------><------>goto exit;
<------>}
<------>if (offset + len > map->len) {
<------><------>rtw_warn_on(1);
<------><------>goto exit;
<------>}
<------>_rtw_memset(buf, map->init_value, len);
<------>for (i = 0; i < map->seg_num; i++) {
<------><------>u8 *c_dst, *c_src;
<------><------>u16 c_len;
<------><------>seg = map->segs + i;
<------><------>if (seg->sa + seg->len <= offset || seg->sa >= offset + len)
<------><------><------>continue;
<------><------>if (seg->sa >= offset) {
<------><------><------>c_dst = buf + (seg->sa - offset);
<------><------><------>c_src = seg->c;
<------><------><------>if (seg->sa + seg->len <= offset + len)
<------><------><------><------>c_len = seg->len;
<------><------><------>else
<------><------><------><------>c_len = offset + len - seg->sa;
<------><------>} else {
<------><------><------>c_dst = buf;
<------><------><------>c_src = seg->c + (offset - seg->sa);
<------><------><------>if (seg->sa + seg->len >= offset + len)
<------><------><------><------>c_len = len;
<------><------><------>else
<------><------><------><------>c_len = seg->sa + seg->len - offset;
<------><------>}
<------><------>_rtw_memcpy(c_dst, c_src, c_len);
<------>}
exit:
<------>return ret;
}
/**
* map_read8 - read 1 byte of map data
* @map: map to read
* @offset: address to read
*
* Returns: value of data of specified offset. map.init_value if offset is out of range
*/
u8 map_read8(const struct map_t *map, u16 offset)
{
<------>const struct map_seg_t *seg;
<------>u8 val = map->init_value;
<------>int i;
<------>if (offset + 1 > map->len) {
<------><------>rtw_warn_on(1);
<------><------>goto exit;
<------>}
<------>for (i = 0; i < map->seg_num; i++) {
<------><------>seg = map->segs + i;
<------><------>if (seg->sa + seg->len <= offset || seg->sa >= offset + 1)
<------><------><------>continue;
<------><------>val = *(seg->c + offset - seg->sa);
<------><------>break;
<------>}
exit:
<------>return val;
}
/**
* is_null -
*
* Return TRUE if c is null character
* FALSE otherwise.
*/
inline BOOLEAN is_null(char c)
{
<------>if (c == '\0')
<------><------>return _TRUE;
<------>else
<------><------>return _FALSE;
}
/**
* is_eol -
*
* Return TRUE if c is represent for EOL (end of line)
* FALSE otherwise.
*/
inline BOOLEAN is_eol(char c)
{
<------>if (c == '\r' || c == '\n')
<------><------>return _TRUE;
<------>else
<------><------>return _FALSE;
}
/**
* is_space -
*
* Return TRUE if c is represent for space
* FALSE otherwise.
*/
inline BOOLEAN is_space(char c)
{
<------>if (c == ' ' || c == '\t')
<------><------>return _TRUE;
<------>else
<------><------>return _FALSE;
}
/**
* IsHexDigit -
*
* Return TRUE if chTmp is represent for hex digit
* FALSE otherwise.
*/
inline BOOLEAN IsHexDigit(char chTmp)
{
<------>if ((chTmp >= '0' && chTmp <= '9') ||
<------><------>(chTmp >= 'a' && chTmp <= 'f') ||
<------><------>(chTmp >= 'A' && chTmp <= 'F'))
<------><------>return _TRUE;
<------>else
<------><------>return _FALSE;
}
/**
* is_alpha -
*
* Return TRUE if chTmp is represent for alphabet
* FALSE otherwise.
*/
inline BOOLEAN is_alpha(char chTmp)
{
<------>if ((chTmp >= 'a' && chTmp <= 'z') ||
<------><------>(chTmp >= 'A' && chTmp <= 'Z'))
<------><------>return _TRUE;
<------>else
<------><------>return _FALSE;
}
inline char alpha_to_upper(char c)
{
<------>if ((c >= 'a' && c <= 'z'))
<------><------>c = 'A' + (c - 'a');
<------>return c;
}