/******************************************************************************
*
* Copyright(c) 2007 - 2017 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*****************************************************************************/
#define _HAL_INIT_C_
#include <rtl8188f_hal.h>
#include "hal_com_h2c.h"
#include "hal8188f_fw.h"
#if 0 /* FW tx packet write */
#define FW_DOWNLOAD_SIZE_8188F 8192
#endif
static void
_FWDownloadEnable(
PADAPTER padapter,
BOOLEAN enable
)
{
u8 tmp, count = 0;
if (enable) {
/* 8051 enable */
tmp = rtw_read8(padapter, REG_SYS_FUNC_EN + 1);
rtw_write8(padapter, REG_SYS_FUNC_EN + 1, tmp | 0x04);
tmp = rtw_read8(padapter, REG_MCUFWDL);
rtw_write8(padapter, REG_MCUFWDL, tmp | 0x01);
do {
tmp = rtw_read8(padapter, REG_MCUFWDL);
if (tmp & 0x01)
break;
rtw_write8(padapter, REG_MCUFWDL, tmp | 0x01);
rtw_msleep_os(1);
} while (count++ < 100);
if (count > 0)
RTW_INFO("%s: !!!!!!!!Write 0x80 Fail!: count = %d\n", __func__, count);
/* 8051 reset */
tmp = rtw_read8(padapter, REG_MCUFWDL + 2);
rtw_write8(padapter, REG_MCUFWDL + 2, tmp & 0xf7);
} else {
/* MCU firmware download disable. */
tmp = rtw_read8(padapter, REG_MCUFWDL);
rtw_write8(padapter, REG_MCUFWDL, tmp & 0xfe);
}
}
static int
_BlockWrite(
PADAPTER padapter,
void *buffer,
u32 buffSize
)
{
int ret = _SUCCESS;
u32 blockSize_p1 = 4; /* (Default) Phase #1 : PCI muse use 4-byte write to download FW */
u32 blockSize_p2 = 8; /* Phase #2 : Use 8-byte, if Phase#1 use big size to write FW. */
u32 blockSize_p3 = 1; /* Phase #3 : Use 1-byte, the remnant of FW image. */
u32 blockCount_p1 = 0, blockCount_p2 = 0, blockCount_p3 = 0;
u32 remainSize_p1 = 0, remainSize_p2 = 0;
u8 *bufferPtr = (u8 *)buffer;
u32 i = 0, offset = 0;
#ifdef CONFIG_PCI_HCI
u8 remainFW[4] = {0, 0, 0, 0};
u8 *p = NULL;
#endif
#ifdef CONFIG_USB_HCI
blockSize_p1 = 196; /* the same as 8188e */
#endif
/*printk("====>%s %d\n", __func__, __LINE__); */
/*3 Phase #1 */
blockCount_p1 = buffSize / blockSize_p1;
remainSize_p1 = buffSize % blockSize_p1;
for (i = 0; i < blockCount_p1; i++) {
#ifdef CONFIG_USB_HCI
ret = rtw_writeN(padapter, (FW_8188F_START_ADDRESS + i * blockSize_p1), blockSize_p1, (bufferPtr + i * blockSize_p1));
#else
ret = rtw_write32(padapter, (FW_8188F_START_ADDRESS + i * blockSize_p1), le32_to_cpu(*((u32 *)(bufferPtr + i * blockSize_p1))));
#endif
if (ret == _FAIL) {
printk("====>%s %d i:%d\n", __func__, __LINE__, i);
goto exit;
}
}
#ifdef CONFIG_PCI_HCI
p = (u8 *)((u32 *)(bufferPtr + blockCount_p1 * blockSize_p1));
if (remainSize_p1) {
switch (remainSize_p1) {
case 0:
break;
case 3:
remainFW[2] = *(p + 2);
case 2:
remainFW[1] = *(p + 1);
case 1:
remainFW[0] = *(p);
ret = rtw_write32(padapter, (FW_8188F_START_ADDRESS + blockCount_p1 * blockSize_p1),
le32_to_cpu(*(u32 *)remainFW));
}
return ret;
}
#endif
/*3 Phase #2 */
if (remainSize_p1) {
offset = blockCount_p1 * blockSize_p1;
blockCount_p2 = remainSize_p1 / blockSize_p2;
remainSize_p2 = remainSize_p1 % blockSize_p2;
#ifdef CONFIG_USB_HCI
for (i = 0; i < blockCount_p2; i++) {
ret = rtw_writeN(padapter, (FW_8188F_START_ADDRESS + offset + i * blockSize_p2), blockSize_p2, (bufferPtr + offset + i * blockSize_p2));
if (ret == _FAIL)
goto exit;
}
#endif
}
/*3 Phase #3 */
if (remainSize_p2) {
offset = (blockCount_p1 * blockSize_p1) + (blockCount_p2 * blockSize_p2);
blockCount_p3 = remainSize_p2 / blockSize_p3;
for (i = 0; i < blockCount_p3; i++) {
ret = rtw_write8(padapter, (FW_8188F_START_ADDRESS + offset + i), *(bufferPtr + offset + i));
if (ret == _FAIL) {
printk("====>%s %d i:%d\n", __func__, __LINE__, i);
goto exit;
}
}
}
exit:
return ret;
}
static int
_PageWrite(
PADAPTER padapter,
u32 page,
void *buffer,
u32 size
)
{
u8 value8;
u8 u8Page = (u8)(page & 0x07);
value8 = (rtw_read8(padapter, REG_MCUFWDL + 2) & 0xF8) | u8Page;
rtw_write8(padapter, REG_MCUFWDL + 2, value8);
return _BlockWrite(padapter, buffer, size);
}
#ifdef CONFIG_PCI_HCI
static void
_FillDummy(
u8 *pFwBuf,
u32 *pFwLen
)
{
u32 FwLen = *pFwLen;
u8 remain = (u8)(FwLen % 4);
remain = (remain == 0) ? 0 : (4 - remain);
while (remain > 0) {
pFwBuf[FwLen] = 0;
FwLen++;
remain--;
}
*pFwLen = FwLen;
}
#endif
static int
_WriteFW(
PADAPTER padapter,
void *buffer,
u32 size
)
{
/* Since we need dynamic decide method of dwonload fw, so we call this function to get chip version. */
int ret = _SUCCESS;
u32 pageNums, remainSize;
u32 page, offset;
u8 *bufferPtr = (u8 *)buffer;
#ifdef CONFIG_PCI_HCI
/* 20100120 Joseph: Add for 88CE normal chip. */
/* Fill in zero to make firmware image to dword alignment. */
_FillDummy(bufferPtr, &size);
#endif
pageNums = size / MAX_DLFW_PAGE_SIZE;
/*RT_ASSERT((pageNums <= 4), ("Page numbers should not greater then 4\n")); */
remainSize = size % MAX_DLFW_PAGE_SIZE;
for (page = 0; page < pageNums; page++) {
offset = page * MAX_DLFW_PAGE_SIZE;
ret = _PageWrite(padapter, page, bufferPtr + offset, MAX_DLFW_PAGE_SIZE);
if (ret == _FAIL) {
printk("====>%s %d\n", __func__, __LINE__);
goto exit;
}
}
if (remainSize) {
offset = pageNums * MAX_DLFW_PAGE_SIZE;
page = pageNums;
ret = _PageWrite(padapter, page, bufferPtr + offset, remainSize);
if (ret == _FAIL) {
printk("====>%s %d\n", __func__, __LINE__);
goto exit;
}
}
exit:
return ret;
}
void _8051Reset8188(PADAPTER padapter)
{
u8 cpu_rst;
u8 io_rst;
#if 0
io_rst = rtw_read8(padapter, REG_RSV_CTRL);
rtw_write8(padapter, REG_RSV_CTRL, io_rst & (~BIT1));
#endif
/* Reset 8051(WLMCU) IO wrapper */
/* 0x1c[8] = 0 */
/* Suggested by Isaac@SD1 and Gimmy@SD1, coding by Lucas@20130624 */
io_rst = rtw_read8(padapter, REG_RSV_CTRL + 1);
io_rst &= ~BIT(0);
rtw_write8(padapter, REG_RSV_CTRL + 1, io_rst);
cpu_rst = rtw_read8(padapter, REG_SYS_FUNC_EN + 1);
cpu_rst &= ~BIT(2);
rtw_write8(padapter, REG_SYS_FUNC_EN + 1, cpu_rst);
#if 0
io_rst = rtw_read8(padapter, REG_RSV_CTRL);
rtw_write8(padapter, REG_RSV_CTRL, io_rst & (~BIT1));
#endif
/* Enable 8051 IO wrapper */
/* 0x1c[8] = 1 */
io_rst = rtw_read8(padapter, REG_RSV_CTRL + 1);
io_rst |= BIT(0);
rtw_write8(padapter, REG_RSV_CTRL + 1, io_rst);
cpu_rst = rtw_read8(padapter, REG_SYS_FUNC_EN + 1);
cpu_rst |= BIT(2);
rtw_write8(padapter, REG_SYS_FUNC_EN + 1, cpu_rst);
RTW_INFO("%s: Finish\n", __func__);
}
static s32 polling_fwdl_chksum(_adapter *adapter, u32 min_cnt, u32 timeout_ms)
{
s32 ret = _FAIL;
u32 value32;
systime start = rtw_get_current_time();
u32 cnt = 0;
/* polling CheckSum report */
do {
cnt++;
value32 = rtw_read32(adapter, REG_MCUFWDL);
if (value32 & FWDL_ChkSum_rpt || RTW_CANNOT_IO(adapter))
break;
rtw_yield_os();
} while (rtw_get_passing_time_ms(start) < timeout_ms || cnt < min_cnt);
if (!(value32 & FWDL_ChkSum_rpt))
goto exit;
if (rtw_fwdl_test_trigger_chksum_fail())
goto exit;
ret = _SUCCESS;
exit:
RTW_INFO("%s: Checksum report %s! (%u, %dms), REG_MCUFWDL:0x%08x\n", __func__
, (ret == _SUCCESS) ? "OK" : "Fail", cnt, rtw_get_passing_time_ms(start), value32);
return ret;
}
static s32 _FWFreeToGo(_adapter *adapter, u32 min_cnt, u32 timeout_ms)
{
s32 ret = _FAIL;
u32 value32;
systime start = rtw_get_current_time();
u32 cnt = 0;
u32 value_to_check = 0;
u32 value_expected = (MCUFWDL_RDY | FWDL_ChkSum_rpt | WINTINI_RDY | RAM_DL_SEL);
value32 = rtw_read32(adapter, REG_MCUFWDL);
value32 |= MCUFWDL_RDY;
value32 &= ~WINTINI_RDY;
rtw_write32(adapter, REG_MCUFWDL, value32);
_8051Reset8188(adapter);
/* polling for FW ready */
do {
cnt++;
value32 = rtw_read32(adapter, REG_MCUFWDL);
value_to_check = value32 & value_expected;
if ((value_to_check == value_expected) || RTW_CANNOT_IO(adapter))
break;
rtw_yield_os();
} while (rtw_get_passing_time_ms(start) < timeout_ms || cnt < min_cnt);
if (value_to_check != value_expected)
goto exit;
if (rtw_fwdl_test_trigger_wintint_rdy_fail())
goto exit;
ret = _SUCCESS;
exit:
RTW_INFO("%s: Polling FW ready %s! (%u, %dms), REG_MCUFWDL:0x%08x\n", __func__
, (ret == _SUCCESS) ? "OK" : "Fail", cnt, rtw_get_passing_time_ms(start), value32);
return ret;
}
#define IS_FW_81xxC(padapter) (((GET_HAL_DATA(padapter))->FirmwareSignature & 0xFFF0) == 0x88C0)
void rtl8188f_FirmwareSelfReset(PADAPTER padapter)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
u8 u1bTmp;
u8 Delay = 100;
if (!(IS_FW_81xxC(padapter) &&
((pHalData->firmware_version < 0x21) ||
(pHalData->firmware_version == 0x21 &&
pHalData->firmware_sub_version < 0x01)))) { /* after 88C Fw v33.1 */
/*0x1cf=0x20. Inform 8051 to reset. 2009.12.25. tynli_test */
rtw_write8(padapter, REG_HMETFR + 3, 0x20);
u1bTmp = rtw_read8(padapter, REG_SYS_FUNC_EN + 1);
while (u1bTmp & BIT2) {
Delay--;
if (Delay == 0)
break;
rtw_udelay_os(50);
u1bTmp = rtw_read8(padapter, REG_SYS_FUNC_EN + 1);
}
if (Delay == 0) {
/*force firmware reset */
u1bTmp = rtw_read8(padapter, REG_SYS_FUNC_EN + 1);
rtw_write8(padapter, REG_SYS_FUNC_EN + 1, u1bTmp & (~BIT2));
}
}
}
#ifdef CONFIG_FILE_FWIMG
extern char *rtw_fw_file_path;
extern char *rtw_fw_wow_file_path;
#ifdef CONFIG_MP_INCLUDED
extern char *rtw_fw_mp_bt_file_path;
#endif /* CONFIG_MP_INCLUDED */
u8 FwBuffer[FW_8188F_SIZE];
#endif /* CONFIG_FILE_FWIMG */
#ifdef CONFIG_MP_INCLUDED
int _WriteBTFWtoTxPktBuf8188F(
PADAPTER Adapter,
void *buffer,
u32 FwBufLen,
u8 times
)
{
int rtStatus = _SUCCESS;
/*u32 value32; */
/*u8 numHQ, numLQ, numPubQ;//, txpktbuf_bndy; */
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
/*PMGNT_INFO pMgntInfo = &(Adapter->MgntInfo); */
u8 BcnValidReg;
u8 count = 0, DLBcnCount = 0;
u8 *FwbufferPtr = (u8 *)buffer;
/*PRT_TCB pTcb, ptempTcb; */
/*PRT_TX_LOCAL_BUFFER pBuf; */
u8 *ReservedPagePacket = NULL;
u8 *pGenBufReservedPagePacket = NULL;
u32 TotalPktLen, txpktbuf_bndy;
/*u8 tmpReg422; */
/*u8 u1bTmp; */
u8 *pframe;
struct xmit_priv *pxmitpriv = &(Adapter->xmitpriv);
struct xmit_frame *pmgntframe;
struct pkt_attrib *pattrib;
u8 txdesc_offset = TXDESC_OFFSET;
u8 val8;
#ifdef CONFIG_PCI_HCI
u8 u1bTmp;
#endif
#if 1/*#ifdef CONFIG_PCI_HCI */
TotalPktLen = FwBufLen;
#else
TotalPktLen = FwBufLen + pHalData->HWDescHeadLength;
#endif
if ((TotalPktLen + TXDESC_OFFSET) > MAX_CMDBUF_SZ) {
RTW_INFO(" WARNING %s => Total packet len = %d > MAX_CMDBUF_SZ:%d\n"
, __func__, (TotalPktLen + TXDESC_OFFSET), MAX_CMDBUF_SZ);
return _FAIL;
}
pGenBufReservedPagePacket = rtw_zmalloc(TotalPktLen);/*GetGenTempBuffer (Adapter, TotalPktLen); */
if (!pGenBufReservedPagePacket)
return _FAIL;
ReservedPagePacket = (u8 *)pGenBufReservedPagePacket;
_rtw_memset(ReservedPagePacket, 0, TotalPktLen);
#if 1/*#ifdef CONFIG_PCI_HCI*/
_rtw_memcpy(ReservedPagePacket, FwbufferPtr, FwBufLen);
#else
PlatformMoveMemory(ReservedPagePacket + Adapter->HWDescHeadLength , FwbufferPtr, FwBufLen);
#endif
/*--------------------------------------------------------- */
/* 1. Pause BCN */
/*--------------------------------------------------------- */
/*Set REG_CR bit 8. DMA beacon by SW. */
#ifdef CONFIG_PCI_HCI
u1bTmp = PlatformEFIORead1Byte(Adapter, REG_CR + 1);
PlatformEFIOWrite1Byte(Adapter, REG_CR + 1, (u1bTmp | BIT0));
#else
/* Remove for temparaily because of the code on v2002 is not sync to MERGE_TMEP for USB/SDIO. */
/* De not remove this part on MERGE_TEMP. by tynli. */
#endif
/* Disable Hw protection for a time which revserd for Hw sending beacon. */
/* Fix download reserved page packet fail that access collision with the protection time. */
/* 2010.05.11. Added by tynli. */
val8 = rtw_read8(Adapter, REG_BCN_CTRL);
val8 &= ~EN_BCN_FUNCTION;
val8 |= DIS_TSF_UDT;
rtw_write8(Adapter, REG_BCN_CTRL, val8);
#if 0/*#ifdef CONFIG_PCI_HCI*/
tmpReg422 = PlatformEFIORead1Byte(Adapter, REG_FWHW_TXQ_CTRL + 2);
if (tmpReg422 & BIT6)
bRecover = TRUE;
PlatformEFIOWrite1Byte(Adapter, REG_FWHW_TXQ_CTRL + 2, tmpReg422 & (~BIT6));
#else
/* Set FWHW_TXQ_CTRL 0x422[6]=0 to tell Hw the packet is not a real beacon frame. */
PlatformEFIOWrite1Byte(Adapter, REG_FWHW_TXQ_CTRL + 2,
PlatformEFIORead1Byte(Adapter, REG_FWHW_TXQ_CTRL + 2) & (~BIT6));
#endif
/*--------------------------------------------------------- */
/* 2. Adjust LLT table to an even boundary. */
/*--------------------------------------------------------- */
#if 0/*#ifdef CONFIG_SDIO_HCI*/
txpktbuf_bndy = 10; /* rsvd page start address should be an even value. */
rtStatus = InitLLTTable8188FS(Adapter, txpktbuf_bndy);
if (RT_STATUS_SUCCESS != rtStatus) {
RTW_INFO("_CheckWLANFwPatchBTFwReady_8188F(): Failed to init LLT!\n");
return RT_STATUS_FAILURE;
}
/* Init Tx boundary. */
PlatformEFIOWrite1Byte(Adapter, REG_DWBCN0_CTRL_8188F + 1, (u8)txpktbuf_bndy);
#endif
/*--------------------------------------------------------- */
/* 3. Write Fw to Tx packet buffer by reseverd page. */
/*--------------------------------------------------------- */
do {
/* download rsvd page. */
/* Clear beacon valid check bit. */
BcnValidReg = PlatformEFIORead1Byte(Adapter, REG_TDECTRL + 2);
PlatformEFIOWrite1Byte(Adapter, REG_TDECTRL + 2, BcnValidReg & (~BIT(0)));
/*BT patch is big, we should set 0x209 < 0x40 suggested from Gimmy */
PlatformEFIOWrite1Byte(Adapter, REG_TDECTRL + 1, (0x90 - 0x20 * (times - 1)));
RTW_INFO("0x209:0x%x\n", PlatformEFIORead1Byte(Adapter, REG_TDECTRL + 1));
#if 0
/* Acquice TX spin lock before GetFwBuf and send the packet to prevent system deadlock. */
/* Advertised by Roger. Added by tynli. 2010.02.22. */
PlatformAcquireSpinLock(Adapter, RT_TX_SPINLOCK);
if (MgntGetFWBuffer(Adapter, &pTcb, &pBuf)) {
PlatformMoveMemory(pBuf->Buffer.VirtualAddress, ReservedPagePacket, TotalPktLen);
CmdSendPacket(Adapter, pTcb, pBuf, TotalPktLen, DESC_PACKET_TYPE_NORMAL, FALSE);
} else
dbgdump("SetFwRsvdPagePkt(): MgntGetFWBuffer FAIL!!!!!!!!.\n");
PlatformReleaseSpinLock(Adapter, RT_TX_SPINLOCK);
#else
/*---------------------------------------------------------
tx reserved_page_packet
----------------------------------------------------------*/
pmgntframe = rtw_alloc_cmdxmitframe(pxmitpriv);
if (pmgntframe == NULL) {
rtStatus = _FAIL;
goto exit;
}
/*update attribute */
pattrib = &pmgntframe->attrib;
update_mgntframe_attrib(Adapter, pattrib);
pattrib->qsel = QSLT_BEACON;
pattrib->pktlen = pattrib->last_txcmdsz = FwBufLen;
/*_rtw_memset(pmgntframe->buf_addr, 0, TotalPktLen+txdesc_size); */
/*pmgntframe->buf_addr = ReservedPagePacket; */
_rtw_memcpy((u8 *)(pmgntframe->buf_addr + txdesc_offset), ReservedPagePacket, FwBufLen);
RTW_INFO("[%d]===>TotalPktLen + TXDESC_OFFSET TotalPacketLen:%d\n", DLBcnCount, (FwBufLen + txdesc_offset));
#ifdef CONFIG_PCI_HCI
dump_mgntframe(Adapter, pmgntframe);
#else
dump_mgntframe_and_wait(Adapter, pmgntframe, 100);
#endif
#endif
#if 1
/* check rsvd page download OK. */
BcnValidReg = PlatformEFIORead1Byte(Adapter, REG_TDECTRL + 2);
while (!(BcnValidReg & BIT(0)) && count < 200) {
count++;
/*PlatformSleepUs(10); */
rtw_msleep_os(1);
BcnValidReg = PlatformEFIORead1Byte(Adapter, REG_TDECTRL + 2);
}
DLBcnCount++;
/*RTW_INFO("##0x208:%08x,0x210=%08x\n",PlatformEFIORead4Byte(Adapter, REG_TDECTRL),PlatformEFIORead4Byte(Adapter, 0x210)); */
PlatformEFIOWrite1Byte(Adapter, REG_TDECTRL + 2, BcnValidReg);
} while ((!(BcnValidReg & BIT(0))) && DLBcnCount < 5);
#endif
if (DLBcnCount >= 5) {
RTW_INFO(" check rsvd page download OK DLBcnCount =%d\n", DLBcnCount);
rtStatus = _FAIL;
goto exit;
}
if (!(BcnValidReg & BIT(0))) {
RTW_INFO("_WriteFWtoTxPktBuf(): 1 Download RSVD page failed!\n");
rtStatus = _FAIL;
goto exit;
}
/*--------------------------------------------------------- */
/* 4. Set Tx boundary to the initial value */
/*--------------------------------------------------------- */
/*--------------------------------------------------------- */
/* 5. Reset beacon setting to the initial value. */
/* After _CheckWLANFwPatchBTFwReady(). */
/*--------------------------------------------------------- */
exit:
if (pGenBufReservedPagePacket) {
RTW_INFO("_WriteBTFWtoTxPktBuf8188F => rtw_mfree pGenBufReservedPagePacket!\n");
rtw_mfree((u8 *)pGenBufReservedPagePacket, TotalPktLen);
}
return rtStatus;
}
/* */
/* Description: Determine the contents of H2C BT_FW_PATCH Command sent to FW. */
/* 2011.10.20 by tynli */
/* */
void
SetFwBTFwPatchCmd(
PADAPTER Adapter,
u16 FwSize
)
{
u8 u1BTFwPatchParm[H2C_BT_FW_PATCH_LEN] = {0};
u8 addr0 = 0;
u8 addr1 = 0xa0;
u8 addr2 = 0x10;
u8 addr3 = 0x80;
SET_8188F_H2CCMD_BT_FW_PATCH_SIZE(u1BTFwPatchParm, FwSize);
SET_8188F_H2CCMD_BT_FW_PATCH_ADDR0(u1BTFwPatchParm, addr0);
SET_8188F_H2CCMD_BT_FW_PATCH_ADDR1(u1BTFwPatchParm, addr1);
SET_8188F_H2CCMD_BT_FW_PATCH_ADDR2(u1BTFwPatchParm, addr2);
SET_8188F_H2CCMD_BT_FW_PATCH_ADDR3(u1BTFwPatchParm, addr3);
FillH2CCmd8188F(Adapter, H2C_8188F_BT_FW_PATCH, H2C_BT_FW_PATCH_LEN, u1BTFwPatchParm);
}
void
SetFwBTPwrCmd(
PADAPTER Adapter,
u8 PwrIdx
)
{
u8 u1BTPwrIdxParm[H2C_FORCE_BT_TXPWR_LEN] = {0};
SET_8188F_H2CCMD_BT_PWR_IDX(u1BTPwrIdxParm, PwrIdx);
FillH2CCmd8188F(Adapter, H2C_8188F_FORCE_BT_TXPWR, H2C_FORCE_BT_TXPWR_LEN, u1BTPwrIdxParm);
}
/* */
/* Description: WLAN Fw will write BT Fw to BT XRAM and signal driver. */
/* */
/* 2011.10.20. by tynli. */
/* */
int
_CheckWLANFwPatchBTFwReady(
PADAPTER Adapter,
BOOLEAN bRecover
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
u32 count = 0;
u8 u1bTmp;
int ret = _FAIL;
/*--------------------------------------------------------- */
/* Check if BT FW patch procedure is ready. */
/*--------------------------------------------------------- */
do {
u1bTmp = PlatformEFIORead1Byte(Adapter, REG_HMEBOX_DBG_0_8188F);
if ((u1bTmp & BIT6) || (u1bTmp & BIT7)) {
ret = _SUCCESS;
break;
}
count++;
rtw_msleep_os(50); /* 50ms */
} while (!((u1bTmp & BIT6) || (u1bTmp & BIT7)) && count < 50);
/*--------------------------------------------------------- */
/* Reset beacon setting to the initial value. */
/*--------------------------------------------------------- */
#if 0/*#ifdef CONFIG_PCI_HCI*/
if (LLT_table_init(Adapter, FALSE, 0) == RT_STATUS_FAILURE) {
dbgdump("Init self define for BT Fw patch LLT table fail.\n");
/*return RT_STATUS_FAILURE; */
}
#endif
u1bTmp = rtw_read8(Adapter, REG_BCN_CTRL);
u1bTmp |= EN_BCN_FUNCTION;
u1bTmp &= ~DIS_TSF_UDT;
rtw_write8(Adapter, REG_BCN_CTRL, u1bTmp);
/* To make sure that if there exists an adapter which would like to send beacon. */
/* If exists, the origianl value of 0x422[6] will be 1, we should check this to */
/* prevent from setting 0x422[6] to 0 after download reserved page, or it will cause */
/* the beacon cannot be sent by HW. */
/* 2010.06.23. Added by tynli. */
if (bRecover) {
u1bTmp = PlatformEFIORead1Byte(Adapter, REG_FWHW_TXQ_CTRL + 2);
PlatformEFIOWrite1Byte(Adapter, REG_FWHW_TXQ_CTRL + 2, (u1bTmp | BIT6));
}
/* Clear CR[8] or beacon packet will not be send to TxBuf anymore. */
u1bTmp = PlatformEFIORead1Byte(Adapter, REG_CR_8188F + 1);
PlatformEFIOWrite1Byte(Adapter, REG_CR_8188F + 1, (u1bTmp & (~BIT0)));
return ret;
}
int ReservedPage_Compare(PADAPTER Adapter, PRT_MP_FIRMWARE pFirmware, u32 BTPatchSize)
{
u8 temp, ret, lastBTsz;
u32 u1bTmp = 0, address_start = 0, count = 0, i = 0;
u8 *myBTFwBuffer = NULL;
myBTFwBuffer = rtw_zmalloc(BTPatchSize);
if (myBTFwBuffer == NULL) {
RTW_INFO("%s can't be executed due to the failed malloc.\n", __func__);
Adapter->mppriv.bTxBufCkFail = _TRUE;
return _FALSE;
}
temp = rtw_read8(Adapter, 0x209);
address_start = (temp * 128) / 8;
rtw_write32(Adapter, 0x140, 0x00000000);
rtw_write32(Adapter, 0x144, 0x00000000);
rtw_write32(Adapter, 0x148, 0x00000000);
rtw_write8(Adapter, 0x106, 0x69);
for (i = 0; i < (BTPatchSize / 8); i++) {
rtw_write32(Adapter, 0x140, address_start + 5 + i);
/*polling until reg 0x140[23]=1; */
do {
u1bTmp = rtw_read32(Adapter, 0x140);
if (u1bTmp & BIT(23)) {
ret = _SUCCESS;
break;
}
count++;
RTW_INFO("0x140=%x, wait for 10 ms (%d) times.\n", u1bTmp, count);
rtw_msleep_os(10); /* 10ms */
} while (!(u1bTmp & BIT(23)) && count < 50);
myBTFwBuffer[i * 8 + 0] = rtw_read8(Adapter, 0x144);
myBTFwBuffer[i * 8 + 1] = rtw_read8(Adapter, 0x145);
myBTFwBuffer[i * 8 + 2] = rtw_read8(Adapter, 0x146);
myBTFwBuffer[i * 8 + 3] = rtw_read8(Adapter, 0x147);
myBTFwBuffer[i * 8 + 4] = rtw_read8(Adapter, 0x148);
myBTFwBuffer[i * 8 + 5] = rtw_read8(Adapter, 0x149);
myBTFwBuffer[i * 8 + 6] = rtw_read8(Adapter, 0x14a);
myBTFwBuffer[i * 8 + 7] = rtw_read8(Adapter, 0x14b);
}
rtw_write32(Adapter, 0x140, address_start + 5 + BTPatchSize / 8);
lastBTsz = BTPatchSize % 8;
/*polling until reg 0x140[23]=1; */
u1bTmp = 0;
count = 0;
do {
u1bTmp = rtw_read32(Adapter, 0x140);
if (u1bTmp & BIT(23)) {
ret = _SUCCESS;
break;
}
count++;
RTW_INFO("0x140=%x, wait for 10 ms (%d) times.\n", u1bTmp, count);
rtw_msleep_os(10); /* 10ms */
} while (!(u1bTmp & BIT(23)) && count < 50);
for (i = 0; i < lastBTsz; i++)
myBTFwBuffer[(BTPatchSize / 8) * 8 + i] = rtw_read8(Adapter, (0x144 + i));
for (i = 0; i < BTPatchSize; i++) {
if (myBTFwBuffer[i] != pFirmware->szFwBuffer[i]) {
RTW_INFO(" In direct myBTFwBuffer[%d]=%x , pFirmware->szFwBuffer=%x\n", i, myBTFwBuffer[i], pFirmware->szFwBuffer[i]);
Adapter->mppriv.bTxBufCkFail = _TRUE;
break;
}
}
if (myBTFwBuffer != NULL)
rtw_mfree(myBTFwBuffer, BTPatchSize);
return _TRUE;
}
#ifdef CONFIG_BT_COEXIST
/* As the size of bt firmware is more than 16k which is too big for some platforms, we divide it
* into four parts to transfer. The last parameter of _WriteBTFWtoTxPktBuf8188F is used to indicate
* the location of every part. We call the first 4096 byte of bt firmware as part 1, the second 4096
* part as part 2, the third 4096 part as part 3, the remain as part 4. First we transform the part
* 4 and set the register 0x209 to 0x90, then the 32 bytes description are added to the head of part
* 4, and those bytes are putted at the location 0x90. Second we transform the part 3 and set the
* register 0x209 to 0x70. The 32 bytes description and part 3(4196 bytes) are putted at the location
* 0x70. It can contain 4196 bytes between 0x70 and 0x90. So the last 32 bytes os part 3 will cover the
* 32 bytes description of part4. Using this method, we can put the whole bt firmware to 0x30 and only
* has 32 bytes descrption at the head of part 1.
*/
s32 FirmwareDownloadBT(PADAPTER padapter, PRT_MP_FIRMWARE pFirmware)
{
s32 rtStatus;
u8 *pBTFirmwareBuf;
u32 BTFirmwareLen;
u8 download_time;
s8 i;
u8 RegFwHwTxQCtrl = 0;
BOOLEAN bRecover = _FALSE;
rtStatus = _SUCCESS;
pBTFirmwareBuf = NULL;
BTFirmwareLen = 0;
/* */
/* Patch BT Fw. Download BT RAM code to Tx packet buffer. */
/* */
if (padapter->bBTFWReady) {
RTW_INFO("%s: BT Firmware is ready!!\n", __func__);
return _FAIL;
}
#ifdef CONFIG_FILE_FWIMG
if (rtw_is_file_readable(rtw_fw_mp_bt_file_path) == _TRUE) {
RTW_INFO("%s: acquire MP BT FW from file:%s\n", __func__, rtw_fw_mp_bt_file_path);
rtStatus = rtw_retrieve_from_file(rtw_fw_mp_bt_file_path, FwBuffer, FW_8188F_SIZE);
BTFirmwareLen = rtStatus >= 0 ? rtStatus : 0;
pBTFirmwareBuf = FwBuffer;
} else
#endif /* CONFIG_FILE_FWIMG */
{
#ifdef CONFIG_EMBEDDED_FWIMG
RTW_INFO("%s: Download MP BT FW from header\n", __func__);
pBTFirmwareBuf = (u8 *)Rtl8188FFwBTImgArray;
BTFirmwareLen = Rtl8188FFwBTImgArrayLength;
pFirmware->szFwBuffer = pBTFirmwareBuf;
pFirmware->ulFwLength = BTFirmwareLen;
#endif /* CONFIG_EMBEDDED_FWIMG */
}
RTW_INFO("%s: MP BT Firmware size=%d\n", __func__, BTFirmwareLen);
/* for h2c cam here should be set to true */
GET_HAL_DATA(padapter)->bFWReady = _TRUE;
download_time = (BTFirmwareLen + 4095) / 4096;
RTW_INFO("%s: download_time is %d\n", __func__, download_time);
RegFwHwTxQCtrl = rtw_read8(padapter, REG_FWHW_TXQ_CTRL + 2);
if (RegFwHwTxQCtrl & BIT(6))
bRecover = _TRUE;
/* Download BT patch Fw. */
for (i = (download_time - 1); i >= 0; i--) {
if (i == (download_time - 1)) {
rtStatus = _WriteBTFWtoTxPktBuf8188F(padapter, pBTFirmwareBuf + (4096 * i), (BTFirmwareLen - (4096 * i)), 1);
RTW_INFO("%s: start %d, len %d, time 1\n", __func__, 4096 * i, BTFirmwareLen - (4096 * i));
} else {
rtStatus = _WriteBTFWtoTxPktBuf8188F(padapter, pBTFirmwareBuf + (4096 * i), 4096, (download_time - i));
RTW_INFO("%s: start %d, len 4096, time %d\n", __func__, 4096 * i, download_time - i);
}
if (rtStatus != _SUCCESS) {
RTW_INFO("%s: BT Firmware download to Tx packet buffer fail!\n", __func__);
padapter->bBTFWReady = _FALSE;
return rtStatus;
}
}
ReservedPage_Compare(padapter, pFirmware, BTFirmwareLen);
padapter->bBTFWReady = _TRUE;
SetFwBTFwPatchCmd(padapter, (u16)BTFirmwareLen);
rtStatus = _CheckWLANFwPatchBTFwReady(padapter, bRecover);
RTW_INFO("<===%s: return %s!\n", __func__, rtStatus == _SUCCESS ? "SUCCESS" : "FAIL");
return rtStatus;
}
#endif /* CONFIG_BT_COEXIST */
#endif /* CONFIG_MP_INCLUDED */
#if defined(CONFIG_USB_HCI) || defined(CONFIG_SDIO_HCI) || defined(CONFIG_GSPI_HCI)
void rtl8188f_cal_txdesc_chksum(struct tx_desc *ptxdesc)
{
u16 *usPtr = (u16 *)ptxdesc;
u32 count;
u32 index;
u16 checksum = 0;
/* Clear first */
ptxdesc->txdw7 &= cpu_to_le32(0xffff0000);
/* checksume is always calculated by first 32 bytes, */
/* and it doesn't depend on TX DESC length. */
/* Thomas,Lucas@SD4,20130515 */
count = 16;
for (index = 0; index < count; index++)
checksum ^= le16_to_cpu(*(usPtr + index));
ptxdesc->txdw7 |= cpu_to_le32(checksum & 0x0000ffff);
}
#endif
#if 0 /* FW tx packet write */
u8 send_fw_packet(PADAPTER padapter, u8 *pRam_code, u32 length)
{
struct dvobj_priv *pdvobjpriv = adapter_to_dvobj(padapter);
struct xmit_buf xmit_buf_tmp;
struct submit_ctx sctx_tmp;
u8 *pTx_data_buffer = NULL;
u8 *pTmp_buffer = NULL;
u32 modify_ram_size;
u32 tmp_size, tmp_value;
u8 value8;
u32 i, counter;
u8 bRet;
u32 dwDataLength, writeLength;
/* Due to SDIO can not send 32K packet */
if (FW_DOWNLOAD_SIZE_8188F == length)
length--;
modify_ram_size = length << 2;
pTx_data_buffer = rtw_zmalloc(modify_ram_size);
if (NULL == pTx_data_buffer) {
RTW_INFO("Allocate buffer fail!!\n");
return _FALSE;
}
_rtw_memset(pTx_data_buffer, 0, modify_ram_size);
/* Transfer to new format */
tmp_size = length >> 1;
for (i = 0; i <= tmp_size; i++) {
*(pTx_data_buffer + i * 8) = *(pRam_code + i * 2);
*(pTx_data_buffer + i * 8 + 1) = *(pRam_code + i * 2 + 1);
}
/* Gen TX_DESC */
_rtw_memset(pTx_data_buffer, 0, TXDESC_SIZE);
pTmp_buffer = pTx_data_buffer;
#if 0
pTmp_buffer->qsel = BcnQsel;
pTmp_buffer->txpktsize = modify_ram_size - TXDESC_SIZE;
pTmp_buffer->offset = TXDESC_SIZE;
#else
SET_TX_DESC_QUEUE_SEL_8188F(pTmp_buffer, QSLT_BEACON);
SET_TX_DESC_PKT_SIZE_8188F(pTmp_buffer, modify_ram_size - TXDESC_SIZE);
SET_TX_DESC_OFFSET_8188F(pTmp_buffer, TXDESC_SIZE);
#endif
rtl8188f_cal_txdesc_chksum((struct tx_desc *)pTmp_buffer);
/* Send packet */
#if 0
dwDataLength = modify_ram_size;
overlap.Offset = 0;
overlap.OffsetHigh = 0;
overlap.hEvent = CreateEvent(NULL, FALSE, FALSE, NULL);
bRet = WriteFile(HalVari.hFile_Queue[TX_BCNQ]->handle, pTx_data_buffer, dwDataLength, &writeLength, &overlap);
if (WaitForSingleObject(overlap.hEvent, INFINITE) == WAIT_OBJECT_0) {
GetOverlappedResult(HalVari.hFile_Queue[TX_BCNQ]->handle, &overlap, &writeLength, FALSE);
if (writeLength != dwDataLength) {
TCHAR editbuf[100];
sprintf(editbuf, "DL FW Length Err: Write length error:bRet %d writeLength %ld dwDataLength %ld, Error Code:%ld", bRet, writeLength, dwDataLength, GetLastError());
AfxMessageBox(editbuf, MB_OK | MB_ICONERROR);
return FALSE;
}
}
CloseHandle(overlap.hEvent);
#else
xmit_buf_tmp.pdata = pTx_data_buffer;
xmit_buf_tmp.len = modify_ram_size;
rtw_sctx_init(&sctx_tmp, 10);
xmit_buf_tmp.sctx = &sctx_tmp;
if (rtw_write_port(padapter, pdvobjpriv->Queue2Pipe[BCN_QUEUE_INX], xmit_buf_tmp.len, (u8 *)&xmit_buf_tmp) == _FAIL) {
RTW_INFO("rtw_write_port fail\n");
return _FAIL;
}
#endif
/* check if DMA is OK */
counter = 100;
do {
if (0 == counter) {
RTW_INFO("DMA time out!!\n");
return _FALSE;
}
value8 = rtw_read8(padapter, REG_DWBCN0_CTRL_8188F + 2);
counter--;
} while (0 == (value8 & BIT(0)));
rtw_write8(padapter, REG_DWBCN0_CTRL_8188F + 2, value8);
/* Modify ram code by IO method */
tmp_value = rtw_read8(padapter, REG_MCUFWDL + 1);
/* Disable DMA */
rtw_write8(padapter, REG_MCUFWDL + 1, (u8)tmp_value & ~(BIT(5)));
tmp_value = (tmp_value >> 6) << 1;
/* Set page start address */
rtw_write8(padapter, REG_MCUFWDL + 2, (rtw_read8(padapter, REG_MCUFWDL + 2) & 0xF8) | tmp_value);
tmp_size = TXDESC_SIZE >> 2; /* 10bytes */
#if 0
IO_Func.WriteRegister(0x1000, (u16)tmp_size, pRam_code);
#else
_BlockWrite(padapter, pRam_code, tmp_size);
#endif
if (pTmp_buffer != NULL)
rtw_mfree((u8 *)pTmp_buffer, modify_ram_size);
return _TRUE;
}
#endif
/* */
/* Description: */
/* Download 8192C firmware code. */
/* */
/* */
s32 rtl8188f_FirmwareDownload(PADAPTER padapter, BOOLEAN bUsedWoWLANFw)
{
s32 rtStatus = _SUCCESS;
u8 write_fw = 0;
systime fwdl_start_time;
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
u8 *FwImage;
u32 FwImageLen;
u8 *pFwImageFileName;
#ifdef CONFIG_WOWLAN
u8 *FwImageWoWLAN;
u32 FwImageWoWLANLen;
#endif
u8 *pucMappedFile = NULL;
PRT_FIRMWARE_8188F pFirmware = NULL;
PRT_8188F_FIRMWARE_HDR pFwHdr = NULL;
u8 *pFirmwareBuf;
u32 FirmwareLen;
#ifdef CONFIG_FILE_FWIMG
u8 *fwfilepath;
#endif /* CONFIG_FILE_FWIMG */
u8 value8;
struct dvobj_priv *psdpriv = padapter->dvobj;
struct debug_priv *pdbgpriv = &psdpriv->drv_dbg;
struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(padapter);
pFirmware = (PRT_FIRMWARE_8188F)rtw_zmalloc(sizeof(RT_FIRMWARE_8188F));
if (!pFirmware) {
rtStatus = _FAIL;
goto exit;
}
{
u8 tmp_ps = 0, tmp_rf = 0;
tmp_ps = rtw_read8(padapter, 0xa3);
tmp_ps &= 0xf8;
tmp_ps |= 0x02;
/*1. write 0xA3[:2:0] = 3b'010 */
rtw_write8(padapter, 0xa3, tmp_ps);
/*2. read power_state = 0xA0[1:0] */
tmp_ps = rtw_read8(padapter, 0xa0);
tmp_ps &= 0x03;
if (tmp_ps != 0x01) {
RTW_INFO(FUNC_ADPT_FMT" tmp_ps=%x\n", FUNC_ADPT_ARG(padapter), tmp_ps);
pdbgpriv->dbg_downloadfw_pwr_state_cnt++;
}
}
#ifdef CONFIG_BT_COEXIST
rtw_btcoex_PreLoadFirmware(padapter);
#endif
#ifdef CONFIG_FILE_FWIMG
#ifdef CONFIG_WOWLAN
if (bUsedWoWLANFw)
fwfilepath = rtw_fw_wow_file_path;
else
#endif /* CONFIG_WOWLAN */
{
fwfilepath = rtw_fw_file_path;
}
#endif /* CONFIG_FILE_FWIMG */
#ifdef CONFIG_FILE_FWIMG
if (rtw_is_file_readable(fwfilepath) == _TRUE) {
RTW_INFO("%s acquire FW from file:%s\n", __func__, fwfilepath);
pFirmware->eFWSource = FW_SOURCE_IMG_FILE;
} else
#endif /* CONFIG_FILE_FWIMG */
{
#ifdef CONFIG_EMBEDDED_FWIMG
pFirmware->eFWSource = FW_SOURCE_HEADER_FILE;
#else /* !CONFIG_EMBEDDED_FWIMG */
pFirmware->eFWSource = FW_SOURCE_IMG_FILE; /* We should decided by Reg. */
#endif /* !CONFIG_EMBEDDED_FWIMG */
}
switch (pFirmware->eFWSource) {
case FW_SOURCE_IMG_FILE:
#ifdef CONFIG_FILE_FWIMG
rtStatus = rtw_retrieve_from_file(fwfilepath, FwBuffer, FW_8188F_SIZE);
pFirmware->ulFwLength = rtStatus >= 0 ? rtStatus : 0;
pFirmware->szFwBuffer = FwBuffer;
#endif /* CONFIG_FILE_FWIMG */
break;
case FW_SOURCE_HEADER_FILE:
if (bUsedWoWLANFw) {
#ifdef CONFIG_WOWLAN
if (pwrpriv->wowlan_mode) {
pFirmware->szFwBuffer = array_mp_8188f_fw_wowlan;
pFirmware->ulFwLength = array_length_mp_8188f_fw_wowlan;
RTW_INFO(" ===> %s fw: %s, size: %d\n",
__func__, "WoWLAN",
pFirmware->ulFwLength);
}
#endif /* CONFIG_WOWLAN */
#ifdef CONFIG_AP_WOWLAN
if (pwrpriv->wowlan_ap_mode) {
pFirmware->szFwBuffer = array_mp_8188f_fw_ap;
pFirmware->ulFwLength = array_length_mp_8188f_fw_ap;
RTW_INFO(" ===> %s fw: %s, size: %d\n",
__func__, "AP_WoWLAN",
pFirmware->ulFwLength);
}
#endif /* CONFIG_AP_WOWLAN */
} else {
/* CONFIG_FW_WoWLAN functions of NIC is included in WoWLAN */
/* functions of NIC is separated from WoWLAN starting from V0200 */
pFirmware->szFwBuffer = array_mp_8188f_fw_nic;
pFirmware->ulFwLength = array_length_mp_8188f_fw_nic;
RTW_INFO("%s fw: %s, size: %d\n", __func__
/*, "FW_WoWLAN" */
, "FW_NIC"
, pFirmware->ulFwLength);
}
break;
}
if ((pFirmware->ulFwLength - 32) > FW_8188F_SIZE) {
rtStatus = _FAIL;
RTW_ERR("Firmware size:%u exceed %u\n", pFirmware->ulFwLength, FW_8188F_SIZE);
goto exit;
}
pFirmwareBuf = pFirmware->szFwBuffer;
FirmwareLen = pFirmware->ulFwLength;
/* To Check Fw header. Added by tynli. 2009.12.04. */
pFwHdr = (PRT_8188F_FIRMWARE_HDR)pFirmwareBuf;
pHalData->firmware_version = le16_to_cpu(pFwHdr->Version);
pHalData->firmware_sub_version = le16_to_cpu(pFwHdr->Subversion);
pHalData->FirmwareSignature = le16_to_cpu(pFwHdr->Signature);
RTW_INFO("%s: fw_ver=%x fw_subver=%04x sig=0x%x, Month=%02x, Date=%02x, Hour=%02x, Minute=%02x\n",
__func__, pHalData->firmware_version, pHalData->firmware_sub_version, pHalData->FirmwareSignature
, pFwHdr->Month, pFwHdr->Date, pFwHdr->Hour, pFwHdr->Minute);
if (IS_FW_HEADER_EXIST_8188F(pFwHdr)) {
RTW_INFO("%s(): Shift for fw header!\n", __func__);
/* Shift 32 bytes for FW header */
pFirmwareBuf = pFirmwareBuf + 32;
FirmwareLen = FirmwareLen - 32;
}
fwdl_start_time = rtw_get_current_time();
#if 1
RTW_INFO("%s by IO write!\n", __func__);
/*
* Suggested by Filen. If 8051 is running in RAM code, driver should inform Fw to reset by itself,
* or it will cause download Fw fail. 2010.02.01. by tynli.
*/
if (rtw_read8(padapter, REG_MCUFWDL) & RAM_DL_SEL) {
rtw_write8(padapter, REG_MCUFWDL, 0x00);
_8051Reset8188(padapter);
}
_FWDownloadEnable(padapter, _TRUE);
while (!RTW_CANNOT_IO(padapter)
&& (write_fw++ < 3 || rtw_get_passing_time_ms(fwdl_start_time) < 500)) {
/* reset FWDL chksum */
rtw_write8(padapter, REG_MCUFWDL, rtw_read8(padapter, REG_MCUFWDL) | FWDL_ChkSum_rpt);
rtStatus = _WriteFW(padapter, pFirmwareBuf, FirmwareLen);
if (rtStatus != _SUCCESS)
continue;
rtStatus = polling_fwdl_chksum(padapter, 5, 50);
if (rtStatus == _SUCCESS)
break;
}
#else
RTW_INFO("%s by Tx pkt write!\n", __func__);
if ((rtw_read8(padapter, REG_MCUFWDL) & MCUFWDL_RDY) == 0) {
/* DLFW use HIQ only */
value32 = 0xFF | BIT(31);
rtw_write32(padapter, REG_RQPN, value32);
/* Set beacon boundary to TXFIFO header */
rtw_write8(padapter, REG_BCNQ_BDNY, 0);
rtw_write16(padapter, REG_DWBCN0_CTRL_8188F + 1, BIT(8));
/* SDIO need read this register before send packet */
rtw_read32(padapter, 0x10250020);
_FWDownloadEnable(padapter, _TRUE);
/* Get original check sum */
new_chk_sum = *(pFirmwareBuf + FirmwareLen - 2) | ((u16) *(pFirmwareBuf + FirmwareLen - 1) << 8);
/* Send ram code flow */
dma_iram_sel = 0;
mem_offset = 0;
pkt_size_tmp = FirmwareLen;
while (0 != pkt_size_tmp) {
if (pkt_size_tmp >= FW_DOWNLOAD_SIZE_8188F) {
send_pkt_size = FW_DOWNLOAD_SIZE_8188F;
/* Modify check sum value */
new_chk_sum = (u16)(new_chk_sum ^ (((send_pkt_size - 1) << 2) - TXDESC_SIZE));
} else {
send_pkt_size = pkt_size_tmp;
new_chk_sum = (u16)(new_chk_sum ^ ((send_pkt_size << 2) - TXDESC_SIZE));
}
if (send_pkt_size == pkt_size_tmp) {
/* last partition packet, write new check sum to ram code file */
*(pFirmwareBuf + FirmwareLen - 2) = new_chk_sum & 0xFF;
*(pFirmwareBuf + FirmwareLen - 1) = (new_chk_sum & 0xFF00) >> 8;
}
/* IRAM select */
rtw_write8(padapter, REG_MCUFWDL + 1, (rtw_read8(padapter, REG_MCUFWDL + 1) & 0x3F) | (dma_iram_sel << 6));
/* Enable DMA */
rtw_write8(padapter, REG_MCUFWDL + 1, rtw_read8(padapter, REG_MCUFWDL + 1) | BIT(5));
if (_FALSE == send_fw_packet(padapter, pFirmwareBuf + mem_offset, send_pkt_size)) {
RTW_INFO("%s: Send FW fail !\n", __func__);
rtStatus = _FAIL;
goto DLFW_FAIL;
}
dma_iram_sel++;
mem_offset += send_pkt_size;
pkt_size_tmp -= send_pkt_size;
}
} else {
RTW_INFO("%s: Download FW fail since MCUFWDL_RDY is not set!\n", __func__);
rtStatus = _FAIL;
goto DLFW_FAIL;
}
#endif
_FWDownloadEnable(padapter, _FALSE);
rtStatus = _FWFreeToGo(padapter, 10, 200);
if (_SUCCESS != rtStatus)
goto DLFW_FAIL;
RTW_INFO("%s: DLFW OK !\n", __func__);
DLFW_FAIL:
if (rtStatus == _FAIL) {
/* Disable FWDL_EN */
value8 = rtw_read8(padapter, REG_MCUFWDL);
value8 = (value8 & ~(BIT(0)) & ~(BIT(1)));
rtw_write8(padapter, REG_MCUFWDL, value8);
}
RTW_INFO("%s %s. write_fw:%u, %dms\n"
, __func__, (rtStatus == _SUCCESS) ? "success" : "fail"
, write_fw
, rtw_get_passing_time_ms(fwdl_start_time)
);
exit:
if (pFirmware)
rtw_mfree((u8 *)pFirmware, sizeof(RT_FIRMWARE_8188F));
rtl8188f_InitializeFirmwareVars(padapter);
RTW_INFO(" <=== %s()\n", __func__);
return rtStatus;
}
void rtl8188f_InitializeFirmwareVars(PADAPTER padapter)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
/* Init Fw LPS related. */
adapter_to_pwrctl(padapter)->bFwCurrentInPSMode = _FALSE;
/*Init H2C cmd. */
rtw_write8(padapter, REG_HMETFR, 0x0f);
/* Init H2C counter. by tynli. 2009.12.09. */
pHalData->LastHMEBoxNum = 0;
/*pHalData->H2CQueueHead = 0; */
/*pHalData->H2CQueueTail = 0; */
/*pHalData->H2CStopInsertQueue = _FALSE; */
}
/*=========================================================== */
/* Efuse related code */
/*=========================================================== */
static u8
hal_EfuseSwitchToBank(
PADAPTER padapter,
u8 bank,
u8 bPseudoTest)
{
u8 bRet = _FALSE;
u32 value32 = 0;
#ifdef HAL_EFUSE_MEMORY
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal;
#endif
RTW_INFO("%s: Efuse switch bank to %d\n", __func__, bank);
if (bPseudoTest) {
#ifdef HAL_EFUSE_MEMORY
pEfuseHal->fakeEfuseBank = bank;
#else
fakeEfuseBank = bank;
#endif
bRet = _TRUE;
} else {
value32 = rtw_read32(padapter, EFUSE_TEST);
bRet = _TRUE;
switch (bank) {
case 0:
value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_WIFI_SEL_0);
break;
case 1:
value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_0);
break;
case 2:
value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_1);
break;
case 3:
value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_2);
break;
default:
value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_WIFI_SEL_0);
bRet = _FALSE;
break;
}
rtw_write32(padapter, EFUSE_TEST, value32);
}
return bRet;
}
static void
Hal_GetEfuseDefinition(
PADAPTER padapter,
u8 efuseType,
u8 type,
void *pOut,
u8 bPseudoTest)
{
switch (type) {
case TYPE_EFUSE_MAX_SECTION: {
u8 *pMax_section;
pMax_section = (u8 *)pOut;
if (efuseType == EFUSE_WIFI)
*pMax_section = EFUSE_MAX_SECTION_8188F;
else
*pMax_section = EFUSE_BT_MAX_SECTION;
}
break;
case TYPE_EFUSE_REAL_CONTENT_LEN: {
u16 *pu2Tmp;
pu2Tmp = (u16 *)pOut;
if (efuseType == EFUSE_WIFI)
*pu2Tmp = EFUSE_REAL_CONTENT_LEN_8188F;
else
*pu2Tmp = EFUSE_BT_REAL_CONTENT_LEN;
}
break;
case TYPE_AVAILABLE_EFUSE_BYTES_BANK: {
u16 *pu2Tmp;
pu2Tmp = (u16 *)pOut;
if (efuseType == EFUSE_WIFI)
*pu2Tmp = (EFUSE_REAL_CONTENT_LEN_8188F - EFUSE_OOB_PROTECT_BYTES);
else
*pu2Tmp = (EFUSE_BT_REAL_BANK_CONTENT_LEN - EFUSE_PROTECT_BYTES_BANK);
}
break;
case TYPE_AVAILABLE_EFUSE_BYTES_TOTAL: {
u16 *pu2Tmp;
pu2Tmp = (u16 *)pOut;
if (efuseType == EFUSE_WIFI)
*pu2Tmp = (EFUSE_REAL_CONTENT_LEN_8188F - EFUSE_OOB_PROTECT_BYTES);
else
*pu2Tmp = (EFUSE_BT_REAL_CONTENT_LEN - (EFUSE_PROTECT_BYTES_BANK * 3));
}
break;
case TYPE_EFUSE_MAP_LEN: {
u16 *pu2Tmp;
pu2Tmp = (u16 *)pOut;
if (efuseType == EFUSE_WIFI)
*pu2Tmp = EFUSE_MAP_LEN_8188F;
else
*pu2Tmp = EFUSE_BT_MAP_LEN;
}
break;
case TYPE_EFUSE_PROTECT_BYTES_BANK: {
u8 *pu1Tmp;
pu1Tmp = (u8 *)pOut;
if (efuseType == EFUSE_WIFI)
*pu1Tmp = EFUSE_OOB_PROTECT_BYTES;
else
*pu1Tmp = EFUSE_PROTECT_BYTES_BANK;
}
break;
case TYPE_EFUSE_CONTENT_LEN_BANK: {
u16 *pu2Tmp;
pu2Tmp = (u16 *)pOut;
if (efuseType == EFUSE_WIFI)
*pu2Tmp = EFUSE_REAL_CONTENT_LEN_8188F;
else
*pu2Tmp = EFUSE_BT_REAL_BANK_CONTENT_LEN;
}
break;
default: {
u8 *pu1Tmp;
pu1Tmp = (u8 *)pOut;
*pu1Tmp = 0;
}
break;
}
}
#define VOLTAGE_V25 0x03
#define LDOE25_SHIFT 28
/*================================================================= */
/* The following is for compile ok */
/* That should be merged with the original in the future */
/*================================================================= */
#define EFUSE_ACCESS_ON_8188 0x69 /* For RTL8188 only. */
#define EFUSE_ACCESS_OFF_8188 0x00 /* For RTL8188 only. */
#define REG_EFUSE_ACCESS_8188 0x00CF /* Efuse access protection for RTL8188 */
/*================================================================= */
static void Hal_BT_EfusePowerSwitch(
PADAPTER padapter,
u8 bWrite,
u8 PwrState)
{
u8 tempval;
if (PwrState == _TRUE) {
/* enable BT power cut */
/* 0x6A[14] = 1 */
tempval = rtw_read8(padapter, 0x6B);
tempval |= BIT(6);
rtw_write8(padapter, 0x6B, tempval);
/* Attention!! Between 0x6A[14] and 0x6A[15] setting need 100us delay */
/* So don't write 0x6A[14]=1 and 0x6A[15]=0 together! */
rtw_usleep_os(100);
/* disable BT output isolation */
/* 0x6A[15] = 0 */
tempval = rtw_read8(padapter, 0x6B);
tempval &= ~BIT(7);
rtw_write8(padapter, 0x6B, tempval);
} else {
/* enable BT output isolation */
/* 0x6A[15] = 1 */
tempval = rtw_read8(padapter, 0x6B);
tempval |= BIT(7);
rtw_write8(padapter, 0x6B, tempval);
/* Attention!! Between 0x6A[14] and 0x6A[15] setting need 100us delay */
/* So don't write 0x6A[14]=1 and 0x6A[15]=0 together! */
/* disable BT power cut */
/* 0x6A[14] = 1 */
tempval = rtw_read8(padapter, 0x6B);
tempval &= ~BIT(6);
rtw_write8(padapter, 0x6B, tempval);
}
}
static void
Hal_EfusePowerSwitch(
PADAPTER padapter,
u8 bWrite,
u8 PwrState)
{
u8 tempval;
u16 tmpV16;
if (PwrState == _TRUE) {
#ifdef CONFIG_SDIO_HCI
/* To avoid cannot access efuse regsiters after disable/enable several times during DTM test. */
/* Suggested by SD1 IsaacHsu. 2013.07.08, added by tynli. */
tempval = rtw_read8(padapter, SDIO_LOCAL_BASE | SDIO_REG_HSUS_CTRL);
if (tempval & BIT(0)) { /* SDIO local register is suspend */
u8 count = 0;
tempval &= ~BIT(0);
rtw_write8(padapter, SDIO_LOCAL_BASE | SDIO_REG_HSUS_CTRL, tempval);
/* check 0x86[1:0]=10'2h, wait power state to leave suspend */
do {
tempval = rtw_read8(padapter, SDIO_LOCAL_BASE | SDIO_REG_HSUS_CTRL);
tempval &= 0x3;
if (tempval == 0x02)
break;
count++;
if (count >= 100)
break;
rtw_mdelay_os(10);
} while (1);
if (count >= 100) {
RTW_INFO(FUNC_ADPT_FMT ": Leave SDIO local register suspend fail! Local 0x86=%#X\n",
FUNC_ADPT_ARG(padapter), tempval);
} else {
RTW_INFO(FUNC_ADPT_FMT ": Leave SDIO local register suspend OK! Local 0x86=%#X\n",
FUNC_ADPT_ARG(padapter), tempval);
}
}
#endif /* CONFIG_SDIO_HCI */
rtw_write8(padapter, REG_EFUSE_ACCESS_8188, EFUSE_ACCESS_ON_8188);
/* Reset: 0x0000h[28], default valid */
tmpV16 = rtw_read16(padapter, REG_SYS_FUNC_EN);
if (!(tmpV16 & FEN_ELDR)) {
tmpV16 |= FEN_ELDR;
rtw_write16(padapter, REG_SYS_FUNC_EN, tmpV16);
}
/* Clock: Gated(0x0008h[5]) 8M(0x0008h[1]) clock from ANA, default valid */
tmpV16 = rtw_read16(padapter, REG_SYS_CLKR);
if ((!(tmpV16 & LOADER_CLK_EN)) || (!(tmpV16 & ANA8M))) {
tmpV16 |= (LOADER_CLK_EN | ANA8M);
rtw_write16(padapter, REG_SYS_CLKR, tmpV16);
}
if (bWrite == _TRUE) {
/* Enable LDO 2.5V before read/write action */
tempval = rtw_read8(padapter, EFUSE_TEST + 3);
rtw_write8(padapter, EFUSE_TEST + 3, (tempval | 0x80));
}
} else {
rtw_write8(padapter, REG_EFUSE_ACCESS, EFUSE_ACCESS_OFF);
if (bWrite == _TRUE) {
/* Disable LDO 2.5V after read/write action */
tempval = rtw_read8(padapter, EFUSE_TEST + 3);
rtw_write8(padapter, EFUSE_TEST + 3, (tempval & 0x7F));
}
}
}
static void
hal_ReadEFuse_WiFi(
PADAPTER padapter,
u16 _offset,
u16 _size_byte,
u8 *pbuf,
u8 bPseudoTest)
{
#ifdef HAL_EFUSE_MEMORY
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal;
#endif
u8 *efuseTbl = NULL;
u16 eFuse_Addr = 0;
u8 offset, wden;
u8 efuseHeader, efuseExtHdr, efuseData;
u16 i, total, used;
u8 efuse_usage = 0;
/*RTW_INFO("YJ: ====>%s():_offset=%d _size_byte=%d bPseudoTest=%d\n", __func__, _offset, _size_byte, bPseudoTest); */
/* */
/* Do NOT excess total size of EFuse table. Added by Roger, 2008.11.10. */
/* */
if ((_offset + _size_byte) > EFUSE_MAX_MAP_LEN) {
RTW_INFO("%s: Invalid offset(%#x) with read bytes(%#x)!!\n", __func__, _offset, _size_byte);
return;
}
efuseTbl = (u8 *)rtw_malloc(EFUSE_MAX_MAP_LEN);
if (efuseTbl == NULL) {
RTW_INFO("%s: alloc efuseTbl fail!\n", __func__);
return;
}
/* 0xff will be efuse default value instead of 0x00. */
_rtw_memset(efuseTbl, 0xFF, EFUSE_MAX_MAP_LEN);
#ifdef CONFIG_RTW_DEBUG
if (0) {
for (i = 0; i < 256; i++)
/*ReadEFuseByte(padapter, i, &efuseTbl[i], _FALSE); */
efuse_OneByteRead(padapter, i, &efuseTbl[i], _FALSE);
RTW_INFO("Efuse Content:\n");
for (i = 0; i < 256; i++)
printk("%02X%s", efuseTbl[i], (((i + 1) % 16) == 0) ? "\n" : " ");
}
#endif
/* switch bank back to bank 0 for later BT and wifi use. */
hal_EfuseSwitchToBank(padapter, 0, bPseudoTest);
while (AVAILABLE_EFUSE_ADDR(eFuse_Addr)) {
/*ReadEFuseByte(padapter, eFuse_Addr++, &efuseHeader, bPseudoTest); */
efuse_OneByteRead(padapter, eFuse_Addr++, &efuseHeader, bPseudoTest);
if (efuseHeader == 0xFF) {
RTW_INFO("%s: data end at address=%#x\n", __func__, eFuse_Addr - 1);
break;
}
/*RTW_INFO("%s: efuse[0x%X]=0x%02X\n", __func__, eFuse_Addr-1, efuseHeader); */
/* Check PG header for section num. */
if (EXT_HEADER(efuseHeader)) { /*extended header */
offset = GET_HDR_OFFSET_2_0(efuseHeader);
/*RTW_INFO("%s: extended header offset=0x%X\n", __func__, offset); */
/*ReadEFuseByte(padapter, eFuse_Addr++, &efuseExtHdr, bPseudoTest); */
efuse_OneByteRead(padapter, eFuse_Addr++, &efuseExtHdr, bPseudoTest);
/*RTW_INFO("%s: efuse[0x%X]=0x%02X\n", __func__, eFuse_Addr-1, efuseExtHdr); */
if (ALL_WORDS_DISABLED(efuseExtHdr))
continue;
offset |= ((efuseExtHdr & 0xF0) >> 1);
wden = (efuseExtHdr & 0x0F);
} else {
offset = ((efuseHeader >> 4) & 0x0f);
wden = (efuseHeader & 0x0f);
}
/*RTW_INFO("%s: Offset=%d Worden=0x%X\n", __func__, offset, wden); */
if (offset < EFUSE_MAX_SECTION_8188F) {
u16 addr;
/* Get word enable value from PG header */
/*RTW_INFO("%s: Offset=%d Worden=0x%X\n", __func__, offset, wden); */
addr = offset * PGPKT_DATA_SIZE;
for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
/* Check word enable condition in the section */
if (!(wden & (0x01 << i))) {
efuseData = 0;
/*ReadEFuseByte(padapter, eFuse_Addr++, &efuseData, bPseudoTest); */
efuse_OneByteRead(padapter, eFuse_Addr++, &efuseData, bPseudoTest);
/*RTW_INFO("%s: efuse[%#X]=0x%02X\n", __func__, eFuse_Addr-1, efuseData); */
efuseTbl[addr] = efuseData;
efuseData = 0;
/*ReadEFuseByte(padapter, eFuse_Addr++, &efuseData, bPseudoTest); */
efuse_OneByteRead(padapter, eFuse_Addr++, &efuseData, bPseudoTest);
/*RTW_INFO("%s: efuse[%#X]=0x%02X\n", __func__, eFuse_Addr-1, efuseData); */
efuseTbl[addr + 1] = efuseData;
}
addr += 2;
}
} else {
RTW_ERR("%s: offset(%d) is illegal!!\n", __func__, offset);
eFuse_Addr += Efuse_CalculateWordCnts(wden) * 2;
}
}
/* Copy from Efuse map to output pointer memory!!! */
for (i = 0; i < _size_byte; i++)
pbuf[i] = efuseTbl[_offset + i];
/* Calculate Efuse utilization */
total = 0;
EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &total, bPseudoTest);
used = eFuse_Addr - 1;
if (total)
efuse_usage = (u8)((used * 100) / total);
else
efuse_usage = 100;
if (bPseudoTest) {
#ifdef HAL_EFUSE_MEMORY
pEfuseHal->fakeEfuseUsedBytes = used;
#else
fakeEfuseUsedBytes = used;
#endif
} else {
rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_BYTES, (u8 *)&used);
rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_USAGE, (u8 *)&efuse_usage);
}
if (efuseTbl)
rtw_mfree(efuseTbl, EFUSE_MAX_MAP_LEN);
}
static void
hal_ReadEFuse_BT(
PADAPTER padapter,
u16 _offset,
u16 _size_byte,
u8 *pbuf,
u8 bPseudoTest
)
{
#ifdef HAL_EFUSE_MEMORY
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal;
#endif
u8 *efuseTbl;
u8 bank;
u16 eFuse_Addr;
u8 efuseHeader, efuseExtHdr, efuseData;
u8 offset, wden;
u16 i, total, used;
u8 efuse_usage;
/* */
/* Do NOT excess total size of EFuse table. Added by Roger, 2008.11.10. */
/* */
if ((_offset + _size_byte) > EFUSE_BT_MAP_LEN) {
RTW_INFO("%s: Invalid offset(%#x) with read bytes(%#x)!!\n", __func__, _offset, _size_byte);
return;
}
efuseTbl = rtw_malloc(EFUSE_BT_MAP_LEN);
if (efuseTbl == NULL) {
RTW_INFO("%s: efuseTbl malloc fail!\n", __func__);
return;
}
/* 0xff will be efuse default value instead of 0x00. */
_rtw_memset(efuseTbl, 0xFF, EFUSE_BT_MAP_LEN);
total = 0;
EFUSE_GetEfuseDefinition(padapter, EFUSE_BT, TYPE_AVAILABLE_EFUSE_BYTES_BANK, &total, bPseudoTest);
for (bank = 1; bank < 3; bank++) { /* 8188F Max bake 0~2 */
if (hal_EfuseSwitchToBank(padapter, bank, bPseudoTest) == _FALSE) {
RTW_INFO("%s: hal_EfuseSwitchToBank Fail!!\n", __func__);
goto exit;
}
eFuse_Addr = 0;
while (AVAILABLE_EFUSE_ADDR(eFuse_Addr)) {
/*ReadEFuseByte(padapter, eFuse_Addr++, &efuseHeader, bPseudoTest); */
efuse_OneByteRead(padapter, eFuse_Addr++, &efuseHeader, bPseudoTest);
if (efuseHeader == 0xFF)
break;
RTW_INFO("%s: efuse[%#X]=0x%02x (header)\n", __func__, (((bank - 1) * EFUSE_REAL_CONTENT_LEN_8188F) + eFuse_Addr - 1), efuseHeader);
/* Check PG header for section num. */
if (EXT_HEADER(efuseHeader)) { /*extended header */
offset = GET_HDR_OFFSET_2_0(efuseHeader);
RTW_INFO("%s: extended header offset_2_0=0x%X\n", __func__, offset);
/*ReadEFuseByte(padapter, eFuse_Addr++, &efuseExtHdr, bPseudoTest); */
efuse_OneByteRead(padapter, eFuse_Addr++, &efuseExtHdr, bPseudoTest);
RTW_INFO("%s: efuse[%#X]=0x%02x (ext header)\n", __func__, (((bank - 1) * EFUSE_REAL_CONTENT_LEN_8188F) + eFuse_Addr - 1), efuseExtHdr);
if (ALL_WORDS_DISABLED(efuseExtHdr))
continue;
offset |= ((efuseExtHdr & 0xF0) >> 1);
wden = (efuseExtHdr & 0x0F);
} else {
offset = ((efuseHeader >> 4) & 0x0f);
wden = (efuseHeader & 0x0f);
}
if (offset < EFUSE_BT_MAX_SECTION) {
u16 addr;
/* Get word enable value from PG header */
RTW_INFO("%s: Offset=%d Worden=%#X\n", __func__, offset, wden);
addr = offset * PGPKT_DATA_SIZE;
for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
/* Check word enable condition in the section */
if (!(wden & (0x01 << i))) {
efuseData = 0;
/*ReadEFuseByte(padapter, eFuse_Addr++, &efuseData, bPseudoTest); */
efuse_OneByteRead(padapter, eFuse_Addr++, &efuseData, bPseudoTest);
RTW_INFO("%s: efuse[%#X]=0x%02X\n", __func__, eFuse_Addr - 1, efuseData);
efuseTbl[addr] = efuseData;
efuseData = 0;
/*ReadEFuseByte(padapter, eFuse_Addr++, &efuseData, bPseudoTest); */
efuse_OneByteRead(padapter, eFuse_Addr++, &efuseData, bPseudoTest);
RTW_INFO("%s: efuse[%#X]=0x%02X\n", __func__, eFuse_Addr - 1, efuseData);
efuseTbl[addr + 1] = efuseData;
}
addr += 2;
}
} else {
RTW_INFO("%s: offset(%d) is illegal!!\n", __func__, offset);
eFuse_Addr += Efuse_CalculateWordCnts(wden) * 2;
}
}
if ((eFuse_Addr - 1) < total) {
RTW_INFO("%s: bank(%d) data end at %#x\n", __func__, bank, eFuse_Addr - 1);
break;
}
}
/* switch bank back to bank 0 for later BT and wifi use. */
hal_EfuseSwitchToBank(padapter, 0, bPseudoTest);
/* Copy from Efuse map to output pointer memory!!! */
for (i = 0; i < _size_byte; i++)
pbuf[i] = efuseTbl[_offset + i];
/* */
/* Calculate Efuse utilization. */
/* */
EFUSE_GetEfuseDefinition(padapter, EFUSE_BT, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &total, bPseudoTest);
used = (EFUSE_BT_REAL_BANK_CONTENT_LEN * (bank - 1)) + eFuse_Addr - 1;
RTW_INFO("%s: bank(%d) data end at %#x ,used =%d\n", __func__, bank, eFuse_Addr - 1, used);
efuse_usage = (u8)((used * 100) / total);
if (bPseudoTest) {
#ifdef HAL_EFUSE_MEMORY
pEfuseHal->fakeBTEfuseUsedBytes = used;
#else
fakeBTEfuseUsedBytes = used;
#endif
} else {
rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_BT_BYTES, (u8 *)&used);
rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_BT_USAGE, (u8 *)&efuse_usage);
}
exit:
if (efuseTbl)
rtw_mfree(efuseTbl, EFUSE_BT_MAP_LEN);
}
static void
Hal_ReadEFuse(
PADAPTER padapter,
u8 efuseType,
u16 _offset,
u16 _size_byte,
u8 *pbuf,
u8 bPseudoTest)
{
if (efuseType == EFUSE_WIFI)
hal_ReadEFuse_WiFi(padapter, _offset, _size_byte, pbuf, bPseudoTest);
else
hal_ReadEFuse_BT(padapter, _offset, _size_byte, pbuf, bPseudoTest);
}
static u16
hal_EfuseGetCurrentSize_WiFi(
PADAPTER padapter,
u8 bPseudoTest)
{
#ifdef HAL_EFUSE_MEMORY
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal;
#endif
u16 efuse_addr = 0;
u16 start_addr = 0; /* for debug */
u8 hoffset = 0, hworden = 0;
u8 efuse_data, word_cnts = 0;
u32 count = 0; /* for debug */
if (bPseudoTest) {
#ifdef HAL_EFUSE_MEMORY
efuse_addr = (u16)pEfuseHal->fakeEfuseUsedBytes;
#else
efuse_addr = (u16)fakeEfuseUsedBytes;
#endif
} else
rtw_hal_get_hwreg(padapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_addr);
start_addr = efuse_addr;
RTW_INFO("%s: start_efuse_addr=0x%X\n", __func__, efuse_addr);
/* switch bank back to bank 0 for later BT and wifi use. */
hal_EfuseSwitchToBank(padapter, 0, bPseudoTest);
#if 0 /* for debug test */
efuse_OneByteRead(padapter, 0x1FF, &efuse_data, bPseudoTest);
RTW_INFO(FUNC_ADPT_FMT ": efuse raw 0x1FF=0x%02X\n",
FUNC_ADPT_ARG(padapter), efuse_data);
efuse_data = 0xFF;
#endif /* for debug test */
count = 0;
while (AVAILABLE_EFUSE_ADDR(efuse_addr)) {
#if 1
if (efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest) == _FALSE) {
RTW_ERR("%s: efuse_OneByteRead Fail! addr=0x%X !!\n", __func__, efuse_addr);
goto error;
}
#else
ReadEFuseByte(padapter, efuse_addr, &efuse_data, bPseudoTest);
#endif
if (efuse_data == 0xFF)
break;
if ((start_addr != 0) && (efuse_addr == start_addr)) {
count++;
RTW_INFO(FUNC_ADPT_FMT ": [WARNING] efuse raw 0x%X=0x%02X not 0xFF!!(%d times)\n",
FUNC_ADPT_ARG(padapter), efuse_addr, efuse_data, count);
efuse_data = 0xFF;
if (count < 4) {
/* try again! */
if (count > 2) {
/* try again form address 0 */
efuse_addr = 0;
start_addr = 0;
}
continue;
}
goto error;
}
if (EXT_HEADER(efuse_data)) {
hoffset = GET_HDR_OFFSET_2_0(efuse_data);
efuse_addr++;
efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest);
if (ALL_WORDS_DISABLED(efuse_data))
continue;
hoffset |= ((efuse_data & 0xF0) >> 1);
hworden = efuse_data & 0x0F;
} else {
hoffset = (efuse_data >> 4) & 0x0F;
hworden = efuse_data & 0x0F;
}
word_cnts = Efuse_CalculateWordCnts(hworden);
efuse_addr += (word_cnts * 2) + 1;
}
if (bPseudoTest) {
#ifdef HAL_EFUSE_MEMORY
pEfuseHal->fakeEfuseUsedBytes = efuse_addr;
#else
fakeEfuseUsedBytes = efuse_addr;
#endif
} else
rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_addr);
goto exit;
error:
/* report max size to prevent write efuse */
EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &efuse_addr, bPseudoTest);
exit:
RTW_INFO("%s: CurrentSize=%d\n", __func__, efuse_addr);
return efuse_addr;
}
static u16
hal_EfuseGetCurrentSize_BT(
PADAPTER padapter,
u8 bPseudoTest)
{
#ifdef HAL_EFUSE_MEMORY
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal;
#endif
u16 btusedbytes;
u16 efuse_addr;
u8 bank, startBank;
u8 hoffset = 0, hworden = 0;
u8 efuse_data, word_cnts = 0;
u16 retU2 = 0;
u8 bContinual = _TRUE;
if (bPseudoTest) {
#ifdef HAL_EFUSE_MEMORY
btusedbytes = pEfuseHal->fakeBTEfuseUsedBytes;
#else
btusedbytes = fakeBTEfuseUsedBytes;
#endif
} else {
btusedbytes = 0;
rtw_hal_get_hwreg(padapter, HW_VAR_EFUSE_BT_BYTES, (u8 *)&btusedbytes);
}
efuse_addr = (u16)((btusedbytes % EFUSE_BT_REAL_BANK_CONTENT_LEN));
startBank = (u8)(1 + (btusedbytes / EFUSE_BT_REAL_BANK_CONTENT_LEN));
RTW_INFO("%s: start from bank=%d addr=0x%X\n", __func__, startBank, efuse_addr);
EFUSE_GetEfuseDefinition(padapter, EFUSE_BT, TYPE_AVAILABLE_EFUSE_BYTES_BANK, &retU2, bPseudoTest);
for (bank = startBank; bank < 3; bank++) {
if (hal_EfuseSwitchToBank(padapter, bank, bPseudoTest) == _FALSE) {
RTW_ERR("%s: switch bank(%d) Fail!!\n", __func__, bank);
/*bank = EFUSE_MAX_BANK; */
break;
}
/* only when bank is switched we have to reset the efuse_addr. */
if (bank != startBank)
efuse_addr = 0;
#if 1
while (AVAILABLE_EFUSE_ADDR(efuse_addr)) {
if (efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest) == _FALSE) {
RTW_ERR("%s: efuse_OneByteRead Fail! addr=0x%X !!\n", __func__, efuse_addr);
/*bank = EFUSE_MAX_BANK; */
break;
}
RTW_INFO("%s: efuse_OneByteRead ! addr=0x%X !efuse_data=0x%X! bank =%d\n", __func__, efuse_addr, efuse_data, bank);
if (efuse_data == 0xFF)
break;
if (EXT_HEADER(efuse_data)) {
hoffset = GET_HDR_OFFSET_2_0(efuse_data);
efuse_addr++;
efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest);
RTW_INFO("%s: efuse_OneByteRead EXT_HEADER ! addr=0x%X !efuse_data=0x%X! bank =%d\n", __func__, efuse_addr, efuse_data, bank);
if (ALL_WORDS_DISABLED(efuse_data)) {
efuse_addr++;
continue;
}
/*hoffset = ((hoffset & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1); */
hoffset |= ((efuse_data & 0xF0) >> 1);
hworden = efuse_data & 0x0F;
} else {
hoffset = (efuse_data >> 4) & 0x0F;
hworden = efuse_data & 0x0F;
}
RTW_INFO(FUNC_ADPT_FMT": Offset=%d Worden=%#X\n",
FUNC_ADPT_ARG(padapter), hoffset, hworden);
word_cnts = Efuse_CalculateWordCnts(hworden);
/*read next header */
efuse_addr += (word_cnts * 2) + 1;
}
#else
while (bContinual &&
efuse_OneByteRead(padapter, efuse_addr , &efuse_data, bPseudoTest) &&
AVAILABLE_EFUSE_ADDR(efuse_addr)) {
if (efuse_data != 0xFF) {
if ((efuse_data & 0x1F) == 0x0F) { /*extended header */
hoffset = efuse_data;
efuse_addr++;
efuse_OneByteRead(padapter, efuse_addr , &efuse_data, bPseudoTest);
if ((efuse_data & 0x0F) == 0x0F) {
efuse_addr++;
continue;
} else {
hoffset = ((hoffset & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1);
hworden = efuse_data & 0x0F;
}
} else {
hoffset = (efuse_data >> 4) & 0x0F;
hworden = efuse_data & 0x0F;
}
word_cnts = Efuse_CalculateWordCnts(hworden);
/*read next header */
efuse_addr = efuse_addr + (word_cnts * 2) + 1;
} else
bContinual = _FALSE;
}
#endif
/* Check if we need to check next bank efuse */
if (efuse_addr < retU2) {
/* don't need to check next bank. */
break;
}
}
#if 0
retU2 = ((bank - 1) * EFUSE_BT_REAL_BANK_CONTENT_LEN) + efuse_addr;
if (bPseudoTest) {
#ifdef HAL_EFUSE_MEMORY
pEfuseHal->fakeBTEfuseUsedBytes = retU2;
#else
fakeBTEfuseUsedBytes = retU2;
#endif
} else
rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_BT_BYTES, (u8 *)&retU2);
#else
retU2 = ((bank - 1) * EFUSE_BT_REAL_BANK_CONTENT_LEN) + efuse_addr;
if (bPseudoTest) {
pEfuseHal->fakeBTEfuseUsedBytes = retU2;
/*RT_DISP(FEEPROM, EFUSE_PG, ("Hal_EfuseGetCurrentSize_BT92C(), already use %u bytes\n", pEfuseHal->fakeBTEfuseUsedBytes)); */
} else {
pEfuseHal->BTEfuseUsedBytes = retU2;
/*RT_DISP(FEEPROM, EFUSE_PG, ("Hal_EfuseGetCurrentSize_BT92C(), already use %u bytes\n", pEfuseHal->BTEfuseUsedBytes)); */
}
#endif
RTW_INFO("%s: CurrentSize=%d\n", __func__, retU2);
return retU2;
}
static u16
Hal_EfuseGetCurrentSize(
PADAPTER pAdapter,
u8 efuseType,
u8 bPseudoTest)
{
u16 ret = 0;
if (efuseType == EFUSE_WIFI)
ret = hal_EfuseGetCurrentSize_WiFi(pAdapter, bPseudoTest);
else
ret = hal_EfuseGetCurrentSize_BT(pAdapter, bPseudoTest);
return ret;
}
static u8
Hal_EfuseWordEnableDataWrite(
PADAPTER padapter,
u16 efuse_addr,
u8 word_en,
u8 *data,
u8 bPseudoTest)
{
u16 tmpaddr = 0;
u16 start_addr = efuse_addr;
u8 badworden = 0x0F;
u8 tmpdata[PGPKT_DATA_SIZE];
/*RTW_INFO("%s: efuse_addr=%#x word_en=%#x\n", __func__, efuse_addr, word_en); */
_rtw_memset(tmpdata, 0xFF, PGPKT_DATA_SIZE);
if (!(word_en & BIT(0))) {
tmpaddr = start_addr;
efuse_OneByteWrite(padapter, start_addr++, data[0], bPseudoTest);
efuse_OneByteWrite(padapter, start_addr++, data[1], bPseudoTest);
phy_set_mac_reg(padapter, EFUSE_TEST, BIT26, 0);
efuse_OneByteRead(padapter, tmpaddr, &tmpdata[0], bPseudoTest);
efuse_OneByteRead(padapter, tmpaddr + 1, &tmpdata[1], bPseudoTest);
phy_set_mac_reg(padapter, EFUSE_TEST, BIT26, 1);
if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1]))
badworden &= (~BIT(0));
}
if (!(word_en & BIT(1))) {
tmpaddr = start_addr;
efuse_OneByteWrite(padapter, start_addr++, data[2], bPseudoTest);
efuse_OneByteWrite(padapter, start_addr++, data[3], bPseudoTest);
phy_set_mac_reg(padapter, EFUSE_TEST, BIT26, 0);
efuse_OneByteRead(padapter, tmpaddr, &tmpdata[2], bPseudoTest);
efuse_OneByteRead(padapter, tmpaddr + 1, &tmpdata[3], bPseudoTest);
phy_set_mac_reg(padapter, EFUSE_TEST, BIT26, 1);
if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3]))
badworden &= (~BIT(1));
}
if (!(word_en & BIT(2))) {
tmpaddr = start_addr;
efuse_OneByteWrite(padapter, start_addr++, data[4], bPseudoTest);
efuse_OneByteWrite(padapter, start_addr++, data[5], bPseudoTest);
phy_set_mac_reg(padapter, EFUSE_TEST, BIT26, 0);
efuse_OneByteRead(padapter, tmpaddr, &tmpdata[4], bPseudoTest);
efuse_OneByteRead(padapter, tmpaddr + 1, &tmpdata[5], bPseudoTest);
phy_set_mac_reg(padapter, EFUSE_TEST, BIT26, 1);
if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5]))
badworden &= (~BIT(2));
}
if (!(word_en & BIT(3))) {
tmpaddr = start_addr;
efuse_OneByteWrite(padapter, start_addr++, data[6], bPseudoTest);
efuse_OneByteWrite(padapter, start_addr++, data[7], bPseudoTest);
phy_set_mac_reg(padapter, EFUSE_TEST, BIT26, 0);
efuse_OneByteRead(padapter, tmpaddr, &tmpdata[6], bPseudoTest);
efuse_OneByteRead(padapter, tmpaddr + 1, &tmpdata[7], bPseudoTest);
phy_set_mac_reg(padapter, EFUSE_TEST, BIT26, 1);
if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7]))
badworden &= (~BIT(3));
}
return badworden;
}
static s32
Hal_EfusePgPacketRead(
PADAPTER padapter,
u8 offset,
u8 *data,
u8 bPseudoTest)
{
u8 bDataEmpty = _TRUE;
u8 efuse_data, word_cnts = 0;
u16 efuse_addr = 0;
u8 hoffset = 0, hworden = 0;
u8 i;
u8 max_section = 0;
s32 ret;
if (data == NULL)
return _FALSE;
EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_EFUSE_MAX_SECTION, &max_section, bPseudoTest);
if (offset > max_section) {
RTW_INFO("%s: Packet offset(%d) is illegal(>%d)!\n", __func__, offset, max_section);
return _FALSE;
}
_rtw_memset(data, 0xFF, PGPKT_DATA_SIZE);
ret = _TRUE;
/* */
/* <Roger_TODO> Efuse has been pre-programmed dummy 5Bytes at the end of Efuse by CP. */
/* Skip dummy parts to prevent unexpected data read from Efuse. */
/* By pass right now. 2009.02.19. */
/* */
while (AVAILABLE_EFUSE_ADDR(efuse_addr)) {
if (efuse_OneByteRead(padapter, efuse_addr++, &efuse_data, bPseudoTest) == _FALSE) {
ret = _FALSE;
break;
}
if (efuse_data == 0xFF)
break;
if (EXT_HEADER(efuse_data)) {
hoffset = GET_HDR_OFFSET_2_0(efuse_data);
efuse_OneByteRead(padapter, efuse_addr++, &efuse_data, bPseudoTest);
if (ALL_WORDS_DISABLED(efuse_data)) {
RTW_INFO("%s: Error!! All words disabled!\n", __func__);
continue;
}
hoffset |= ((efuse_data & 0xF0) >> 1);
hworden = efuse_data & 0x0F;
} else {
hoffset = (efuse_data >> 4) & 0x0F;
hworden = efuse_data & 0x0F;
}
if (hoffset == offset) {
for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
/* Check word enable condition in the section */
if (!(hworden & (0x01 << i))) {
/*ReadEFuseByte(padapter, efuse_addr++, &efuse_data, bPseudoTest); */
efuse_OneByteRead(padapter, efuse_addr++, &efuse_data, bPseudoTest);
/*RTW_INFO("%s: efuse[%#X]=0x%02X\n", __func__, efuse_addr+tmpidx, efuse_data); */
data[i * 2] = efuse_data;
/*ReadEFuseByte(padapter, efuse_addr++, &efuse_data, bPseudoTest); */
efuse_OneByteRead(padapter, efuse_addr++, &efuse_data, bPseudoTest);
/*RTW_INFO("%s: efuse[%#X]=0x%02X\n", __func__, efuse_addr+tmpidx, efuse_data); */
data[(i * 2) + 1] = efuse_data;
}
}
} else {
word_cnts = Efuse_CalculateWordCnts(hworden);
efuse_addr += word_cnts * 2;
}
}
return ret;
}
static u8
hal_EfusePgCheckAvailableAddr(
PADAPTER pAdapter,
u8 efuseType,
u8 bPseudoTest)
{
u16 max_available = 0;
u16 current_size;
EFUSE_GetEfuseDefinition(pAdapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &max_available, bPseudoTest);
/*RTW_INFO("%s: max_available=%d\n", __func__, max_available); */
current_size = Efuse_GetCurrentSize(pAdapter, efuseType, bPseudoTest);
if (current_size >= max_available) {
RTW_INFO("%s: Error!! current_size(%d)>max_available(%d)\n", __func__, current_size, max_available);
return _FALSE;
}
return _TRUE;
}
static void
hal_EfuseConstructPGPkt(
u8 offset,
u8 word_en,
u8 *pData,
PPGPKT_STRUCT pTargetPkt)
{
_rtw_memset(pTargetPkt->data, 0xFF, PGPKT_DATA_SIZE);
pTargetPkt->offset = offset;
pTargetPkt->word_en = word_en;
efuse_WordEnableDataRead(word_en, pData, pTargetPkt->data);
pTargetPkt->word_cnts = Efuse_CalculateWordCnts(pTargetPkt->word_en);
}
#if 0
static u8
wordEnMatched(
PPGPKT_STRUCT pTargetPkt,
PPGPKT_STRUCT pCurPkt,
u8 *pWden)
{
u8 match_word_en = 0x0F; /* default all words are disabled */
u8 i;
/* check if the same words are enabled both target and current PG packet */
if (((pTargetPkt->word_en & BIT(0)) == 0) &&
((pCurPkt->word_en & BIT(0)) == 0)) {
match_word_en &= ~BIT(0); /* enable word 0 */
}
if (((pTargetPkt->word_en & BIT(1)) == 0) &&
((pCurPkt->word_en & BIT(1)) == 0)) {
match_word_en &= ~BIT(1); /* enable word 1 */
}
if (((pTargetPkt->word_en & BIT(2)) == 0) &&
((pCurPkt->word_en & BIT(2)) == 0)) {
match_word_en &= ~BIT(2); /* enable word 2 */
}
if (((pTargetPkt->word_en & BIT(3)) == 0) &&
((pCurPkt->word_en & BIT(3)) == 0)) {
match_word_en &= ~BIT(3); /* enable word 3 */
}
*pWden = match_word_en;
if (match_word_en != 0xf)
return _TRUE;
else
return _FALSE;
}
static u8
hal_EfuseCheckIfDatafollowed(
PADAPTER pAdapter,
u8 word_cnts,
u16 startAddr,
u8 bPseudoTest)
{
u8 bRet = _FALSE;
u8 i, efuse_data;
for (i = 0; i < (word_cnts * 2); i++) {
if (efuse_OneByteRead(pAdapter, (startAddr + i) , &efuse_data, bPseudoTest) == _FALSE) {
RTW_INFO("%s: efuse_OneByteRead FAIL!!\n", __func__);
bRet = _TRUE;
break;
}
if (efuse_data != 0xFF) {
bRet = _TRUE;
break;
}
}
return bRet;
}
#endif
static u8
hal_EfusePartialWriteCheck(
PADAPTER padapter,
u8 efuseType,
u16 *pAddr,
PPGPKT_STRUCT pTargetPkt,
u8 bPseudoTest)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal;
u8 bRet = _FALSE;
u16 startAddr = 0, efuse_max_available_len = 0, efuse_max = 0;
u8 efuse_data = 0;
#if 0
u8 i, cur_header = 0;
u8 new_wden = 0, matched_wden = 0, badworden = 0;
PGPKT_STRUCT curPkt;
#endif
EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &efuse_max_available_len, bPseudoTest);
EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_EFUSE_CONTENT_LEN_BANK, &efuse_max, bPseudoTest);
if (efuseType == EFUSE_WIFI) {
if (bPseudoTest) {
#ifdef HAL_EFUSE_MEMORY
startAddr = (u16)pEfuseHal->fakeEfuseUsedBytes;
#else
startAddr = (u16)fakeEfuseUsedBytes;
#endif
} else
rtw_hal_get_hwreg(padapter, HW_VAR_EFUSE_BYTES, (u8 *)&startAddr);
} else {
if (bPseudoTest) {
#ifdef HAL_EFUSE_MEMORY
startAddr = (u16)pEfuseHal->fakeBTEfuseUsedBytes;
#else
startAddr = (u16)fakeBTEfuseUsedBytes;
#endif
} else
rtw_hal_get_hwreg(padapter, HW_VAR_EFUSE_BT_BYTES, (u8 *)&startAddr);
}
startAddr %= efuse_max;
RTW_INFO("%s: startAddr=%#X\n", __func__, startAddr);
while (1) {
if (startAddr >= efuse_max_available_len) {
bRet = _FALSE;
RTW_INFO("%s: startAddr(%d) >= efuse_max_available_len(%d)\n",
__func__, startAddr, efuse_max_available_len);
break;
}
if (efuse_OneByteRead(padapter, startAddr, &efuse_data, bPseudoTest) && (efuse_data != 0xFF)) {
#if 1
bRet = _FALSE;
RTW_INFO("%s: Something Wrong! last bytes(%#X=0x%02X) is not 0xFF\n",
__func__, startAddr, efuse_data);
break;
#else
if (EXT_HEADER(efuse_data)) {
cur_header = efuse_data;
startAddr++;
efuse_OneByteRead(padapter, startAddr, &efuse_data, bPseudoTest);
if (ALL_WORDS_DISABLED(efuse_data)) {
RTW_INFO("%s: Error condition, all words disabled!", __func__);
bRet = _FALSE;
break;
} else {
curPkt.offset = ((cur_header & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1);
curPkt.word_en = efuse_data & 0x0F;
}
} else {
cur_header = efuse_data;
curPkt.offset = (cur_header >> 4) & 0x0F;
curPkt.word_en = cur_header & 0x0F;
}
curPkt.word_cnts = Efuse_CalculateWordCnts(curPkt.word_en);
/* if same header is found but no data followed */
/* write some part of data followed by the header. */
if ((curPkt.offset == pTargetPkt->offset) &&
(hal_EfuseCheckIfDatafollowed(padapter, curPkt.word_cnts, startAddr + 1, bPseudoTest) == _FALSE) &&
wordEnMatched(pTargetPkt, &curPkt, &matched_wden) == _TRUE) {
RTW_INFO("%s: Need to partial write data by the previous wrote header\n", __func__);
/* Here to write partial data */
badworden = Efuse_WordEnableDataWrite(padapter, startAddr + 1, matched_wden, pTargetPkt->data, bPseudoTest);
if (badworden != 0x0F) {
u32 PgWriteSuccess = 0;
/* if write fail on some words, write these bad words again */
if (efuseType == EFUSE_WIFI)
PgWriteSuccess = Efuse_PgPacketWrite(padapter, pTargetPkt->offset, badworden, pTargetPkt->data, bPseudoTest);
else
PgWriteSuccess = Efuse_PgPacketWrite_BT(padapter, pTargetPkt->offset, badworden, pTargetPkt->data, bPseudoTest);
if (!PgWriteSuccess) {
bRet = _FALSE; /* write fail, return */
break;
}
}
/* partial write ok, update the target packet for later use */
for (i = 0; i < 4; i++) {
if ((matched_wden & (0x1 << i)) == 0) { /* this word has been written */
pTargetPkt->word_en |= (0x1 << i); /* disable the word */
}
}
pTargetPkt->word_cnts = Efuse_CalculateWordCnts(pTargetPkt->word_en);
}
/* read from next header */
startAddr = startAddr + (curPkt.word_cnts * 2) + 1;
#endif
} else {
/* not used header, 0xff */
*pAddr = startAddr;
/*RTW_INFO("%s: Started from unused header offset=%d\n", __func__, startAddr)); */
bRet = _TRUE;
break;
}
}
return bRet;
}
BOOLEAN
hal_EfuseFixHeaderProcess(
PADAPTER pAdapter,
u8 efuseType,
PPGPKT_STRUCT pFixPkt,
u16 *pAddr,
BOOLEAN bPseudoTest
)
{
u8 originaldata[8], badworden=0;
u16 efuse_addr=*pAddr;
u32 PgWriteSuccess=0;
_rtw_memset((void *)originaldata, 0xff, 8);
if (Efuse_PgPacketRead(pAdapter, pFixPkt->offset, originaldata, bPseudoTest)) {
badworden = Hal_EfuseWordEnableDataWrite(pAdapter, efuse_addr+1, pFixPkt->word_en, originaldata, bPseudoTest);
if (badworden != 0xf) {
PgWriteSuccess = Efuse_PgPacketWrite(pAdapter, pFixPkt->offset, badworden, originaldata, bPseudoTest);
if (!PgWriteSuccess)
return FALSE;
else
efuse_addr = Hal_EfuseGetCurrentSize(pAdapter, efuseType, bPseudoTest);
} else {
efuse_addr = efuse_addr + (pFixPkt->word_cnts*2) +1;
}
} else {
efuse_addr = efuse_addr + (pFixPkt->word_cnts*2) +1;
}
*pAddr = efuse_addr;
return TRUE;
}
static u8
hal_EfusePgPacketWrite1ByteHeader(
PADAPTER pAdapter,
u8 efuseType,
u16 *pAddr,
PPGPKT_STRUCT pTargetPkt,
u8 bPseudoTest)
{
u8 bRet = _FALSE;
u8 pg_header = 0, tmp_header = 0;
u16 efuse_addr = *pAddr;
u8 repeatcnt = 0;
/* RTW_INFO("%s\n", __FUNCTION__); */
pg_header = ((pTargetPkt->offset << 4) & 0xf0) | pTargetPkt->word_en;
efuse_OneByteWrite(pAdapter, efuse_addr, pg_header, bPseudoTest);
phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 0);
efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header, bPseudoTest);
phy_set_mac_reg(pAdapter, EFUSE_TEST, BIT26, 1);
while (tmp_header == 0xFF || pg_header != tmp_header) {
if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) {
RTW_ERR("retry %d times fail!!\n", repeatcnt);
return _FALSE;
}
efuse_OneByteWrite(pAdapter,efuse_addr, pg_header, bPseudoTest);
efuse_OneByteRead(pAdapter,efuse_addr, &tmp_header, bPseudoTest);
RTW_ERR("===>%s: Keep %d-th retrying,pg_header = 0x%X tmp_header = 0x%X\n", __FUNCTION__,repeatcnt, pg_header, tmp_header);
}
if (pg_header == tmp_header)
bRet = _TRUE;
else {
PGPKT_STRUCT fixPkt;
RTW_ERR(" pg_header(0x%X) != tmp_header(0x%X)\n", pg_header, tmp_header);
RTW_ERR("Error condition for fixed PG packet, need to cover the existed data: (Addr, Data) = (0x%X, 0x%X)\n",
efuse_addr, tmp_header);
fixPkt.offset = (tmp_header>>4) & 0x0F;
fixPkt.word_en = tmp_header & 0x0F;
fixPkt.word_cnts = Efuse_CalculateWordCnts(fixPkt.word_en);
if (!hal_EfuseFixHeaderProcess(pAdapter, efuseType, &fixPkt, &efuse_addr, bPseudoTest))
return _FALSE;
}
*pAddr = efuse_addr;
return _TRUE;
}
static u8
hal_EfusePgPacketWrite2ByteHeader(
PADAPTER padapter,
u8 efuseType,
u16 *pAddr,
PPGPKT_STRUCT pTargetPkt,
u8 bPseudoTest)
{
u16 efuse_addr, efuse_max_available_len = 0;
u8 pg_header = 0, tmp_header = 0, pg_header_temp = 0;
u8 repeatcnt = 0;
/* RTW_INFO("%s\n", __FUNCTION__); */
EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_BANK, &efuse_max_available_len, bPseudoTest);
efuse_addr = *pAddr;
if (efuse_addr >= efuse_max_available_len) {
RTW_INFO("%s: addr(%d) over avaliable(%d)!!\n", __FUNCTION__, efuse_addr, efuse_max_available_len);
return _FALSE;
}
while (efuse_addr < efuse_max_available_len) {
pg_header = ((pTargetPkt->offset & 0x07) << 5) | 0x0F;
efuse_OneByteWrite(padapter, efuse_addr, pg_header, bPseudoTest);
phy_set_mac_reg(padapter, EFUSE_TEST, BIT26, 0);
efuse_OneByteRead(padapter, efuse_addr, &tmp_header, bPseudoTest);
phy_set_mac_reg(padapter, EFUSE_TEST, BIT26, 1);
while (tmp_header == 0xFF || pg_header != tmp_header) {
if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) {
RTW_INFO("%s, Repeat over limit for pg_header!!\n", __FUNCTION__);
return _FALSE;
}
efuse_OneByteWrite(padapter, efuse_addr, pg_header, bPseudoTest);
efuse_OneByteRead(padapter, efuse_addr, &tmp_header, bPseudoTest);
}
/*to write ext_header*/
if (tmp_header == pg_header) {
efuse_addr++;
pg_header_temp = pg_header;
pg_header = ((pTargetPkt->offset & 0x78) << 1) | pTargetPkt->word_en;
efuse_OneByteWrite(padapter, efuse_addr, pg_header, bPseudoTest);
phy_set_mac_reg(padapter, EFUSE_TEST, BIT26, 0);
efuse_OneByteRead(padapter, efuse_addr, &tmp_header, bPseudoTest);
phy_set_mac_reg(padapter, EFUSE_TEST, BIT26, 1);
while (tmp_header == 0xFF || pg_header != tmp_header) {
if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) {
RTW_INFO("%s, Repeat over limit for ext_header!!\n", __FUNCTION__);
return _FALSE;
}
efuse_OneByteWrite(padapter, efuse_addr, pg_header, bPseudoTest);
efuse_OneByteRead(padapter, efuse_addr, &tmp_header, bPseudoTest);
}
if ((tmp_header & 0x0F) == 0x0F) {
if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) {
RTW_INFO("Repeat over limit for word_en!!\n");
return _FALSE;
} else {
efuse_addr++;
continue;
}
} else if (pg_header != tmp_header) {
PGPKT_STRUCT fixPkt;
RTW_ERR("Error, efuse_PgPacketWrite2ByteHeader(), offset PG fail, need to cover the existed data!!\n");
RTW_ERR("Error condition for offset PG fail, need to cover the existed data\n");
fixPkt.offset = ((pg_header_temp & 0xE0) >> 5) | ((tmp_header & 0xF0) >> 1);
fixPkt.word_en = tmp_header & 0x0F;
fixPkt.word_cnts = Efuse_CalculateWordCnts(fixPkt.word_en);
if (!hal_EfuseFixHeaderProcess(padapter, efuseType, &fixPkt, &efuse_addr, bPseudoTest))
return _FALSE;
} else
break;
} else if ((tmp_header & 0x1F) == 0x0F) {/*wrong extended header*/
efuse_addr += 2;
continue;
}
}
*pAddr = efuse_addr;
return _TRUE;
}
static u8
hal_EfusePgPacketWriteHeader(
PADAPTER padapter,
u8 efuseType,
u16 *pAddr,
PPGPKT_STRUCT pTargetPkt,
u8 bPseudoTest)
{
u8 bRet = _FALSE;
if (pTargetPkt->offset >= EFUSE_MAX_SECTION_BASE)
bRet = hal_EfusePgPacketWrite2ByteHeader(padapter, efuseType, pAddr, pTargetPkt, bPseudoTest);
else
bRet = hal_EfusePgPacketWrite1ByteHeader(padapter, efuseType, pAddr, pTargetPkt, bPseudoTest);
return bRet;
}
static u8
hal_EfusePgPacketWriteData(
PADAPTER pAdapter,
u8 efuseType,
u16 *pAddr,
PPGPKT_STRUCT pTargetPkt,
u8 bPseudoTest)
{
u16 efuse_addr;
u8 badworden;
u8 PgWriteSuccess = 0;
efuse_addr = *pAddr;
badworden = Efuse_WordEnableDataWrite(pAdapter, efuse_addr + 1, pTargetPkt->word_en, pTargetPkt->data, bPseudoTest);
if (badworden == 0x0F) {
RTW_INFO("%s: OK!!\n", __FUNCTION__);
return _TRUE;
} else { /* Reorganize other pg packet */
RTW_ERR ("Error, efuse_PgPacketWriteData(), wirte data fail!!\n");
RTW_ERR ("efuse_PgPacketWriteData Fail!!\n");
PgWriteSuccess = Efuse_PgPacketWrite(pAdapter, pTargetPkt->offset, badworden, pTargetPkt->data, bPseudoTest);
if (!PgWriteSuccess)
return FALSE;
else
return TRUE;
}
return _TRUE;
}
static s32
Hal_EfusePgPacketWrite(
PADAPTER padapter,
u8 offset,
u8 word_en,
u8 *pData,
u8 bPseudoTest)
{
PGPKT_STRUCT targetPkt;
u16 startAddr = 0;
u8 efuseType = EFUSE_WIFI;
if (!hal_EfusePgCheckAvailableAddr(padapter, efuseType, bPseudoTest))
return _FALSE;
hal_EfuseConstructPGPkt(offset, word_en, pData, &targetPkt);
if (!hal_EfusePartialWriteCheck(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
return _FALSE;
if (!hal_EfusePgPacketWriteHeader(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
return _FALSE;
if (!hal_EfusePgPacketWriteData(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
return _FALSE;
return _TRUE;
}
static u8
Hal_EfusePgPacketWrite_BT(
PADAPTER pAdapter,
u8 offset,
u8 word_en,
u8 *pData,
u8 bPseudoTest)
{
PGPKT_STRUCT targetPkt;
u16 startAddr = 0;
u8 efuseType = EFUSE_BT;
if (!hal_EfusePgCheckAvailableAddr(pAdapter, efuseType, bPseudoTest))
return _FALSE;
hal_EfuseConstructPGPkt(offset, word_en, pData, &targetPkt);
if (!hal_EfusePartialWriteCheck(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
return _FALSE;
if (!hal_EfusePgPacketWriteHeader(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
return _FALSE;
if (!hal_EfusePgPacketWriteData(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
return _FALSE;
return _TRUE;
}
static void rtl8188f_read_chip_version(PADAPTER padapter)
{
u32 value32;
HAL_DATA_TYPE *pHalData;
u8 tmpvdr;
pHalData = GET_HAL_DATA(padapter);
value32 = rtw_read32(padapter, REG_SYS_CFG);
pHalData->version_id.ICType = CHIP_8188F;
pHalData->version_id.ChipType = ((value32 & RTL_ID) ? TEST_CHIP : NORMAL_CHIP);
pHalData->version_id.RFType = RF_TYPE_1T1R;
tmpvdr = (value32 & EXT_VENDOR_ID) >> EXT_VENDOR_ID_SHIFT;
if (tmpvdr == 0x00)
pHalData->version_id.VendorType = CHIP_VENDOR_TSMC;
else if (tmpvdr == 0x01)
pHalData->version_id.VendorType = CHIP_VENDOR_SMIC;
else if (tmpvdr == 0x02)
pHalData->version_id.VendorType = CHIP_VENDOR_UMC;
pHalData->version_id.CUTVersion = (value32 & CHIP_VER_RTL_MASK) >> CHIP_VER_RTL_SHIFT; /* IC version (CUT) */
#if 0
/* For regulator mode. by tynli. 2011.01.14 */
pHalData->RegulatorMode = ((value32 & SPS_SEL) ? RT_LDO_REGULATOR : RT_SWITCHING_REGULATOR);
#endif
#if 0
value32 = rtw_read32(padapter, REG_GPIO_OUTSTS);
pHalData->version_id.ROMVer = ((value32 & RF_RL_ID) >> 20); /* ROM code version. */
#endif
#if 0
/* For multi-function consideration. Added by Roger, 2010.10.06. */
pHalData->MultiFunc = RT_MULTI_FUNC_NONE;
value32 = rtw_read32(padapter, REG_MULTI_FUNC_CTRL);
pHalData->MultiFunc |= ((value32 & WL_FUNC_EN) ? RT_MULTI_FUNC_WIFI : 0);
pHalData->MultiFunc |= ((value32 & BT_FUNC_EN) ? RT_MULTI_FUNC_BT : 0);
pHalData->MultiFunc |= ((value32 & GPS_FUNC_EN) ? RT_MULTI_FUNC_GPS : 0);
pHalData->PolarityCtl = ((value32 & WL_HWPDN_SL) ? RT_POLARITY_HIGH_ACT : RT_POLARITY_LOW_ACT);
#endif
rtw_hal_config_rftype(padapter);
#if 0 /* mark for chage to use efuse */
if (IS_B_CUT(pHalData->version_id) || IS_C_CUT(pHalData->version_id)) {
RTW_INFO(" IS_B/C_CUT SWR up 1 level !!!!!!!!!!!!!!!!!\n");
phy_set_mac_reg(padapter, 0x14, BIT23 | BIT22 | BIT21 | BIT20, 0x5); /* MAC reg 0x14[23:20] = 4b'0101 (SWR 1.220V) */
} else if (IS_D_CUT(pHalData->version_id))
RTW_INFO(" IS_D_CUT SKIP SWR !!!!!!!!!!!!!!!!!\n");
#endif /* mark for chage to use efuse */
#if 1
dump_chip_info(pHalData->version_id);
#endif
}
void rtl8188f_InitBeaconParameters(PADAPTER padapter)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
u16 val16;
u8 val8;
val8 = DIS_TSF_UDT;
val16 = val8 | (val8 << 8); /* port0 and port1 */
#ifdef CONFIG_BT_COEXIST
/* Enable prot0 beacon function for PSTDMA */
val16 |= EN_BCN_FUNCTION;
#endif
rtw_write16(padapter, REG_BCN_CTRL, val16);
/* TBTT setup time */
rtw_write8(padapter, REG_TBTT_PROHIBIT, TBTT_PROHIBIT_SETUP_TIME);
/* TBTT hold time: 0x540[19:8] */
rtw_write8(padapter, REG_TBTT_PROHIBIT + 1, TBTT_PROHIBIT_HOLD_TIME_STOP_BCN & 0xFF);
rtw_write8(padapter, REG_TBTT_PROHIBIT + 2,
(rtw_read8(padapter, REG_TBTT_PROHIBIT + 2) & 0xF0) | (TBTT_PROHIBIT_HOLD_TIME_STOP_BCN >> 8));
/* Firmware will control REG_DRVERLYINT when power saving is enable, */
/* so don't set this register on STA mode. */
if (check_fwstate(&padapter->mlmepriv, WIFI_STATION_STATE) == _FALSE)
rtw_write8(padapter, REG_DRVERLYINT, DRIVER_EARLY_INT_TIME_8188F); /* 5ms */
rtw_write8(padapter, REG_BCNDMATIM, BCN_DMA_ATIME_INT_TIME_8188F); /* 2ms */
/* Suggested by designer timchen. Change beacon AIFS to the largest number */
/* beacause test chip does not contension before sending beacon. by tynli. 2009.11.03 */
rtw_write16(padapter, REG_BCNTCFG, 0x4413);
}
void rtl8188f_InitBeaconMaxError(PADAPTER padapter, u8 InfraMode)
{
#ifdef CONFIG_ADHOC_WORKAROUND_SETTING
rtw_write8(padapter, REG_BCN_MAX_ERR, 0xFF);
#else
/*rtw_write8(Adapter, REG_BCN_MAX_ERR, (InfraMode ? 0xFF : 0x10)); */
#endif
}
void _InitBurstPktLen_8188FS(PADAPTER Adapter)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
rtw_write8(Adapter, 0x4c7, rtw_read8(Adapter, 0x4c7) | BIT(7)); /*enable single pkt ampdu */
rtw_write8(Adapter, REG_RX_PKT_LIMIT_8188F, 0x18); /*for VHT packet length 11K */
rtw_write8(Adapter, REG_MAX_AGGR_NUM_8188F, 0x1F);
rtw_write8(Adapter, REG_PIFS_8188F, 0x00);
rtw_write8(Adapter, REG_FWHW_TXQ_CTRL_8188F, rtw_read8(Adapter, REG_FWHW_TXQ_CTRL) & (~BIT(7)));
if (pHalData->AMPDUBurstMode)
rtw_write8(Adapter, REG_AMPDU_BURST_MODE_8188F, 0x5F);
rtw_write8(Adapter, REG_AMPDU_MAX_TIME_8188F, 0x70);
/* ARFB table 9 for 11ac 5G 2SS */
rtw_write32(Adapter, REG_ARFR0_8188F, 0x00000010);
if (IS_NORMAL_CHIP(pHalData->version_id))
rtw_write32(Adapter, REG_ARFR0_8188F + 4, 0xfffff000);
else
rtw_write32(Adapter, REG_ARFR0_8188F + 4, 0x3e0ff000);
/* ARFB table 10 for 11ac 5G 1SS */
rtw_write32(Adapter, REG_ARFR1_8188F, 0x00000010);
rtw_write32(Adapter, REG_ARFR1_8188F + 4, 0x003ff000);
}
static void _BeaconFunctionEnable(PADAPTER padapter, u8 Enable, u8 Linked)
{
rtw_write8(padapter, REG_BCN_CTRL, DIS_TSF_UDT | EN_BCN_FUNCTION | DIS_BCNQ_SUB);
rtw_write8(padapter, REG_RD_CTRL + 1, 0x6F);
}
static void rtl8188f_SetBeaconRelatedRegisters(PADAPTER padapter)
{
u8 val8;
u32 value32;
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
struct mlme_ext_info *pmlmeinfo = &pmlmeext->mlmext_info;
u32 bcn_ctrl_reg;
/*reset TSF, enable update TSF, correcting TSF On Beacon */
/*REG_MBSSID_BCN_SPACE */
/*REG_BCNDMATIM */
/*REG_ATIMWND */
/*REG_TBTT_PROHIBIT */
/*REG_DRVERLYINT */
/*REG_BCN_MAX_ERR */
/*REG_BCNTCFG //(0x510) */
/*REG_DUAL_TSF_RST */
/*REG_BCN_CTRL //(0x550) */
bcn_ctrl_reg = REG_BCN_CTRL;
#ifdef CONFIG_CONCURRENT_MODE
if (padapter->hw_port == HW_PORT1)
bcn_ctrl_reg = REG_BCN_CTRL_1;
#endif
/* */
/* ATIM window */
/* */
rtw_write16(padapter, REG_ATIMWND, 2);
/* */
/* Beacon interval (in unit of TU). */
/* */
rtw_hal_set_hwreg(padapter, HW_VAR_BEACON_INTERVAL, (u8 *)&pmlmeinfo->bcn_interval);
rtl8188f_InitBeaconParameters(padapter);
rtw_write8(padapter, REG_SLOT, 0x09);
/* */
/* Reset TSF Timer to zero, added by Roger. 2008.06.24 */
/* */
value32 = rtw_read32(padapter, REG_TCR);
value32 &= ~TSFRST;
rtw_write32(padapter, REG_TCR, value32);
value32 |= TSFRST;
rtw_write32(padapter, REG_TCR, value32);
/* NOTE: Fix test chip's bug (about contention windows's randomness) */
if (check_fwstate(&padapter->mlmepriv, WIFI_ADHOC_STATE | WIFI_ADHOC_MASTER_STATE | WIFI_AP_STATE | WIFI_MESH_STATE) == _TRUE) {
rtw_write8(padapter, REG_RXTSF_OFFSET_CCK, 0x50);
rtw_write8(padapter, REG_RXTSF_OFFSET_OFDM, 0x50);
}
_BeaconFunctionEnable(padapter, _TRUE, _TRUE);
ResumeTxBeacon(padapter);
val8 = rtw_read8(padapter, bcn_ctrl_reg);
val8 |= DIS_BCNQ_SUB;
rtw_write8(padapter, bcn_ctrl_reg, val8);
}
void hal_notch_filter_8188f(_adapter *adapter, bool enable)
{
if (enable) {
RTW_INFO("Enable notch filter\n");
rtw_write8(adapter, rOFDM0_RxDSP + 1, rtw_read8(adapter, rOFDM0_RxDSP + 1) | BIT1);
} else {
RTW_INFO("Disable notch filter\n");
rtw_write8(adapter, rOFDM0_RxDSP + 1, rtw_read8(adapter, rOFDM0_RxDSP + 1) & ~BIT1);
}
}
u8 rtl8188f_MRateIdxToARFRId(PADAPTER padapter, u8 rate_idx)
{
u8 ret = 0;
enum rf_type rftype = (enum rf_type)GET_RF_TYPE(padapter);
switch (rate_idx) {
case RATR_INX_WIRELESS_NGB:
if (rftype == RF_1T1R)
ret = 1;
else
ret = 0;
break;
case RATR_INX_WIRELESS_N:
case RATR_INX_WIRELESS_NG:
if (rftype == RF_1T1R)
ret = 5;
else
ret = 4;
break;
case RATR_INX_WIRELESS_NB:
if (rftype == RF_1T1R)
ret = 3;
else
ret = 2;
break;
case RATR_INX_WIRELESS_GB:
ret = 6;
break;
case RATR_INX_WIRELESS_G:
ret = 7;
break;
case RATR_INX_WIRELESS_B:
ret = 8;
break;
case RATR_INX_WIRELESS_MC:
if (padapter->mlmeextpriv.cur_wireless_mode & WIRELESS_11BG_24N)
ret = 6;
else
ret = 7;
break;
case RATR_INX_WIRELESS_AC_N:
if (rftype == RF_1T1R) /* || padapter->MgntInfo.VHTHighestOperaRate <= MGN_VHT1SS_MCS9) */
ret = 10;
else
ret = 9;
break;
default:
ret = 0;
break;
}
return ret;
}
/* */
/* Description: In normal chip, we should send some packet to Hw which will be used by Fw */
/* in FW LPS mode. The function is to fill the Tx descriptor of this packets, then */
/* Fw can tell Hw to send these packet derectly. */
/* Added by tynli. 2009.10.15. */
/* */
/*type1:pspoll, type2:null */
void rtl8188f_fill_fake_txdesc(
PADAPTER padapter,
u8 *pDesc,
u32 BufferLen,
u8 IsPsPoll,
u8 IsBTQosNull,
u8 bDataFrame)
{
/* Clear all status */
_rtw_memset(pDesc, 0, TXDESC_SIZE);
SET_TX_DESC_FIRST_SEG_8188F(pDesc, 1); /*bFirstSeg; */
SET_TX_DESC_LAST_SEG_8188F(pDesc, 1); /*bLastSeg; */
SET_TX_DESC_OFFSET_8188F(pDesc, 0x28); /* Offset = 32 */
SET_TX_DESC_PKT_SIZE_8188F(pDesc, BufferLen); /* Buffer size + command header */
SET_TX_DESC_QUEUE_SEL_8188F(pDesc, QSLT_MGNT); /* Fixed queue of Mgnt queue */
/* Set NAVUSEHDR to prevent Ps-poll AId filed to be changed to error vlaue by Hw. */
if (_TRUE == IsPsPoll) {
/* Nothing */
SET_TX_DESC_NAV_USE_HDR_8188F(pDesc, 1);
} else {
SET_TX_DESC_HWSEQ_EN_8188F(pDesc, 1); /* Hw set sequence number */
SET_TX_DESC_HWSEQ_SEL_8188F(pDesc, 0);
}
if (_TRUE == IsBTQosNull)
SET_TX_DESC_BT_INT_8188F(pDesc, 1);
SET_TX_DESC_USE_RATE_8188F(pDesc, 1); /* use data rate which is set by Sw */
SET_TX_DESC_OWN_8188F((u8 *)pDesc, 1);
SET_TX_DESC_TX_RATE_8188F(pDesc, DESC8188F_RATE1M);
/* */
/* Encrypt the data frame if under security mode excepct null data. Suggested by CCW. */
/* */
if (_TRUE == bDataFrame) {
u32 EncAlg;
EncAlg = padapter->securitypriv.dot11PrivacyAlgrthm;
switch (EncAlg) {
case _NO_PRIVACY_:
SET_TX_DESC_SEC_TYPE_8188F(pDesc, 0x0);
break;
case _WEP40_:
case _WEP104_:
case _TKIP_:
SET_TX_DESC_SEC_TYPE_8188F(pDesc, 0x1);
break;
case _SMS4_:
SET_TX_DESC_SEC_TYPE_8188F(pDesc, 0x2);
break;
case _AES_:
SET_TX_DESC_SEC_TYPE_8188F(pDesc, 0x3);
break;
default:
SET_TX_DESC_SEC_TYPE_8188F(pDesc, 0x0);
break;
}
}
#if defined(CONFIG_USB_HCI) || defined(CONFIG_SDIO_HCI) || defined(CONFIG_GSPI_HCI)
/* USB interface drop packet if the checksum of descriptor isn't correct. */
/* Using this checksum can let hardware recovery from packet bulk out error (e.g. Cancel URC, Bulk out error.). */
rtl8188f_cal_txdesc_chksum((struct tx_desc *)pDesc);
#endif
}
void rtl8188f_InitAntenna_Selection(PADAPTER padapter)
{
#ifdef CONFIG_ANTENNA_DIVERSITY
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
if (pHalData->AntDivCfg == 0)
return;
/* LED(GPIO4) disable for AntDiv */
phy_set_mac_reg(padapter, 0x4C, BIT21, 0x0);
#endif
}
void rtl8188f_CheckAntenna_Selection(PADAPTER padapter)
{
PHAL_DATA_TYPE pHalData;
u8 val;
pHalData = GET_HAL_DATA(padapter);
val = rtw_read8(padapter, REG_LEDCFG2);
/* Let 8051 take control antenna stetting */
if (!(val & BIT(7))) {
val |= BIT(7); /* DPDT_SEL_EN, 0x4C[23] */
rtw_write8(padapter, REG_LEDCFG2, val);
}
}
void rtl8188f_DeinitAntenna_Selection(PADAPTER padapter)
{
PHAL_DATA_TYPE pHalData;
u8 val;
pHalData = GET_HAL_DATA(padapter);
val = rtw_read8(padapter, REG_LEDCFG2);
/* Let 8051 take control antenna stetting */
val &= ~BIT(7); /* DPDT_SEL_EN, clear 0x4C[23] */
rtw_write8(padapter, REG_LEDCFG2, val);
}
void init_hal_spec_8188f(_adapter *adapter)
{
struct hal_spec_t *hal_spec = GET_HAL_SPEC(adapter);
hal_spec->ic_name = "rtl8188f";
hal_spec->macid_num = 16;
hal_spec->sec_cam_ent_num = 16;
hal_spec->sec_cap = 0;
hal_spec->rfpath_num_2g = 1;
hal_spec->rfpath_num_5g = 0;
hal_spec->txgi_max = 63;
hal_spec->txgi_pdbm = 2;
hal_spec->max_tx_cnt = 1;
hal_spec->tx_nss_num = 1;
hal_spec->rx_nss_num = 1;
hal_spec->band_cap = BAND_CAP_2G;
hal_spec->bw_cap = BW_CAP_20M | BW_CAP_40M;
hal_spec->port_num = 2;
hal_spec->proto_cap = PROTO_CAP_11B | PROTO_CAP_11G | PROTO_CAP_11N;
hal_spec->wl_func = 0
| WL_FUNC_P2P
| WL_FUNC_MIRACAST
| WL_FUNC_TDLS
;
#if CONFIG_TX_AC_LIFETIME
hal_spec->tx_aclt_unit_factor = 1;
#endif
hal_spec->pg_txpwr_saddr = 0x10;
hal_spec->pg_txgi_diff_factor = 1;
rtw_macid_ctl_init_sleep_reg(adapter_to_macidctl(adapter)
, REG_MACID_SLEEP, 0, 0, 0);
}
void rtl8188f_init_default_value(PADAPTER padapter)
{
PHAL_DATA_TYPE pHalData;
u8 i;
pHalData = GET_HAL_DATA(padapter);
/* init default value */
pHalData->fw_ractrl = _FALSE;
if (!adapter_to_pwrctl(padapter)->bkeepfwalive)
pHalData->LastHMEBoxNum = 0;
/*init phydm default value */
pHalData->bIQKInitialized = _FALSE;
#if defined(CONFIG_USB_HCI) || defined(CONFIG_PCI_HCI)
pHalData->IntrMask[0] = (u32)(
/* IMR_ROK | */
/* IMR_RDU | */
/* IMR_VODOK | */
/* IMR_VIDOK | */
/* IMR_BEDOK | */
/* IMR_BKDOK | */
/* IMR_MGNTDOK | */
/* IMR_HIGHDOK | */
/* IMR_CPWM | */
/* IMR_CPWM2 | */
/* IMR_C2HCMD | */
/* IMR_HISR1_IND_INT | */
/* IMR_ATIMEND | */
/* IMR_BCNDMAINT_E | */
/* IMR_HSISR_IND_ON_INT | */
/* IMR_BCNDOK0 | */
/* IMR_BCNDMAINT0 | */
/* IMR_TSF_BIT32_TOGGLE | */
/* IMR_TXBCN0OK | */
/* IMR_TXBCN0ERR | */
/* IMR_GTINT3 | */
/* IMR_GTINT4 | */
/* IMR_TXCCK | */
0);
pHalData->IntrMask[1] = (u32)(
/* IMR_RXFOVW | */
/* IMR_TXFOVW | */
/* IMR_RXERR | */
/* IMR_TXERR | */
/* IMR_ATIMEND_E | */
/* IMR_BCNDOK1 | */
/* IMR_BCNDOK2 | */
/* IMR_BCNDOK3 | */
/* IMR_BCNDOK4 | */
/* IMR_BCNDOK5 | */
/* IMR_BCNDOK6 | */
/* IMR_BCNDOK7 | */
/* IMR_BCNDMAINT1 | */
/* IMR_BCNDMAINT2 | */
/* IMR_BCNDMAINT3 | */
/* IMR_BCNDMAINT4 | */
/* IMR_BCNDMAINT5 | */
/* IMR_BCNDMAINT6 | */
/* IMR_BCNDMAINT7 | */
0);
#endif
/* init Efuse variables */
pHalData->EfuseUsedBytes = 0;
pHalData->EfuseUsedPercentage = 0;
#ifdef HAL_EFUSE_MEMORY
pHalData->EfuseHal.fakeEfuseBank = 0;
pHalData->EfuseHal.fakeEfuseUsedBytes = 0;
_rtw_memset(pHalData->EfuseHal.fakeEfuseContent, 0xFF, EFUSE_MAX_HW_SIZE);
_rtw_memset(pHalData->EfuseHal.fakeEfuseInitMap, 0xFF, EFUSE_MAX_MAP_LEN);
_rtw_memset(pHalData->EfuseHal.fakeEfuseModifiedMap, 0xFF, EFUSE_MAX_MAP_LEN);
pHalData->EfuseHal.BTEfuseUsedBytes = 0;
pHalData->EfuseHal.BTEfuseUsedPercentage = 0;
_rtw_memset(pHalData->EfuseHal.BTEfuseContent, 0xFF, EFUSE_MAX_BT_BANK * EFUSE_MAX_HW_SIZE);
_rtw_memset(pHalData->EfuseHal.BTEfuseInitMap, 0xFF, EFUSE_BT_MAX_MAP_LEN);
_rtw_memset(pHalData->EfuseHal.BTEfuseModifiedMap, 0xFF, EFUSE_BT_MAX_MAP_LEN);
pHalData->EfuseHal.fakeBTEfuseUsedBytes = 0;
_rtw_memset(pHalData->EfuseHal.fakeBTEfuseContent, 0xFF, EFUSE_MAX_BT_BANK * EFUSE_MAX_HW_SIZE);
_rtw_memset(pHalData->EfuseHal.fakeBTEfuseInitMap, 0xFF, EFUSE_BT_MAX_MAP_LEN);
_rtw_memset(pHalData->EfuseHal.fakeBTEfuseModifiedMap, 0xFF, EFUSE_BT_MAX_MAP_LEN);
#endif
}
u8 GetEEPROMSize8188F(PADAPTER padapter)
{
u8 size = 0;
u32 cr;
cr = rtw_read16(padapter, REG_9346CR);
/* 6: EEPROM used is 93C46, 4: boot from E-Fuse. */
size = (cr & BOOT_FROM_EEPROM) ? 6 : 4;
RTW_INFO("EEPROM type is %s\n", size == 4 ? "E-FUSE" : "93C46");
return size;
}
/*------------------------------------------------------------------------- */
/* */
/* LLT R/W/Init function */
/* */
/*------------------------------------------------------------------------- */
s32 rtl8188f_InitLLTTable(PADAPTER padapter)
{
systime start;
u32 passing_time;
u32 val32;
s32 ret;
ret = _FAIL;
val32 = rtw_read32(padapter, REG_AUTO_LLT);
val32 |= BIT_AUTO_INIT_LLT;
rtw_write32(padapter, REG_AUTO_LLT, val32);
start = rtw_get_current_time();
do {
val32 = rtw_read32(padapter, REG_AUTO_LLT);
if (!(val32 & BIT_AUTO_INIT_LLT)) {
ret = _SUCCESS;
break;
}
passing_time = rtw_get_passing_time_ms(start);
if (passing_time > 1000) {
RTW_INFO("%s: FAIL!! REG_AUTO_LLT(0x%X)=%08x\n",
__func__, REG_AUTO_LLT, val32);
break;
}
rtw_usleep_os(2);
} while (1);
return ret;
}
#if defined(CONFIG_USB_HCI) || defined(CONFIG_SDIO_HCI) || defined(CONFIG_GSPI_HCI)
void _DisableGPIO(PADAPTER padapter)
{
/*
* j. GPIO_PIN_CTRL 0x44[31:0]=0x000
* k.Value = GPIO_PIN_CTRL[7:0]
* l. GPIO_PIN_CTRL 0x44[31:0] = 0x00FF0000 | (value <<8); write external PIN level
* m. GPIO_MUXCFG 0x42 [15:0] = 0x0780
* n. LEDCFG 0x4C[15:0] = 0x8080
*/
u8 value8;
u16 value16;
u32 value32;
u32 u4bTmp;
/*1. Disable GPIO[7:0] */
rtw_write16(padapter, REG_GPIO_PIN_CTRL + 2, 0x0000);
value32 = rtw_read32(padapter, REG_GPIO_PIN_CTRL) & 0xFFFF00FF;
u4bTmp = value32 & 0x000000FF;
value32 |= ((u4bTmp << 8) | 0x00FF0000);
rtw_write32(padapter, REG_GPIO_PIN_CTRL, value32);
/*2. Disable GPIO[10:8] */
rtw_write8(padapter, REG_MAC_PINMUX_CFG, 0x00);
value16 = rtw_read16(padapter, REG_GPIO_IO_SEL) & 0xFF0F;
value8 = (u8)(value16 & 0x000F);
value16 |= ((value8 << 4) | 0x0780);
rtw_write16(padapter, REG_GPIO_IO_SEL, value16);
/*3. Disable LED0 & 1 */
rtw_write16(padapter, REG_LEDCFG0, 0x8080);
} /*end of _DisableGPIO() */
void _DisableRFAFEAndResetBB8188F(PADAPTER padapter)
{
/*
* a. TXPAUSE 0x522[7:0] = 0xFF Pause MAC TX queue
* b. RF path 0 offset 0x00 = 0x00 disable RF
* c. APSD_CTRL 0x600[7:0] = 0x40
* d. SYS_FUNC_EN 0x02[7:0] = 0x16 reset BB state machine
* e. SYS_FUNC_EN 0x02[7:0] = 0x14 reset BB state machine
*/
enum rf_path eRFPath = RF_PATH_A, value8 = 0;
rtw_write8(padapter, REG_TXPAUSE, 0xFF);
phy_set_rf_reg(padapter, eRFPath, 0x0, bMaskByte0, 0x0);
value8 |= APSDOFF;
rtw_write8(padapter, REG_APSD_CTRL, value8);/*0x40 */
/* Set BB reset at first */
value8 = 0;
value8 |= (FEN_USBD | FEN_USBA | FEN_BB_GLB_RSTn);
rtw_write8(padapter, REG_SYS_FUNC_EN, value8); /*0x16 */
/* Set global reset. */
value8 &= ~FEN_BB_GLB_RSTn;
rtw_write8(padapter, REG_SYS_FUNC_EN, value8); /*0x14 */
/* 2010/08/12 MH We need to set BB/GLBAL reset to save power for SS mode. */
}
void _DisableRFAFEAndResetBB(PADAPTER padapter)
{
_DisableRFAFEAndResetBB8188F(padapter);
}
void _ResetDigitalProcedure1_8188F(PADAPTER padapter, BOOLEAN bWithoutHWSM)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
if (IS_FW_81xxC(padapter) && (pHalData->firmware_version <= 0x20)) {
#if 0
/*
* f. SYS_FUNC_EN 0x03[7:0]=0x54 reset MAC register, DCORE
* g. MCUFWDL 0x80[7:0]=0 reset MCU ready status
*/
u32 value32 = 0;
rtw_write8(padapter, REG_SYS_FUNC_EN + 1, 0x54);
rtw_write8(padapter, REG_MCUFWDL, 0);
#else
/*
* f. MCUFWDL 0x80[7:0]=0 reset MCU ready status
* g. SYS_FUNC_EN 0x02[10]= 0 reset MCU register, (8051 reset)
* h. SYS_FUNC_EN 0x02[15-12]= 5 reset MAC register, DCORE
* i. SYS_FUNC_EN 0x02[10]= 1 enable MCU register, (8051 enable)
*/
u16 valu16 = 0;
rtw_write8(padapter, REG_MCUFWDL, 0);
valu16 = rtw_read16(padapter, REG_SYS_FUNC_EN);
rtw_write16(padapter, REG_SYS_FUNC_EN, (valu16 & (~FEN_CPUEN)));/*reset MCU ,8051 */
valu16 = rtw_read16(padapter, REG_SYS_FUNC_EN) & 0x0FFF;
rtw_write16(padapter, REG_SYS_FUNC_EN, (valu16 | (FEN_HWPDN | FEN_ELDR))); /*reset MAC */
valu16 = rtw_read16(padapter, REG_SYS_FUNC_EN);
rtw_write16(padapter, REG_SYS_FUNC_EN, (valu16 | FEN_CPUEN));/*enable MCU ,8051 */
#endif
} else {
u8 retry_cnts = 0;
/* 2010/08/12 MH For USB SS, we can not stop 8051 when we are trying to */
/* enter IPS/HW&SW radio off. For S3/S4/S5/Disable, we can stop 8051 because */
/* we will init FW when power on again. */
/*if(!pDevice->RegUsbSS) */
{
/* If we want to SS mode, we can not reset 8051. */
if (rtw_read8(padapter, REG_MCUFWDL) & BIT1) {
/*IF fw in RAM code, do reset */
if (pHalData->bFWReady) {
/* 2010/08/25 MH According to RD alfred's suggestion, we need to disable other */
/* HRCV INT to influence 8051 reset. */
rtw_write8(padapter, REG_FWIMR, 0x20);
/* 2011/02/15 MH According to Alex's suggestion, close mask to prevent incorrect FW write operation. */
rtw_write8(padapter, REG_FTIMR, 0x00);
rtw_write8(padapter, REG_FSIMR, 0x00);
rtw_write8(padapter, REG_HMETFR + 3, 0x20); /*8051 reset by self */
while ((retry_cnts++ < 100) && (FEN_CPUEN & rtw_read16(padapter, REG_SYS_FUNC_EN))) {
rtw_udelay_os(50);/*us */
/* 2010/08/25 For test only We keep on reset 5051 to prevent fail. */
/*rtw_write8(padapter, REG_HMETFR+3, 0x20);//8051 reset by self */
}
/*RT_ASSERT((retry_cnts < 100), ("8051 reset failed!\n")); */
if (retry_cnts >= 100) {
/* if 8051 reset fail we trigger GPIO 0 for LA */
/*rtw_write32( padapter, */
/* REG_GPIO_PIN_CTRL, */
/* 0x00010100); */
/* 2010/08/31 MH According to Filen's info, if 8051 reset fail, reset MAC directly. */
rtw_write8(padapter, REG_SYS_FUNC_EN + 1, 0x50); /*Reset MAC and Enable 8051 */
rtw_mdelay_os(10);
}
}
}
rtw_write8(padapter, REG_SYS_FUNC_EN + 1, 0x54); /*Reset MAC and Enable 8051 */
rtw_write8(padapter, REG_MCUFWDL, 0);
}
}
/*if(pDevice->RegUsbSS) */
/*bWithoutHWSM = TRUE; // Sugest by Filen and Issau. */
if (bWithoutHWSM) {
/*HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter); */
/*
* Without HW auto state machine
* SYS_CLKR 0x08[15:0] = 0x30A3 disable MAC clock
* h. AFE_PLL_CTRL 0x28[7:0] = 0x80 disable AFE PLL
* i. AFE_XTAL_CTRL 0x24[15:0] = 0x880F gated AFE DIG_CLOCK
* j. SYS_ISO_CTRL 0x00[7:0] = 0xF9 isolated digital to PON
*/
/*rtw_write16(padapter, REG_SYS_CLKR, 0x30A3); */
/*if(!pDevice->RegUsbSS) */
/* 2011/01/26 MH SD4 Scott suggest to fix UNC-B cut bug. */
rtw_write16(padapter, REG_SYS_CLKR, 0x70A3); /*modify to 0x70A3 by Scott. */
rtw_write8(padapter, REG_AFE_PLL_CTRL, 0x80);
rtw_write16(padapter, REG_AFE_XTAL_CTRL, 0x880F);
/*if(!pDevice->RegUsbSS) */
rtw_write8(padapter, REG_SYS_ISO_CTRL, 0xF9);
} else {
/* Disable all RF/BB power */
rtw_write8(padapter, REG_RF_CTRL, 0x00);
}
}
void _ResetDigitalProcedure1(PADAPTER padapter, BOOLEAN bWithoutHWSM)
{
_ResetDigitalProcedure1_8188F(padapter, bWithoutHWSM);
}
void _ResetDigitalProcedure2(PADAPTER padapter)
{
/*HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter); */
/*
* k. SYS_FUNC_EN 0x03[7:0] = 0x44 disable ELDR runction
* l. SYS_CLKR 0x08[15:0] = 0x3083 disable ELDR clock
* m. SYS_ISO_CTRL 0x01[7:0] = 0x83 isolated ELDR to PON
*/
/*rtw_write8(padapter, REG_SYS_FUNC_EN+1, 0x44); //marked by Scott. */
/* 2011/01/26 MH SD4 Scott suggest to fix UNC-B cut bug. */
rtw_write16(padapter, REG_SYS_CLKR, 0x70a3); /*modify to 0x70a3 by Scott. */
rtw_write8(padapter, REG_SYS_ISO_CTRL + 1, 0x82); /*modify to 0x82 by Scott. */
}
void _DisableAnalog(PADAPTER padapter, BOOLEAN bWithoutHWSM)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
u16 value16 = 0;
u8 value8 = 0;
if (bWithoutHWSM) {
/*
* n. LDOA15_CTRL 0x20[7:0] = 0x04 disable A15 power
* o. LDOV12D_CTRL 0x21[7:0] = 0x54 disable digital core power
* r. When driver call disable, the ASIC will turn off remaining clock automatically
*/
rtw_write8(padapter, REG_LDOA15_CTRL, 0x04);
/*rtw_write8(padapter, REG_LDOV12D_CTRL, 0x54); */
value8 = rtw_read8(padapter, REG_LDOV12D_CTRL);
value8 &= (~LDV12_EN);
rtw_write8(padapter, REG_LDOV12D_CTRL, value8);
}
/*
* h. SPS0_CTRL 0x11[7:0] = 0x23 enter PFM mode
* i. APS_FSMCO 0x04[15:0] = 0x4802 set USB suspend
*/
value8 = 0x23;
rtw_write8(padapter, REG_SPS0_CTRL, value8);
if (bWithoutHWSM) {
/*value16 |= (APDM_HOST | PFM_ALDN); */
/* 2010/08/31 According to Filen description, we need to use HW to shut down 8051 automatically. */
/* Because suspend operation need the asistance of 8051 to wait for 3ms. */
value16 |= (APDM_HOST | AFSM_HSUS | PFM_ALDN);
} else
value16 |= (APDM_HOST | AFSM_HSUS | PFM_ALDN);
rtw_write16(padapter, REG_APS_FSMCO, value16);/*0x4802 */
rtw_write8(padapter, REG_RSV_CTRL, 0x0e);
#if 0
/*tynli_test for suspend mode. */
if (!bWithoutHWSM)
rtw_write8(padapter, 0xfe10, 0x19);
#endif
}
/* HW Auto state machine */
s32 CardDisableHWSM(PADAPTER padapter, u8 resetMCU)
{
int rtStatus = _SUCCESS;
if (RTW_CANNOT_RUN(padapter))
return rtStatus;
/*==== RF Off Sequence ==== */
_DisableRFAFEAndResetBB(padapter);
/* ==== Reset digital sequence ====== */
_ResetDigitalProcedure1(padapter, _FALSE);
/* ==== Pull GPIO PIN to balance level and LED control ====== */
_DisableGPIO(padapter);
/* ==== Disable analog sequence === */
_DisableAnalog(padapter, _FALSE);
return rtStatus;
}
/* without HW Auto state machine */
s32 CardDisableWithoutHWSM(PADAPTER padapter)
{
s32 rtStatus = _SUCCESS;
if (RTW_CANNOT_RUN(padapter))
return rtStatus;
/*==== RF Off Sequence ==== */
_DisableRFAFEAndResetBB(padapter);
/* ==== Reset digital sequence ====== */
_ResetDigitalProcedure1(padapter, _TRUE);
/* ==== Pull GPIO PIN to balance level and LED control ====== */
_DisableGPIO(padapter);
/* ==== Reset digital sequence ====== */
_ResetDigitalProcedure2(padapter);
/* ==== Disable analog sequence === */
_DisableAnalog(padapter, _TRUE);
return rtStatus;
}
#endif /* CONFIG_USB_HCI || CONFIG_SDIO_HCI || CONFIG_GSPI_HCI */
void
Hal_InitPGData(
PADAPTER padapter,
u8 *PROMContent)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
u32 i;
u16 value16;
if (_FALSE == pHalData->bautoload_fail_flag) {
/* autoload OK. */
/*if (IS_BOOT_FROM_EEPROM(padapter)) */
if (_TRUE == pHalData->EepromOrEfuse) {
/* Read all Content from EEPROM or EFUSE. */
for (i = 0; i < HWSET_MAX_SIZE_8188F; i += 2) {
/*value16 = EF2Byte(ReadEEprom(pAdapter, (u16) (i>>1))); */
/**((u16*)(&PROMContent[i])) = value16; */
}
} else {
/* Read EFUSE real map to shadow. */
EFUSE_ShadowMapUpdate(padapter, EFUSE_WIFI, _FALSE);
_rtw_memcpy((void *)PROMContent, (void *)pHalData->efuse_eeprom_data, HWSET_MAX_SIZE_8188F);
}
} else {
/*autoload fail */
/*pHalData->AutoloadFailFlag = _TRUE; */
/*update to default value 0xFF */
if (_FALSE == pHalData->EepromOrEfuse)
EFUSE_ShadowMapUpdate(padapter, EFUSE_WIFI, _FALSE);
_rtw_memcpy((void *)PROMContent, (void *)pHalData->efuse_eeprom_data, HWSET_MAX_SIZE_8188F);
}
#ifdef CONFIG_EFUSE_CONFIG_FILE
if (check_phy_efuse_tx_power_info_valid(padapter) == _FALSE) {
if (Hal_readPGDataFromConfigFile(padapter) != _SUCCESS)
RTW_ERR("invalid phy efuse and read from file fail, will use driver default!!\n");
}
#endif
}
void
Hal_EfuseParseIDCode(
PADAPTER padapter,
u8 *hwinfo
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
u16 EEPROMId;
/* Checl 0x8129 again for making sure autoload status!! */
EEPROMId = le16_to_cpu(*((u16 *)hwinfo));
if (EEPROMId != RTL_EEPROM_ID) {
RTW_INFO("EEPROM ID(%#x) is invalid!!\n", EEPROMId);
pHalData->bautoload_fail_flag = _TRUE;
} else
pHalData->bautoload_fail_flag = _FALSE;
}
void
Hal_EfuseParseTxPowerInfo_8188F(
PADAPTER padapter,
u8 *PROMContent,
BOOLEAN AutoLoadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
TxPowerInfo24G pwrInfo24G;
hal_load_txpwr_info(padapter, &pwrInfo24G, NULL, PROMContent);
/* 2010/10/19 MH Add Regulator recognize for CU. */
if (!AutoLoadFail) {
pHalData->EEPROMRegulatory = (PROMContent[EEPROM_RF_BOARD_OPTION_8188F] & 0x7); /*bit0~2 */
if (PROMContent[EEPROM_RF_BOARD_OPTION_8188F] == 0xFF)
pHalData->EEPROMRegulatory = (EEPROM_DEFAULT_BOARD_OPTION & 0x7); /*bit0~2 */
} else
pHalData->EEPROMRegulatory = 0;
}
void
Hal_EfuseParseEEPROMVer_8188F(
PADAPTER padapter,
u8 *hwinfo,
BOOLEAN AutoLoadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
if (!AutoLoadFail)
pHalData->EEPROMVersion = hwinfo[EEPROM_VERSION_8188F];
else
pHalData->EEPROMVersion = 1;
}
#if 0 /* Do not need for rtl8188f */
void
Hal_EfuseParseVoltage_8188F(
PADAPTER pAdapter,
u8 *hwinfo,
BOOLEAN AutoLoadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
/*_rtw_memcpy(pEEPROM->adjuseVoltageVal, &hwinfo[EEPROM_Voltage_ADDR_8188F], 1); */
RTW_INFO("%s hwinfo[EEPROM_Voltage_ADDR_8188F] =%02x\n", __func__, hwinfo[EEPROM_Voltage_ADDR_8188F]);
pHalData->adjuseVoltageVal = (hwinfo[EEPROM_Voltage_ADDR_8188F] & 0xf0) >> 4;
RTW_INFO("%s pHalData->adjuseVoltageVal =%x\n", __func__, pHalData->adjuseVoltageVal);
}
#endif
void
Hal_EfuseParseChnlPlan_8188F(
PADAPTER padapter,
u8 *hwinfo,
BOOLEAN AutoLoadFail
)
{
hal_com_config_channel_plan(
padapter
, hwinfo ? &hwinfo[EEPROM_COUNTRY_CODE_8188F] : NULL
, hwinfo ? hwinfo[EEPROM_ChannelPlan_8188F] : 0xFF
, padapter->registrypriv.alpha2
, padapter->registrypriv.channel_plan
, RTW_CHPLAN_WORLD_NULL
, AutoLoadFail
);
}
void
Hal_EfuseParseCustomerID_8188F(
PADAPTER padapter,
u8 *hwinfo,
BOOLEAN AutoLoadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
if (!AutoLoadFail)
pHalData->EEPROMCustomerID = hwinfo[EEPROM_CustomID_8188F];
else
pHalData->EEPROMCustomerID = 0;
}
void
Hal_EfuseParsePowerSavingMode_8188F(
PADAPTER padapter,
u8 *hwinfo,
BOOLEAN AutoLoadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(padapter);
struct pwrctrl_priv *pwrctl = adapter_to_pwrctl(padapter);
u8 tmpvalue;
if (AutoLoadFail) {
pwrctl->bHWPowerdown = _FALSE;
pwrctl->bSupportRemoteWakeup = _FALSE;
} else {
/* hw power down mode selection , 0:rf-off ; 1:power down */
if (padapter->registrypriv.hwpdn_mode == 2)
pwrctl->bHWPowerdown = (hwinfo[EEPROM_FEATURE_OPTION_8188F] & BIT4);
else
pwrctl->bHWPowerdown = padapter->registrypriv.hwpdn_mode;
/* decide hw if support remote wakeup function */
/* if hw supported, 8051 (SIE) will generate WeakUP signal( D+/D- toggle) when autoresume */
#ifdef CONFIG_USB_HCI
pwrctl->bSupportRemoteWakeup = (hwinfo[EEPROM_USB_OPTIONAL_FUNCTION0_8188FU] & BIT1) ? _TRUE : _FALSE;
#endif /* CONFIG_USB_HCI */
RTW_INFO("%s...bHWPwrPindetect(%x)-bHWPowerdown(%x) ,bSupportRemoteWakeup(%x)\n"
, __FUNCTION__, pwrctl->bHWPwrPindetect, pwrctl->bHWPowerdown, pwrctl->bSupportRemoteWakeup);
RTW_INFO("### PS params=> power_mgnt(%x),usbss_enable(%x) ###\n"
, padapter->registrypriv.power_mgnt, padapter->registrypriv.usbss_enable);
}
}
void
Hal_EfuseParseAntennaDiversity_8188F(
PADAPTER pAdapter,
u8 *hwinfo,
BOOLEAN AutoLoadFail
)
{
#ifdef CONFIG_ANTENNA_DIVERSITY
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(pAdapter);
struct registry_priv *registry_par = &pAdapter->registrypriv;
/* default:rtw_antdiv_cfg, 0:OFF, 1:ON, 2:By EFUSE */
if (registry_par->antdiv_cfg == 2) {
if (0x01 == hwinfo[EEPROM_RF_ANTENNA_OPT_8188F])
pHalData->AntDivCfg = 1;
else
pHalData->AntDivCfg = 0;
} else if (registry_par->antdiv_cfg == 1)
pHalData->AntDivCfg = 1;
else
pHalData->AntDivCfg = 0;
/* If TRxAntDivType is AUTO in advanced setting, use EFUSE value instead. */
/* default:rtw_antdiv_type */
if (registry_par->antdiv_type == 0) {
#if 0
pHalData->TRxAntDivType = hwinfo[EEPROM_RFE_OPTION_8188F];
if (pHalData->TRxAntDivType == 0xFF)
pHalData->TRxAntDivType = S0S1_SW_ANTDIV;
else
RTW_INFO("%s: efuse[0x%x]=0x%02x is unknown type\n",
__func__, EEPROM_RFE_OPTION_8188F, pHalData->TRxAntDivType);
#else
/* 8188F only intrnal switch S0S1 */
pHalData->TRxAntDivType = S0S1_SW_ANTDIV;
#endif
} else {
/* 8188F only intrnal switch S0S1 */
pHalData->TRxAntDivType = S0S1_SW_ANTDIV;
}
RTW_INFO("%s: AntDivCfg=%d, AntDivType=%d\n",
__func__, pHalData->AntDivCfg, pHalData->TRxAntDivType);
#endif
}
void
Hal_EfuseParseXtal_8188F(
PADAPTER pAdapter,
u8 *hwinfo,
BOOLEAN AutoLoadFail
)
{
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(pAdapter);
if (!AutoLoadFail) {
pHalData->crystal_cap = hwinfo[EEPROM_XTAL_8188F];
if (pHalData->crystal_cap == 0xFF)
pHalData->crystal_cap = EEPROM_Default_CrystalCap_8188F; /*what value should 8812 set? */
} else
pHalData->crystal_cap = EEPROM_Default_CrystalCap_8188F;
}
void
Hal_EfuseParseThermalMeter_8188F(
PADAPTER padapter,
u8 *PROMContent,
u8 AutoLoadFail
)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
/* */
/* ThermalMeter from EEPROM */
/* */
if (_FALSE == AutoLoadFail)
pHalData->eeprom_thermal_meter = PROMContent[EEPROM_THERMAL_METER_8188F];
else
pHalData->eeprom_thermal_meter = EEPROM_Default_ThermalMeter_8188F;
if ((pHalData->eeprom_thermal_meter == 0xff) || (_TRUE == AutoLoadFail)) {
pHalData->odmpriv.rf_calibrate_info.is_apk_thermal_meter_ignore = _TRUE;
pHalData->eeprom_thermal_meter = EEPROM_Default_ThermalMeter_8188F;
}
}
void Hal_EfuseParseKFreeData_8188F(
PADAPTER Adapter,
u8 *PROMContent,
BOOLEAN AutoloadFail)
{
#ifdef CONFIG_RF_POWER_TRIM
#define THERMAL_K_MEAN_OFFSET_8188F 5 /* 8188F FT thermal K mean value has +5 offset, it's special case */
HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
struct kfree_data_t *kfree_data = &pHalData->kfree_data;
u8 pg_pwrtrim = 0xFF, pg_therm = 0xFF;
efuse_OneByteRead(Adapter, PPG_BB_GAIN_2G_TXA_OFFSET_8188F, &pg_pwrtrim, _FALSE);
efuse_OneByteRead(Adapter, PPG_THERMAL_OFFSET_8188F ,&pg_therm ,_FALSE);
if (pg_pwrtrim != 0xFF) {
kfree_data->bb_gain[BB_GAIN_2G][RF_PATH_A]
= KFREE_BB_GAIN_2G_TX_OFFSET(pg_pwrtrim & PPG_BB_GAIN_2G_TX_OFFSET_MASK);
kfree_data->flag |= KFREE_FLAG_ON;
}
if (pg_therm != 0xFF) {
kfree_data->thermal
= KFREE_THERMAL_OFFSET(pg_therm & PPG_THERMAL_OFFSET_MASK) - THERMAL_K_MEAN_OFFSET_8188F;
if (GET_PG_KFREE_THERMAL_K_ON_8188F(PROMContent))
kfree_data->flag |= KFREE_FLAG_THERMAL_K_ON;
}
if (kfree_data->flag & KFREE_FLAG_THERMAL_K_ON)
pHalData->eeprom_thermal_meter -= kfree_data->thermal;
RTW_INFO("kfree Pwr Trim flag:%u\n", kfree_data->flag);
if (kfree_data->flag & KFREE_FLAG_ON)
RTW_INFO("bb_gain:%d\n", kfree_data->bb_gain[BB_GAIN_2G][RF_PATH_A]);
if (kfree_data->flag & KFREE_FLAG_THERMAL_K_ON)
RTW_INFO("thermal:%d\n", kfree_data->thermal);
#endif /*CONFIG_RF_POWER_TRIM */
}
u8
BWMapping_8188F(
PADAPTER Adapter,
struct pkt_attrib *pattrib
)
{
u8 BWSettingOfDesc = 0;
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(Adapter);
/*RTW_INFO("BWMapping pHalData->current_channel_bw %d, pattrib->bwmode %d\n",pHalData->current_channel_bw,pattrib->bwmode); */
if (pHalData->current_channel_bw == CHANNEL_WIDTH_80) {
if (pattrib->bwmode == CHANNEL_WIDTH_80)
BWSettingOfDesc = 2;
else if (pattrib->bwmode == CHANNEL_WIDTH_40)
BWSettingOfDesc = 1;
else
BWSettingOfDesc = 0;
} else if (pHalData->current_channel_bw == CHANNEL_WIDTH_40) {
if ((pattrib->bwmode == CHANNEL_WIDTH_40) || (pattrib->bwmode == CHANNEL_WIDTH_80))
BWSettingOfDesc = 1;
else
BWSettingOfDesc = 0;
} else
BWSettingOfDesc = 0;
/*if(pTcb->bBTTxPacket) */
/* BWSettingOfDesc = 0; */
return BWSettingOfDesc;
}
u8 SCMapping_8188F(PADAPTER Adapter, struct pkt_attrib *pattrib)
{
u8 SCSettingOfDesc = 0;
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(Adapter);
/*RTW_INFO("SCMapping: pHalData->current_channel_bw %d, pHalData->nCur80MhzPrimeSC %d, pHalData->nCur40MhzPrimeSC %d\n",pHalData->current_channel_bw,pHalData->nCur80MhzPrimeSC,pHalData->nCur40MhzPrimeSC); */
if (pHalData->current_channel_bw == CHANNEL_WIDTH_80) {
if (pattrib->bwmode == CHANNEL_WIDTH_80)
SCSettingOfDesc = VHT_DATA_SC_DONOT_CARE;
else if (pattrib->bwmode == CHANNEL_WIDTH_40) {
if (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER)
SCSettingOfDesc = VHT_DATA_SC_40_LOWER_OF_80MHZ;
else if (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER)
SCSettingOfDesc = VHT_DATA_SC_40_UPPER_OF_80MHZ;
else
RTW_INFO("SCMapping: DONOT CARE Mode Setting\n");
} else {
if ((pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER) && (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER))
SCSettingOfDesc = VHT_DATA_SC_20_LOWEST_OF_80MHZ;
else if ((pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER) && (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER))
SCSettingOfDesc = VHT_DATA_SC_20_LOWER_OF_80MHZ;
else if ((pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER) && (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER))
SCSettingOfDesc = VHT_DATA_SC_20_UPPER_OF_80MHZ;
else if ((pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER) && (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER))
SCSettingOfDesc = VHT_DATA_SC_20_UPPERST_OF_80MHZ;
else
RTW_INFO("SCMapping: DONOT CARE Mode Setting\n");
}
} else if (pHalData->current_channel_bw == CHANNEL_WIDTH_40) {
/*RTW_INFO("SCMapping: HT Case: pHalData->current_channel_bw %d, pHalData->nCur40MhzPrimeSC %d\n",pHalData->current_channel_bw,pHalData->nCur40MhzPrimeSC); */
if (pattrib->bwmode == CHANNEL_WIDTH_40)
SCSettingOfDesc = VHT_DATA_SC_DONOT_CARE;
else if (pattrib->bwmode == CHANNEL_WIDTH_20) {
if (pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER)
SCSettingOfDesc = VHT_DATA_SC_20_UPPER_OF_80MHZ;
else if (pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER)
SCSettingOfDesc = VHT_DATA_SC_20_LOWER_OF_80MHZ;
else
SCSettingOfDesc = VHT_DATA_SC_DONOT_CARE;
}
} else
SCSettingOfDesc = VHT_DATA_SC_DONOT_CARE;
return SCSettingOfDesc;
}
#if defined(CONFIG_CONCURRENT_MODE)
void fill_txdesc_force_bmc_camid(struct pkt_attrib *pattrib, u8 *ptxdesc)
{
if ((pattrib->encrypt > 0) && (!pattrib->bswenc)
&& (pattrib->bmc_camid != INVALID_SEC_MAC_CAM_ID)) {
SET_TX_DESC_EN_DESC_ID_8188F(ptxdesc, 1);
SET_TX_DESC_MACID_8188F(ptxdesc, pattrib->bmc_camid);
}
}
#endif
static u8 fill_txdesc_sectype(struct pkt_attrib *pattrib)
{
u8 sectype = 0;
if ((pattrib->encrypt > 0) && !pattrib->bswenc) {
switch (pattrib->encrypt) {
/* SEC_TYPE */
case _WEP40_:
case _WEP104_:
case _TKIP_:
case _TKIP_WTMIC_:
sectype = 1;
break;
#ifdef CONFIG_WAPI_SUPPORT
case _SMS4_:
sectype = 2;
break;
#endif
case _AES_:
sectype = 3;
break;
case _NO_PRIVACY_:
default:
break;
}
}
return sectype;
}
static void fill_txdesc_vcs_8188f(PADAPTER padapter, struct pkt_attrib *pattrib, u8 *ptxdesc)
{
/*RTW_INFO("cvs_mode=%d\n", pattrib->vcs_mode); */
SET_TX_DESC_HW_RTS_ENABLE_8188F(ptxdesc, 0);
switch (pattrib->vcs_mode) {
case RTS_CTS:
SET_TX_DESC_RTS_ENABLE_8188F(ptxdesc, 1);
break;
case CTS_TO_SELF:
SET_TX_DESC_CTS2SELF_8188F(ptxdesc, 1);
break;
case NONE_VCS:
default:
break;
}
#if 1 /* TODO: */
/* Protection mode related */
if (pattrib->vcs_mode) {
/* SET_TX_DESC_CCA_RTS_8188F(ptxdesc, pTcb->RTSCCA); */
SET_TX_DESC_RTS_RATE_8188F(ptxdesc, 8); /*TODO: Hardcode?, RTS Rate=24M (8) */
SET_TX_DESC_RTS_RATE_FB_LIMIT_8188F(ptxdesc, 0xF); /* TODO: PROTECTION_MODE ?? */
if (padapter->mlmeextpriv.mlmext_info.preamble_mode == PREAMBLE_SHORT)
SET_TX_DESC_RTS_SHORT_8188F(ptxdesc, 1);
/* Set RTS BW */
if (pattrib->ht_en)
SET_TX_DESC_RTS_SC_8188F(ptxdesc, SCMapping_8188F(padapter, pattrib));
}
#endif
}
static void fill_txdesc_phy_8188f(PADAPTER padapter, struct pkt_attrib *pattrib, u8 *ptxdesc)
{
/*RTW_INFO("bwmode=%d, ch_off=%d\n", pattrib->bwmode, pattrib->ch_offset); */
if (pattrib->ht_en) {
SET_TX_DESC_DATA_BW_8188F(ptxdesc, BWMapping_8188F(padapter, pattrib));
SET_TX_DESC_DATA_SC_8188F(ptxdesc, SCMapping_8188F(padapter, pattrib));
}
}
static void rtl8188f_fill_default_txdesc(
struct xmit_frame *pxmitframe,
u8 *pbuf)
{
PADAPTER padapter;
HAL_DATA_TYPE *pHalData;
struct mlme_ext_priv *pmlmeext;
struct mlme_ext_info *pmlmeinfo;
struct pkt_attrib *pattrib;
s32 bmcst;
_rtw_memset(pbuf, 0, TXDESC_SIZE);
padapter = pxmitframe->padapter;
pHalData = GET_HAL_DATA(padapter);
pmlmeext = &padapter->mlmeextpriv;
pmlmeinfo = &(pmlmeext->mlmext_info);
pattrib = &pxmitframe->attrib;
bmcst = IS_MCAST(pattrib->ra);
if (pxmitframe->frame_tag == DATA_FRAMETAG) {
u8 drv_userate = 0;
SET_TX_DESC_MACID_8188F(pbuf, pattrib->mac_id);
SET_TX_DESC_RATE_ID_8188F(pbuf, pattrib->raid);
SET_TX_DESC_QUEUE_SEL_8188F(pbuf, pattrib->qsel);
SET_TX_DESC_SEQ_8188F(pbuf, pattrib->seqnum);
SET_TX_DESC_SEC_TYPE_8188F(pbuf, fill_txdesc_sectype(pattrib));
#if defined(CONFIG_CONCURRENT_MODE)
if (bmcst)
fill_txdesc_force_bmc_camid(pattrib, pbuf);
#endif
fill_txdesc_vcs_8188f(padapter, pattrib, pbuf);
#ifdef CONFIG_P2P
if (!rtw_p2p_chk_state(&padapter->wdinfo, P2P_STATE_NONE)) {
if (pattrib->icmp_pkt == 1 && padapter->registrypriv.wifi_spec == 1)
drv_userate = 1;
}
#endif
if ((pattrib->ether_type != 0x888e) &&
(pattrib->ether_type != 0x0806) &&
(pattrib->ether_type != 0x88B4) &&
(pattrib->dhcp_pkt != 1) &&
(drv_userate != 1)
#ifdef CONFIG_AUTO_AP_MODE
&& (pattrib->pctrl != _TRUE)
#endif
) {
/* Non EAP & ARP & DHCP type data packet */
if (pattrib->ampdu_en == _TRUE) {
SET_TX_DESC_AGG_ENABLE_8188F(pbuf, 1);
SET_TX_DESC_MAX_AGG_NUM_8188F(pbuf, 0x1F);
SET_TX_DESC_AMPDU_DENSITY_8188F(pbuf, pattrib->ampdu_spacing);
} else
SET_TX_DESC_AGG_BREAK_8188F(pbuf, 1);
fill_txdesc_phy_8188f(padapter, pattrib, pbuf);
SET_TX_DESC_DATA_RATE_FB_LIMIT_8188F(pbuf, 0x1F);
if (pHalData->fw_ractrl == _FALSE) {
SET_TX_DESC_USE_RATE_8188F(pbuf, 1);
if (pHalData->INIDATA_RATE[pattrib->mac_id] & BIT(7))
SET_TX_DESC_DATA_SHORT_8188F(pbuf, 1);
SET_TX_DESC_TX_RATE_8188F(pbuf, pHalData->INIDATA_RATE[pattrib->mac_id] & 0x7F);
}
if (bmcst) {
SET_TX_DESC_USE_RATE_8188F(pbuf, 1);
SET_TX_DESC_TX_RATE_8188F(pbuf, MRateToHwRate(pattrib->rate));
SET_TX_DESC_DISABLE_FB_8188F(pbuf, 1);
}
/* modify data rate by iwpriv */
if (padapter->fix_rate != 0xFF) {
SET_TX_DESC_USE_RATE_8188F(pbuf, 1);
if (padapter->fix_rate & BIT(7))
SET_TX_DESC_DATA_SHORT_8188F(pbuf, 1);
SET_TX_DESC_TX_RATE_8188F(pbuf, padapter->fix_rate & 0x7F);
if (!padapter->data_fb)
SET_TX_DESC_DISABLE_FB_8188F(pbuf, 1);
}
if (pattrib->ldpc)
SET_TX_DESC_DATA_LDPC_8188F(pbuf, 1);
if (pattrib->stbc)
SET_TX_DESC_DATA_STBC_8188F(pbuf, 1);
#ifdef CONFIG_CMCC_TEST
SET_TX_DESC_DATA_SHORT_8188F(pbuf, 1); /* use cck short premble */
#endif
} else {
/* EAP data packet and ARP packet. */
/* Use the 1M data rate to send the EAP/ARP packet. */
/* This will maybe make the handshake smooth. */
SET_TX_DESC_AGG_BREAK_8188F(pbuf, 1);
SET_TX_DESC_USE_RATE_8188F(pbuf, 1);
if (pmlmeinfo->preamble_mode == PREAMBLE_SHORT)
SET_TX_DESC_DATA_SHORT_8188F(pbuf, 1);
#ifdef CONFIG_IP_R_MONITOR
if((pattrib->ether_type == ETH_P_ARP) &&
(IsSupportedTxOFDM(padapter->registrypriv.wireless_mode)))
SET_TX_DESC_TX_RATE_8188F(pbuf, MRateToHwRate(IEEE80211_OFDM_RATE_6MB));
else
#endif/*CONFIG_IP_R_MONITOR*/
SET_TX_DESC_TX_RATE_8188F(pbuf, MRateToHwRate(pmlmeext->tx_rate));
RTW_INFO(FUNC_ADPT_FMT ": SP Packet(0x%04X) rate=0x%x SeqNum = %d\n",
FUNC_ADPT_ARG(padapter), pattrib->ether_type, MRateToHwRate(pmlmeext->tx_rate), pattrib->seqnum);
}
#if defined(CONFIG_USB_TX_AGGREGATION) || defined(CONFIG_SDIO_HCI) || defined(CONFIG_GSPI_HCI)
SET_TX_DESC_USB_TXAGG_NUM_8188F(pbuf, pxmitframe->agg_num);
#endif
#ifdef CONFIG_TDLS
#ifdef CONFIG_XMIT_ACK
/* CCX-TXRPT ack for xmit mgmt frames. */
if (pxmitframe->ack_report) {
#ifdef DBG_CCX
RTW_INFO("%s set spe_rpt\n", __func__);
#endif
SET_TX_DESC_SPE_RPT_8188F(pbuf, 1);
SET_TX_DESC_SW_DEFINE_8188F(pbuf, (u8)(GET_PRIMARY_ADAPTER(padapter)->xmitpriv.seq_no));
}
#endif /* CONFIG_XMIT_ACK */
#endif
} else if (pxmitframe->frame_tag == MGNT_FRAMETAG) {
SET_TX_DESC_MACID_8188F(pbuf, pattrib->mac_id);
SET_TX_DESC_QUEUE_SEL_8188F(pbuf, pattrib->qsel);
SET_TX_DESC_RATE_ID_8188F(pbuf, pattrib->raid);
SET_TX_DESC_SEQ_8188F(pbuf, pattrib->seqnum);
SET_TX_DESC_USE_RATE_8188F(pbuf, 1);
SET_TX_DESC_MBSSID_8188F(pbuf, pattrib->mbssid & 0xF);
SET_TX_DESC_RETRY_LIMIT_ENABLE_8188F(pbuf, 1);
if (pattrib->retry_ctrl == _TRUE) {
/* Nothing */
SET_TX_DESC_DATA_RETRY_LIMIT_8188F(pbuf, 6);
} else {
/* Nothing */
SET_TX_DESC_DATA_RETRY_LIMIT_8188F(pbuf, 12);
}
SET_TX_DESC_TX_RATE_8188F(pbuf, MRateToHwRate(pattrib->rate));
#ifdef CONFIG_XMIT_ACK
/* CCX-TXRPT ack for xmit mgmt frames. */
if (pxmitframe->ack_report) {
#ifdef DBG_CCX
RTW_INFO("%s set spe_rpt\n", __func__);
#endif
SET_TX_DESC_SPE_RPT_8188F(pbuf, 1);
SET_TX_DESC_SW_DEFINE_8188F(pbuf, (u8)(GET_PRIMARY_ADAPTER(padapter)->xmitpriv.seq_no));
}
#endif /* CONFIG_XMIT_ACK */
} else if (pxmitframe->frame_tag == TXAGG_FRAMETAG) {
}
#ifdef CONFIG_MP_INCLUDED
else if (pxmitframe->frame_tag == MP_FRAMETAG) {
fill_txdesc_for_mp(padapter, pbuf);
}
#endif
else {
SET_TX_DESC_MACID_8188F(pbuf, pattrib->mac_id);
SET_TX_DESC_RATE_ID_8188F(pbuf, pattrib->raid);
SET_TX_DESC_QUEUE_SEL_8188F(pbuf, pattrib->qsel);
SET_TX_DESC_SEQ_8188F(pbuf, pattrib->seqnum);
SET_TX_DESC_USE_RATE_8188F(pbuf, 1);
SET_TX_DESC_TX_RATE_8188F(pbuf, MRateToHwRate(pmlmeext->tx_rate));
}
SET_TX_DESC_PKT_SIZE_8188F(pbuf, pattrib->last_txcmdsz);
{
u8 pkt_offset, offset;
pkt_offset = 0;
offset = TXDESC_SIZE;
#ifdef CONFIG_USB_HCI
pkt_offset = pxmitframe->pkt_offset;
offset += (pxmitframe->pkt_offset >> 3);
#endif /* CONFIG_USB_HCI */
#ifdef CONFIG_TX_EARLY_MODE
if (pxmitframe->frame_tag == DATA_FRAMETAG) {
pkt_offset = 1;
offset += EARLY_MODE_INFO_SIZE;
}
#endif /* CONFIG_TX_EARLY_MODE */
SET_TX_DESC_PKT_OFFSET_8188F(pbuf, pkt_offset);
SET_TX_DESC_OFFSET_8188F(pbuf, offset);
}
if (bmcst)
SET_TX_DESC_BMC_8188F(pbuf, 1);
/* 2009.11.05. tynli_test. Suggested by SD4 Filen for FW LPS. */
/* (1) The sequence number of each non-Qos frame / broadcast / multicast / */
/* mgnt frame should be controlled by Hw because Fw will also send null data */
/* which we cannot control when Fw LPS enable. */
/* --> default enable non-Qos data sequense number. 2010.06.23. by tynli. */
/* (2) Enable HW SEQ control for beacon packet, because we use Hw beacon. */
/* (3) Use HW Qos SEQ to control the seq num of Ext port non-Qos packets. */
/* 2010.06.23. Added by tynli. */
if (!pattrib->qos_en)
SET_TX_DESC_HWSEQ_EN_8188F(pbuf, 1);
#ifdef CONFIG_ANTENNA_DIVERSITY
if (!bmcst && pattrib->psta)
odm_set_tx_ant_by_tx_info(adapter_to_phydm(padapter), pbuf, pattrib->psta->cmn.mac_id);
#endif
}
/*
* Description:
*
* Parameters:
* pxmitframe xmitframe
* pbuf where to fill tx desc
*/
void rtl8188f_update_txdesc(struct xmit_frame *pxmitframe, u8 *pbuf)
{
rtl8188f_fill_default_txdesc(pxmitframe, pbuf);
#if defined(CONFIG_USB_HCI) || defined(CONFIG_SDIO_HCI) || defined(CONFIG_GSPI_HCI)
rtl8188f_cal_txdesc_chksum((struct tx_desc *)pbuf);
#endif
}
static void hw_var_set_monitor(PADAPTER Adapter, u8 variable, u8 *val)
{
u32 rcr_bits;
u16 value_rxfltmap2;
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(Adapter);
struct mlme_priv *pmlmepriv = &(Adapter->mlmepriv);
if (*((u8 *)val) == _HW_STATE_MONITOR_) {
#ifdef CONFIG_CUSTOMER_ALIBABA_GENERAL
rcr_bits = RCR_AAP | RCR_APM | RCR_AM | RCR_AB | RCR_APWRMGT | RCR_ADF | RCR_AMF | RCR_APP_PHYST_RXFF;
#else
/* Receive all type */
rcr_bits = RCR_AAP | RCR_APM | RCR_AM | RCR_AB | RCR_APWRMGT | RCR_ADF | RCR_ACF | RCR_AMF | RCR_APP_PHYST_RXFF;
/* Append FCS */
rcr_bits |= RCR_APPFCS;
#endif
#if 0
/*
CRC and ICV packet will drop in recvbuf2recvframe()
We no turn on it.
*/
rcr_bits |= (RCR_ACRC32 | RCR_AICV);
#endif
rtw_hal_get_hwreg(Adapter, HW_VAR_RCR, (u8 *)&pHalData->rcr_backup);
rtw_hal_set_hwreg(Adapter, HW_VAR_RCR, (u8 *)&rcr_bits);
/* Receive all data frames */
value_rxfltmap2 = 0xFFFF;
rtw_write16(Adapter, REG_RXFLTMAP2, value_rxfltmap2);
#if 0
/* tx pause */
rtw_write8(padapter, REG_TXPAUSE, 0xFF);
#endif
} else {
/* do nothing */
}
}
static void hw_var_set_opmode(PADAPTER padapter, u8 variable, u8 *val)
{
u8 val8;
u8 mode = *((u8 *)val);
static u8 isMonitor = _FALSE;
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
if (isMonitor == _TRUE) {
/* reset RCR from backup */
rtw_hal_set_hwreg(padapter, HW_VAR_RCR, (u8 *)&pHalData->rcr_backup);
rtw_hal_rcr_set_chk_bssid(padapter, MLME_ACTION_NONE);
isMonitor = _FALSE;
}
if (mode == _HW_STATE_MONITOR_) {
isMonitor = _TRUE;
/* set net_type */
Set_MSR(padapter, _HW_STATE_NOLINK_);
hw_var_set_monitor(padapter, variable, val);
return;
}
rtw_hal_set_hwreg(padapter, HW_VAR_MAC_ADDR, adapter_mac_addr(padapter)); /* set mac addr to mac register */
#ifdef CONFIG_CONCURRENT_MODE
if (padapter->hw_port == HW_PORT1) {
/* disable Port1 TSF update */
rtw_iface_disable_tsf_update(padapter);
Set_MSR(padapter, mode);
RTW_INFO("#### %s()-%d hw_port(%d) mode=%d ####\n",
__func__, __LINE__, padapter->hw_port, mode);
if ((mode == _HW_STATE_STATION_) || (mode == _HW_STATE_NOLINK_)) {
if (!rtw_mi_get_ap_num(padapter) && !rtw_mi_get_mesh_num(padapter)) {
StopTxBeacon(padapter);
#ifdef CONFIG_PCI_HCI
UpdateInterruptMask8188FE(padapter, 0, 0, RT_BCN_INT_MASKS, 0);
#else /* !CONFIG_PCI_HCI */
#ifdef CONFIG_INTERRUPT_BASED_TXBCN
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
rtw_write8(padapter, REG_DRVERLYINT, 0x05);/*restore early int time to 5ms */
UpdateInterruptMask8188FU(padapter, _TRUE, 0, IMR_BCNDMAINT0_8188F);
#endif /* CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT */
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
UpdateInterruptMask8188FU(padapter, _TRUE , 0, (IMR_TXBCN0ERR_8188F | IMR_TXBCN0OK_8188F));
#endif /* CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR */
#endif /* CONFIG_INTERRUPT_BASED_TXBCN */
#endif /* !CONFIG_PCI_HCI */
}
/* disable atim wnd and disable beacon function */
rtw_write8(padapter, REG_BCN_CTRL_1, DIS_TSF_UDT | DIS_ATIM);
} else if (mode == _HW_STATE_ADHOC_) {
ResumeTxBeacon(padapter);
rtw_write8(padapter, REG_BCN_CTRL_1, DIS_TSF_UDT | EN_BCN_FUNCTION | DIS_BCNQ_SUB);
} else if (mode == _HW_STATE_AP_) {
#ifdef CONFIG_PCI_HCI
UpdateInterruptMask8188FE(padapter, RT_BCN_INT_MASKS, 0, 0, 0);
#else /* !CONFIG_PCI_HCI */
#ifdef CONFIG_INTERRUPT_BASED_TXBCN
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
UpdateInterruptMask8188FU(padapter, _TRUE, IMR_BCNDMAINT0_8188F, 0);
#endif /* CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT */
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
UpdateInterruptMask8188FU(padapter, _TRUE, (IMR_TXBCN0ERR_8188F | IMR_TXBCN0OK_8188F), 0);
#endif /* CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR */
#endif /* CONFIG_INTERRUPT_BASED_TXBCN */
#endif /* !CONFIG_PCI_HCI */
rtw_write8(padapter, REG_BCN_CTRL_1, DIS_TSF_UDT | DIS_BCNQ_SUB);
/* enable to rx data frame */
rtw_write16(padapter, REG_RXFLTMAP2, 0xFFFF);
/* enable to rx ps-poll */
rtw_write16(padapter, REG_RXFLTMAP1, 0x0400);
/* Beacon Control related register for first time */
rtw_write8(padapter, REG_BCNDMATIM, 0x02); /* 2ms */
/*rtw_write8(padapter, REG_BCN_MAX_ERR, 0xFF); */
rtw_write8(padapter, REG_ATIMWND_1, 0x0a); /* 10ms for port1 */
rtw_write16(padapter, REG_TSFTR_SYN_OFFSET, 0x7fff);/* +32767 (~32ms) */
/* reset TSF2 */
rtw_write8(padapter, REG_DUAL_TSF_RST, BIT(1));
/* enable BCN1 Function for if2 */
/* don't enable update TSF1 for if2 (due to TSF update when beacon/probe rsp are received) */
rtw_write8(padapter, REG_BCN_CTRL_1, (DIS_TSF_UDT | EN_BCN_FUNCTION | EN_TXBCN_RPT | DIS_BCNQ_SUB));
/*SW_BCN_SEL - Port1 */
/*rtw_write8(Adapter, REG_DWBCN1_CTRL_8192E+2, rtw_read8(Adapter, REG_DWBCN1_CTRL_8192E+2)|BIT4); */
rtw_hal_set_hwreg(padapter, HW_VAR_DL_BCN_SEL, NULL);
/* select BCN on port 1 */
rtw_write8(padapter, REG_CCK_CHECK_8188F,
(rtw_read8(padapter, REG_CCK_CHECK_8188F) | BIT_BCN_PORT_SEL));
if (!rtw_mi_buddy_check_mlmeinfo_state(padapter, WIFI_FW_ASSOC_SUCCESS)) {
val8 = rtw_read8(padapter, REG_BCN_CTRL);
val8 &= ~EN_BCN_FUNCTION;
rtw_write8(padapter, REG_BCN_CTRL, val8);
}
/*BCN1 TSF will sync to BCN0 TSF with offset(0x518) if if1_sta linked */
/*rtw_write8(padapter, REG_BCN_CTRL_1, rtw_read8(padapter, REG_BCN_CTRL_1)|BIT(5)); */
/*rtw_write8(padapter, REG_DUAL_TSF_RST, BIT(3)); */
/*dis BCN0 ATIM WND if if1 is station */
rtw_write8(padapter, REG_BCN_CTRL, rtw_read8(padapter, REG_BCN_CTRL) | DIS_ATIM);
#ifdef CONFIG_TSF_RESET_OFFLOAD
/* Reset TSF for STA+AP concurrent mode */
if (DEV_STA_LD_NUM(adapter_to_dvobj(padapter))) {
if (rtw_hal_reset_tsf(padapter, HW_PORT1) == _FAIL)
RTW_INFO("ERROR! %s()-%d: Reset port1 TSF fail\n",
__func__, __LINE__);
}
#endif /* CONFIG_TSF_RESET_OFFLOAD */
}
} else /*else for port0 */
#endif /* CONFIG_CONCURRENT_MODE */
{
#ifdef CONFIG_MI_WITH_MBSSID_CAM /*For Port0 - MBSS CAM*/
hw_var_set_opmode_mbid(padapter, mode);
#else
/* disable Port0 TSF update */
rtw_iface_disable_tsf_update(padapter);
/* set net_type */
Set_MSR(padapter, mode);
RTW_INFO("#### %s() -%d hw_port(0) mode = %d ####\n", __func__, __LINE__, mode);
if ((mode == _HW_STATE_STATION_) || (mode == _HW_STATE_NOLINK_)) {
#ifdef CONFIG_CONCURRENT_MODE
if (!rtw_mi_get_ap_num(padapter) && !rtw_mi_get_mesh_num(padapter))
/* suspect code indent for conditional statements */
#endif /* CONFIG_CONCURRENT_MODE */
{
StopTxBeacon(padapter);
#ifdef CONFIG_PCI_HCI
UpdateInterruptMask8188FE(padapter, 0, 0, RT_BCN_INT_MASKS, 0);
#else /* !CONFIG_PCI_HCI */
#ifdef CONFIG_INTERRUPT_BASED_TXBCN
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
rtw_write8(padapter, REG_DRVERLYINT, 0x05); /* restore early int time to 5ms */
UpdateInterruptMask8812AU(padapter, _TRUE, 0, IMR_BCNDMAINT0_8188F);
#endif /* CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT */
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
UpdateInterruptMask8812AU(padapter, _TRUE , 0, (IMR_TXBCN0ERR_8188F | IMR_TXBCN0OK_8188F));
#endif /* CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR */
#endif /* CONFIG_INTERRUPT_BASED_TXBCN */
#endif /* !CONFIG_PCI_HCI */
}
/* disable atim wnd */
rtw_write8(padapter, REG_BCN_CTRL, DIS_TSF_UDT | EN_BCN_FUNCTION | DIS_ATIM);
/*rtw_write8(padapter,REG_BCN_CTRL, DIS_TSF_UDT | EN_BCN_FUNCTION); */
} else if (mode == _HW_STATE_ADHOC_) {
ResumeTxBeacon(padapter);
rtw_write8(padapter, REG_BCN_CTRL, DIS_TSF_UDT | EN_BCN_FUNCTION | DIS_BCNQ_SUB);
} else if (mode == _HW_STATE_AP_) {
#ifdef CONFIG_PCI_HCI
UpdateInterruptMask8188FE(padapter, RT_BCN_INT_MASKS, 0, 0, 0);
#else /* !CONFIG_PCI_HCI */
#ifdef CONFIG_INTERRUPT_BASED_TXBCN
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
UpdateInterruptMask8188FU(padapter, _TRUE , IMR_BCNDMAINT0_8188F, 0);
#endif /* CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT */
#ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
UpdateInterruptMask8188FU(padapter, _TRUE , (IMR_TXBCN0ERR_8188F | IMR_TXBCN0OK_8188F), 0);
#endif /* CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR */
#endif /* CONFIG_INTERRUPT_BASED_TXBCN */
#endif
rtw_write8(padapter, REG_BCN_CTRL, DIS_TSF_UDT | DIS_BCNQ_SUB);
/*enable to rx data frame */
rtw_write16(padapter, REG_RXFLTMAP2, 0xFFFF);
/*enable to rx ps-poll */
rtw_write16(padapter, REG_RXFLTMAP1, 0x0400);
/*Beacon Control related register for first time */
rtw_write8(padapter, REG_BCNDMATIM, 0x02); /* 2ms */
/*rtw_write8(padapter, REG_BCN_MAX_ERR, 0xFF); */
rtw_write8(padapter, REG_ATIMWND, 0x0c); /* 12ms */
rtw_write16(padapter, REG_TSFTR_SYN_OFFSET, 0x7fff);/* +32767 (~32ms) */
/*reset TSF */
rtw_write8(padapter, REG_DUAL_TSF_RST, BIT(0));
/*enable BCN0 Function for if1 */
/*don't enable update TSF0 for if1 (due to TSF update when beacon/probe rsp are received) */
rtw_write8(padapter, REG_BCN_CTRL, (DIS_TSF_UDT | EN_BCN_FUNCTION | EN_TXBCN_RPT | DIS_BCNQ_SUB));
/*SW_BCN_SEL - Port0 */
/*rtw_write8(Adapter, REG_DWBCN1_CTRL_8192E+2, rtw_read8(Adapter, REG_DWBCN1_CTRL_8192E+2) & ~BIT4); */
rtw_hal_set_hwreg(padapter, HW_VAR_DL_BCN_SEL, NULL);
/* select BCN on port 0 */
rtw_write8(padapter, REG_CCK_CHECK_8188F,
(rtw_read8(padapter, REG_CCK_CHECK_8188F) & ~BIT_BCN_PORT_SEL));
#ifdef CONFIG_CONCURRENT_MODE
if (!rtw_mi_buddy_check_mlmeinfo_state(padapter, WIFI_FW_ASSOC_SUCCESS)) {
val8 = rtw_read8(padapter, REG_BCN_CTRL_1);
val8 &= ~EN_BCN_FUNCTION;
rtw_write8(padapter, REG_BCN_CTRL_1, val8);
}
#endif /* CONFIG_CONCURRENT_MODE */
/* dis BCN1 ATIM WND if if2 is station */
val8 = rtw_read8(padapter, REG_BCN_CTRL_1);
val8 |= DIS_ATIM;
rtw_write8(padapter, REG_BCN_CTRL_1, val8);
#ifdef CONFIG_TSF_RESET_OFFLOAD
/* Reset TSF for STA+AP concurrent mode */
if (DEV_STA_LD_NUM(adapter_to_dvobj(padapter))) {
if (rtw_hal_reset_tsf(padapter, HW_PORT0) == _FAIL)
RTW_INFO("ERROR! %s()-%d: Reset port0 TSF fail\n",
__func__, __LINE__);
}
#endif /* CONFIG_TSF_RESET_OFFLOAD */
}
#endif
}
}
void CCX_FwC2HTxRpt_8188f(PADAPTER padapter, u8 *pdata, u8 len)
{
u8 seq_no;
#define GET_8188F_C2H_TX_RPT_LIFE_TIME_OVER(_Header) LE_BITS_TO_1BYTE((_Header + 0), 6, 1)
#define GET_8188F_C2H_TX_RPT_RETRY_OVER(_Header) LE_BITS_TO_1BYTE((_Header + 0), 7, 1)
/*RTW_INFO("%s, 0x%x, 0x%x, 0x%x, 0x%x, 0x%x, 0x%x, 0x%x, 0x%x\n", __func__, */
/* *pdata, *(pdata+1), *(pdata+2), *(pdata+3), *(pdata+4), *(pdata+5), *(pdata+6), *(pdata+7)); */
seq_no = *(pdata + 6);
#ifdef CONFIG_XMIT_ACK
if (GET_8188F_C2H_TX_RPT_RETRY_OVER(pdata) | GET_8188F_C2H_TX_RPT_LIFE_TIME_OVER(pdata))
rtw_ack_tx_done(&padapter->xmitpriv, RTW_SCTX_DONE_CCX_PKT_FAIL);
/*
else if(seq_no != padapter->xmitpriv.seq_no) {
RTW_INFO("tx_seq_no=%d, rpt_seq_no=%d\n", padapter->xmitpriv.seq_no, seq_no);
rtw_ack_tx_done(&padapter->xmitpriv, RTW_SCTX_DONE_CCX_PKT_FAIL);
}
*/
else
rtw_ack_tx_done(&padapter->xmitpriv, RTW_SCTX_DONE_SUCCESS);
#endif
}
static s32 c2h_handler_8188f(_adapter *adapter, u8 id, u8 seq, u8 plen, u8 *payload)
{
s32 ret = _SUCCESS;
switch (id) {
case C2H_CCX_TX_RPT:
CCX_FwC2HTxRpt_8188f(adapter, payload, plen);
break;
default:
ret = _FAIL;
break;
}
return ret;
}
void rtl8188f_set_pll_ref_clk_sel(_adapter *adapter, u8 sel)
{
u8 value8;
value8 = rtw_read8(adapter, REG_MAC_PLL_CTRL_EXT_8188F);
if ((value8 & 0x0F) != (sel & 0x0F)) {
u16 value16;
u8 ori_bit_wlock_2c;
value16 = rtw_read16(adapter, REG_RSV_CTRL_8188F);
ori_bit_wlock_2c = (value16 & BIT8) ? 1 : 0;
if (ori_bit_wlock_2c) {
value16 &= ~BIT8;
rtw_write16(adapter, REG_RSV_CTRL_8188F, value16);
}
RTW_PRINT("switch pll_ref_clk_sel from 0x%x to 0x%x\n"
, (value8 & 0x0F), (sel & 0x0F));
value8 = (value8 & 0xF0) | (sel & 0x0F);
rtw_write8(adapter, REG_MAC_PLL_CTRL_EXT_8188F, value8);
if (ori_bit_wlock_2c) {
value16 |= BIT8;
rtw_write16(adapter, REG_RSV_CTRL_8188F, value16);
}
}
}
u8 SetHwReg8188F(PADAPTER padapter, u8 variable, u8 *val)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
u8 ret = _SUCCESS;
u8 val8;
u16 val16;
u32 val32;
switch (variable) {
case HW_VAR_SET_OPMODE:
hw_var_set_opmode(padapter, variable, val);
break;
case HW_VAR_BASIC_RATE:
rtw_var_set_basic_rate(padapter, val);
break;
case HW_VAR_TXPAUSE:
rtw_write8(padapter, REG_TXPAUSE, *val);
break;
case HW_VAR_SLOT_TIME:
rtw_write8(padapter, REG_SLOT, *val);
break;
case HW_VAR_RESP_SIFS:
#if 0
/* SIFS for OFDM Data ACK */
rtw_write8(padapter, REG_SIFS_CTX + 1, val[0]);
/* SIFS for OFDM consecutive tx like CTS data! */
rtw_write8(padapter, REG_SIFS_TRX + 1, val[1]);
rtw_write8(padapter, REG_SPEC_SIFS + 1, val[0]);
rtw_write8(padapter, REG_MAC_SPEC_SIFS + 1, val[0]);
/* 20100719 Joseph: Revise SIFS setting due to Hardware register definition change. */
rtw_write8(padapter, REG_R2T_SIFS + 1, val[0]);
rtw_write8(padapter, REG_T2T_SIFS + 1, val[0]);
#else
/*SIFS_Timer = 0x0a0a0808; */
/*RESP_SIFS for CCK */
rtw_write8(padapter, REG_RESP_SIFS_CCK, val[0]); /* SIFS_T2T_CCK (0x08) */
rtw_write8(padapter, REG_RESP_SIFS_CCK + 1, val[1]); /*SIFS_R2T_CCK(0x08) */
/*RESP_SIFS for OFDM */
rtw_write8(padapter, REG_RESP_SIFS_OFDM, val[2]); /*SIFS_T2T_OFDM (0x0a) */
rtw_write8(padapter, REG_RESP_SIFS_OFDM + 1, val[3]); /*SIFS_R2T_OFDM(0x0a) */
#endif
break;
case HW_VAR_ACK_PREAMBLE: {
u8 regTmp;
u8 bShortPreamble = *val;
/* Joseph marked out for Netgear 3500 TKIP channel 7 issue.(Temporarily) */
/*regTmp = (pHalData->nCur40MhzPrimeSC)<<5; */
regTmp = 0;
if (bShortPreamble)
regTmp |= 0x80;
rtw_write8(padapter, REG_RRSR + 2, regTmp);
}
break;
case HW_VAR_CAM_INVALID_ALL:
rtw_write32(padapter, REG_CAMCMD, BIT(31) | BIT(30));
break;
case HW_VAR_AC_PARAM_VO:
rtw_write32(padapter, REG_EDCA_VO_PARAM, *((u32 *)val));
break;
case HW_VAR_AC_PARAM_VI:
rtw_write32(padapter, REG_EDCA_VI_PARAM, *((u32 *)val));
break;
case HW_VAR_AC_PARAM_BE:
pHalData->ac_param_be = ((u32 *)(val))[0];
rtw_write32(padapter, REG_EDCA_BE_PARAM, *((u32 *)val));
break;
case HW_VAR_AC_PARAM_BK:
rtw_write32(padapter, REG_EDCA_BK_PARAM, *((u32 *)val));
break;
case HW_VAR_ACM_CTRL: {
u8 ctrl = *((u8 *)val);
u8 hwctrl = 0;
if (ctrl != 0) {
hwctrl |= AcmHw_HwEn;
if (ctrl & BIT(3)) /* BE */
hwctrl |= AcmHw_BeqEn;
if (ctrl & BIT(2)) /* VI */
hwctrl |= AcmHw_ViqEn;
if (ctrl & BIT(1)) /* VO */
hwctrl |= AcmHw_VoqEn;
}
RTW_INFO("[HW_VAR_ACM_CTRL] Write 0x%02X\n", hwctrl);
rtw_write8(padapter, REG_ACMHWCTRL, hwctrl);
}
break;
#ifdef CONFIG_80211N_HT
case HW_VAR_AMPDU_FACTOR: {
u32 AMPDULen = (*((u8 *)val));
if (AMPDULen < HT_AGG_SIZE_32K)
AMPDULen = (0x2000 << (*((u8 *)val))) - 1;
else
AMPDULen = 0x7fff;
rtw_write32(padapter, REG_AMPDU_MAX_LENGTH_8188F, AMPDULen);
}
break;
#endif /* CONFIG_80211N_HT */
case HW_VAR_H2C_FW_PWRMODE: {
u8 psmode = *val;
/*if (psmode != PS_MODE_ACTIVE) { */
/* rtl8188f_set_lowpwr_lps_cmd(padapter, _TRUE); */
/*} else { */
/* rtl8188f_set_lowpwr_lps_cmd(padapter, _FALSE); */
/*} */
rtl8188f_set_FwPwrMode_cmd(padapter, psmode);
}
break;
case HW_VAR_H2C_PS_TUNE_PARAM:
rtl8188f_set_FwPsTuneParam_cmd(padapter);
break;
case HW_VAR_H2C_FW_JOINBSSRPT:
rtl8188f_set_FwJoinBssRpt_cmd(padapter, *val);
break;
case HW_VAR_DL_RSVD_PAGE:
#ifdef CONFIG_BT_COEXIST
if (check_fwstate(&padapter->mlmepriv, WIFI_AP_STATE) == _TRUE)
rtl8188f_download_BTCoex_AP_mode_rsvd_page(padapter);
else
#endif /* CONFIG_BT_COEXIST */
{
rtl8188f_download_rsvd_page(padapter, RT_MEDIA_CONNECT);
}
break;
#ifdef CONFIG_P2P
case HW_VAR_H2C_FW_P2P_PS_OFFLOAD:
rtl8188f_set_p2p_ps_offload_cmd(padapter, *val);
break;
#endif /*CONFIG_P2P */
case HW_VAR_EFUSE_USAGE:
pHalData->EfuseUsedPercentage = *val;
break;
case HW_VAR_EFUSE_BYTES:
pHalData->EfuseUsedBytes = *((u16 *)val);
break;
case HW_VAR_EFUSE_BT_USAGE:
#ifdef HAL_EFUSE_MEMORY
pHalData->EfuseHal.BTEfuseUsedPercentage = *val;
#endif
break;
case HW_VAR_EFUSE_BT_BYTES:
#ifdef HAL_EFUSE_MEMORY
pHalData->EfuseHal.BTEfuseUsedBytes = *((u16 *)val);
#else
BTEfuseUsedBytes = *((u16 *)val);
#endif
break;
case HW_VAR_FIFO_CLEARN_UP: {
#define RW_RELEASE_EN BIT(18)
#define RXDMA_IDLE BIT(17)
struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(padapter);
u8 trycnt = 100;
/* pause tx */
rtw_write8(padapter, REG_TXPAUSE, 0xff);
/* keep sn */
padapter->xmitpriv.nqos_ssn = rtw_read16(padapter, REG_NQOS_SEQ);
if (pwrpriv->bkeepfwalive != _TRUE) {
/* RX DMA stop */
val32 = rtw_read32(padapter, REG_RXPKT_NUM);
val32 |= RW_RELEASE_EN;
rtw_write32(padapter, REG_RXPKT_NUM, val32);
do {
val32 = rtw_read32(padapter, REG_RXPKT_NUM);
val32 &= RXDMA_IDLE;
if (val32)
break;
RTW_INFO("%s: [HW_VAR_FIFO_CLEARN_UP] val=%x times:%d\n", __func__, val32, trycnt);
} while (--trycnt);
if (trycnt == 0)
RTW_INFO("[HW_VAR_FIFO_CLEARN_UP] Stop RX DMA failed......\n");
/* RQPN Load 0 */
rtw_write16(padapter, REG_RQPN_NPQ, 0);
rtw_write32(padapter, REG_RQPN, 0x80000000);
rtw_mdelay_os(2);
}
}
break;
case HW_VAR_RESTORE_HW_SEQ:
/* restore Sequence No. */
rtw_write8(padapter, 0x4dc, padapter->xmitpriv.nqos_ssn);
break;
#ifdef CONFIG_CONCURRENT_MODE
case HW_VAR_CHECK_TXBUF: {
u32 i;
u8 RetryLimit = 0x01;
u32 reg_200, reg_204;
val16 = BIT_SRL(RetryLimit) | BIT_LRL(RetryLimit);
rtw_write16(padapter, REG_RETRY_LIMIT, val16);
for (i = 0; i < 200; i++) { /* polling 200x10=2000 msec */
reg_200 = rtw_read32(padapter, 0x200);
reg_204 = rtw_read32(padapter, 0x204);
if (reg_200 != reg_204) {
/*RTW_INFO("packet in tx packet buffer - 0x204=%x, 0x200=%x (%d)\n", rtw_read32(padapter, 0x204), rtw_read32(padapter, 0x200), i); */
rtw_msleep_os(10);
} else {
RTW_INFO("[HW_VAR_CHECK_TXBUF] no packet in tx packet buffer (%d)\n", i);
break;
}
}
if (reg_200 != reg_204)
RTW_INFO("packets in tx buffer - 0x204=%x, 0x200=%x\n", reg_204, reg_200);
RetryLimit = RL_VAL_STA;
val16 = BIT_SRL(RetryLimit) | BIT_LRL(RetryLimit);
rtw_write16(padapter, REG_RETRY_LIMIT, val16);
}
break;
#endif /* CONFIG_CONCURRENT_MODE */
case HW_VAR_NAV_UPPER: {
u32 usNavUpper = *((u32 *)val);
if (usNavUpper > HAL_NAV_UPPER_UNIT_8188F * 0xFF) {
break;
}
/* The value of ((usNavUpper + HAL_NAV_UPPER_UNIT_8188F - 1) / HAL_NAV_UPPER_UNIT_8188F) */
/* is getting the upper integer. */
usNavUpper = (usNavUpper + HAL_NAV_UPPER_UNIT_8188F - 1) / HAL_NAV_UPPER_UNIT_8188F;
rtw_write8(padapter, REG_NAV_UPPER, (u8)usNavUpper);
}
break;
case HW_VAR_BCN_VALID:
#ifdef CONFIG_CONCURRENT_MODE
if (padapter->hw_port == HW_PORT1) {
val8 = rtw_read8(padapter, REG_DWBCN1_CTRL_8188F + 2);
val8 |= BIT(0);
rtw_write8(padapter, REG_DWBCN1_CTRL_8188F + 2, val8);
} else
#endif /* CONFIG_CONCURRENT_MODE */
{
/* BCN_VALID, BIT16 of REG_TDECTRL = BIT0 of REG_TDECTRL+2, write 1 to clear, Clear by sw */
val8 = rtw_read8(padapter, REG_TDECTRL + 2);
val8 |= BIT(0);
rtw_write8(padapter, REG_TDECTRL + 2, val8);
}
break;
case HW_VAR_DL_BCN_SEL:
#ifdef CONFIG_CONCURRENT_MODE
if (padapter->hw_port == HW_PORT1) {
/* SW_BCN_SEL - Port1 */
val8 = rtw_read8(padapter, REG_DWBCN1_CTRL_8188F + 2);
val8 |= BIT(4);
rtw_write8(padapter, REG_DWBCN1_CTRL_8188F + 2, val8);
} else
#endif /* CONFIG_CONCURRENT_MODE */
{
/* SW_BCN_SEL - Port0 */
val8 = rtw_read8(padapter, REG_DWBCN1_CTRL_8188F + 2);
val8 &= ~BIT(4);
rtw_write8(padapter, REG_DWBCN1_CTRL_8188F + 2, val8);
}
break;
#ifdef CONFIG_GPIO_WAKEUP
case HW_SET_GPIO_WL_CTRL: {
u8 enable = *val;
u8 value = rtw_read8(padapter, 0x4e);
if (enable && (value & BIT(6))) {
value &= ~BIT(6);
rtw_write8(padapter, 0x4e, value);
} else if (enable == _FALSE) {
value |= BIT(6);
rtw_write8(padapter, 0x4e, value);
}
RTW_INFO("%s: set WL control, 0x4E=0x%02X\n",
__func__, rtw_read8(padapter, 0x4e));
}
break;
#endif
#if defined(CONFIG_TDLS) && defined(CONFIG_TDLS_CH_SW)
case HW_VAR_TDLS_BCN_EARLY_C2H_RPT:
rtl8188f_set_BcnEarly_C2H_Rpt_cmd(padapter, *val);
break;
#endif
default:
ret = SetHwReg(padapter, variable, val);
break;
}
return ret;
}
struct qinfo_8188f {
u32 head:8;
u32 pkt_num:7;
u32 tail:8;
u32 ac:2;
u32 macid:7;
};
struct bcn_qinfo_8188f {
u16 head:8;
u16 pkt_num:8;
};
void dump_qinfo_8188f(void *sel, struct qinfo_8188f *info, const char *tag)
{
/*if (info->pkt_num) */
RTW_PRINT_SEL(sel, "%shead:0x%02x, tail:0x%02x, pkt_num:%u, macid:%u, ac:%u\n"
, tag ? tag : "", info->head, info->tail, info->pkt_num, info->macid, info->ac
);
}
void dump_bcn_qinfo_8188f(void *sel, struct bcn_qinfo_8188f *info, const char *tag)
{
/*if (info->pkt_num) */
RTW_PRINT_SEL(sel, "%shead:0x%02x, pkt_num:%u\n"
, tag ? tag : "", info->head, info->pkt_num
);
}
void dump_mac_qinfo_8188f(void *sel, _adapter *adapter)
{
u32 q0_info;
u32 q1_info;
u32 q2_info;
u32 q3_info;
u32 q4_info;
u32 q5_info;
u32 q6_info;
u32 q7_info;
u32 mg_q_info;
u32 hi_q_info;
u16 bcn_q_info;
q0_info = rtw_read32(adapter, REG_Q0_INFO);
q1_info = rtw_read32(adapter, REG_Q1_INFO);
q2_info = rtw_read32(adapter, REG_Q2_INFO);
q3_info = rtw_read32(adapter, REG_Q3_INFO);
q4_info = rtw_read32(adapter, REG_Q4_INFO);
q5_info = rtw_read32(adapter, REG_Q5_INFO);
q6_info = rtw_read32(adapter, REG_Q6_INFO);
q7_info = rtw_read32(adapter, REG_Q7_INFO);
mg_q_info = rtw_read32(adapter, REG_MGQ_INFO);
hi_q_info = rtw_read32(adapter, REG_HGQ_INFO);
bcn_q_info = rtw_read16(adapter, REG_BCNQ_INFO);
dump_qinfo_8188f(sel, (struct qinfo_8188f *)&q0_info, "Q0 ");
dump_qinfo_8188f(sel, (struct qinfo_8188f *)&q1_info, "Q1 ");
dump_qinfo_8188f(sel, (struct qinfo_8188f *)&q2_info, "Q2 ");
dump_qinfo_8188f(sel, (struct qinfo_8188f *)&q3_info, "Q3 ");
dump_qinfo_8188f(sel, (struct qinfo_8188f *)&q4_info, "Q4 ");
dump_qinfo_8188f(sel, (struct qinfo_8188f *)&q5_info, "Q5 ");
dump_qinfo_8188f(sel, (struct qinfo_8188f *)&q6_info, "Q6 ");
dump_qinfo_8188f(sel, (struct qinfo_8188f *)&q7_info, "Q7 ");
dump_qinfo_8188f(sel, (struct qinfo_8188f *)&mg_q_info, "MG ");
dump_qinfo_8188f(sel, (struct qinfo_8188f *)&hi_q_info, "HI ");
dump_bcn_qinfo_8188f(sel, (struct bcn_qinfo_8188f *)&bcn_q_info, "BCN ");
}
static void dump_mac_txfifo_8188f(void *sel, _adapter *adapter)
{
u32 rqpn, rqpn_npq;
u32 hpq, lpq, npq, epq, pubq;
rqpn = rtw_read32(adapter, REG_FIFOPAGE);
rqpn_npq = rtw_read32(adapter, REG_RQPN_NPQ);
hpq = (rqpn & 0xFF);
lpq = ((rqpn & 0xFF00)>>8);
pubq = ((rqpn & 0xFF0000)>>16);
npq = ((rqpn_npq & 0xFF00)>>8);
epq = ((rqpn_npq & 0xFF000000)>>24);
RTW_PRINT_SEL(sel, "Tx: available page num: ");
if ((hpq == 0xEA) && (hpq == lpq) && (hpq == pubq))
RTW_PRINT_SEL(sel, "N/A (reg val = 0xea)\n");
else
RTW_PRINT_SEL(sel, "HPQ: %d, LPQ: %d, NPQ: %d, EPQ: %d, PUBQ: %d\n"
, hpq, lpq, npq, epq, pubq);
}
void rtl8188f_read_wmmedca_reg(PADAPTER adapter, u16 *vo_params, u16 *vi_params, u16 *be_params, u16 *bk_params)
{
u8 vo_reg_params[4];
u8 vi_reg_params[4];
u8 be_reg_params[4];
u8 bk_reg_params[4];
GetHwReg8188F(adapter, HW_VAR_AC_PARAM_VO, vo_reg_params);
GetHwReg8188F(adapter, HW_VAR_AC_PARAM_VI, vi_reg_params);
GetHwReg8188F(adapter, HW_VAR_AC_PARAM_BE, be_reg_params);
GetHwReg8188F(adapter, HW_VAR_AC_PARAM_BK, bk_reg_params);
vo_params[0] = vo_reg_params[0];
vo_params[1] = vo_reg_params[1] & 0x0F;
vo_params[2] = (vo_reg_params[1] & 0xF0) >> 4;
vo_params[3] = ((vo_reg_params[3] << 8) | (vo_reg_params[2])) * 32;
vi_params[0] = vi_reg_params[0];
vi_params[1] = vi_reg_params[1] & 0x0F;
vi_params[2] = (vi_reg_params[1] & 0xF0) >> 4;
vi_params[3] = ((vi_reg_params[3] << 8) | (vi_reg_params[2])) * 32;
be_params[0] = be_reg_params[0];
be_params[1] = be_reg_params[1] & 0x0F;
be_params[2] = (be_reg_params[1] & 0xF0) >> 4;
be_params[3] = ((be_reg_params[3] << 8) | (be_reg_params[2])) * 32;
bk_params[0] = bk_reg_params[0];
bk_params[1] = bk_reg_params[1] & 0x0F;
bk_params[2] = (bk_reg_params[1] & 0xF0) >> 4;
bk_params[3] = ((bk_reg_params[3] << 8) | (bk_reg_params[2])) * 32;
vo_params[1] = (1 << vo_params[1]) - 1;
vo_params[2] = (1 << vo_params[2]) - 1;
vi_params[1] = (1 << vi_params[1]) - 1;
vi_params[2] = (1 << vi_params[2]) - 1;
be_params[1] = (1 << be_params[1]) - 1;
be_params[2] = (1 << be_params[2]) - 1;
bk_params[1] = (1 << bk_params[1]) - 1;
bk_params[2] = (1 << bk_params[2]) - 1;
}
void GetHwReg8188F(PADAPTER padapter, u8 variable, u8 *val)
{
PHAL_DATA_TYPE pHalData = GET_HAL_DATA(padapter);
u8 val8;
u16 val16;
u32 val32;
switch (variable) {
case HW_VAR_TXPAUSE:
*val = rtw_read8(padapter, REG_TXPAUSE);
break;
case HW_VAR_BCN_VALID:
#ifdef CONFIG_CONCURRENT_MODE
if (padapter->hw_port == HW_PORT1) {
val8 = rtw_read8(padapter, REG_DWBCN1_CTRL_8188F + 2);
*val = (BIT(0) & val8) ? _TRUE : _FALSE;
} else
#endif
{
/* BCN_VALID, BIT16 of REG_TDECTRL = BIT0 of REG_TDECTRL+2 */
val8 = rtw_read8(padapter, REG_TDECTRL + 2);
*val = (BIT(0) & val8) ? _TRUE : _FALSE;
}
break;
case HW_VAR_AC_PARAM_VO:
val32 = rtw_read32(padapter, REG_EDCA_VO_PARAM);
val[0] = val32 & 0xFF;
val[1] = (val32 >> 8) & 0xFF;
val[2] = (val32 >> 16) & 0xFF;
val[3] = (val32 >> 24) & 0x07;
break;
case HW_VAR_AC_PARAM_VI:
val32 = rtw_read32(padapter, REG_EDCA_VI_PARAM);
val[0] = val32 & 0xFF;
val[1] = (val32 >> 8) & 0xFF;
val[2] = (val32 >> 16) & 0xFF;
val[3] = (val32 >> 24) & 0x07;
break;
case HW_VAR_AC_PARAM_BE:
val32 = rtw_read32(padapter, REG_EDCA_BE_PARAM);
val[0] = val32 & 0xFF;
val[1] = (val32 >> 8) & 0xFF;
val[2] = (val32 >> 16) & 0xFF;
val[3] = (val32 >> 24) & 0x07;
break;
case HW_VAR_AC_PARAM_BK:
val32 = rtw_read32(padapter, REG_EDCA_BK_PARAM);
val[0] = val32 & 0xFF;
val[1] = (val32 >> 8) & 0xFF;
val[2] = (val32 >> 16) & 0xFF;
val[3] = (val32 >> 24) & 0x07;
break;
case HW_VAR_EFUSE_USAGE:
*val = pHalData->EfuseUsedPercentage;
break;
case HW_VAR_EFUSE_BYTES:
*((u16 *)val) = pHalData->EfuseUsedBytes;
break;
case HW_VAR_EFUSE_BT_USAGE:
#ifdef HAL_EFUSE_MEMORY
*val = pHalData->EfuseHal.BTEfuseUsedPercentage;
#endif
break;
case HW_VAR_EFUSE_BT_BYTES:
#ifdef HAL_EFUSE_MEMORY
*((u16 *)val) = pHalData->EfuseHal.BTEfuseUsedBytes;
#else
*((u16 *)val) = BTEfuseUsedBytes;
#endif
break;
case HW_VAR_CHK_HI_QUEUE_EMPTY:
val16 = rtw_read16(padapter, REG_TXPKT_EMPTY);
*val = (val16 & BIT(10)) ? _TRUE : _FALSE;
break;
case HW_VAR_CHK_MGQ_CPU_EMPTY:
val16 = rtw_read16(padapter, REG_TXPKT_EMPTY);
*val = (val16 & BIT(8)) ? _TRUE : _FALSE;
break;
#ifdef CONFIG_WOWLAN
case HW_VAR_RPWM_TOG:
*val = rtw_read8(padapter, SDIO_LOCAL_BASE | SDIO_REG_HRPWM1) & BIT7;
break;
case HW_VAR_WAKEUP_REASON:
*val = rtw_read8(padapter, REG_WOWLAN_WAKE_REASON);
if (*val == 0xEA)
*val = 0;
break;
case HW_VAR_SYS_CLKR:
*val = rtw_read8(padapter, REG_SYS_CLKR);
break;
#endif
case HW_VAR_DUMP_MAC_QUEUE_INFO:
dump_mac_qinfo_8188f(val, padapter);
break;
case HW_VAR_DUMP_MAC_TXFIFO:
dump_mac_txfifo_8188f(val, padapter);
break;
default:
GetHwReg(padapter, variable, val);
break;
}
}
/*
* Description:
* Change default setting of specified variable.
*/
u8 SetHalDefVar8188F(PADAPTER padapter, HAL_DEF_VARIABLE variable, void *pval)
{
PHAL_DATA_TYPE pHalData;
u8 bResult;
pHalData = GET_HAL_DATA(padapter);
bResult = _SUCCESS;
switch (variable) {
default:
bResult = SetHalDefVar(padapter, variable, pval);
break;
}
return bResult;
}
void hal_ra_info_dump(_adapter *padapter , void *sel)
{
int i;
u8 mac_id;
u32 cmd;
u32 ra_info1, ra_info2, bw_set;
u32 rate_mask1, rate_mask2;
u8 curr_tx_rate, curr_tx_sgi, hight_rate, lowest_rate;
HAL_DATA_TYPE *HalData = GET_HAL_DATA(padapter);
struct dvobj_priv *dvobj = adapter_to_dvobj(padapter);
struct macid_ctl_t *macid_ctl = dvobj_to_macidctl(dvobj);
for (i = 0; i < macid_ctl->num; i++) {
if (rtw_macid_is_used(macid_ctl, i) && !rtw_macid_is_bmc(macid_ctl, i)) {
mac_id = (u8) i;
_RTW_PRINT_SEL(sel , "============ RA status check Mac_id:%d ===================\n", mac_id);
cmd = 0x40000100 | mac_id;
rtw_write32(padapter, REG_HMEBOX_DBG_2_8188F, cmd);
rtw_msleep_os(10);
ra_info1 = rtw_read32(padapter, 0x2F0);
curr_tx_sgi = rtw_get_current_tx_sgi(padapter, macid_ctl->sta[mac_id]);
curr_tx_rate = rtw_get_current_tx_rate(padapter, macid_ctl->sta[mac_id]);
_RTW_PRINT_SEL(sel , "[ ra_info1:0x%08x ] =>cur_tx_rate= %s,cur_sgi:%d\n" , ra_info1 , HDATA_RATE(curr_tx_rate), curr_tx_sgi);
_RTW_PRINT_SEL(sel , "[ ra_info1:0x%08x ] => PWRSTS = 0x%02x\n", ra_info1, (ra_info1 >> 8) & 0x07);
cmd = 0x40000400 | mac_id;
rtw_write32(padapter, REG_HMEBOX_DBG_2_8188F, cmd);
rtw_msleep_os(10);
ra_info1 = rtw_read32(padapter, 0x2F0);
ra_info2 = rtw_read32(padapter, 0x2F4);
rate_mask1 = rtw_read32(padapter, 0x2F8);
rate_mask2 = rtw_read32(padapter, 0x2FC);
hight_rate = ra_info2 & 0xFF;
lowest_rate = (ra_info2 >> 8) & 0xFF;
bw_set = (ra_info1 >> 8) & 0xFF;
_RTW_PRINT_SEL(sel , "[ ra_info1:0x%08x ] => VHT_EN=0x%02x, ", ra_info1, (ra_info1 >> 24) & 0xFF);
switch (bw_set) {
case CHANNEL_WIDTH_20:
_RTW_PRINT_SEL(sel , "BW_setting=20M\n");
break;
case CHANNEL_WIDTH_40:
_RTW_PRINT_SEL(sel , "BW_setting=40M\n");
break;
case CHANNEL_WIDTH_80:
_RTW_PRINT_SEL(sel , "BW_setting=80M\n");
break;
case CHANNEL_WIDTH_160:
_RTW_PRINT_SEL(sel , "BW_setting=160M\n");
break;
default:
_RTW_PRINT_SEL(sel , "BW_setting=0x%02x\n", bw_set);
break;
}
_RTW_PRINT_SEL(sel , "[ ra_info1:0x%08x ] =>RSSI=%d, DISRA=0x%02x\n",
ra_info1,
ra_info1 & 0xFF,
(ra_info1 >> 16) & 0xFF);
_RTW_PRINT_SEL(sel , "[ ra_info2:0x%08x ] =>hight_rate=%s, lowest_rate=%s, SGI=0x%02x, RateID=%d\n",
ra_info2,
HDATA_RATE(hight_rate),
HDATA_RATE(lowest_rate),
(ra_info2 >> 16) & 0xFF,
(ra_info2 >> 24) & 0xFF);
_RTW_PRINT_SEL(sel , "rate_mask2=0x%08x, rate_mask1=0x%08x\n", rate_mask2, rate_mask1);
}
}
}
/*
* Description:
* Query setting of specified variable.
*/
u8 GetHalDefVar8188F(PADAPTER padapter, HAL_DEF_VARIABLE variable, void *pval)
{
PHAL_DATA_TYPE pHalData;
u8 bResult;
pHalData = GET_HAL_DATA(padapter);
bResult = _SUCCESS;
switch (variable) {
case HAL_DEF_MAX_RECVBUF_SZ:
*((u32 *)pval) = MAX_RECVBUF_SZ;
break;
case HAL_DEF_RX_PACKET_OFFSET:
*((u32 *)pval) = RXDESC_SIZE + DRVINFO_SZ * 8;
break;
case HW_VAR_MAX_RX_AMPDU_FACTOR:
/* Stanley@BB.SD3 suggests 16K can get stable performance */
/* The experiment was done on SDIO interface */
/* coding by Lucas@20130730 */
*(HT_CAP_AMPDU_FACTOR *)pval = MAX_AMPDU_FACTOR_16K;
break;
case HW_VAR_BEST_AMPDU_DENSITY:
*((u32 *)pval) = AMPDU_DENSITY_VALUE_7;
break;
case HAL_DEF_TX_LDPC:
case HAL_DEF_RX_LDPC:
*((u8 *)pval) = _FALSE;
break;
case HAL_DEF_TX_STBC:
*((u8 *)pval) = 0;
break;
case HAL_DEF_RX_STBC:
*((u8 *)pval) = 1;
break;
case HAL_DEF_EXPLICIT_BEAMFORMER:
case HAL_DEF_EXPLICIT_BEAMFORMEE:
*((u8 *)pval) = _FALSE;
break;
case HW_DEF_RA_INFO_DUMP:
hal_ra_info_dump(padapter, pval);
break;
case HAL_DEF_TX_PAGE_BOUNDARY:
if (!padapter->registrypriv.wifi_spec)
*(u8 *)pval = TX_PAGE_BOUNDARY_8188F;
else
*(u8 *)pval = WMM_NORMAL_TX_PAGE_BOUNDARY_8188F;
break;
case HAL_DEF_TX_PAGE_SIZE:
*((u32 *)pval) = PAGE_SIZE_128;
break;
case HAL_DEF_RX_DMA_SZ_WOW:
*(u32 *)pval = RX_DMA_SIZE_8188F - RESV_FMWF;
break;
case HAL_DEF_RX_DMA_SZ:
*(u32 *)pval = RX_DMA_BOUNDARY_8188F + 1;
break;
case HAL_DEF_RX_PAGE_SIZE:
*((u32 *)pval) = 8;
break;
default:
bResult = GetHalDefVar(padapter, variable, pval);
break;
}
return bResult;
}
#ifdef CONFIG_WOWLAN
void Hal_DetectWoWMode(PADAPTER pAdapter)
{
adapter_to_pwrctl(pAdapter)->bSupportRemoteWakeup = _TRUE;
RTW_INFO("%s\n", __func__);
}
#endif /*CONFIG_WOWLAN */
void rtl8188f_start_thread(_adapter *padapter)
{
#if (defined CONFIG_SDIO_HCI) || (defined CONFIG_GSPI_HCI)
#ifndef CONFIG_SDIO_TX_TASKLET
struct xmit_priv *xmitpriv = &padapter->xmitpriv;
if (xmitpriv->SdioXmitThread == NULL) {
RTW_INFO(FUNC_ADPT_FMT " start RTWHALXT\n", FUNC_ADPT_ARG(padapter));
xmitpriv->SdioXmitThread = kthread_run(rtl8188fs_xmit_thread, padapter, "RTWHALXT");
if (IS_ERR(xmitpriv->SdioXmitThread)) {
RTW_ERR("%s: start rtl8188fs_xmit_thread FAIL!!\n", __func__);
xmitpriv->SdioXmitThread = NULL;
}
}
#endif
#endif
}
void rtl8188f_stop_thread(_adapter *padapter)
{
#if (defined CONFIG_SDIO_HCI) || (defined CONFIG_GSPI_HCI)
#ifndef CONFIG_SDIO_TX_TASKLET
struct xmit_priv *xmitpriv = &padapter->xmitpriv;
/* stop xmit_buf_thread */
if (xmitpriv->SdioXmitThread) {
_rtw_up_sema(&xmitpriv->SdioXmitSema);
#ifdef SDIO_FREE_XMIT_BUF_SEMA
rtw_sdio_free_xmitbuf_sema_up(xmitpriv);
rtw_sdio_free_xmitbuf_sema_down(xmitpriv);
#endif
rtw_thread_stop(xmitpriv->SdioXmitThread);
xmitpriv->SdioXmitThread = NULL;
}
#endif
#endif
}
#if defined(CONFIG_CHECK_BT_HANG) && defined(CONFIG_BT_COEXIST)
extern void check_bt_status_work(void *data);
void rtl8188fs_init_checkbthang_workqueue(_adapter *adapter)
{
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 37))
adapter->priv_checkbt_wq = alloc_workqueue("sdio_wq", 0, 0);
#else
adapter->priv_checkbt_wq = create_workqueue("sdio_wq");
#endif
INIT_DELAYED_WORK(&adapter->checkbt_work, (void *)check_bt_status_work);
}
void rtl8188fs_free_checkbthang_workqueue(_adapter *adapter)
{
if (adapter->priv_checkbt_wq) {
cancel_delayed_work_sync(&adapter->checkbt_work);
flush_workqueue(adapter->priv_checkbt_wq);
destroy_workqueue(adapter->priv_checkbt_wq);
adapter->priv_checkbt_wq = NULL;
}
}
void rtl8188fs_cancle_checkbthang_workqueue(_adapter *adapter)
{
if (adapter->priv_checkbt_wq)
cancel_delayed_work_sync(&adapter->checkbt_work);
}
void rtl8188fs_hal_check_bt_hang(_adapter *adapter)
{
if (adapter->priv_checkbt_wq)
queue_delayed_work(adapter->priv_checkbt_wq, &(adapter->checkbt_work), 0);
}
#endif
void rtl8188f_set_hal_ops(struct hal_ops *pHalFunc)
{
pHalFunc->dm_init = &rtl8188f_init_dm_priv;
pHalFunc->dm_deinit = &rtl8188f_deinit_dm_priv;
pHalFunc->read_chip_version = &rtl8188f_read_chip_version;
pHalFunc->set_chnl_bw_handler = &PHY_SetSwChnlBWMode8188F;
pHalFunc->set_tx_power_level_handler = &PHY_SetTxPowerLevel8188F;
pHalFunc->set_tx_power_index_handler = PHY_SetTxPowerIndex_8188F;
pHalFunc->get_tx_power_index_handler = &PHY_GetTxPowerIndex_8188F;
pHalFunc->hal_dm_watchdog = &rtl8188f_HalDmWatchDog;
pHalFunc->SetBeaconRelatedRegistersHandler = &rtl8188f_SetBeaconRelatedRegisters;
pHalFunc->run_thread = &rtl8188f_start_thread;
pHalFunc->cancel_thread = &rtl8188f_stop_thread;
pHalFunc->read_bbreg = &PHY_QueryBBReg_8188F;
pHalFunc->write_bbreg = &PHY_SetBBReg_8188F;
pHalFunc->read_rfreg = &PHY_QueryRFReg_8188F;
pHalFunc->write_rfreg = &PHY_SetRFReg_8188F;
pHalFunc->read_wmmedca_reg = &rtl8188f_read_wmmedca_reg;
/* Efuse related function */
pHalFunc->BTEfusePowerSwitch = &Hal_BT_EfusePowerSwitch;
pHalFunc->EfusePowerSwitch = &Hal_EfusePowerSwitch;
pHalFunc->ReadEFuse = &Hal_ReadEFuse;
pHalFunc->EFUSEGetEfuseDefinition = &Hal_GetEfuseDefinition;
pHalFunc->EfuseGetCurrentSize = &Hal_EfuseGetCurrentSize;
pHalFunc->Efuse_PgPacketRead = &Hal_EfusePgPacketRead;
pHalFunc->Efuse_PgPacketWrite = &Hal_EfusePgPacketWrite;
pHalFunc->Efuse_WordEnableDataWrite = &Hal_EfuseWordEnableDataWrite;
pHalFunc->Efuse_PgPacketWrite_BT = &Hal_EfusePgPacketWrite_BT;
#ifdef DBG_CONFIG_ERROR_DETECT
pHalFunc->sreset_init_value = &sreset_init_value;
pHalFunc->sreset_reset_value = &sreset_reset_value;
pHalFunc->silentreset = &sreset_reset;
pHalFunc->sreset_xmit_status_check = &rtl8188f_sreset_xmit_status_check;
pHalFunc->sreset_linked_status_check = &rtl8188f_sreset_linked_status_check;
pHalFunc->sreset_get_wifi_status = &sreset_get_wifi_status;
pHalFunc->sreset_inprogress = &sreset_inprogress;
#endif
pHalFunc->GetHalODMVarHandler = GetHalODMVar;
pHalFunc->SetHalODMVarHandler = SetHalODMVar;
#ifdef CONFIG_XMIT_THREAD_MODE
pHalFunc->xmit_thread_handler = &hal_xmit_handler;
#endif
pHalFunc->hal_notch_filter = &hal_notch_filter_8188f;
pHalFunc->c2h_handler = c2h_handler_8188f;
pHalFunc->fill_h2c_cmd = &FillH2CCmd8188F;
pHalFunc->fill_fake_txdesc = &rtl8188f_fill_fake_txdesc;
pHalFunc->fw_dl = &rtl8188f_FirmwareDownload;
pHalFunc->hal_get_tx_buff_rsvd_page_num = &GetTxBufferRsvdPageNum8188F;
}