Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
/*
 * Linux OS Independent Layer
 *
 * Portions of this code are copyright (c) 2022 Cypress Semiconductor Corporation
 *
 * Copyright (C) 1999-2017, Broadcom Corporation
 *
 *      Unless you and Broadcom execute a separate written software license
 * agreement governing use of this software, this software is licensed to you
 * under the terms of the GNU General Public License version 2 (the "GPL"),
 * available at http://www.broadcom.com/licenses/GPLv2.php, with the
 * following added to such license:
 *
 *      As a special exception, the copyright holders of this software give you
 * permission to link this software with independent modules, and to copy and
 * distribute the resulting executable under terms of your choice, provided that
 * you also meet, for each linked independent module, the terms and conditions of
 * the license of that module.  An independent module is a module which is not
 * derived from this software.  The special exception does not apply to any
 * modifications of the software.
 *
 *      Notwithstanding the above, under no circumstances may you combine this
 * software in any way with any other Broadcom software provided under a license
 * other than the GPL, without Broadcom's express prior written consent.
 *
 *
 * <<Broadcom-WL-IPTag/Open:>>
 *
 * $Id: linux_osl.c 697654 2017-05-04 11:59:40Z $
 */

#define LINUX_PORT

#include <typedefs.h>
#include <bcmendian.h>
#include <linuxver.h>
#include <bcmdefs.h>

#if defined(__ARM_ARCH_7A__) && !defined(DHD_USE_COHERENT_MEM_FOR_RING)
#include <asm/cacheflush.h>
#endif /* __ARM_ARCH_7A__ && !DHD_USE_COHERENT_MEM_FOR_RING */

#include <linux/random.h>

#include <osl.h>
#include <bcmutils.h>
#include <linux/delay.h>
#include <linux/vmalloc.h>
#include <pcicfg.h>

#if defined(BCMASSERT_LOG) && !defined(OEM_ANDROID)
#include <bcm_assert_log.h>
#endif // endif

#ifdef BCM_SECURE_DMA
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/io.h>
#include <linux/printk.h>
#include <linux/errno.h>
#include <linux/mm.h>
#include <linux/moduleparam.h>
#include <asm/io.h>
#include <linux/skbuff.h>
#include <stbutils.h>
#include <linux/highmem.h>
#include <linux/dma-mapping.h>
#include <asm/memory.h>
#endif /* BCM_SECURE_DMA */

#include <linux/fs.h>

#if defined(STB)
#include <linux/spinlock.h>
extern spinlock_t l2x0_reg_lock;
#endif // endif

#ifdef BCM_OBJECT_TRACE
#include <bcmutils.h>
#endif /* BCM_OBJECT_TRACE */
#include "linux_osl_priv.h"

#define PCI_CFG_RETRY		10

#define DUMPBUFSZ 1024

#ifdef BCM_SECURE_DMA
static void * osl_sec_dma_ioremap(osl_t *osh, struct page *page, size_t size,
	bool iscache, bool isdecr);
static void osl_sec_dma_iounmap(osl_t *osh, void *contig_base_va, size_t size);
static int osl_sec_dma_init_elem_mem_block(osl_t *osh, size_t mbsize, int max,
	sec_mem_elem_t **list);
static void osl_sec_dma_deinit_elem_mem_block(osl_t *osh, size_t mbsize, int max,
	void *sec_list_base);
static sec_mem_elem_t * osl_sec_dma_alloc_mem_elem(osl_t *osh, void *va, uint size,
	int direction, struct sec_cma_info *ptr_cma_info, uint offset);
static void osl_sec_dma_free_mem_elem(osl_t *osh, sec_mem_elem_t *sec_mem_elem);
static void osl_sec_dma_init_consistent(osl_t *osh);
static void *osl_sec_dma_alloc_consistent(osl_t *osh, uint size, uint16 align_bits,
	ulong *pap);
static void osl_sec_dma_free_consistent(osl_t *osh, void *va, uint size, dmaaddr_t pa);
#endif /* BCM_SECURE_DMA */

/* PCMCIA attribute space access macros */

#ifdef CUSTOMER_HW4_DEBUG
uint32 g_assert_type = 1; /* By Default not cause Kernel Panic */
#else
uint32 g_assert_type = 0; /* By Default Kernel Panic */
#endif /* CUSTOMER_HW4_DEBUG */

module_param(g_assert_type, int, 0);
#ifdef	BCM_SECURE_DMA
#define	SECDMA_MODULE_PARAMS	0
#define	SECDMA_EXT_FILE	1
unsigned long secdma_addr = 0;
unsigned long secdma_addr2 = 0;
u32 secdma_size = 0;
u32 secdma_size2 = 0;
module_param(secdma_addr, ulong, 0);
module_param(secdma_size, int, 0);
module_param(secdma_addr2, ulong, 0);
module_param(secdma_size2, int, 0);
static int secdma_found = 0;
#endif /* BCM_SECURE_DMA */

#ifdef USE_DMA_LOCK
static void osl_dma_lock(osl_t *osh);
static void osl_dma_unlock(osl_t *osh);
static void osl_dma_lock_init(osl_t *osh);

#define DMA_LOCK(osh)		osl_dma_lock(osh)
#define DMA_UNLOCK(osh)		osl_dma_unlock(osh)
#define DMA_LOCK_INIT(osh)	osl_dma_lock_init(osh);
#else
#define DMA_LOCK(osh)		do { /* noop */ } while(0)
#define DMA_UNLOCK(osh)		do { /* noop */ } while(0)
#define DMA_LOCK_INIT(osh)	do { /* noop */ } while(0)
#endif /* USE_DMA_LOCK */

static int16 linuxbcmerrormap[] =
{	0,				/* 0 */
	-EINVAL,		/* BCME_ERROR */
	-EINVAL,		/* BCME_BADARG */
	-EINVAL,		/* BCME_BADOPTION */
	-EINVAL,		/* BCME_NOTUP */
	-EINVAL,		/* BCME_NOTDOWN */
	-EINVAL,		/* BCME_NOTAP */
	-EINVAL,		/* BCME_NOTSTA */
	-EINVAL,		/* BCME_BADKEYIDX */
	-EINVAL,		/* BCME_RADIOOFF */
	-EINVAL,		/* BCME_NOTBANDLOCKED */
	-EINVAL, 		/* BCME_NOCLK */
	-EINVAL, 		/* BCME_BADRATESET */
	-EINVAL, 		/* BCME_BADBAND */
	-E2BIG,			/* BCME_BUFTOOSHORT */
	-E2BIG,			/* BCME_BUFTOOLONG */
	-EBUSY, 		/* BCME_BUSY */
	-EINVAL, 		/* BCME_NOTASSOCIATED */
	-EINVAL, 		/* BCME_BADSSIDLEN */
	-EINVAL, 		/* BCME_OUTOFRANGECHAN */
	-EINVAL, 		/* BCME_BADCHAN */
	-EFAULT, 		/* BCME_BADADDR */
	-ENOMEM, 		/* BCME_NORESOURCE */
	-EOPNOTSUPP,		/* BCME_UNSUPPORTED */
	-EMSGSIZE,		/* BCME_BADLENGTH */
	-EINVAL,		/* BCME_NOTREADY */
	-EPERM,			/* BCME_EPERM */
	-ENOMEM, 		/* BCME_NOMEM */
	-EINVAL, 		/* BCME_ASSOCIATED */
	-ERANGE, 		/* BCME_RANGE */
	-EINVAL, 		/* BCME_NOTFOUND */
	-EINVAL, 		/* BCME_WME_NOT_ENABLED */
	-EINVAL, 		/* BCME_TSPEC_NOTFOUND */
	-EINVAL, 		/* BCME_ACM_NOTSUPPORTED */
	-EINVAL,		/* BCME_NOT_WME_ASSOCIATION */
	-EIO,			/* BCME_SDIO_ERROR */
	-ENODEV,		/* BCME_DONGLE_DOWN */
	-EINVAL,		/* BCME_VERSION */
	-EIO,			/* BCME_TXFAIL */
	-EIO,			/* BCME_RXFAIL */
	-ENODEV,		/* BCME_NODEVICE */
	-EINVAL,		/* BCME_NMODE_DISABLED */
	-ENODATA,		/* BCME_NONRESIDENT */
	-EINVAL,		/* BCME_SCANREJECT */
	-EINVAL,		/* BCME_USAGE_ERROR */
	-EIO,     		/* BCME_IOCTL_ERROR */
	-EIO,			/* BCME_SERIAL_PORT_ERR */
	-EOPNOTSUPP,	/* BCME_DISABLED, BCME_NOTENABLED */
	-EIO,			/* BCME_DECERR */
	-EIO,			/* BCME_ENCERR */
	-EIO,			/* BCME_MICERR */
	-ERANGE,		/* BCME_REPLAY */
	-EINVAL,		/* BCME_IE_NOTFOUND */
	-EINVAL,		/* BCME_DATA_NOTFOUND */
	-EINVAL,        /* BCME_NOT_GC */
	-EINVAL,        /* BCME_PRS_REQ_FAILED */
	-EINVAL,        /* BCME_NO_P2P_SE */
	-EINVAL,        /* BCME_NOA_PND */
	-EINVAL,        /* BCME_FRAG_Q_FAILED */
	-EINVAL,        /* BCME_GET_AF_FAILED */
	-EINVAL,	/* BCME_MSCH_NOTREADY */
	-EINVAL,	/* BCME_IOV_LAST_CMD */
	-EINVAL,	/* BCME_MINIPMU_CAL_FAIL */
	-EINVAL,	/* BCME_RCAL_FAIL */
	-EINVAL,	/* BCME_LPF_RCCAL_FAIL */
	-EINVAL,	/* BCME_DACBUF_RCCAL_FAIL */
	-EINVAL,	/* BCME_VCOCAL_FAIL */
	-EINVAL,	/* BCME_BANDLOCKED */
	-EINVAL,	/* BCME_DNGL_DEVRESET */

/* When an new error code is added to bcmutils.h, add os
 * specific error translation here as well
 */
/* check if BCME_LAST changed since the last time this function was updated */
#if BCME_LAST != -68
#error "You need to add a OS error translation in the linuxbcmerrormap \
	for new error code defined in bcmutils.h"
#endif // endif
};
uint lmtest = FALSE;

#ifdef DHD_MAP_LOGGING
#define DHD_MAP_LOG_SIZE 2048

typedef struct dhd_map_item {
	dmaaddr_t pa;		/* DMA address (physical) */
	uint64 ts_nsec;		/* timestamp: nsec */
	uint32 size;		/* mapping size */
	uint8 rsvd[4];		/* reserved for future use */
} dhd_map_item_t;

typedef struct dhd_map_record {
	uint32 items;		/* number of total items */
	uint32 idx;		/* current index of metadata */
	dhd_map_item_t map[0];	/* metadata storage */
} dhd_map_log_t;

void
osl_dma_map_dump(osl_t *osh)
{
	dhd_map_log_t *map_log, *unmap_log;
	uint64 ts_sec, ts_usec;

	map_log = (dhd_map_log_t *)(osh->dhd_map_log);
	unmap_log = (dhd_map_log_t *)(osh->dhd_unmap_log);
	osl_get_localtime(&ts_sec, &ts_usec);

	if (map_log && unmap_log) {
		printk("%s: map_idx=%d unmap_idx=%d "
			"current time=[%5lu.%06lu]\n", __FUNCTION__,
			map_log->idx, unmap_log->idx, (unsigned long)ts_sec,
			(unsigned long)ts_usec);
		printk("%s: dhd_map_log(pa)=0x%llx size=%d,"
			" dma_unmap_log(pa)=0x%llx size=%d\n", __FUNCTION__,
			(uint64)__virt_to_phys((ulong)(map_log->map)),
			(uint32)(sizeof(dhd_map_item_t) * map_log->items),
			(uint64)__virt_to_phys((ulong)(unmap_log->map)),
			(uint32)(sizeof(dhd_map_item_t) * unmap_log->items));
	}
}

static void *
osl_dma_map_log_init(uint32 item_len)
{
	dhd_map_log_t *map_log;
	gfp_t flags;
	uint32 alloc_size = (uint32)(sizeof(dhd_map_log_t) +
		(item_len * sizeof(dhd_map_item_t)));

	flags = CAN_SLEEP() ? GFP_KERNEL : GFP_ATOMIC;
	map_log = (dhd_map_log_t *)kmalloc(alloc_size, flags);
	if (map_log) {
		memset(map_log, 0, alloc_size);
		map_log->items = item_len;
		map_log->idx = 0;
	}

	return (void *)map_log;
}

static void
osl_dma_map_log_deinit(osl_t *osh)
{
	if (osh->dhd_map_log) {
		kfree(osh->dhd_map_log);
		osh->dhd_map_log = NULL;
	}

	if (osh->dhd_unmap_log) {
		kfree(osh->dhd_unmap_log);
		osh->dhd_unmap_log = NULL;
	}
}

static void
osl_dma_map_logging(osl_t *osh, void *handle, dmaaddr_t pa, uint32 len)
{
	dhd_map_log_t *log = (dhd_map_log_t *)handle;
	uint32 idx;

	if (log == NULL) {
		printk("%s: log is NULL\n", __FUNCTION__);
		return;
	}

	idx = log->idx;
	log->map[idx].ts_nsec = osl_localtime_ns();
	log->map[idx].pa = pa;
	log->map[idx].size = len;
	log->idx = (idx + 1) % log->items;
}
#endif /* DHD_MAP_LOGGING */

/* translate bcmerrors into linux errors */
int
osl_error(int bcmerror)
{
	if (bcmerror > 0)
		bcmerror = 0;
	else if (bcmerror < BCME_LAST)
		bcmerror = BCME_ERROR;

	/* Array bounds covered by ASSERT in osl_attach */
	return linuxbcmerrormap[-bcmerror];
}
osl_t *
osl_attach(void *pdev, uint bustype, bool pkttag)
{
	void **osl_cmn = NULL;
	osl_t *osh;
	gfp_t flags;
#ifdef BCM_SECURE_DMA
	u32 secdma_memsize;
#endif // endif

	flags = CAN_SLEEP() ? GFP_KERNEL: GFP_ATOMIC;
	if (!(osh = kmalloc(sizeof(osl_t), flags)))
		return osh;

	ASSERT(osh);

	bzero(osh, sizeof(osl_t));

	if (osl_cmn == NULL || *osl_cmn == NULL) {
		if (!(osh->cmn = kmalloc(sizeof(osl_cmn_t), flags))) {
			kfree(osh);
			return NULL;
		}
		bzero(osh->cmn, sizeof(osl_cmn_t));
		if (osl_cmn)
			*osl_cmn = osh->cmn;
		atomic_set(&osh->cmn->malloced, 0);
		osh->cmn->dbgmem_list = NULL;
		spin_lock_init(&(osh->cmn->dbgmem_lock));

		spin_lock_init(&(osh->cmn->pktalloc_lock));

	} else {
		osh->cmn = *osl_cmn;
	}
	atomic_add(1, &osh->cmn->refcount);

	bcm_object_trace_init();

	/* Check that error map has the right number of entries in it */
	ASSERT(ABS(BCME_LAST) == (ARRAYSIZE(linuxbcmerrormap) - 1));

	osh->failed = 0;
	osh->pdev = pdev;
	osh->pub.pkttag = pkttag;
	osh->bustype = bustype;
	osh->magic = OS_HANDLE_MAGIC;
#ifdef BCM_SECURE_DMA

	if ((secdma_addr != 0) && (secdma_size != 0)) {
		printk("linux_osl.c: Buffer info passed via module params, using it.\n");
		if (secdma_found == 0) {
			osh->contig_base_alloc = (phys_addr_t)secdma_addr;
			secdma_memsize = secdma_size;
		} else if (secdma_found == 1) {
			osh->contig_base_alloc = (phys_addr_t)secdma_addr2;
			secdma_memsize = secdma_size2;
		} else {
			printk("linux_osl.c secdma: secDMA instances %d \n", secdma_found);
			kfree(osh);
			return NULL;
		}
		osh->contig_base = (phys_addr_t)osh->contig_base_alloc;
		printf("linux_osl.c: secdma_cma_size = 0x%x\n", secdma_memsize);
		printf("linux_osl.c: secdma_cma_addr = 0x%x \n",
			(unsigned int)osh->contig_base_alloc);
		osh->stb_ext_params = SECDMA_MODULE_PARAMS;
	}
	else if (stbpriv_init(osh) == 0) {
		printk("linux_osl.c: stbpriv.txt found. Get buffer info.\n");
		if (secdma_found == 0) {
			osh->contig_base_alloc =
				(phys_addr_t)bcm_strtoul(stbparam_get("secdma_cma_addr"), NULL, 0);
			secdma_memsize = bcm_strtoul(stbparam_get("secdma_cma_size"), NULL, 0);
		} else if (secdma_found == 1) {
			osh->contig_base_alloc =
				(phys_addr_t)bcm_strtoul(stbparam_get("secdma_cma_addr2"), NULL, 0);
			secdma_memsize = bcm_strtoul(stbparam_get("secdma_cma_size2"), NULL, 0);
		} else {
			printk("linux_osl.c secdma: secDMA instances %d \n", secdma_found);
			kfree(osh);
			return NULL;
		}
		osh->contig_base = (phys_addr_t)osh->contig_base_alloc;
		printf("linux_osl.c: secdma_cma_size = 0x%x\n", secdma_memsize);
		printf("linux_osl.c: secdma_cma_addr = 0x%x \n",
			(unsigned int)osh->contig_base_alloc);
		osh->stb_ext_params = SECDMA_EXT_FILE;
	}
	else {
		printk("linux_osl.c: secDMA no longer supports internal buffer allocation.\n");
		kfree(osh);
		return NULL;
	}
	secdma_found++;
	osh->contig_base_alloc_coherent_va = osl_sec_dma_ioremap(osh,
		phys_to_page((u32)osh->contig_base_alloc),
		CMA_DMA_DESC_MEMBLOCK, FALSE, TRUE);

	if (osh->contig_base_alloc_coherent_va == NULL) {
		if (osh->cmn)
			kfree(osh->cmn);
	    kfree(osh);
	    return NULL;
	}
	osh->contig_base_coherent_va = osh->contig_base_alloc_coherent_va;
	osh->contig_base_alloc_coherent = osh->contig_base_alloc;
	osl_sec_dma_init_consistent(osh);

	osh->contig_base_alloc += CMA_DMA_DESC_MEMBLOCK;

	osh->contig_base_alloc_va = osl_sec_dma_ioremap(osh,
		phys_to_page((u32)osh->contig_base_alloc), CMA_DMA_DATA_MEMBLOCK, TRUE, FALSE);
	if (osh->contig_base_alloc_va == NULL) {
		osl_sec_dma_iounmap(osh, osh->contig_base_coherent_va, CMA_DMA_DESC_MEMBLOCK);
		if (osh->cmn)
			kfree(osh->cmn);
		kfree(osh);
		return NULL;
	}
	osh->contig_base_va = osh->contig_base_alloc_va;

	if (BCME_OK != osl_sec_dma_init_elem_mem_block(osh,
		CMA_BUFSIZE_4K, CMA_BUFNUM, &osh->sec_list_4096)) {
	    osl_sec_dma_iounmap(osh, osh->contig_base_coherent_va, CMA_DMA_DESC_MEMBLOCK);
	    osl_sec_dma_iounmap(osh, osh->contig_base_va, CMA_DMA_DATA_MEMBLOCK);
		if (osh->cmn)
			kfree(osh->cmn);
		kfree(osh);
		return NULL;
	}
	osh->sec_list_base_4096 = osh->sec_list_4096;

#endif /* BCM_SECURE_DMA */

	switch (bustype) {
		case PCI_BUS:
		case SI_BUS:
		case PCMCIA_BUS:
			osh->pub.mmbus = TRUE;
			break;
		case JTAG_BUS:
		case SDIO_BUS:
		case USB_BUS:
		case SPI_BUS:
		case RPC_BUS:
			osh->pub.mmbus = FALSE;
			break;
		default:
			ASSERT(FALSE);
			break;
	}

	DMA_LOCK_INIT(osh);

#ifdef DHD_MAP_LOGGING
	osh->dhd_map_log = osl_dma_map_log_init(DHD_MAP_LOG_SIZE);
	if (osh->dhd_map_log == NULL) {
		printk("%s: Failed to alloc dhd_map_log\n", __FUNCTION__);
	}

	osh->dhd_unmap_log = osl_dma_map_log_init(DHD_MAP_LOG_SIZE);
	if (osh->dhd_unmap_log == NULL) {
		printk("%s: Failed to alloc dhd_unmap_log\n", __FUNCTION__);
	}
#endif /* DHD_MAP_LOGGING */

	return osh;
}

void osl_set_bus_handle(osl_t *osh, void *bus_handle)
{
	osh->bus_handle = bus_handle;
}

void* osl_get_bus_handle(osl_t *osh)
{
	return osh->bus_handle;
}

#if defined(BCM_BACKPLANE_TIMEOUT)
void osl_set_bpt_cb(osl_t *osh, void *bpt_cb, void *bpt_ctx)
{
	if (osh) {
		osh->bpt_cb = (bpt_cb_fn)bpt_cb;
		osh->sih = bpt_ctx;
	}
}
#endif	/* BCM_BACKPLANE_TIMEOUT */

void
osl_detach(osl_t *osh)
{
	if (osh == NULL)
		return;

#ifdef BCM_SECURE_DMA
	if (osh->stb_ext_params == SECDMA_EXT_FILE)
		stbpriv_exit(osh);
	osl_sec_dma_deinit_elem_mem_block(osh, CMA_BUFSIZE_4K, CMA_BUFNUM, osh->sec_list_base_4096);
	osl_sec_dma_iounmap(osh, osh->contig_base_coherent_va, CMA_DMA_DESC_MEMBLOCK);
	osl_sec_dma_iounmap(osh, osh->contig_base_va, CMA_DMA_DATA_MEMBLOCK);
	secdma_found--;
#endif /* BCM_SECURE_DMA */

	bcm_object_trace_deinit();

#ifdef DHD_MAP_LOGGING
	osl_dma_map_log_deinit(osh->dhd_map_log);
	osl_dma_map_log_deinit(osh->dhd_unmap_log);
#endif /* DHD_MAP_LOGGING */

	ASSERT(osh->magic == OS_HANDLE_MAGIC);
	atomic_sub(1, &osh->cmn->refcount);
	if (atomic_read(&osh->cmn->refcount) == 0) {
			kfree(osh->cmn);
	}
	kfree(osh);
}

/* APIs to set/get specific quirks in OSL layer */
void BCMFASTPATH
osl_flag_set(osl_t *osh, uint32 mask)
{
	osh->flags |= mask;
}

void
osl_flag_clr(osl_t *osh, uint32 mask)
{
	osh->flags &= ~mask;
}

#if defined(STB)
inline bool BCMFASTPATH
#else
bool
#endif // endif
osl_is_flag_set(osl_t *osh, uint32 mask)
{
	return (osh->flags & mask);
}

#if (defined(__ARM_ARCH_7A__) && !defined(DHD_USE_COHERENT_MEM_FOR_RING)) || \
	defined(STB_SOC_WIFI)

inline int BCMFASTPATH
osl_arch_is_coherent(void)
{
	return 0;
}

inline int BCMFASTPATH
osl_acp_war_enab(void)
{
	return 0;
}

inline void BCMFASTPATH
osl_cache_flush(void *va, uint size)
{

	if (size > 0)
#ifdef STB_SOC_WIFI
		dma_sync_single_for_device(OSH_NULL, virt_to_phys(va), size, DMA_TX);
#else /* STB_SOC_WIFI */
		dma_sync_single_for_device(OSH_NULL, virt_to_dma(OSH_NULL, va), size,
			DMA_TO_DEVICE);
#endif /* STB_SOC_WIFI */
}

inline void BCMFASTPATH
osl_cache_inv(void *va, uint size)
{

#ifdef STB_SOC_WIFI
	dma_sync_single_for_cpu(OSH_NULL, virt_to_phys(va), size, DMA_RX);
#else /* STB_SOC_WIFI */
	dma_sync_single_for_cpu(OSH_NULL, virt_to_dma(OSH_NULL, va), size, DMA_FROM_DEVICE);
#endif /* STB_SOC_WIFI */
}

inline void BCMFASTPATH
osl_prefetch(const void *ptr)
{
#if !defined(STB_SOC_WIFI)
	__asm__ __volatile__("pld\t%0" :: "o"(*(const char *)ptr) : "cc");
#endif // endif
}

#endif // endif

uint32
osl_pci_read_config(osl_t *osh, uint offset, uint size)
{
	uint val = 0;
	uint retry = PCI_CFG_RETRY;

	ASSERT((osh && (osh->magic == OS_HANDLE_MAGIC)));

	/* only 4byte access supported */
	ASSERT(size == 4);

	do {
		pci_read_config_dword(osh->pdev, offset, &val);
		if (val != 0xffffffff)
			break;
	} while (retry--);

	return (val);
}

void
osl_pci_write_config(osl_t *osh, uint offset, uint size, uint val)
{
	uint retry = PCI_CFG_RETRY;

	ASSERT((osh && (osh->magic == OS_HANDLE_MAGIC)));

	/* only 4byte access supported */
	ASSERT(size == 4);

	do {
		pci_write_config_dword(osh->pdev, offset, val);
		if (offset != PCI_BAR0_WIN)
			break;
		if (osl_pci_read_config(osh, offset, size) == val)
			break;
	} while (retry--);

}

/* return bus # for the pci device pointed by osh->pdev */
uint
osl_pci_bus(osl_t *osh)
{
	ASSERT(osh && (osh->magic == OS_HANDLE_MAGIC) && osh->pdev);

#if defined(__ARM_ARCH_7A__)
	return pci_domain_nr(((struct pci_dev *)osh->pdev)->bus);
#else
	return ((struct pci_dev *)osh->pdev)->bus->number;
#endif // endif
}

/* return slot # for the pci device pointed by osh->pdev */
uint
osl_pci_slot(osl_t *osh)
{
	ASSERT(osh && (osh->magic == OS_HANDLE_MAGIC) && osh->pdev);

#if defined(__ARM_ARCH_7A__)
	return PCI_SLOT(((struct pci_dev *)osh->pdev)->devfn) + 1;
#else
	return PCI_SLOT(((struct pci_dev *)osh->pdev)->devfn);
#endif // endif
}

/* return domain # for the pci device pointed by osh->pdev */
uint
osl_pcie_domain(osl_t *osh)
{
	ASSERT(osh && (osh->magic == OS_HANDLE_MAGIC) && osh->pdev);

	return pci_domain_nr(((struct pci_dev *)osh->pdev)->bus);
}

/* return bus # for the pci device pointed by osh->pdev */
uint
osl_pcie_bus(osl_t *osh)
{
	ASSERT(osh && (osh->magic == OS_HANDLE_MAGIC) && osh->pdev);

	return ((struct pci_dev *)osh->pdev)->bus->number;
}

/* return the pci device pointed by osh->pdev */
struct pci_dev *
osl_pci_device(osl_t *osh)
{
	ASSERT(osh && (osh->magic == OS_HANDLE_MAGIC) && osh->pdev);

	return osh->pdev;
}

static void
osl_pcmcia_attr(osl_t *osh, uint offset, char *buf, int size, bool write)
{
}

void
osl_pcmcia_read_attr(osl_t *osh, uint offset, void *buf, int size)
{
	osl_pcmcia_attr(osh, offset, (char *) buf, size, FALSE);
}

void
osl_pcmcia_write_attr(osl_t *osh, uint offset, void *buf, int size)
{
	osl_pcmcia_attr(osh, offset, (char *) buf, size, TRUE);
}

void *
osl_malloc(osl_t *osh, uint size)
{
	void *addr;
	gfp_t flags;

	/* only ASSERT if osh is defined */
	if (osh)
		ASSERT(osh->magic == OS_HANDLE_MAGIC);
#ifdef CONFIG_DHD_USE_STATIC_BUF
	if (bcm_static_buf)
	{
		unsigned long irq_flags;
		int i = 0;
		if ((size >= PAGE_SIZE)&&(size <= STATIC_BUF_SIZE))
		{
			spin_lock_irqsave(&bcm_static_buf->static_lock, irq_flags);

			for (i = 0; i < STATIC_BUF_MAX_NUM; i++)
			{
				if (bcm_static_buf->buf_use[i] == 0)
					break;
			}

			if (i == STATIC_BUF_MAX_NUM)
			{
				spin_unlock_irqrestore(&bcm_static_buf->static_lock, irq_flags);
				printk("all static buff in use!\n");
				goto original;
			}

			bcm_static_buf->buf_use[i] = 1;
			spin_unlock_irqrestore(&bcm_static_buf->static_lock, irq_flags);

			bzero(bcm_static_buf->buf_ptr+STATIC_BUF_SIZE*i, size);
			if (osh)
				atomic_add(size, &osh->cmn->malloced);

			return ((void *)(bcm_static_buf->buf_ptr+STATIC_BUF_SIZE*i));
		}
	}
original:
#endif /* CONFIG_DHD_USE_STATIC_BUF */

	flags = CAN_SLEEP() ? GFP_KERNEL: GFP_ATOMIC;
#if defined(DHD_USE_KVMALLOC) && (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0))
	if ((addr = kvmalloc(size, flags)) == NULL) {
#else
	if ((addr = kmalloc(size, flags)) == NULL) {
#endif // endif
		if (osh)
			osh->failed++;
		return (NULL);
	}
	if (osh && osh->cmn)
		atomic_add(size, &osh->cmn->malloced);

	return (addr);
}

void *
osl_mallocz(osl_t *osh, uint size)
{
	void *ptr;

	ptr = osl_malloc(osh, size);

	if (ptr != NULL) {
		bzero(ptr, size);
	}

	return ptr;
}

void
osl_mfree(osl_t *osh, void *addr, uint size)
{
#ifdef CONFIG_DHD_USE_STATIC_BUF
	unsigned long flags;

	if (bcm_static_buf)
	{
		if ((addr > (void *)bcm_static_buf) && ((unsigned char *)addr
			<= ((unsigned char *)bcm_static_buf + STATIC_BUF_TOTAL_LEN)))
		{
			int buf_idx = 0;

			buf_idx = ((unsigned char *)addr - bcm_static_buf->buf_ptr)/STATIC_BUF_SIZE;

			spin_lock_irqsave(&bcm_static_buf->static_lock, flags);
			bcm_static_buf->buf_use[buf_idx] = 0;
			spin_unlock_irqrestore(&bcm_static_buf->static_lock, flags);

			if (osh && osh->cmn) {
				ASSERT(osh->magic == OS_HANDLE_MAGIC);
				atomic_sub(size, &osh->cmn->malloced);
			}
			return;
		}
	}
#endif /* CONFIG_DHD_USE_STATIC_BUF */
	if (osh && osh->cmn) {
		ASSERT(osh->magic == OS_HANDLE_MAGIC);

		ASSERT(size <= osl_malloced(osh));

		atomic_sub(size, &osh->cmn->malloced);
	}
#if defined(DHD_USE_KVMALLOC) && (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0))
	kvfree(addr);
#else
	kfree(addr);
#endif // endif
}

void *
osl_vmalloc(osl_t *osh, uint size)
{
	void *addr;

	/* only ASSERT if osh is defined */
	if (osh)
		ASSERT(osh->magic == OS_HANDLE_MAGIC);
	if ((addr = vmalloc(size)) == NULL) {
		if (osh)
			osh->failed++;
		return (NULL);
	}
	if (osh && osh->cmn)
		atomic_add(size, &osh->cmn->malloced);

	return (addr);
}

void *
osl_vmallocz(osl_t *osh, uint size)
{
	void *ptr;

	ptr = osl_vmalloc(osh, size);

	if (ptr != NULL) {
		bzero(ptr, size);
	}

	return ptr;
}

void
osl_vmfree(osl_t *osh, void *addr, uint size)
{
	if (osh && osh->cmn) {
		ASSERT(osh->magic == OS_HANDLE_MAGIC);

		ASSERT(size <= osl_malloced(osh));

		atomic_sub(size, &osh->cmn->malloced);
	}
	vfree(addr);
}

uint
osl_check_memleak(osl_t *osh)
{
	ASSERT((osh && (osh->magic == OS_HANDLE_MAGIC)));
	if (atomic_read(&osh->cmn->refcount) == 1)
		return (atomic_read(&osh->cmn->malloced));
	else
		return 0;
}

uint
osl_malloced(osl_t *osh)
{
	ASSERT((osh && (osh->magic == OS_HANDLE_MAGIC)));
	return (atomic_read(&osh->cmn->malloced));
}

uint
osl_malloc_failed(osl_t *osh)
{
	ASSERT((osh && (osh->magic == OS_HANDLE_MAGIC)));
	return (osh->failed);
}

uint
osl_dma_consistent_align(void)
{
	return (PAGE_SIZE);
}

void*
osl_dma_alloc_consistent(osl_t *osh, uint size, uint16 align_bits, uint *alloced, dmaaddr_t *pap)
{
	void *va;
	uint16 align = (1 << align_bits);
	ASSERT((osh && (osh->magic == OS_HANDLE_MAGIC)));

	if (!ISALIGNED(DMA_CONSISTENT_ALIGN, align))
		size += align;
	*alloced = size;

#ifndef	BCM_SECURE_DMA
#if (defined(__ARM_ARCH_7A__) && !defined(DHD_USE_COHERENT_MEM_FOR_RING)) || \
	defined(STB_SOC_WIFI)
	va = kmalloc(size, GFP_ATOMIC | __GFP_ZERO);
	if (va)
		*pap = (ulong)__virt_to_phys((ulong)va);
#else
	{
		dma_addr_t pap_lin;
		struct pci_dev *hwdev = osh->pdev;
		gfp_t flags;
#ifdef DHD_ALLOC_COHERENT_MEM_FROM_ATOMIC_POOL
		flags = GFP_ATOMIC;
#else
		flags = CAN_SLEEP() ? GFP_KERNEL: GFP_ATOMIC;
#endif /* DHD_ALLOC_COHERENT_MEM_FROM_ATOMIC_POOL */
		va = dma_alloc_coherent(&hwdev->dev, size, &pap_lin, flags);
#ifdef BCMDMA64OSL
		PHYSADDRLOSET(*pap, pap_lin & 0xffffffff);
		PHYSADDRHISET(*pap, (pap_lin >> 32) & 0xffffffff);
#else
		*pap = (dmaaddr_t)pap_lin;
#endif /* BCMDMA64OSL */
	}
#endif /* __ARM_ARCH_7A__ && !DHD_USE_COHERENT_MEM_FOR_RING */
#else
	va = osl_sec_dma_alloc_consistent(osh, size, align_bits, pap);
#endif /* BCM_SECURE_DMA */
	return va;
}

void
osl_dma_free_consistent(osl_t *osh, void *va, uint size, dmaaddr_t pa)
{
#ifdef BCMDMA64OSL
	dma_addr_t paddr;
#endif /* BCMDMA64OSL */
	ASSERT((osh && (osh->magic == OS_HANDLE_MAGIC)));

#ifndef BCM_SECURE_DMA
#if (defined(__ARM_ARCH_7A__) && !defined(DHD_USE_COHERENT_MEM_FOR_RING)) || \
	defined(STB_SOC_WIFI)
	kfree(va);
#else
#ifdef BCMDMA64OSL
	PHYSADDRTOULONG(pa, paddr);
	pci_free_consistent(osh->pdev, size, va, paddr);
#else
	pci_free_consistent(osh->pdev, size, va, (dma_addr_t)pa);
#endif /* BCMDMA64OSL */
#endif /* __ARM_ARCH_7A__ && !DHD_USE_COHERENT_MEM_FOR_RING */
#else
	osl_sec_dma_free_consistent(osh, va, size, pa);
#endif /* BCM_SECURE_DMA */
}

void *
osl_virt_to_phys(void *va)
{
	return (void *)(uintptr)virt_to_phys(va);
}

#include <asm/cacheflush.h>
void BCMFASTPATH
osl_dma_flush(osl_t *osh, void *va, uint size, int direction, void *p, hnddma_seg_map_t *dmah)
{
	return;
}

dmaaddr_t BCMFASTPATH
osl_dma_map(osl_t *osh, void *va, uint size, int direction, void *p, hnddma_seg_map_t *dmah)
{
	int dir;
	dmaaddr_t ret_addr;
	dma_addr_t map_addr;
	int ret;

	DMA_LOCK(osh);

	ASSERT((osh && (osh->magic == OS_HANDLE_MAGIC)));
	dir = (direction == DMA_TX)? PCI_DMA_TODEVICE: PCI_DMA_FROMDEVICE;

#ifdef STB_SOC_WIFI
#if (__LINUX_ARM_ARCH__ == 8)
	/* need to flush or invalidate the cache here */
	if (dir == DMA_TX) { /* to device */
		osl_cache_flush(va, size);
	} else if (dir == DMA_RX) { /* from device */
		osl_cache_inv(va, size);
	} else { /* both */
		osl_cache_flush(va, size);
		osl_cache_inv(va, size);
	}
	DMA_UNLOCK(osh);
	return virt_to_phys(va);
#else /* (__LINUX_ARM_ARCH__ == 8) */
	map_addr = dma_map_single(osh->pdev, va, size, dir);
	DMA_UNLOCK(osh);
	return map_addr;
#endif /* (__LINUX_ARM_ARCH__ == 8) */
#else /* ! STB_SOC_WIFI */
	map_addr = pci_map_single(osh->pdev, va, size, dir);
#endif	/* ! STB_SOC_WIFI */

	ret = pci_dma_mapping_error(osh->pdev, map_addr);

	if (ret) {
		printk("%s: Failed to map memory\n", __FUNCTION__);
		PHYSADDRLOSET(ret_addr, 0);
		PHYSADDRHISET(ret_addr, 0);
	} else {
		PHYSADDRLOSET(ret_addr, map_addr & 0xffffffff);
		PHYSADDRHISET(ret_addr, (map_addr >> 32) & 0xffffffff);
	}

#ifdef DHD_MAP_LOGGING
	osl_dma_map_logging(osh, osh->dhd_map_log, ret_addr, size);
#endif /* DHD_MAP_LOGGING */

	DMA_UNLOCK(osh);

	return ret_addr;
}

void BCMFASTPATH
osl_dma_unmap(osl_t *osh, dmaaddr_t pa, uint size, int direction)
{
	int dir;
#ifdef BCMDMA64OSL
	dma_addr_t paddr;
#endif /* BCMDMA64OSL */

	ASSERT((osh && (osh->magic == OS_HANDLE_MAGIC)));

	DMA_LOCK(osh);

	dir = (direction == DMA_TX)? PCI_DMA_TODEVICE: PCI_DMA_FROMDEVICE;

#ifdef DHD_MAP_LOGGING
	osl_dma_map_logging(osh, osh->dhd_unmap_log, pa, size);
#endif /* DHD_MAP_LOGGING */

#ifdef BCMDMA64OSL
	PHYSADDRTOULONG(pa, paddr);
	pci_unmap_single(osh->pdev, paddr, size, dir);
#else /* BCMDMA64OSL */

#ifdef STB_SOC_WIFI
#if (__LINUX_ARM_ARCH__ == 8)
	if (dir == DMA_TX) { /* to device */
		dma_sync_single_for_device(OSH_NULL, pa, size, DMA_TX);
	} else if (dir == DMA_RX) { /* from device */
		dma_sync_single_for_cpu(OSH_NULL, pa, size, DMA_RX);
	} else { /* both */
		dma_sync_single_for_device(OSH_NULL, pa, size, DMA_TX);
		dma_sync_single_for_cpu(OSH_NULL, pa, size, DMA_RX);
	}
#else /* (__LINUX_ARM_ARCH__ == 8) */
	dma_unmap_single(osh->pdev, (uintptr)pa, size, dir);
#endif /* (__LINUX_ARM_ARCH__ == 8) */
#else /* STB_SOC_WIFI */
	pci_unmap_single(osh->pdev, (uint32)pa, size, dir);
#endif /* STB_SOC_WIFI */

#endif /* BCMDMA64OSL */

	DMA_UNLOCK(osh);
}

/* OSL function for CPU relax */
inline void BCMFASTPATH
osl_cpu_relax(void)
{
	cpu_relax();
}

extern void osl_preempt_disable(osl_t *osh)
{
	preempt_disable();
}

extern void osl_preempt_enable(osl_t *osh)
{
	preempt_enable();
}

#if defined(BCMASSERT_LOG)
void
osl_assert(const char *exp, const char *file, int line)
{
	char tempbuf[256];
	const char *basename;

	basename = strrchr(file, '/');
	/* skip the '/' */
	if (basename)
		basename++;

	if (!basename)
		basename = file;

#ifdef BCMASSERT_LOG
	snprintf(tempbuf, 64, "\"%s\": file \"%s\", line %d\n",
		exp, basename, line);
#ifndef OEM_ANDROID
	bcm_assert_log(tempbuf);
#endif /* OEM_ANDROID */
#endif /* BCMASSERT_LOG */

	switch (g_assert_type) {
	case 0:
		panic("%s", tempbuf);
		break;
	case 1:
		/* fall through */
	case 3:
		printk("%s", tempbuf);
		break;
	case 2:
		printk("%s", tempbuf);
		BUG();
		break;
	default:
		break;
	}
}
#endif // endif
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 0, 1))
#if (LINUX_VERSION_CODE < KERNEL_VERSION(5, 8, 0))
void do_gettimeofday(struct timeval *tv)
{
	struct timespec64 ts;
	ktime_get_real_ts64(&ts);
	tv->tv_sec = ts.tv_sec;
	tv->tv_usec = ts.tv_nsec;
}
#else
struct timeval do_gettimeofday(void)
{
	struct timespec64 ts;
	struct timeval tv;
	ktime_get_real_ts64(&ts);
	tv.tv_sec = ts.tv_sec;
	tv.tv_usec = ts.tv_nsec;
	return tv;
}
#endif  /* LINUX_VERSION_CODE < KERNEL_VERSION(5, 8, 0)  */
#endif  /* LINUX_VERSION_CODE >= KERNEL_VERSION(5, 0, 1) */
void
osl_delay(uint usec)
{
	uint d;

	while (usec > 0) {
		d = MIN(usec, 1000);
		udelay(d);
		usec -= d;
	}
}

void
osl_sleep(uint ms)
{
	if (ms < 20)
		usleep_range(ms*1000, ms*1000 + 1000);
	else
		msleep(ms);
}

uint64
osl_sysuptime_us(void)
{
	struct timeval tv;
	uint64 usec;

#if (LINUX_VERSION_CODE < KERNEL_VERSION(5, 8, 0))
	do_gettimeofday(&tv);
#else
	tv = do_gettimeofday();
#endif
	/* tv_usec content is fraction of a second */
	usec = (uint64)tv.tv_sec * 1000000ul + tv.tv_usec;
	return usec;
}

uint64
osl_localtime_ns(void)
{
	uint64 ts_nsec = 0;

	ts_nsec = local_clock();

	return ts_nsec;
}

void
osl_get_localtime(uint64 *sec, uint64 *usec)
{
	uint64 ts_nsec = 0;
	unsigned long rem_nsec = 0;

	ts_nsec = local_clock();
	rem_nsec = do_div(ts_nsec, NSEC_PER_SEC);
	*sec = (uint64)ts_nsec;
	*usec = (uint64)(rem_nsec / MSEC_PER_SEC);
}

uint64
osl_systztime_us(void)
{
	struct timeval tv;
	uint64 tzusec;

#if (LINUX_VERSION_CODE < KERNEL_VERSION(5, 8, 0))
	do_gettimeofday(&tv);
#else
	tv = do_gettimeofday();
#endif
	/* apply timezone */
	tzusec = (uint64)((tv.tv_sec - (sys_tz.tz_minuteswest * 60)) *
		USEC_PER_SEC);
	tzusec += tv.tv_usec;

	return tzusec;
}

/*
 * OSLREGOPS specifies the use of osl_XXX routines to be used for register access
 */

/*
 * BINOSL selects the slightly slower function-call-based binary compatible osl.
 */

uint32
osl_rand(void)
{
	uint32 rand;

	get_random_bytes(&rand, sizeof(rand));

	return rand;
}

/* Linux Kernel: File Operations: start */
void *
osl_os_open_image(char *filename)
{
	struct file *fp;

	fp = filp_open(filename, O_RDONLY, 0);
	/*
	 * 2.6.11 (FC4) supports filp_open() but later revs don't?
	 * Alternative:
	 * fp = open_namei(AT_FDCWD, filename, O_RD, 0);
	 * ???
	 */
	 if (IS_ERR(fp))
		 fp = NULL;

	 return fp;
}

int
osl_os_get_image_block(char *buf, int len, void *image)
{
	struct file *fp = (struct file *)image;
	int rdlen;

	if (!image)
		return 0;

#if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 14, 0))
	rdlen = kernel_read(fp, buf, len, &fp->f_pos);
#else
	rdlen = kernel_read(fp, fp->f_pos, buf, len);
#endif /* (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 14, 0)) */

	if (rdlen > 0)
		fp->f_pos += rdlen;

	return rdlen;
}

void
osl_os_close_image(void *image)
{
	if (image)
		filp_close((struct file *)image, NULL);
}

int
osl_os_image_size(void *image)
{
	int len = 0, curroffset;

	if (image) {
		/* store the current offset */
		curroffset = generic_file_llseek(image, 0, 1);
		/* goto end of file to get length */
		len = generic_file_llseek(image, 0, 2);
		/* restore back the offset */
		generic_file_llseek(image, curroffset, 0);
	}
	return len;
}

/* Linux Kernel: File Operations: end */

#if (defined(STB) && defined(__arm__))
inline void osl_pcie_rreg(osl_t *osh, ulong addr, volatile void *v, uint size)
{
	unsigned long flags = 0;
	int pci_access = 0;
	int acp_war_enab = ACP_WAR_ENAB();

	if (osh && BUSTYPE(osh->bustype) == PCI_BUS)
		pci_access = 1;

	if (pci_access && acp_war_enab)
		spin_lock_irqsave(&l2x0_reg_lock, flags);

	switch (size) {
	case sizeof(uint8):
		*(volatile uint8*)v = readb((volatile uint8*)(addr));
		break;
	case sizeof(uint16):
		*(volatile uint16*)v = readw((volatile uint16*)(addr));
		break;
	case sizeof(uint32):
		*(volatile uint32*)v = readl((volatile uint32*)(addr));
		break;
	case sizeof(uint64):
		*(volatile uint64*)v = *((volatile uint64*)(addr));
		break;
	}

	if (pci_access && acp_war_enab)
		spin_unlock_irqrestore(&l2x0_reg_lock, flags);
}
#endif // endif

#if defined(BCM_BACKPLANE_TIMEOUT)
inline void osl_bpt_rreg(osl_t *osh, ulong addr, volatile void *v, uint size)
{
	bool poll_timeout = FALSE;
	static int in_si_clear = FALSE;

	switch (size) {
	case sizeof(uint8):
		*(volatile uint8*)v = readb((volatile uint8*)(addr));
		if (*(volatile uint8*)v == 0xff)
			poll_timeout = TRUE;
		break;
	case sizeof(uint16):
		*(volatile uint16*)v = readw((volatile uint16*)(addr));
		if (*(volatile uint16*)v == 0xffff)
			poll_timeout = TRUE;
		break;
	case sizeof(uint32):
		*(volatile uint32*)v = readl((volatile uint32*)(addr));
		if (*(volatile uint32*)v == 0xffffffff)
			poll_timeout = TRUE;
		break;
	case sizeof(uint64):
		*(volatile uint64*)v = *((volatile uint64*)(addr));
		if (*(volatile uint64*)v == 0xffffffffffffffff)
			poll_timeout = TRUE;
		break;
	}

	if (osh && osh->sih && (in_si_clear == FALSE) && poll_timeout && osh->bpt_cb) {
		in_si_clear = TRUE;
		osh->bpt_cb((void *)osh->sih, (void *)addr);
		in_si_clear = FALSE;
	}
}
#endif /* BCM_BACKPLANE_TIMEOUT */

#ifdef BCM_SECURE_DMA
static void *
osl_sec_dma_ioremap(osl_t *osh, struct page *page, size_t size, bool iscache, bool isdecr)
{

	struct page **map;
	int order, i;
	void *addr = NULL;

	size = PAGE_ALIGN(size);
	order = get_order(size);

	map = kmalloc(sizeof(struct page *) << order, GFP_ATOMIC);

	if (map == NULL)
		return NULL;

	for (i = 0; i < (size >> PAGE_SHIFT); i++)
		map[i] = page + i;

	if (iscache) {
		addr = vmap(map, size >> PAGE_SHIFT, VM_MAP, __pgprot(PAGE_KERNEL));
		if (isdecr) {
			osh->contig_delta_va_pa = ((uint8 *)addr - page_to_phys(page));
		}
	} else {

#if defined(__ARM_ARCH_7A__)
		addr = vmap(map, size >> PAGE_SHIFT, VM_MAP,
			pgprot_noncached(__pgprot(PAGE_KERNEL)));
#endif // endif
		if (isdecr) {
			osh->contig_delta_va_pa = ((uint8 *)addr - page_to_phys(page));
		}
	}

	kfree(map);
	return (void *)addr;
}

static void
osl_sec_dma_iounmap(osl_t *osh, void *contig_base_va, size_t size)
{
	vunmap(contig_base_va);
}

static int
osl_sec_dma_init_elem_mem_block(osl_t *osh, size_t mbsize, int max, sec_mem_elem_t **list)
{
	int i;
	int ret = BCME_OK;
	sec_mem_elem_t *sec_mem_elem;

	if ((sec_mem_elem = kmalloc(sizeof(sec_mem_elem_t)*(max), GFP_ATOMIC)) != NULL) {

		*list = sec_mem_elem;
		bzero(sec_mem_elem, sizeof(sec_mem_elem_t)*(max));
		for (i = 0; i < max-1; i++) {
			sec_mem_elem->next = (sec_mem_elem + 1);
			sec_mem_elem->size = mbsize;
			sec_mem_elem->pa_cma = osh->contig_base_alloc;
			sec_mem_elem->vac = osh->contig_base_alloc_va;

			sec_mem_elem->pa_cma_page = phys_to_page(sec_mem_elem->pa_cma);
			osh->contig_base_alloc += mbsize;
			osh->contig_base_alloc_va = ((uint8 *)osh->contig_base_alloc_va +  mbsize);

			sec_mem_elem = sec_mem_elem + 1;
		}
		sec_mem_elem->next = NULL;
		sec_mem_elem->size = mbsize;
		sec_mem_elem->pa_cma = osh->contig_base_alloc;
		sec_mem_elem->vac = osh->contig_base_alloc_va;

		sec_mem_elem->pa_cma_page = phys_to_page(sec_mem_elem->pa_cma);
		osh->contig_base_alloc += mbsize;
		osh->contig_base_alloc_va = ((uint8 *)osh->contig_base_alloc_va +  mbsize);

	} else {
		printf("%s sec mem elem kmalloc failed\n", __FUNCTION__);
		ret = BCME_ERROR;
	}
	return ret;
}

static void
osl_sec_dma_deinit_elem_mem_block(osl_t *osh, size_t mbsize, int max, void *sec_list_base)
{
	if (sec_list_base)
		kfree(sec_list_base);
}

static sec_mem_elem_t * BCMFASTPATH
osl_sec_dma_alloc_mem_elem(osl_t *osh, void *va, uint size, int direction,
	struct sec_cma_info *ptr_cma_info, uint offset)
{
	sec_mem_elem_t *sec_mem_elem = NULL;

		ASSERT(osh->sec_list_4096);
		sec_mem_elem = osh->sec_list_4096;
		osh->sec_list_4096 = sec_mem_elem->next;

		sec_mem_elem->next = NULL;

	if (ptr_cma_info->sec_alloc_list_tail) {
		ptr_cma_info->sec_alloc_list_tail->next = sec_mem_elem;
		ptr_cma_info->sec_alloc_list_tail = sec_mem_elem;
	}
	else {
		/* First allocation: If tail is NULL, sec_alloc_list MUST also be NULL */
		ASSERT(ptr_cma_info->sec_alloc_list == NULL);
		ptr_cma_info->sec_alloc_list = sec_mem_elem;
		ptr_cma_info->sec_alloc_list_tail = sec_mem_elem;
	}
	return sec_mem_elem;
}

static void BCMFASTPATH
osl_sec_dma_free_mem_elem(osl_t *osh, sec_mem_elem_t *sec_mem_elem)
{
	sec_mem_elem->dma_handle = 0x0;
	sec_mem_elem->va = NULL;
		sec_mem_elem->next = osh->sec_list_4096;
		osh->sec_list_4096 = sec_mem_elem;
}

static sec_mem_elem_t * BCMFASTPATH
osl_sec_dma_find_rem_elem(osl_t *osh, struct sec_cma_info *ptr_cma_info, dma_addr_t dma_handle)
{
	sec_mem_elem_t *sec_mem_elem = ptr_cma_info->sec_alloc_list;
	sec_mem_elem_t *sec_prv_elem = ptr_cma_info->sec_alloc_list;

	if (sec_mem_elem->dma_handle == dma_handle) {

		ptr_cma_info->sec_alloc_list = sec_mem_elem->next;

		if (sec_mem_elem == ptr_cma_info->sec_alloc_list_tail) {
			ptr_cma_info->sec_alloc_list_tail = NULL;
			ASSERT(ptr_cma_info->sec_alloc_list == NULL);
		}

		return sec_mem_elem;
	}
	sec_mem_elem = sec_mem_elem->next;

	while (sec_mem_elem != NULL) {

		if (sec_mem_elem->dma_handle == dma_handle) {

			sec_prv_elem->next = sec_mem_elem->next;
			if (sec_mem_elem == ptr_cma_info->sec_alloc_list_tail)
				ptr_cma_info->sec_alloc_list_tail = sec_prv_elem;

			return sec_mem_elem;
		}
		sec_prv_elem = sec_mem_elem;
		sec_mem_elem = sec_mem_elem->next;
	}
	return NULL;
}

static sec_mem_elem_t *
osl_sec_dma_rem_first_elem(osl_t *osh, struct sec_cma_info *ptr_cma_info)
{
	sec_mem_elem_t *sec_mem_elem = ptr_cma_info->sec_alloc_list;

	if (sec_mem_elem) {

		ptr_cma_info->sec_alloc_list = sec_mem_elem->next;

		if (ptr_cma_info->sec_alloc_list == NULL)
			ptr_cma_info->sec_alloc_list_tail = NULL;

		return sec_mem_elem;

	} else
		return NULL;
}

static void * BCMFASTPATH
osl_sec_dma_last_elem(osl_t *osh, struct sec_cma_info *ptr_cma_info)
{
	return ptr_cma_info->sec_alloc_list_tail;
}

dma_addr_t BCMFASTPATH
osl_sec_dma_map_txmeta(osl_t *osh, void *va, uint size, int direction, void *p,
	hnddma_seg_map_t *dmah, void *ptr_cma_info)
{
	sec_mem_elem_t *sec_mem_elem;
	struct page *pa_cma_page;
	uint loffset;
	void *vaorig = ((uint8 *)va + size);
	dma_addr_t dma_handle = 0x0;
	/* packet will be the one added with osl_sec_dma_map() just before this call */

	sec_mem_elem = osl_sec_dma_last_elem(osh, ptr_cma_info);

	if (sec_mem_elem && sec_mem_elem->va == vaorig) {

		pa_cma_page = phys_to_page(sec_mem_elem->pa_cma);
		loffset = sec_mem_elem->pa_cma -(sec_mem_elem->pa_cma & ~(PAGE_SIZE-1));

		dma_handle = dma_map_page(OSH_NULL, pa_cma_page, loffset, size,
			(direction == DMA_TX ? DMA_TO_DEVICE:DMA_FROM_DEVICE));

	} else {
		printf("%s: error orig va not found va = 0x%p \n",
			__FUNCTION__, vaorig);
	}
	return dma_handle;
}

dma_addr_t BCMFASTPATH
osl_sec_dma_map(osl_t *osh, void *va, uint size, int direction, void *p,
	hnddma_seg_map_t *dmah, void *ptr_cma_info, uint offset)
{

	sec_mem_elem_t *sec_mem_elem;
	struct page *pa_cma_page;
	void *pa_cma_kmap_va = NULL;
	uint buflen = 0;
	dma_addr_t dma_handle = 0x0;
	uint loffset;

	ASSERT((direction == DMA_RX) || (direction == DMA_TX));
	sec_mem_elem = osl_sec_dma_alloc_mem_elem(osh, va, size, direction, ptr_cma_info, offset);

	sec_mem_elem->va = va;
	sec_mem_elem->direction = direction;
	pa_cma_page = sec_mem_elem->pa_cma_page;

	loffset = sec_mem_elem->pa_cma -(sec_mem_elem->pa_cma & ~(PAGE_SIZE-1));
	/* pa_cma_kmap_va = kmap_atomic(pa_cma_page);
	* pa_cma_kmap_va += loffset;
	*/

	pa_cma_kmap_va = sec_mem_elem->vac;
	pa_cma_kmap_va = ((uint8 *)pa_cma_kmap_va + offset);
	buflen = size;

	if (direction == DMA_TX) {
		memcpy((uint8*)pa_cma_kmap_va+offset, va, size);

		if (dmah) {
			dmah->nsegs = 1;
			dmah->origsize = buflen;
		}
	}
	else
	{
		if ((p != NULL) && (dmah != NULL)) {
			dmah->nsegs = 1;
			dmah->origsize = buflen;
		}
		*(uint32 *)(pa_cma_kmap_va) = 0x0;
	}

	if (direction == DMA_RX) {
		flush_kernel_vmap_range(pa_cma_kmap_va, sizeof(int));
	}
		dma_handle = dma_map_page(OSH_NULL, pa_cma_page, loffset+offset, buflen,
			(direction == DMA_TX ? DMA_TO_DEVICE:DMA_FROM_DEVICE));
	if (dmah) {
		dmah->segs[0].addr = dma_handle;
		dmah->segs[0].length = buflen;
	}
	sec_mem_elem->dma_handle = dma_handle;
	/* kunmap_atomic(pa_cma_kmap_va-loffset); */
	return dma_handle;
}

dma_addr_t BCMFASTPATH
osl_sec_dma_dd_map(osl_t *osh, void *va, uint size, int direction, void *p, hnddma_seg_map_t *map)
{

	struct page *pa_cma_page;
	phys_addr_t pa_cma;
	dma_addr_t dma_handle = 0x0;
	uint loffset;

	pa_cma = ((uint8 *)va - (uint8 *)osh->contig_delta_va_pa);
	pa_cma_page = phys_to_page(pa_cma);
	loffset = pa_cma -(pa_cma & ~(PAGE_SIZE-1));

	dma_handle = dma_map_page(OSH_NULL, pa_cma_page, loffset, size,
		(direction == DMA_TX ? DMA_TO_DEVICE:DMA_FROM_DEVICE));

	return dma_handle;
}

void BCMFASTPATH
osl_sec_dma_unmap(osl_t *osh, dma_addr_t dma_handle, uint size, int direction,
void *p, hnddma_seg_map_t *map,	void *ptr_cma_info, uint offset)
{
	sec_mem_elem_t *sec_mem_elem;
	void *pa_cma_kmap_va = NULL;
	uint buflen = 0;
	dma_addr_t pa_cma;
	void *va;
	int read_count = 0;
	BCM_REFERENCE(buflen);
	BCM_REFERENCE(read_count);

	sec_mem_elem = osl_sec_dma_find_rem_elem(osh, ptr_cma_info, dma_handle);
	ASSERT(sec_mem_elem);

	va = sec_mem_elem->va;
	va = (uint8 *)va - offset;
	pa_cma = sec_mem_elem->pa_cma;

	if (direction == DMA_RX) {

		if (p == NULL) {

			/* pa_cma_kmap_va = kmap_atomic(pa_cma_page);
			* pa_cma_kmap_va += loffset;
			*/

			pa_cma_kmap_va = sec_mem_elem->vac;

			do {
				invalidate_kernel_vmap_range(pa_cma_kmap_va, sizeof(int));

				buflen = *(uint *)(pa_cma_kmap_va);
				if (buflen)
					break;

				OSL_DELAY(1);
				read_count++;
			} while (read_count < 200);
			dma_unmap_page(OSH_NULL, pa_cma, size, DMA_FROM_DEVICE);
			memcpy(va, pa_cma_kmap_va, size);
			/* kunmap_atomic(pa_cma_kmap_va); */
		}
	} else {
		dma_unmap_page(OSH_NULL, pa_cma, size+offset, DMA_TO_DEVICE);
	}

	osl_sec_dma_free_mem_elem(osh, sec_mem_elem);
}

void
osl_sec_dma_unmap_all(osl_t *osh, void *ptr_cma_info)
{

	sec_mem_elem_t *sec_mem_elem;

	sec_mem_elem = osl_sec_dma_rem_first_elem(osh, ptr_cma_info);

	while (sec_mem_elem != NULL) {

		dma_unmap_page(OSH_NULL, sec_mem_elem->pa_cma, sec_mem_elem->size,
			sec_mem_elem->direction == DMA_TX ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
		osl_sec_dma_free_mem_elem(osh, sec_mem_elem);

		sec_mem_elem = osl_sec_dma_rem_first_elem(osh, ptr_cma_info);
	}
}

static void
osl_sec_dma_init_consistent(osl_t *osh)
{
	int i;
	void *temp_va = osh->contig_base_alloc_coherent_va;
	phys_addr_t temp_pa = osh->contig_base_alloc_coherent;

	for (i = 0; i < SEC_CMA_COHERENT_MAX; i++) {
		osh->sec_cma_coherent[i].avail = TRUE;
		osh->sec_cma_coherent[i].va = temp_va;
		osh->sec_cma_coherent[i].pa = temp_pa;
		temp_va = ((uint8 *)temp_va)+SEC_CMA_COHERENT_BLK;
		temp_pa += SEC_CMA_COHERENT_BLK;
	}
}

static void *
osl_sec_dma_alloc_consistent(osl_t *osh, uint size, uint16 align_bits, ulong *pap)
{

	void *temp_va = NULL;
	ulong temp_pa = 0;
	int i;

	if (size > SEC_CMA_COHERENT_BLK) {
		printf("%s unsupported size\n", __FUNCTION__);
		return NULL;
	}

	for (i = 0; i < SEC_CMA_COHERENT_MAX; i++) {
		if (osh->sec_cma_coherent[i].avail == TRUE) {
			temp_va = osh->sec_cma_coherent[i].va;
			temp_pa = osh->sec_cma_coherent[i].pa;
			osh->sec_cma_coherent[i].avail = FALSE;
			break;
		}
	}

	if (i == SEC_CMA_COHERENT_MAX)
		printf("%s:No coherent mem: va = 0x%p pa = 0x%lx size = %d\n", __FUNCTION__,
			temp_va, (ulong)temp_pa, size);

	*pap = (unsigned long)temp_pa;
	return temp_va;
}

static void
osl_sec_dma_free_consistent(osl_t *osh, void *va, uint size, dmaaddr_t pa)
{
	int i = 0;

	for (i = 0; i < SEC_CMA_COHERENT_MAX; i++) {
		if (osh->sec_cma_coherent[i].va == va) {
			osh->sec_cma_coherent[i].avail = TRUE;
			break;
		}
	}
	if (i == SEC_CMA_COHERENT_MAX)
		printf("%s:Error: va = 0x%p pa = 0x%lx size = %d\n", __FUNCTION__,
			va, (ulong)pa, size);
}
#endif /* BCM_SECURE_DMA */

/* timer apis */
/* Note: All timer api's are thread unsafe and should be protected with locks by caller */

#if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 15, 0)
void
timer_cb_compat(struct timer_list *tl)
{
	timer_list_compat_t *t = container_of(tl, timer_list_compat_t, timer);
	t->callback((ulong)t->arg);
}
#endif /* LINUX_VERSION_CODE >= KERNEL_VERSION(4, 15, 0) */

osl_timer_t *
osl_timer_init(osl_t *osh, const char *name, void (*fn)(void *arg), void *arg)
{
	osl_timer_t *t;
	BCM_REFERENCE(fn);
	if ((t = MALLOCZ(NULL, sizeof(osl_timer_t))) == NULL) {
		printk(KERN_ERR "osl_timer_init: out of memory, malloced %d bytes\n",
			(int)sizeof(osl_timer_t));
		return (NULL);
	}
	bzero(t, sizeof(osl_timer_t));
	if ((t->timer = MALLOCZ(NULL, sizeof(struct timer_list))) == NULL) {
		printf("osl_timer_init: malloc failed\n");
		MFREE(NULL, t, sizeof(osl_timer_t));
		return (NULL);
	}
	t->set = TRUE;

	init_timer_compat(t->timer, (linux_timer_fn)fn, arg);

	return (t);
}

void
osl_timer_add(osl_t *osh, osl_timer_t *t, uint32 ms, bool periodic)
{
	if (t == NULL) {
		printf("%s: Timer handle is NULL\n", __FUNCTION__);
		return;
	}
	ASSERT(!t->set);

	t->set = TRUE;
	if (periodic) {
		printf("Periodic timers are not supported by Linux timer apis\n");
	}
	timer_expires(t->timer) = jiffies + ms*HZ/1000;

	add_timer(t->timer);

	return;
}

void
osl_timer_update(osl_t *osh, osl_timer_t *t, uint32 ms, bool periodic)
{
	if (t == NULL) {
		printf("%s: Timer handle is NULL\n", __FUNCTION__);
		return;
	}
	if (periodic) {
		printf("Periodic timers are not supported by Linux timer apis\n");
	}
	t->set = TRUE;
	timer_expires(t->timer) = jiffies + ms*HZ/1000;

	mod_timer(t->timer, timer_expires(t->timer));

	return;
}

/*
 * Return TRUE if timer successfully deleted, FALSE if still pending
 */
bool
osl_timer_del(osl_t *osh, osl_timer_t *t)
{
	if (t == NULL) {
		printf("%s: Timer handle is NULL\n", __FUNCTION__);
		return (FALSE);
	}
	if (t->set) {
		t->set = FALSE;
		if (t->timer) {
			del_timer(t->timer);
			MFREE(NULL, t->timer, sizeof(struct timer_list));
		}
		MFREE(NULL, t, sizeof(osl_timer_t));
	}
	return (TRUE);
}
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 14, 0))
int
kernel_read_compat(struct file *file, loff_t offset, char *addr, unsigned long count)
{
	return (int)kernel_read(file, addr, (size_t)count, &offset);
}
#endif /* (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 14, 0)) */

void *
osl_spin_lock_init(osl_t *osh)
{
	/* Adding 4 bytes since the sizeof(spinlock_t) could be 0 */
	/* if CONFIG_SMP and CONFIG_DEBUG_SPINLOCK are not defined */
	/* and this results in kernel asserts in internal builds */
	spinlock_t * lock = MALLOC(osh, sizeof(spinlock_t) + 4);
	if (lock)
		spin_lock_init(lock);
	return ((void *)lock);
}

void
osl_spin_lock_deinit(osl_t *osh, void *lock)
{
	if (lock)
		MFREE(osh, lock, sizeof(spinlock_t) + 4);
}

unsigned long
osl_spin_lock(void *lock)
{
	unsigned long flags = 0;

	if (lock)
		spin_lock_irqsave((spinlock_t *)lock, flags);

	return flags;
}

void
osl_spin_unlock(void *lock, unsigned long flags)
{
	if (lock)
		spin_unlock_irqrestore((spinlock_t *)lock, flags);
}

#ifdef USE_DMA_LOCK
static void
osl_dma_lock(osl_t *osh)
{
	if (likely(in_irq() || irqs_disabled())) {
		spin_lock(&osh->dma_lock);
	} else {
		spin_lock_bh(&osh->dma_lock);
		osh->dma_lock_bh = TRUE;
	}
}

static void
osl_dma_unlock(osl_t *osh)
{
	if (unlikely(osh->dma_lock_bh)) {
		osh->dma_lock_bh = FALSE;
		spin_unlock_bh(&osh->dma_lock);
	} else {
		spin_unlock(&osh->dma_lock);
	}
}

static void
osl_dma_lock_init(osl_t *osh)
{
	spin_lock_init(&osh->dma_lock);
	osh->dma_lock_bh = FALSE;
}
#endif /* USE_DMA_LOCK */