Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    1) /* via-rhine.c: A Linux Ethernet device driver for VIA Rhine family chips. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    3) 	Written 1998-2001 by Donald Becker.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    4) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    5) 	Current Maintainer: Kevin Brace <kevinbrace@bracecomputerlab.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    6) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    7) 	This software may be used and distributed according to the terms of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    8) 	the GNU General Public License (GPL), incorporated herein by reference.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    9) 	Drivers based on or derived from this code fall under the GPL and must
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   10) 	retain the authorship, copyright and license notice.  This file is not
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   11) 	a complete program and may only be used when the entire operating
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   12) 	system is licensed under the GPL.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   13) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   14) 	This driver is designed for the VIA VT86C100A Rhine-I.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   15) 	It also works with the Rhine-II (6102) and Rhine-III (6105/6105L/6105LOM
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   16) 	and management NIC 6105M).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   17) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   18) 	The author may be reached as becker@scyld.com, or C/O
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   19) 	Scyld Computing Corporation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   20) 	410 Severn Ave., Suite 210
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   21) 	Annapolis MD 21403
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   22) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   23) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   24) 	This driver contains some changes from the original Donald Becker
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   25) 	version. He may or may not be interested in bug reports on this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   26) 	code. You can find his versions at:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   27) 	http://www.scyld.com/network/via-rhine.html
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   28) 	[link no longer provides useful info -jgarzik]
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   29) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   30) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   31) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   32) #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   33) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   34) #define DRV_NAME	"via-rhine"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   35) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   36) #include <linux/types.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   37) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   38) /* A few user-configurable values.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   39)    These may be modified when a driver module is loaded. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   40) static int debug = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   41) #define RHINE_MSG_DEFAULT \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   42)         (0x0000)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   43) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   44) /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   45)    Setting to > 1518 effectively disables this feature. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   46) #if defined(__alpha__) || defined(__arm__) || defined(__hppa__) || \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   47) 	defined(CONFIG_SPARC) || defined(__ia64__) ||		   \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   48) 	defined(__sh__) || defined(__mips__)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   49) static int rx_copybreak = 1518;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   50) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   51) static int rx_copybreak;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   52) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   53) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   54) /* Work-around for broken BIOSes: they are unable to get the chip back out of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   55)    power state D3 so PXE booting fails. bootparam(7): via-rhine.avoid_D3=1 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   56) static bool avoid_D3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   57) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   58) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   59)  * In case you are looking for 'options[]' or 'full_duplex[]', they
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   60)  * are gone. Use ethtool(8) instead.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   61)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   62) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   63) /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   64)    The Rhine has a 64 element 8390-like hash table. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   65) static const int multicast_filter_limit = 32;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   66) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   67) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   68) /* Operational parameters that are set at compile time. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   69) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   70) /* Keep the ring sizes a power of two for compile efficiency.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   71)  * The compiler will convert <unsigned>'%'<2^N> into a bit mask.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   72)  * Making the Tx ring too large decreases the effectiveness of channel
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   73)  * bonding and packet priority.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   74)  * With BQL support, we can increase TX ring safely.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   75)  * There are no ill effects from too-large receive rings.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   76)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   77) #define TX_RING_SIZE	64
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   78) #define TX_QUEUE_LEN	(TX_RING_SIZE - 6)	/* Limit ring entries actually used. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   79) #define RX_RING_SIZE	64
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   80) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   81) /* Operational parameters that usually are not changed. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   82) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   83) /* Time in jiffies before concluding the transmitter is hung. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   84) #define TX_TIMEOUT	(2*HZ)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   85) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   86) #define PKT_BUF_SZ	1536	/* Size of each temporary Rx buffer.*/
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   87) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   88) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   89) #include <linux/moduleparam.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   90) #include <linux/kernel.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   91) #include <linux/string.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   92) #include <linux/timer.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   93) #include <linux/errno.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   94) #include <linux/ioport.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   95) #include <linux/interrupt.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   96) #include <linux/pci.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   97) #include <linux/of_device.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   98) #include <linux/of_irq.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   99) #include <linux/platform_device.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  100) #include <linux/dma-mapping.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  101) #include <linux/netdevice.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  102) #include <linux/etherdevice.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  103) #include <linux/skbuff.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  104) #include <linux/init.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  105) #include <linux/delay.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  106) #include <linux/mii.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  107) #include <linux/ethtool.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  108) #include <linux/crc32.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  109) #include <linux/if_vlan.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  110) #include <linux/bitops.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  111) #include <linux/workqueue.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  112) #include <asm/processor.h>	/* Processor type for cache alignment. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  113) #include <asm/io.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  114) #include <asm/irq.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  115) #include <linux/uaccess.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  116) #include <linux/dmi.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  117) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  118) MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  119) MODULE_DESCRIPTION("VIA Rhine PCI Fast Ethernet driver");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  120) MODULE_LICENSE("GPL");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  121) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  122) module_param(debug, int, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  123) module_param(rx_copybreak, int, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  124) module_param(avoid_D3, bool, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  125) MODULE_PARM_DESC(debug, "VIA Rhine debug message flags");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  126) MODULE_PARM_DESC(rx_copybreak, "VIA Rhine copy breakpoint for copy-only-tiny-frames");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  127) MODULE_PARM_DESC(avoid_D3, "Avoid power state D3 (work-around for broken BIOSes)");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  128) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  129) #define MCAM_SIZE	32
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  130) #define VCAM_SIZE	32
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  131) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  132) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  133) 		Theory of Operation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  134) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  135) I. Board Compatibility
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  136) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  137) This driver is designed for the VIA 86c100A Rhine-II PCI Fast Ethernet
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  138) controller.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  139) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  140) II. Board-specific settings
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  141) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  142) Boards with this chip are functional only in a bus-master PCI slot.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  143) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  144) Many operational settings are loaded from the EEPROM to the Config word at
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  145) offset 0x78. For most of these settings, this driver assumes that they are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  146) correct.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  147) If this driver is compiled to use PCI memory space operations the EEPROM
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  148) must be configured to enable memory ops.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  149) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  150) III. Driver operation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  151) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  152) IIIa. Ring buffers
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  153) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  154) This driver uses two statically allocated fixed-size descriptor lists
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  155) formed into rings by a branch from the final descriptor to the beginning of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  156) the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  157) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  158) IIIb/c. Transmit/Receive Structure
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  159) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  160) This driver attempts to use a zero-copy receive and transmit scheme.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  161) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  162) Alas, all data buffers are required to start on a 32 bit boundary, so
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  163) the driver must often copy transmit packets into bounce buffers.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  164) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  165) The driver allocates full frame size skbuffs for the Rx ring buffers at
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  166) open() time and passes the skb->data field to the chip as receive data
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  167) buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  168) a fresh skbuff is allocated and the frame is copied to the new skbuff.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  169) When the incoming frame is larger, the skbuff is passed directly up the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  170) protocol stack. Buffers consumed this way are replaced by newly allocated
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  171) skbuffs in the last phase of rhine_rx().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  172) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  173) The RX_COPYBREAK value is chosen to trade-off the memory wasted by
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  174) using a full-sized skbuff for small frames vs. the copying costs of larger
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  175) frames. New boards are typically used in generously configured machines
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  176) and the underfilled buffers have negligible impact compared to the benefit of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  177) a single allocation size, so the default value of zero results in never
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  178) copying packets. When copying is done, the cost is usually mitigated by using
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  179) a combined copy/checksum routine. Copying also preloads the cache, which is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  180) most useful with small frames.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  181) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  182) Since the VIA chips are only able to transfer data to buffers on 32 bit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  183) boundaries, the IP header at offset 14 in an ethernet frame isn't
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  184) longword aligned for further processing. Copying these unaligned buffers
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  185) has the beneficial effect of 16-byte aligning the IP header.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  186) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  187) IIId. Synchronization
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  188) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  189) The driver runs as two independent, single-threaded flows of control. One
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  190) is the send-packet routine, which enforces single-threaded use by the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  191) netdev_priv(dev)->lock spinlock. The other thread is the interrupt handler,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  192) which is single threaded by the hardware and interrupt handling software.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  193) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  194) The send packet thread has partial control over the Tx ring. It locks the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  195) netdev_priv(dev)->lock whenever it's queuing a Tx packet. If the next slot in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  196) the ring is not available it stops the transmit queue by
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  197) calling netif_stop_queue.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  198) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  199) The interrupt handler has exclusive control over the Rx ring and records stats
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  200) from the Tx ring. After reaping the stats, it marks the Tx queue entry as
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  201) empty by incrementing the dirty_tx mark. If at least half of the entries in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  202) the Rx ring are available the transmit queue is woken up if it was stopped.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  203) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  204) IV. Notes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  205) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  206) IVb. References
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  207) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  208) Preliminary VT86C100A manual from http://www.via.com.tw/
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  209) http://www.scyld.com/expert/100mbps.html
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  210) http://www.scyld.com/expert/NWay.html
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  211) ftp://ftp.via.com.tw/public/lan/Products/NIC/VT86C100A/Datasheet/VT86C100A03.pdf
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  212) ftp://ftp.via.com.tw/public/lan/Products/NIC/VT6102/Datasheet/VT6102_021.PDF
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  213) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  214) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  215) IVc. Errata
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  216) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  217) The VT86C100A manual is not reliable information.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  218) The 3043 chip does not handle unaligned transmit or receive buffers, resulting
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  219) in significant performance degradation for bounce buffer copies on transmit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  220) and unaligned IP headers on receive.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  221) The chip does not pad to minimum transmit length.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  222) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  223) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  224) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  225) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  226) /* This table drives the PCI probe routines. It's mostly boilerplate in all
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  227)    of the drivers, and will likely be provided by some future kernel.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  228)    Note the matching code -- the first table entry matchs all 56** cards but
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  229)    second only the 1234 card.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  230) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  231) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  232) enum rhine_revs {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  233) 	VT86C100A	= 0x00,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  234) 	VTunknown0	= 0x20,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  235) 	VT6102		= 0x40,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  236) 	VT8231		= 0x50,	/* Integrated MAC */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  237) 	VT8233		= 0x60,	/* Integrated MAC */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  238) 	VT8235		= 0x74,	/* Integrated MAC */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  239) 	VT8237		= 0x78,	/* Integrated MAC */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  240) 	VT8251		= 0x7C,	/* Integrated MAC */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  241) 	VT6105		= 0x80,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  242) 	VT6105_B0	= 0x83,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  243) 	VT6105L		= 0x8A,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  244) 	VT6107		= 0x8C,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  245) 	VTunknown2	= 0x8E,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  246) 	VT6105M		= 0x90,	/* Management adapter */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  247) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  248) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  249) enum rhine_quirks {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  250) 	rqWOL		= 0x0001,	/* Wake-On-LAN support */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  251) 	rqForceReset	= 0x0002,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  252) 	rq6patterns	= 0x0040,	/* 6 instead of 4 patterns for WOL */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  253) 	rqStatusWBRace	= 0x0080,	/* Tx Status Writeback Error possible */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  254) 	rqRhineI	= 0x0100,	/* See comment below */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  255) 	rqIntPHY	= 0x0200,	/* Integrated PHY */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  256) 	rqMgmt		= 0x0400,	/* Management adapter */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  257) 	rqNeedEnMMIO	= 0x0800,	/* Whether the core needs to be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  258) 					 * switched from PIO mode to MMIO
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  259) 					 * (only applies to PCI)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  260) 					 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  261) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  262) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  263)  * rqRhineI: VT86C100A (aka Rhine-I) uses different bits to enable
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  264)  * MMIO as well as for the collision counter and the Tx FIFO underflow
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  265)  * indicator. In addition, Tx and Rx buffers need to 4 byte aligned.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  266)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  267) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  268) /* Beware of PCI posted writes */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  269) #define IOSYNC	do { ioread8(ioaddr + StationAddr); } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  270) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  271) static const struct pci_device_id rhine_pci_tbl[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  272) 	{ 0x1106, 0x3043, PCI_ANY_ID, PCI_ANY_ID, },	/* VT86C100A */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  273) 	{ 0x1106, 0x3065, PCI_ANY_ID, PCI_ANY_ID, },	/* VT6102 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  274) 	{ 0x1106, 0x3106, PCI_ANY_ID, PCI_ANY_ID, },	/* 6105{,L,LOM} */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  275) 	{ 0x1106, 0x3053, PCI_ANY_ID, PCI_ANY_ID, },	/* VT6105M */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  276) 	{ }	/* terminate list */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  277) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  278) MODULE_DEVICE_TABLE(pci, rhine_pci_tbl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  279) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  280) /* OpenFirmware identifiers for platform-bus devices
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  281)  * The .data field is currently only used to store quirks
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  282)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  283) static u32 vt8500_quirks = rqWOL | rqForceReset | rq6patterns;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  284) static const struct of_device_id rhine_of_tbl[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  285) 	{ .compatible = "via,vt8500-rhine", .data = &vt8500_quirks },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  286) 	{ }	/* terminate list */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  287) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  288) MODULE_DEVICE_TABLE(of, rhine_of_tbl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  289) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  290) /* Offsets to the device registers. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  291) enum register_offsets {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  292) 	StationAddr=0x00, RxConfig=0x06, TxConfig=0x07, ChipCmd=0x08,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  293) 	ChipCmd1=0x09, TQWake=0x0A,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  294) 	IntrStatus=0x0C, IntrEnable=0x0E,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  295) 	MulticastFilter0=0x10, MulticastFilter1=0x14,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  296) 	RxRingPtr=0x18, TxRingPtr=0x1C, GFIFOTest=0x54,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  297) 	MIIPhyAddr=0x6C, MIIStatus=0x6D, PCIBusConfig=0x6E, PCIBusConfig1=0x6F,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  298) 	MIICmd=0x70, MIIRegAddr=0x71, MIIData=0x72, MACRegEEcsr=0x74,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  299) 	ConfigA=0x78, ConfigB=0x79, ConfigC=0x7A, ConfigD=0x7B,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  300) 	RxMissed=0x7C, RxCRCErrs=0x7E, MiscCmd=0x81,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  301) 	StickyHW=0x83, IntrStatus2=0x84,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  302) 	CamMask=0x88, CamCon=0x92, CamAddr=0x93,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  303) 	WOLcrSet=0xA0, PwcfgSet=0xA1, WOLcgSet=0xA3, WOLcrClr=0xA4,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  304) 	WOLcrClr1=0xA6, WOLcgClr=0xA7,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  305) 	PwrcsrSet=0xA8, PwrcsrSet1=0xA9, PwrcsrClr=0xAC, PwrcsrClr1=0xAD,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  306) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  307) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  308) /* Bits in ConfigD */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  309) enum backoff_bits {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  310) 	BackOptional=0x01, BackModify=0x02,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  311) 	BackCaptureEffect=0x04, BackRandom=0x08
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  312) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  313) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  314) /* Bits in the TxConfig (TCR) register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  315) enum tcr_bits {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  316) 	TCR_PQEN=0x01,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  317) 	TCR_LB0=0x02,		/* loopback[0] */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  318) 	TCR_LB1=0x04,		/* loopback[1] */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  319) 	TCR_OFSET=0x08,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  320) 	TCR_RTGOPT=0x10,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  321) 	TCR_RTFT0=0x20,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  322) 	TCR_RTFT1=0x40,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  323) 	TCR_RTSF=0x80,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  324) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  325) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  326) /* Bits in the CamCon (CAMC) register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  327) enum camcon_bits {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  328) 	CAMC_CAMEN=0x01,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  329) 	CAMC_VCAMSL=0x02,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  330) 	CAMC_CAMWR=0x04,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  331) 	CAMC_CAMRD=0x08,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  332) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  333) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  334) /* Bits in the PCIBusConfig1 (BCR1) register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  335) enum bcr1_bits {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  336) 	BCR1_POT0=0x01,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  337) 	BCR1_POT1=0x02,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  338) 	BCR1_POT2=0x04,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  339) 	BCR1_CTFT0=0x08,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  340) 	BCR1_CTFT1=0x10,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  341) 	BCR1_CTSF=0x20,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  342) 	BCR1_TXQNOBK=0x40,	/* for VT6105 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  343) 	BCR1_VIDFR=0x80,	/* for VT6105 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  344) 	BCR1_MED0=0x40,		/* for VT6102 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  345) 	BCR1_MED1=0x80,		/* for VT6102 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  346) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  347) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  348) /* Registers we check that mmio and reg are the same. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  349) static const int mmio_verify_registers[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  350) 	RxConfig, TxConfig, IntrEnable, ConfigA, ConfigB, ConfigC, ConfigD,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  351) 	0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  352) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  353) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  354) /* Bits in the interrupt status/mask registers. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  355) enum intr_status_bits {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  356) 	IntrRxDone	= 0x0001,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  357) 	IntrTxDone	= 0x0002,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  358) 	IntrRxErr	= 0x0004,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  359) 	IntrTxError	= 0x0008,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  360) 	IntrRxEmpty	= 0x0020,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  361) 	IntrPCIErr	= 0x0040,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  362) 	IntrStatsMax	= 0x0080,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  363) 	IntrRxEarly	= 0x0100,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  364) 	IntrTxUnderrun	= 0x0210,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  365) 	IntrRxOverflow	= 0x0400,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  366) 	IntrRxDropped	= 0x0800,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  367) 	IntrRxNoBuf	= 0x1000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  368) 	IntrTxAborted	= 0x2000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  369) 	IntrLinkChange	= 0x4000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  370) 	IntrRxWakeUp	= 0x8000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  371) 	IntrTxDescRace		= 0x080000,	/* mapped from IntrStatus2 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  372) 	IntrNormalSummary	= IntrRxDone | IntrTxDone,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  373) 	IntrTxErrSummary	= IntrTxDescRace | IntrTxAborted | IntrTxError |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  374) 				  IntrTxUnderrun,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  375) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  376) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  377) /* Bits in WOLcrSet/WOLcrClr and PwrcsrSet/PwrcsrClr */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  378) enum wol_bits {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  379) 	WOLucast	= 0x10,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  380) 	WOLmagic	= 0x20,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  381) 	WOLbmcast	= 0x30,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  382) 	WOLlnkon	= 0x40,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  383) 	WOLlnkoff	= 0x80,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  384) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  385) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  386) /* The Rx and Tx buffer descriptors. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  387) struct rx_desc {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  388) 	__le32 rx_status;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  389) 	__le32 desc_length; /* Chain flag, Buffer/frame length */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  390) 	__le32 addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  391) 	__le32 next_desc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  392) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  393) struct tx_desc {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  394) 	__le32 tx_status;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  395) 	__le32 desc_length; /* Chain flag, Tx Config, Frame length */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  396) 	__le32 addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  397) 	__le32 next_desc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  398) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  399) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  400) /* Initial value for tx_desc.desc_length, Buffer size goes to bits 0-10 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  401) #define TXDESC		0x00e08000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  402) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  403) enum rx_status_bits {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  404) 	RxOK=0x8000, RxWholePkt=0x0300, RxErr=0x008F
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  405) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  406) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  407) /* Bits in *_desc.*_status */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  408) enum desc_status_bits {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  409) 	DescOwn=0x80000000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  410) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  411) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  412) /* Bits in *_desc.*_length */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  413) enum desc_length_bits {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  414) 	DescTag=0x00010000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  415) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  416) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  417) /* Bits in ChipCmd. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  418) enum chip_cmd_bits {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  419) 	CmdInit=0x01, CmdStart=0x02, CmdStop=0x04, CmdRxOn=0x08,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  420) 	CmdTxOn=0x10, Cmd1TxDemand=0x20, CmdRxDemand=0x40,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  421) 	Cmd1EarlyRx=0x01, Cmd1EarlyTx=0x02, Cmd1FDuplex=0x04,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  422) 	Cmd1NoTxPoll=0x08, Cmd1Reset=0x80,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  423) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  424) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  425) struct rhine_stats {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  426) 	u64		packets;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  427) 	u64		bytes;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  428) 	struct u64_stats_sync syncp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  429) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  430) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  431) struct rhine_private {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  432) 	/* Bit mask for configured VLAN ids */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  433) 	unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  434) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  435) 	/* Descriptor rings */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  436) 	struct rx_desc *rx_ring;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  437) 	struct tx_desc *tx_ring;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  438) 	dma_addr_t rx_ring_dma;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  439) 	dma_addr_t tx_ring_dma;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  440) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  441) 	/* The addresses of receive-in-place skbuffs. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  442) 	struct sk_buff *rx_skbuff[RX_RING_SIZE];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  443) 	dma_addr_t rx_skbuff_dma[RX_RING_SIZE];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  444) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  445) 	/* The saved address of a sent-in-place packet/buffer, for later free(). */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  446) 	struct sk_buff *tx_skbuff[TX_RING_SIZE];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  447) 	dma_addr_t tx_skbuff_dma[TX_RING_SIZE];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  448) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  449) 	/* Tx bounce buffers (Rhine-I only) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  450) 	unsigned char *tx_buf[TX_RING_SIZE];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  451) 	unsigned char *tx_bufs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  452) 	dma_addr_t tx_bufs_dma;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  453) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  454) 	int irq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  455) 	long pioaddr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  456) 	struct net_device *dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  457) 	struct napi_struct napi;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  458) 	spinlock_t lock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  459) 	struct mutex task_lock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  460) 	bool task_enable;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  461) 	struct work_struct slow_event_task;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  462) 	struct work_struct reset_task;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  463) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  464) 	u32 msg_enable;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  465) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  466) 	/* Frequently used values: keep some adjacent for cache effect. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  467) 	u32 quirks;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  468) 	unsigned int cur_rx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  469) 	unsigned int cur_tx, dirty_tx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  470) 	unsigned int rx_buf_sz;		/* Based on MTU+slack. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  471) 	struct rhine_stats rx_stats;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  472) 	struct rhine_stats tx_stats;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  473) 	u8 wolopts;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  474) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  475) 	u8 tx_thresh, rx_thresh;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  476) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  477) 	struct mii_if_info mii_if;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  478) 	void __iomem *base;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  479) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  480) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  481) #define BYTE_REG_BITS_ON(x, p)      do { iowrite8((ioread8((p))|(x)), (p)); } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  482) #define WORD_REG_BITS_ON(x, p)      do { iowrite16((ioread16((p))|(x)), (p)); } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  483) #define DWORD_REG_BITS_ON(x, p)     do { iowrite32((ioread32((p))|(x)), (p)); } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  484) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  485) #define BYTE_REG_BITS_IS_ON(x, p)   (ioread8((p)) & (x))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  486) #define WORD_REG_BITS_IS_ON(x, p)   (ioread16((p)) & (x))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  487) #define DWORD_REG_BITS_IS_ON(x, p)  (ioread32((p)) & (x))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  488) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  489) #define BYTE_REG_BITS_OFF(x, p)     do { iowrite8(ioread8((p)) & (~(x)), (p)); } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  490) #define WORD_REG_BITS_OFF(x, p)     do { iowrite16(ioread16((p)) & (~(x)), (p)); } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  491) #define DWORD_REG_BITS_OFF(x, p)    do { iowrite32(ioread32((p)) & (~(x)), (p)); } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  492) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  493) #define BYTE_REG_BITS_SET(x, m, p)   do { iowrite8((ioread8((p)) & (~(m)))|(x), (p)); } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  494) #define WORD_REG_BITS_SET(x, m, p)   do { iowrite16((ioread16((p)) & (~(m)))|(x), (p)); } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  495) #define DWORD_REG_BITS_SET(x, m, p)  do { iowrite32((ioread32((p)) & (~(m)))|(x), (p)); } while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  496) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  497) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  498) static int  mdio_read(struct net_device *dev, int phy_id, int location);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  499) static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  500) static int  rhine_open(struct net_device *dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  501) static void rhine_reset_task(struct work_struct *work);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  502) static void rhine_slow_event_task(struct work_struct *work);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  503) static void rhine_tx_timeout(struct net_device *dev, unsigned int txqueue);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  504) static netdev_tx_t rhine_start_tx(struct sk_buff *skb,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  505) 				  struct net_device *dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  506) static irqreturn_t rhine_interrupt(int irq, void *dev_instance);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  507) static void rhine_tx(struct net_device *dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  508) static int rhine_rx(struct net_device *dev, int limit);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  509) static void rhine_set_rx_mode(struct net_device *dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  510) static void rhine_get_stats64(struct net_device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  511) 			      struct rtnl_link_stats64 *stats);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  512) static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  513) static const struct ethtool_ops netdev_ethtool_ops;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  514) static int  rhine_close(struct net_device *dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  515) static int rhine_vlan_rx_add_vid(struct net_device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  516) 				 __be16 proto, u16 vid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  517) static int rhine_vlan_rx_kill_vid(struct net_device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  518) 				  __be16 proto, u16 vid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  519) static void rhine_restart_tx(struct net_device *dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  520) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  521) static void rhine_wait_bit(struct rhine_private *rp, u8 reg, u8 mask, bool low)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  522) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  523) 	void __iomem *ioaddr = rp->base;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  524) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  525) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  526) 	for (i = 0; i < 1024; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  527) 		bool has_mask_bits = !!(ioread8(ioaddr + reg) & mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  528) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  529) 		if (low ^ has_mask_bits)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  530) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  531) 		udelay(10);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  532) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  533) 	if (i > 64) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  534) 		netif_dbg(rp, hw, rp->dev, "%s bit wait (%02x/%02x) cycle "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  535) 			  "count: %04d\n", low ? "low" : "high", reg, mask, i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  536) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  537) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  538) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  539) static void rhine_wait_bit_high(struct rhine_private *rp, u8 reg, u8 mask)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  540) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  541) 	rhine_wait_bit(rp, reg, mask, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  542) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  543) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  544) static void rhine_wait_bit_low(struct rhine_private *rp, u8 reg, u8 mask)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  545) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  546) 	rhine_wait_bit(rp, reg, mask, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  547) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  548) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  549) static u32 rhine_get_events(struct rhine_private *rp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  550) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  551) 	void __iomem *ioaddr = rp->base;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  552) 	u32 intr_status;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  553) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  554) 	intr_status = ioread16(ioaddr + IntrStatus);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  555) 	/* On Rhine-II, Bit 3 indicates Tx descriptor write-back race. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  556) 	if (rp->quirks & rqStatusWBRace)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  557) 		intr_status |= ioread8(ioaddr + IntrStatus2) << 16;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  558) 	return intr_status;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  559) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  560) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  561) static void rhine_ack_events(struct rhine_private *rp, u32 mask)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  562) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  563) 	void __iomem *ioaddr = rp->base;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  564) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  565) 	if (rp->quirks & rqStatusWBRace)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  566) 		iowrite8(mask >> 16, ioaddr + IntrStatus2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  567) 	iowrite16(mask, ioaddr + IntrStatus);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  568) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  569) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  570) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  571)  * Get power related registers into sane state.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  572)  * Notify user about past WOL event.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  573)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  574) static void rhine_power_init(struct net_device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  575) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  576) 	struct rhine_private *rp = netdev_priv(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  577) 	void __iomem *ioaddr = rp->base;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  578) 	u16 wolstat;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  579) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  580) 	if (rp->quirks & rqWOL) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  581) 		/* Make sure chip is in power state D0 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  582) 		iowrite8(ioread8(ioaddr + StickyHW) & 0xFC, ioaddr + StickyHW);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  583) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  584) 		/* Disable "force PME-enable" */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  585) 		iowrite8(0x80, ioaddr + WOLcgClr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  586) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  587) 		/* Clear power-event config bits (WOL) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  588) 		iowrite8(0xFF, ioaddr + WOLcrClr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  589) 		/* More recent cards can manage two additional patterns */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  590) 		if (rp->quirks & rq6patterns)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  591) 			iowrite8(0x03, ioaddr + WOLcrClr1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  592) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  593) 		/* Save power-event status bits */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  594) 		wolstat = ioread8(ioaddr + PwrcsrSet);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  595) 		if (rp->quirks & rq6patterns)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  596) 			wolstat |= (ioread8(ioaddr + PwrcsrSet1) & 0x03) << 8;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  597) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  598) 		/* Clear power-event status bits */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  599) 		iowrite8(0xFF, ioaddr + PwrcsrClr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  600) 		if (rp->quirks & rq6patterns)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  601) 			iowrite8(0x03, ioaddr + PwrcsrClr1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  602) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  603) 		if (wolstat) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  604) 			char *reason;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  605) 			switch (wolstat) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  606) 			case WOLmagic:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  607) 				reason = "Magic packet";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  608) 				break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  609) 			case WOLlnkon:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  610) 				reason = "Link went up";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  611) 				break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  612) 			case WOLlnkoff:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  613) 				reason = "Link went down";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  614) 				break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  615) 			case WOLucast:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  616) 				reason = "Unicast packet";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  617) 				break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  618) 			case WOLbmcast:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  619) 				reason = "Multicast/broadcast packet";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  620) 				break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  621) 			default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  622) 				reason = "Unknown";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  623) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  624) 			netdev_info(dev, "Woke system up. Reason: %s\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  625) 				    reason);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  626) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  627) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  628) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  629) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  630) static void rhine_chip_reset(struct net_device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  631) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  632) 	struct rhine_private *rp = netdev_priv(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  633) 	void __iomem *ioaddr = rp->base;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  634) 	u8 cmd1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  635) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  636) 	iowrite8(Cmd1Reset, ioaddr + ChipCmd1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  637) 	IOSYNC;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  638) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  639) 	if (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  640) 		netdev_info(dev, "Reset not complete yet. Trying harder.\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  641) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  642) 		/* Force reset */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  643) 		if (rp->quirks & rqForceReset)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  644) 			iowrite8(0x40, ioaddr + MiscCmd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  645) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  646) 		/* Reset can take somewhat longer (rare) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  647) 		rhine_wait_bit_low(rp, ChipCmd1, Cmd1Reset);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  648) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  649) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  650) 	cmd1 = ioread8(ioaddr + ChipCmd1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  651) 	netif_info(rp, hw, dev, "Reset %s\n", (cmd1 & Cmd1Reset) ?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  652) 		   "failed" : "succeeded");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  653) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  654) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  655) static void enable_mmio(long pioaddr, u32 quirks)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  656) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  657) 	int n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  658) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  659) 	if (quirks & rqNeedEnMMIO) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  660) 		if (quirks & rqRhineI) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  661) 			/* More recent docs say that this bit is reserved */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  662) 			n = inb(pioaddr + ConfigA) | 0x20;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  663) 			outb(n, pioaddr + ConfigA);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  664) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  665) 			n = inb(pioaddr + ConfigD) | 0x80;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  666) 			outb(n, pioaddr + ConfigD);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  667) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  668) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  669) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  670) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  671) static inline int verify_mmio(struct device *hwdev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  672) 			      long pioaddr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  673) 			      void __iomem *ioaddr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  674) 			      u32 quirks)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  675) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  676) 	if (quirks & rqNeedEnMMIO) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  677) 		int i = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  678) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  679) 		/* Check that selected MMIO registers match the PIO ones */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  680) 		while (mmio_verify_registers[i]) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  681) 			int reg = mmio_verify_registers[i++];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  682) 			unsigned char a = inb(pioaddr+reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  683) 			unsigned char b = readb(ioaddr+reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  684) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  685) 			if (a != b) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  686) 				dev_err(hwdev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  687) 					"MMIO do not match PIO [%02x] (%02x != %02x)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  688) 					reg, a, b);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  689) 				return -EIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  690) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  691) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  692) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  693) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  694) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  695) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  696) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  697)  * Loads bytes 0x00-0x05, 0x6E-0x6F, 0x78-0x7B from EEPROM
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  698)  * (plus 0x6C for Rhine-I/II)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  699)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  700) static void rhine_reload_eeprom(long pioaddr, struct net_device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  701) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  702) 	struct rhine_private *rp = netdev_priv(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  703) 	void __iomem *ioaddr = rp->base;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  704) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  705) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  706) 	outb(0x20, pioaddr + MACRegEEcsr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  707) 	for (i = 0; i < 1024; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  708) 		if (!(inb(pioaddr + MACRegEEcsr) & 0x20))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  709) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  710) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  711) 	if (i > 512)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  712) 		pr_info("%4d cycles used @ %s:%d\n", i, __func__, __LINE__);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  713) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  714) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  715) 	 * Reloading from EEPROM overwrites ConfigA-D, so we must re-enable
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  716) 	 * MMIO. If reloading EEPROM was done first this could be avoided, but
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  717) 	 * it is not known if that still works with the "win98-reboot" problem.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  718) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  719) 	enable_mmio(pioaddr, rp->quirks);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  720) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  721) 	/* Turn off EEPROM-controlled wake-up (magic packet) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  722) 	if (rp->quirks & rqWOL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  723) 		iowrite8(ioread8(ioaddr + ConfigA) & 0xFC, ioaddr + ConfigA);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  724) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  725) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  726) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  727) #ifdef CONFIG_NET_POLL_CONTROLLER
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  728) static void rhine_poll(struct net_device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  729) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  730) 	struct rhine_private *rp = netdev_priv(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  731) 	const int irq = rp->irq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  732) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  733) 	disable_irq(irq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  734) 	rhine_interrupt(irq, dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  735) 	enable_irq(irq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  736) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  737) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  738) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  739) static void rhine_kick_tx_threshold(struct rhine_private *rp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  740) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  741) 	if (rp->tx_thresh < 0xe0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  742) 		void __iomem *ioaddr = rp->base;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  743) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  744) 		rp->tx_thresh += 0x20;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  745) 		BYTE_REG_BITS_SET(rp->tx_thresh, 0x80, ioaddr + TxConfig);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  746) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  747) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  748) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  749) static void rhine_tx_err(struct rhine_private *rp, u32 status)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  750) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  751) 	struct net_device *dev = rp->dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  752) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  753) 	if (status & IntrTxAborted) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  754) 		netif_info(rp, tx_err, dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  755) 			   "Abort %08x, frame dropped\n", status);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  756) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  757) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  758) 	if (status & IntrTxUnderrun) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  759) 		rhine_kick_tx_threshold(rp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  760) 		netif_info(rp, tx_err ,dev, "Transmitter underrun, "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  761) 			   "Tx threshold now %02x\n", rp->tx_thresh);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  762) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  763) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  764) 	if (status & IntrTxDescRace)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  765) 		netif_info(rp, tx_err, dev, "Tx descriptor write-back race\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  766) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  767) 	if ((status & IntrTxError) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  768) 	    (status & (IntrTxAborted | IntrTxUnderrun | IntrTxDescRace)) == 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  769) 		rhine_kick_tx_threshold(rp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  770) 		netif_info(rp, tx_err, dev, "Unspecified error. "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  771) 			   "Tx threshold now %02x\n", rp->tx_thresh);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  772) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  773) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  774) 	rhine_restart_tx(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  775) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  776) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  777) static void rhine_update_rx_crc_and_missed_errord(struct rhine_private *rp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  778) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  779) 	void __iomem *ioaddr = rp->base;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  780) 	struct net_device_stats *stats = &rp->dev->stats;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  781) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  782) 	stats->rx_crc_errors    += ioread16(ioaddr + RxCRCErrs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  783) 	stats->rx_missed_errors += ioread16(ioaddr + RxMissed);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  784) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  785) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  786) 	 * Clears the "tally counters" for CRC errors and missed frames(?).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  787) 	 * It has been reported that some chips need a write of 0 to clear
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  788) 	 * these, for others the counters are set to 1 when written to and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  789) 	 * instead cleared when read. So we clear them both ways ...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  790) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  791) 	iowrite32(0, ioaddr + RxMissed);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  792) 	ioread16(ioaddr + RxCRCErrs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  793) 	ioread16(ioaddr + RxMissed);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  794) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  795) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  796) #define RHINE_EVENT_NAPI_RX	(IntrRxDone | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  797) 				 IntrRxErr | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  798) 				 IntrRxEmpty | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  799) 				 IntrRxOverflow	| \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  800) 				 IntrRxDropped | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  801) 				 IntrRxNoBuf | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  802) 				 IntrRxWakeUp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  803) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  804) #define RHINE_EVENT_NAPI_TX_ERR	(IntrTxError | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  805) 				 IntrTxAborted | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  806) 				 IntrTxUnderrun | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  807) 				 IntrTxDescRace)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  808) #define RHINE_EVENT_NAPI_TX	(IntrTxDone | RHINE_EVENT_NAPI_TX_ERR)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  809) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  810) #define RHINE_EVENT_NAPI	(RHINE_EVENT_NAPI_RX | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  811) 				 RHINE_EVENT_NAPI_TX | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  812) 				 IntrStatsMax)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  813) #define RHINE_EVENT_SLOW	(IntrPCIErr | IntrLinkChange)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  814) #define RHINE_EVENT		(RHINE_EVENT_NAPI | RHINE_EVENT_SLOW)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  815) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  816) static int rhine_napipoll(struct napi_struct *napi, int budget)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  817) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  818) 	struct rhine_private *rp = container_of(napi, struct rhine_private, napi);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  819) 	struct net_device *dev = rp->dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  820) 	void __iomem *ioaddr = rp->base;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  821) 	u16 enable_mask = RHINE_EVENT & 0xffff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  822) 	int work_done = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  823) 	u32 status;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  824) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  825) 	status = rhine_get_events(rp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  826) 	rhine_ack_events(rp, status & ~RHINE_EVENT_SLOW);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  827) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  828) 	if (status & RHINE_EVENT_NAPI_RX)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  829) 		work_done += rhine_rx(dev, budget);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  830) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  831) 	if (status & RHINE_EVENT_NAPI_TX) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  832) 		if (status & RHINE_EVENT_NAPI_TX_ERR) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  833) 			/* Avoid scavenging before Tx engine turned off */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  834) 			rhine_wait_bit_low(rp, ChipCmd, CmdTxOn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  835) 			if (ioread8(ioaddr + ChipCmd) & CmdTxOn)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  836) 				netif_warn(rp, tx_err, dev, "Tx still on\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  837) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  838) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  839) 		rhine_tx(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  840) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  841) 		if (status & RHINE_EVENT_NAPI_TX_ERR)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  842) 			rhine_tx_err(rp, status);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  843) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  844) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  845) 	if (status & IntrStatsMax) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  846) 		spin_lock(&rp->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  847) 		rhine_update_rx_crc_and_missed_errord(rp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  848) 		spin_unlock(&rp->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  849) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  850) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  851) 	if (status & RHINE_EVENT_SLOW) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  852) 		enable_mask &= ~RHINE_EVENT_SLOW;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  853) 		schedule_work(&rp->slow_event_task);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  854) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  855) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  856) 	if (work_done < budget) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  857) 		napi_complete_done(napi, work_done);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  858) 		iowrite16(enable_mask, ioaddr + IntrEnable);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  859) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  860) 	return work_done;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  861) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  862) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  863) static void rhine_hw_init(struct net_device *dev, long pioaddr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  864) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  865) 	struct rhine_private *rp = netdev_priv(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  866) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  867) 	/* Reset the chip to erase previous misconfiguration. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  868) 	rhine_chip_reset(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  869) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  870) 	/* Rhine-I needs extra time to recuperate before EEPROM reload */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  871) 	if (rp->quirks & rqRhineI)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  872) 		msleep(5);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  873) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  874) 	/* Reload EEPROM controlled bytes cleared by soft reset */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  875) 	if (dev_is_pci(dev->dev.parent))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  876) 		rhine_reload_eeprom(pioaddr, dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  877) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  878) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  879) static const struct net_device_ops rhine_netdev_ops = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  880) 	.ndo_open		 = rhine_open,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  881) 	.ndo_stop		 = rhine_close,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  882) 	.ndo_start_xmit		 = rhine_start_tx,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  883) 	.ndo_get_stats64	 = rhine_get_stats64,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  884) 	.ndo_set_rx_mode	 = rhine_set_rx_mode,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  885) 	.ndo_validate_addr	 = eth_validate_addr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  886) 	.ndo_set_mac_address 	 = eth_mac_addr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  887) 	.ndo_do_ioctl		 = netdev_ioctl,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  888) 	.ndo_tx_timeout 	 = rhine_tx_timeout,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  889) 	.ndo_vlan_rx_add_vid	 = rhine_vlan_rx_add_vid,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  890) 	.ndo_vlan_rx_kill_vid	 = rhine_vlan_rx_kill_vid,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  891) #ifdef CONFIG_NET_POLL_CONTROLLER
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  892) 	.ndo_poll_controller	 = rhine_poll,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  893) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  894) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  895) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  896) static int rhine_init_one_common(struct device *hwdev, u32 quirks,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  897) 				 long pioaddr, void __iomem *ioaddr, int irq)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  898) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  899) 	struct net_device *dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  900) 	struct rhine_private *rp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  901) 	int i, rc, phy_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  902) 	const char *name;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  903) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  904) 	/* this should always be supported */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  905) 	rc = dma_set_mask(hwdev, DMA_BIT_MASK(32));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  906) 	if (rc) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  907) 		dev_err(hwdev, "32-bit DMA addresses not supported by the card!?\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  908) 		goto err_out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  909) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  910) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  911) 	dev = alloc_etherdev(sizeof(struct rhine_private));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  912) 	if (!dev) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  913) 		rc = -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  914) 		goto err_out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  915) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  916) 	SET_NETDEV_DEV(dev, hwdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  917) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  918) 	rp = netdev_priv(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  919) 	rp->dev = dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  920) 	rp->quirks = quirks;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  921) 	rp->pioaddr = pioaddr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  922) 	rp->base = ioaddr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  923) 	rp->irq = irq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  924) 	rp->msg_enable = netif_msg_init(debug, RHINE_MSG_DEFAULT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  925) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  926) 	phy_id = rp->quirks & rqIntPHY ? 1 : 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  927) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  928) 	u64_stats_init(&rp->tx_stats.syncp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  929) 	u64_stats_init(&rp->rx_stats.syncp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  930) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  931) 	/* Get chip registers into a sane state */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  932) 	rhine_power_init(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  933) 	rhine_hw_init(dev, pioaddr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  934) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  935) 	for (i = 0; i < 6; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  936) 		dev->dev_addr[i] = ioread8(ioaddr + StationAddr + i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  937) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  938) 	if (!is_valid_ether_addr(dev->dev_addr)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  939) 		/* Report it and use a random ethernet address instead */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  940) 		netdev_err(dev, "Invalid MAC address: %pM\n", dev->dev_addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  941) 		eth_hw_addr_random(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  942) 		netdev_info(dev, "Using random MAC address: %pM\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  943) 			    dev->dev_addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  944) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  945) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  946) 	/* For Rhine-I/II, phy_id is loaded from EEPROM */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  947) 	if (!phy_id)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  948) 		phy_id = ioread8(ioaddr + 0x6C);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  949) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  950) 	spin_lock_init(&rp->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  951) 	mutex_init(&rp->task_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  952) 	INIT_WORK(&rp->reset_task, rhine_reset_task);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  953) 	INIT_WORK(&rp->slow_event_task, rhine_slow_event_task);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  954) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  955) 	rp->mii_if.dev = dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  956) 	rp->mii_if.mdio_read = mdio_read;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  957) 	rp->mii_if.mdio_write = mdio_write;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  958) 	rp->mii_if.phy_id_mask = 0x1f;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  959) 	rp->mii_if.reg_num_mask = 0x1f;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  960) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  961) 	/* The chip-specific entries in the device structure. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  962) 	dev->netdev_ops = &rhine_netdev_ops;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  963) 	dev->ethtool_ops = &netdev_ethtool_ops;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  964) 	dev->watchdog_timeo = TX_TIMEOUT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  965) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  966) 	netif_napi_add(dev, &rp->napi, rhine_napipoll, 64);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  967) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  968) 	if (rp->quirks & rqRhineI)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  969) 		dev->features |= NETIF_F_SG|NETIF_F_HW_CSUM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  970) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  971) 	if (rp->quirks & rqMgmt)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  972) 		dev->features |= NETIF_F_HW_VLAN_CTAG_TX |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  973) 				 NETIF_F_HW_VLAN_CTAG_RX |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  974) 				 NETIF_F_HW_VLAN_CTAG_FILTER;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  975) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  976) 	/* dev->name not defined before register_netdev()! */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  977) 	rc = register_netdev(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  978) 	if (rc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  979) 		goto err_out_free_netdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  980) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  981) 	if (rp->quirks & rqRhineI)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  982) 		name = "Rhine";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  983) 	else if (rp->quirks & rqStatusWBRace)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  984) 		name = "Rhine II";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  985) 	else if (rp->quirks & rqMgmt)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  986) 		name = "Rhine III (Management Adapter)";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  987) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  988) 		name = "Rhine III";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  989) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  990) 	netdev_info(dev, "VIA %s at %p, %pM, IRQ %d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  991) 		    name, ioaddr, dev->dev_addr, rp->irq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  992) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  993) 	dev_set_drvdata(hwdev, dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  994) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  995) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  996) 		u16 mii_cmd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  997) 		int mii_status = mdio_read(dev, phy_id, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  998) 		mii_cmd = mdio_read(dev, phy_id, MII_BMCR) & ~BMCR_ISOLATE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  999) 		mdio_write(dev, phy_id, MII_BMCR, mii_cmd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1000) 		if (mii_status != 0xffff && mii_status != 0x0000) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1001) 			rp->mii_if.advertising = mdio_read(dev, phy_id, 4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1002) 			netdev_info(dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1003) 				    "MII PHY found at address %d, status 0x%04x advertising %04x Link %04x\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1004) 				    phy_id,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1005) 				    mii_status, rp->mii_if.advertising,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1006) 				    mdio_read(dev, phy_id, 5));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1007) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1008) 			/* set IFF_RUNNING */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1009) 			if (mii_status & BMSR_LSTATUS)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1010) 				netif_carrier_on(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1011) 			else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1012) 				netif_carrier_off(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1013) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1014) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1015) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1016) 	rp->mii_if.phy_id = phy_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1017) 	if (avoid_D3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1018) 		netif_info(rp, probe, dev, "No D3 power state at shutdown\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1019) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1020) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1021) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1022) err_out_free_netdev:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1023) 	free_netdev(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1024) err_out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1025) 	return rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1026) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1027) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1028) static int rhine_init_one_pci(struct pci_dev *pdev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1029) 			      const struct pci_device_id *ent)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1030) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1031) 	struct device *hwdev = &pdev->dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1032) 	int rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1033) 	long pioaddr, memaddr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1034) 	void __iomem *ioaddr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1035) 	int io_size = pdev->revision < VTunknown0 ? 128 : 256;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1036) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1037) /* This driver was written to use PCI memory space. Some early versions
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1038)  * of the Rhine may only work correctly with I/O space accesses.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1039)  * TODO: determine for which revisions this is true and assign the flag
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1040)  *	 in code as opposed to this Kconfig option (???)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1041)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1042) #ifdef CONFIG_VIA_RHINE_MMIO
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1043) 	u32 quirks = rqNeedEnMMIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1044) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1045) 	u32 quirks = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1046) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1047) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1048) 	rc = pci_enable_device(pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1049) 	if (rc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1050) 		goto err_out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1051) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1052) 	if (pdev->revision < VTunknown0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1053) 		quirks |= rqRhineI;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1054) 	} else if (pdev->revision >= VT6102) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1055) 		quirks |= rqWOL | rqForceReset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1056) 		if (pdev->revision < VT6105) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1057) 			quirks |= rqStatusWBRace;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1058) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1059) 			quirks |= rqIntPHY;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1060) 			if (pdev->revision >= VT6105_B0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1061) 				quirks |= rq6patterns;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1062) 			if (pdev->revision >= VT6105M)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1063) 				quirks |= rqMgmt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1064) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1065) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1066) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1067) 	/* sanity check */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1068) 	if ((pci_resource_len(pdev, 0) < io_size) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1069) 	    (pci_resource_len(pdev, 1) < io_size)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1070) 		rc = -EIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1071) 		dev_err(hwdev, "Insufficient PCI resources, aborting\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1072) 		goto err_out_pci_disable;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1073) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1074) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1075) 	pioaddr = pci_resource_start(pdev, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1076) 	memaddr = pci_resource_start(pdev, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1077) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1078) 	pci_set_master(pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1079) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1080) 	rc = pci_request_regions(pdev, DRV_NAME);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1081) 	if (rc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1082) 		goto err_out_pci_disable;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1083) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1084) 	ioaddr = pci_iomap(pdev, (quirks & rqNeedEnMMIO ? 1 : 0), io_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1085) 	if (!ioaddr) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1086) 		rc = -EIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1087) 		dev_err(hwdev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1088) 			"ioremap failed for device %s, region 0x%X @ 0x%lX\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1089) 			dev_name(hwdev), io_size, memaddr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1090) 		goto err_out_free_res;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1091) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1092) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1093) 	enable_mmio(pioaddr, quirks);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1094) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1095) 	rc = verify_mmio(hwdev, pioaddr, ioaddr, quirks);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1096) 	if (rc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1097) 		goto err_out_unmap;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1098) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1099) 	rc = rhine_init_one_common(&pdev->dev, quirks,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1100) 				   pioaddr, ioaddr, pdev->irq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1101) 	if (!rc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1102) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1103) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1104) err_out_unmap:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1105) 	pci_iounmap(pdev, ioaddr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1106) err_out_free_res:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1107) 	pci_release_regions(pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1108) err_out_pci_disable:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1109) 	pci_disable_device(pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1110) err_out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1111) 	return rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1112) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1113) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1114) static int rhine_init_one_platform(struct platform_device *pdev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1115) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1116) 	const struct of_device_id *match;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1117) 	const u32 *quirks;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1118) 	int irq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1119) 	void __iomem *ioaddr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1120) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1121) 	match = of_match_device(rhine_of_tbl, &pdev->dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1122) 	if (!match)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1123) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1124) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1125) 	ioaddr = devm_platform_ioremap_resource(pdev, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1126) 	if (IS_ERR(ioaddr))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1127) 		return PTR_ERR(ioaddr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1128) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1129) 	irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1130) 	if (!irq)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1131) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1132) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1133) 	quirks = match->data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1134) 	if (!quirks)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1135) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1136) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1137) 	return rhine_init_one_common(&pdev->dev, *quirks,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1138) 				     (long)ioaddr, ioaddr, irq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1139) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1140) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1141) static int alloc_ring(struct net_device* dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1142) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1143) 	struct rhine_private *rp = netdev_priv(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1144) 	struct device *hwdev = dev->dev.parent;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1145) 	void *ring;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1146) 	dma_addr_t ring_dma;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1147) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1148) 	ring = dma_alloc_coherent(hwdev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1149) 				  RX_RING_SIZE * sizeof(struct rx_desc) +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1150) 				  TX_RING_SIZE * sizeof(struct tx_desc),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1151) 				  &ring_dma,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1152) 				  GFP_ATOMIC);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1153) 	if (!ring) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1154) 		netdev_err(dev, "Could not allocate DMA memory\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1155) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1156) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1157) 	if (rp->quirks & rqRhineI) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1158) 		rp->tx_bufs = dma_alloc_coherent(hwdev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1159) 						 PKT_BUF_SZ * TX_RING_SIZE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1160) 						 &rp->tx_bufs_dma,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1161) 						 GFP_ATOMIC);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1162) 		if (rp->tx_bufs == NULL) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1163) 			dma_free_coherent(hwdev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1164) 					  RX_RING_SIZE * sizeof(struct rx_desc) +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1165) 					  TX_RING_SIZE * sizeof(struct tx_desc),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1166) 					  ring, ring_dma);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1167) 			return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1168) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1169) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1170) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1171) 	rp->rx_ring = ring;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1172) 	rp->tx_ring = ring + RX_RING_SIZE * sizeof(struct rx_desc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1173) 	rp->rx_ring_dma = ring_dma;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1174) 	rp->tx_ring_dma = ring_dma + RX_RING_SIZE * sizeof(struct rx_desc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1175) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1176) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1177) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1178) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1179) static void free_ring(struct net_device* dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1180) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1181) 	struct rhine_private *rp = netdev_priv(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1182) 	struct device *hwdev = dev->dev.parent;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1183) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1184) 	dma_free_coherent(hwdev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1185) 			  RX_RING_SIZE * sizeof(struct rx_desc) +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1186) 			  TX_RING_SIZE * sizeof(struct tx_desc),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1187) 			  rp->rx_ring, rp->rx_ring_dma);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1188) 	rp->tx_ring = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1189) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1190) 	if (rp->tx_bufs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1191) 		dma_free_coherent(hwdev, PKT_BUF_SZ * TX_RING_SIZE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1192) 				  rp->tx_bufs, rp->tx_bufs_dma);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1193) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1194) 	rp->tx_bufs = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1195) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1196) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1197) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1198) struct rhine_skb_dma {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1199) 	struct sk_buff *skb;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1200) 	dma_addr_t dma;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1201) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1202) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1203) static inline int rhine_skb_dma_init(struct net_device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1204) 				     struct rhine_skb_dma *sd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1205) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1206) 	struct rhine_private *rp = netdev_priv(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1207) 	struct device *hwdev = dev->dev.parent;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1208) 	const int size = rp->rx_buf_sz;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1209) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1210) 	sd->skb = netdev_alloc_skb(dev, size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1211) 	if (!sd->skb)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1212) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1213) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1214) 	sd->dma = dma_map_single(hwdev, sd->skb->data, size, DMA_FROM_DEVICE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1215) 	if (unlikely(dma_mapping_error(hwdev, sd->dma))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1216) 		netif_err(rp, drv, dev, "Rx DMA mapping failure\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1217) 		dev_kfree_skb_any(sd->skb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1218) 		return -EIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1219) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1220) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1221) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1222) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1223) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1224) static void rhine_reset_rbufs(struct rhine_private *rp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1225) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1226) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1227) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1228) 	rp->cur_rx = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1229) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1230) 	for (i = 0; i < RX_RING_SIZE; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1231) 		rp->rx_ring[i].rx_status = cpu_to_le32(DescOwn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1232) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1233) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1234) static inline void rhine_skb_dma_nic_store(struct rhine_private *rp,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1235) 					   struct rhine_skb_dma *sd, int entry)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1236) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1237) 	rp->rx_skbuff_dma[entry] = sd->dma;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1238) 	rp->rx_skbuff[entry] = sd->skb;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1239) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1240) 	rp->rx_ring[entry].addr = cpu_to_le32(sd->dma);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1241) 	dma_wmb();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1242) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1243) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1244) static void free_rbufs(struct net_device* dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1245) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1246) static int alloc_rbufs(struct net_device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1247) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1248) 	struct rhine_private *rp = netdev_priv(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1249) 	dma_addr_t next;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1250) 	int rc, i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1251) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1252) 	rp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1253) 	next = rp->rx_ring_dma;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1254) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1255) 	/* Init the ring entries */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1256) 	for (i = 0; i < RX_RING_SIZE; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1257) 		rp->rx_ring[i].rx_status = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1258) 		rp->rx_ring[i].desc_length = cpu_to_le32(rp->rx_buf_sz);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1259) 		next += sizeof(struct rx_desc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1260) 		rp->rx_ring[i].next_desc = cpu_to_le32(next);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1261) 		rp->rx_skbuff[i] = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1262) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1263) 	/* Mark the last entry as wrapping the ring. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1264) 	rp->rx_ring[i-1].next_desc = cpu_to_le32(rp->rx_ring_dma);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1265) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1266) 	/* Fill in the Rx buffers.  Handle allocation failure gracefully. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1267) 	for (i = 0; i < RX_RING_SIZE; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1268) 		struct rhine_skb_dma sd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1269) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1270) 		rc = rhine_skb_dma_init(dev, &sd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1271) 		if (rc < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1272) 			free_rbufs(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1273) 			goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1274) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1275) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1276) 		rhine_skb_dma_nic_store(rp, &sd, i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1277) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1278) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1279) 	rhine_reset_rbufs(rp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1280) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1281) 	return rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1282) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1283) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1284) static void free_rbufs(struct net_device* dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1285) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1286) 	struct rhine_private *rp = netdev_priv(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1287) 	struct device *hwdev = dev->dev.parent;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1288) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1289) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1290) 	/* Free all the skbuffs in the Rx queue. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1291) 	for (i = 0; i < RX_RING_SIZE; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1292) 		rp->rx_ring[i].rx_status = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1293) 		rp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1294) 		if (rp->rx_skbuff[i]) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1295) 			dma_unmap_single(hwdev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1296) 					 rp->rx_skbuff_dma[i],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1297) 					 rp->rx_buf_sz, DMA_FROM_DEVICE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1298) 			dev_kfree_skb(rp->rx_skbuff[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1299) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1300) 		rp->rx_skbuff[i] = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1301) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1302) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1303) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1304) static void alloc_tbufs(struct net_device* dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1305) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1306) 	struct rhine_private *rp = netdev_priv(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1307) 	dma_addr_t next;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1308) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1309) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1310) 	rp->dirty_tx = rp->cur_tx = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1311) 	next = rp->tx_ring_dma;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1312) 	for (i = 0; i < TX_RING_SIZE; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1313) 		rp->tx_skbuff[i] = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1314) 		rp->tx_ring[i].tx_status = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1315) 		rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1316) 		next += sizeof(struct tx_desc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1317) 		rp->tx_ring[i].next_desc = cpu_to_le32(next);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1318) 		if (rp->quirks & rqRhineI)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1319) 			rp->tx_buf[i] = &rp->tx_bufs[i * PKT_BUF_SZ];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1320) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1321) 	rp->tx_ring[i-1].next_desc = cpu_to_le32(rp->tx_ring_dma);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1322) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1323) 	netdev_reset_queue(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1324) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1325) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1326) static void free_tbufs(struct net_device* dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1327) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1328) 	struct rhine_private *rp = netdev_priv(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1329) 	struct device *hwdev = dev->dev.parent;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1330) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1331) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1332) 	for (i = 0; i < TX_RING_SIZE; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1333) 		rp->tx_ring[i].tx_status = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1334) 		rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1335) 		rp->tx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1336) 		if (rp->tx_skbuff[i]) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1337) 			if (rp->tx_skbuff_dma[i]) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1338) 				dma_unmap_single(hwdev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1339) 						 rp->tx_skbuff_dma[i],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1340) 						 rp->tx_skbuff[i]->len,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1341) 						 DMA_TO_DEVICE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1342) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1343) 			dev_kfree_skb(rp->tx_skbuff[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1344) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1345) 		rp->tx_skbuff[i] = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1346) 		rp->tx_buf[i] = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1347) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1348) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1349) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1350) static void rhine_check_media(struct net_device *dev, unsigned int init_media)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1351) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1352) 	struct rhine_private *rp = netdev_priv(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1353) 	void __iomem *ioaddr = rp->base;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1354) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1355) 	if (!rp->mii_if.force_media)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1356) 		mii_check_media(&rp->mii_if, netif_msg_link(rp), init_media);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1357) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1358) 	if (rp->mii_if.full_duplex)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1359) 	    iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1FDuplex,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1360) 		   ioaddr + ChipCmd1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1361) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1362) 	    iowrite8(ioread8(ioaddr + ChipCmd1) & ~Cmd1FDuplex,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1363) 		   ioaddr + ChipCmd1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1364) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1365) 	netif_info(rp, link, dev, "force_media %d, carrier %d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1366) 		   rp->mii_if.force_media, netif_carrier_ok(dev));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1367) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1368) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1369) /* Called after status of force_media possibly changed */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1370) static void rhine_set_carrier(struct mii_if_info *mii)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1371) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1372) 	struct net_device *dev = mii->dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1373) 	struct rhine_private *rp = netdev_priv(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1374) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1375) 	if (mii->force_media) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1376) 		/* autoneg is off: Link is always assumed to be up */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1377) 		if (!netif_carrier_ok(dev))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1378) 			netif_carrier_on(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1379) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1380) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1381) 	rhine_check_media(dev, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1382) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1383) 	netif_info(rp, link, dev, "force_media %d, carrier %d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1384) 		   mii->force_media, netif_carrier_ok(dev));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1385) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1386) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1387) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1388)  * rhine_set_cam - set CAM multicast filters
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1389)  * @ioaddr: register block of this Rhine
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1390)  * @idx: multicast CAM index [0..MCAM_SIZE-1]
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1391)  * @addr: multicast address (6 bytes)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1392)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1393)  * Load addresses into multicast filters.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1394)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1395) static void rhine_set_cam(void __iomem *ioaddr, int idx, u8 *addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1396) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1397) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1398) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1399) 	iowrite8(CAMC_CAMEN, ioaddr + CamCon);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1400) 	wmb();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1401) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1402) 	/* Paranoid -- idx out of range should never happen */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1403) 	idx &= (MCAM_SIZE - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1404) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1405) 	iowrite8((u8) idx, ioaddr + CamAddr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1406) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1407) 	for (i = 0; i < 6; i++, addr++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1408) 		iowrite8(*addr, ioaddr + MulticastFilter0 + i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1409) 	udelay(10);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1410) 	wmb();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1411) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1412) 	iowrite8(CAMC_CAMWR | CAMC_CAMEN, ioaddr + CamCon);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1413) 	udelay(10);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1414) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1415) 	iowrite8(0, ioaddr + CamCon);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1416) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1417) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1418) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1419)  * rhine_set_vlan_cam - set CAM VLAN filters
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1420)  * @ioaddr: register block of this Rhine
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1421)  * @idx: VLAN CAM index [0..VCAM_SIZE-1]
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1422)  * @addr: VLAN ID (2 bytes)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1423)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1424)  * Load addresses into VLAN filters.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1425)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1426) static void rhine_set_vlan_cam(void __iomem *ioaddr, int idx, u8 *addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1427) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1428) 	iowrite8(CAMC_CAMEN | CAMC_VCAMSL, ioaddr + CamCon);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1429) 	wmb();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1430) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1431) 	/* Paranoid -- idx out of range should never happen */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1432) 	idx &= (VCAM_SIZE - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1433) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1434) 	iowrite8((u8) idx, ioaddr + CamAddr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1435) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1436) 	iowrite16(*((u16 *) addr), ioaddr + MulticastFilter0 + 6);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1437) 	udelay(10);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1438) 	wmb();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1439) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1440) 	iowrite8(CAMC_CAMWR | CAMC_CAMEN, ioaddr + CamCon);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1441) 	udelay(10);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1442) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1443) 	iowrite8(0, ioaddr + CamCon);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1444) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1445) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1446) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1447)  * rhine_set_cam_mask - set multicast CAM mask
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1448)  * @ioaddr: register block of this Rhine
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1449)  * @mask: multicast CAM mask
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1450)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1451)  * Mask sets multicast filters active/inactive.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1452)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1453) static void rhine_set_cam_mask(void __iomem *ioaddr, u32 mask)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1454) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1455) 	iowrite8(CAMC_CAMEN, ioaddr + CamCon);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1456) 	wmb();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1457) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1458) 	/* write mask */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1459) 	iowrite32(mask, ioaddr + CamMask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1460) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1461) 	/* disable CAMEN */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1462) 	iowrite8(0, ioaddr + CamCon);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1463) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1464) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1465) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1466)  * rhine_set_vlan_cam_mask - set VLAN CAM mask
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1467)  * @ioaddr: register block of this Rhine
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1468)  * @mask: VLAN CAM mask
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1469)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1470)  * Mask sets VLAN filters active/inactive.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1471)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1472) static void rhine_set_vlan_cam_mask(void __iomem *ioaddr, u32 mask)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1473) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1474) 	iowrite8(CAMC_CAMEN | CAMC_VCAMSL, ioaddr + CamCon);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1475) 	wmb();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1476) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1477) 	/* write mask */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1478) 	iowrite32(mask, ioaddr + CamMask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1479) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1480) 	/* disable CAMEN */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1481) 	iowrite8(0, ioaddr + CamCon);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1482) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1483) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1484) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1485)  * rhine_init_cam_filter - initialize CAM filters
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1486)  * @dev: network device
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1487)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1488)  * Initialize (disable) hardware VLAN and multicast support on this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1489)  * Rhine.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1490)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1491) static void rhine_init_cam_filter(struct net_device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1492) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1493) 	struct rhine_private *rp = netdev_priv(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1494) 	void __iomem *ioaddr = rp->base;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1495) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1496) 	/* Disable all CAMs */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1497) 	rhine_set_vlan_cam_mask(ioaddr, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1498) 	rhine_set_cam_mask(ioaddr, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1499) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1500) 	/* disable hardware VLAN support */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1501) 	BYTE_REG_BITS_ON(TCR_PQEN, ioaddr + TxConfig);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1502) 	BYTE_REG_BITS_OFF(BCR1_VIDFR, ioaddr + PCIBusConfig1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1503) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1504) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1505) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1506)  * rhine_update_vcam - update VLAN CAM filters
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1507)  * @dev: rhine_private data of this Rhine
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1508)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1509)  * Update VLAN CAM filters to match configuration change.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1510)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1511) static void rhine_update_vcam(struct net_device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1512) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1513) 	struct rhine_private *rp = netdev_priv(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1514) 	void __iomem *ioaddr = rp->base;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1515) 	u16 vid;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1516) 	u32 vCAMmask = 0;	/* 32 vCAMs (6105M and better) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1517) 	unsigned int i = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1518) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1519) 	for_each_set_bit(vid, rp->active_vlans, VLAN_N_VID) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1520) 		rhine_set_vlan_cam(ioaddr, i, (u8 *)&vid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1521) 		vCAMmask |= 1 << i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1522) 		if (++i >= VCAM_SIZE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1523) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1524) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1525) 	rhine_set_vlan_cam_mask(ioaddr, vCAMmask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1526) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1527) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1528) static int rhine_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1529) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1530) 	struct rhine_private *rp = netdev_priv(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1531) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1532) 	spin_lock_bh(&rp->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1533) 	set_bit(vid, rp->active_vlans);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1534) 	rhine_update_vcam(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1535) 	spin_unlock_bh(&rp->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1536) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1537) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1538) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1539) static int rhine_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1540) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1541) 	struct rhine_private *rp = netdev_priv(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1542) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1543) 	spin_lock_bh(&rp->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1544) 	clear_bit(vid, rp->active_vlans);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1545) 	rhine_update_vcam(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1546) 	spin_unlock_bh(&rp->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1547) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1548) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1549) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1550) static void init_registers(struct net_device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1551) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1552) 	struct rhine_private *rp = netdev_priv(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1553) 	void __iomem *ioaddr = rp->base;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1554) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1555) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1556) 	for (i = 0; i < 6; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1557) 		iowrite8(dev->dev_addr[i], ioaddr + StationAddr + i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1558) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1559) 	/* Initialize other registers. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1560) 	iowrite16(0x0006, ioaddr + PCIBusConfig);	/* Tune configuration??? */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1561) 	/* Configure initial FIFO thresholds. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1562) 	iowrite8(0x20, ioaddr + TxConfig);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1563) 	rp->tx_thresh = 0x20;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1564) 	rp->rx_thresh = 0x60;		/* Written in rhine_set_rx_mode(). */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1565) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1566) 	iowrite32(rp->rx_ring_dma, ioaddr + RxRingPtr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1567) 	iowrite32(rp->tx_ring_dma, ioaddr + TxRingPtr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1568) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1569) 	rhine_set_rx_mode(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1570) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1571) 	if (rp->quirks & rqMgmt)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1572) 		rhine_init_cam_filter(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1573) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1574) 	napi_enable(&rp->napi);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1575) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1576) 	iowrite16(RHINE_EVENT & 0xffff, ioaddr + IntrEnable);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1577) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1578) 	iowrite16(CmdStart | CmdTxOn | CmdRxOn | (Cmd1NoTxPoll << 8),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1579) 	       ioaddr + ChipCmd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1580) 	rhine_check_media(dev, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1581) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1582) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1583) /* Enable MII link status auto-polling (required for IntrLinkChange) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1584) static void rhine_enable_linkmon(struct rhine_private *rp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1585) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1586) 	void __iomem *ioaddr = rp->base;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1587) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1588) 	iowrite8(0, ioaddr + MIICmd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1589) 	iowrite8(MII_BMSR, ioaddr + MIIRegAddr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1590) 	iowrite8(0x80, ioaddr + MIICmd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1591) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1592) 	rhine_wait_bit_high(rp, MIIRegAddr, 0x20);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1593) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1594) 	iowrite8(MII_BMSR | 0x40, ioaddr + MIIRegAddr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1595) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1596) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1597) /* Disable MII link status auto-polling (required for MDIO access) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1598) static void rhine_disable_linkmon(struct rhine_private *rp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1599) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1600) 	void __iomem *ioaddr = rp->base;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1601) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1602) 	iowrite8(0, ioaddr + MIICmd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1603) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1604) 	if (rp->quirks & rqRhineI) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1605) 		iowrite8(0x01, ioaddr + MIIRegAddr);	// MII_BMSR
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1606) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1607) 		/* Can be called from ISR. Evil. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1608) 		mdelay(1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1609) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1610) 		/* 0x80 must be set immediately before turning it off */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1611) 		iowrite8(0x80, ioaddr + MIICmd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1612) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1613) 		rhine_wait_bit_high(rp, MIIRegAddr, 0x20);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1614) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1615) 		/* Heh. Now clear 0x80 again. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1616) 		iowrite8(0, ioaddr + MIICmd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1617) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1618) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1619) 		rhine_wait_bit_high(rp, MIIRegAddr, 0x80);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1620) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1621) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1622) /* Read and write over the MII Management Data I/O (MDIO) interface. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1623) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1624) static int mdio_read(struct net_device *dev, int phy_id, int regnum)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1625) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1626) 	struct rhine_private *rp = netdev_priv(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1627) 	void __iomem *ioaddr = rp->base;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1628) 	int result;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1629) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1630) 	rhine_disable_linkmon(rp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1631) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1632) 	/* rhine_disable_linkmon already cleared MIICmd */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1633) 	iowrite8(phy_id, ioaddr + MIIPhyAddr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1634) 	iowrite8(regnum, ioaddr + MIIRegAddr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1635) 	iowrite8(0x40, ioaddr + MIICmd);		/* Trigger read */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1636) 	rhine_wait_bit_low(rp, MIICmd, 0x40);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1637) 	result = ioread16(ioaddr + MIIData);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1638) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1639) 	rhine_enable_linkmon(rp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1640) 	return result;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1641) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1642) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1643) static void mdio_write(struct net_device *dev, int phy_id, int regnum, int value)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1644) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1645) 	struct rhine_private *rp = netdev_priv(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1646) 	void __iomem *ioaddr = rp->base;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1647) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1648) 	rhine_disable_linkmon(rp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1649) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1650) 	/* rhine_disable_linkmon already cleared MIICmd */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1651) 	iowrite8(phy_id, ioaddr + MIIPhyAddr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1652) 	iowrite8(regnum, ioaddr + MIIRegAddr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1653) 	iowrite16(value, ioaddr + MIIData);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1654) 	iowrite8(0x20, ioaddr + MIICmd);		/* Trigger write */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1655) 	rhine_wait_bit_low(rp, MIICmd, 0x20);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1656) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1657) 	rhine_enable_linkmon(rp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1658) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1659) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1660) static void rhine_task_disable(struct rhine_private *rp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1661) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1662) 	mutex_lock(&rp->task_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1663) 	rp->task_enable = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1664) 	mutex_unlock(&rp->task_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1665) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1666) 	cancel_work_sync(&rp->slow_event_task);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1667) 	cancel_work_sync(&rp->reset_task);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1668) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1669) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1670) static void rhine_task_enable(struct rhine_private *rp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1671) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1672) 	mutex_lock(&rp->task_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1673) 	rp->task_enable = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1674) 	mutex_unlock(&rp->task_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1675) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1676) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1677) static int rhine_open(struct net_device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1678) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1679) 	struct rhine_private *rp = netdev_priv(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1680) 	void __iomem *ioaddr = rp->base;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1681) 	int rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1682) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1683) 	rc = request_irq(rp->irq, rhine_interrupt, IRQF_SHARED, dev->name, dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1684) 	if (rc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1685) 		goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1686) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1687) 	netif_dbg(rp, ifup, dev, "%s() irq %d\n", __func__, rp->irq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1688) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1689) 	rc = alloc_ring(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1690) 	if (rc < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1691) 		goto out_free_irq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1692) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1693) 	rc = alloc_rbufs(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1694) 	if (rc < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1695) 		goto out_free_ring;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1696) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1697) 	alloc_tbufs(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1698) 	enable_mmio(rp->pioaddr, rp->quirks);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1699) 	rhine_power_init(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1700) 	rhine_chip_reset(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1701) 	rhine_task_enable(rp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1702) 	init_registers(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1703) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1704) 	netif_dbg(rp, ifup, dev, "%s() Done - status %04x MII status: %04x\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1705) 		  __func__, ioread16(ioaddr + ChipCmd),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1706) 		  mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1707) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1708) 	netif_start_queue(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1709) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1710) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1711) 	return rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1712) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1713) out_free_ring:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1714) 	free_ring(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1715) out_free_irq:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1716) 	free_irq(rp->irq, dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1717) 	goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1718) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1719) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1720) static void rhine_reset_task(struct work_struct *work)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1721) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1722) 	struct rhine_private *rp = container_of(work, struct rhine_private,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1723) 						reset_task);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1724) 	struct net_device *dev = rp->dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1725) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1726) 	mutex_lock(&rp->task_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1727) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1728) 	if (!rp->task_enable)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1729) 		goto out_unlock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1730) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1731) 	napi_disable(&rp->napi);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1732) 	netif_tx_disable(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1733) 	spin_lock_bh(&rp->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1734) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1735) 	/* clear all descriptors */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1736) 	free_tbufs(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1737) 	alloc_tbufs(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1738) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1739) 	rhine_reset_rbufs(rp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1740) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1741) 	/* Reinitialize the hardware. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1742) 	rhine_chip_reset(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1743) 	init_registers(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1744) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1745) 	spin_unlock_bh(&rp->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1746) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1747) 	netif_trans_update(dev); /* prevent tx timeout */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1748) 	dev->stats.tx_errors++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1749) 	netif_wake_queue(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1750) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1751) out_unlock:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1752) 	mutex_unlock(&rp->task_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1753) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1754) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1755) static void rhine_tx_timeout(struct net_device *dev, unsigned int txqueue)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1756) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1757) 	struct rhine_private *rp = netdev_priv(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1758) 	void __iomem *ioaddr = rp->base;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1759) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1760) 	netdev_warn(dev, "Transmit timed out, status %04x, PHY status %04x, resetting...\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1761) 		    ioread16(ioaddr + IntrStatus),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1762) 		    mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1763) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1764) 	schedule_work(&rp->reset_task);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1765) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1766) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1767) static inline bool rhine_tx_queue_full(struct rhine_private *rp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1768) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1769) 	return (rp->cur_tx - rp->dirty_tx) >= TX_QUEUE_LEN;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1770) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1771) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1772) static netdev_tx_t rhine_start_tx(struct sk_buff *skb,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1773) 				  struct net_device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1774) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1775) 	struct rhine_private *rp = netdev_priv(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1776) 	struct device *hwdev = dev->dev.parent;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1777) 	void __iomem *ioaddr = rp->base;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1778) 	unsigned entry;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1779) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1780) 	/* Caution: the write order is important here, set the field
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1781) 	   with the "ownership" bits last. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1782) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1783) 	/* Calculate the next Tx descriptor entry. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1784) 	entry = rp->cur_tx % TX_RING_SIZE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1785) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1786) 	if (skb_padto(skb, ETH_ZLEN))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1787) 		return NETDEV_TX_OK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1788) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1789) 	rp->tx_skbuff[entry] = skb;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1790) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1791) 	if ((rp->quirks & rqRhineI) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1792) 	    (((unsigned long)skb->data & 3) || skb_shinfo(skb)->nr_frags != 0 || skb->ip_summed == CHECKSUM_PARTIAL)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1793) 		/* Must use alignment buffer. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1794) 		if (skb->len > PKT_BUF_SZ) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1795) 			/* packet too long, drop it */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1796) 			dev_kfree_skb_any(skb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1797) 			rp->tx_skbuff[entry] = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1798) 			dev->stats.tx_dropped++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1799) 			return NETDEV_TX_OK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1800) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1801) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1802) 		/* Padding is not copied and so must be redone. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1803) 		skb_copy_and_csum_dev(skb, rp->tx_buf[entry]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1804) 		if (skb->len < ETH_ZLEN)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1805) 			memset(rp->tx_buf[entry] + skb->len, 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1806) 			       ETH_ZLEN - skb->len);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1807) 		rp->tx_skbuff_dma[entry] = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1808) 		rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_bufs_dma +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1809) 						      (rp->tx_buf[entry] -
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1810) 						       rp->tx_bufs));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1811) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1812) 		rp->tx_skbuff_dma[entry] =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1813) 			dma_map_single(hwdev, skb->data, skb->len,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1814) 				       DMA_TO_DEVICE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1815) 		if (dma_mapping_error(hwdev, rp->tx_skbuff_dma[entry])) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1816) 			dev_kfree_skb_any(skb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1817) 			rp->tx_skbuff_dma[entry] = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1818) 			dev->stats.tx_dropped++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1819) 			return NETDEV_TX_OK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1820) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1821) 		rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_skbuff_dma[entry]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1822) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1823) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1824) 	rp->tx_ring[entry].desc_length =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1825) 		cpu_to_le32(TXDESC | (skb->len >= ETH_ZLEN ? skb->len : ETH_ZLEN));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1826) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1827) 	if (unlikely(skb_vlan_tag_present(skb))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1828) 		u16 vid_pcp = skb_vlan_tag_get(skb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1829) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1830) 		/* drop CFI/DEI bit, register needs VID and PCP */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1831) 		vid_pcp = (vid_pcp & VLAN_VID_MASK) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1832) 			  ((vid_pcp & VLAN_PRIO_MASK) >> 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1833) 		rp->tx_ring[entry].tx_status = cpu_to_le32((vid_pcp) << 16);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1834) 		/* request tagging */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1835) 		rp->tx_ring[entry].desc_length |= cpu_to_le32(0x020000);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1836) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1837) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1838) 		rp->tx_ring[entry].tx_status = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1839) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1840) 	netdev_sent_queue(dev, skb->len);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1841) 	/* lock eth irq */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1842) 	dma_wmb();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1843) 	rp->tx_ring[entry].tx_status |= cpu_to_le32(DescOwn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1844) 	wmb();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1845) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1846) 	rp->cur_tx++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1847) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1848) 	 * Nobody wants cur_tx write to rot for ages after the NIC will have
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1849) 	 * seen the transmit request, especially as the transmit completion
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1850) 	 * handler could miss it.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1851) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1852) 	smp_wmb();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1853) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1854) 	/* Non-x86 Todo: explicitly flush cache lines here. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1855) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1856) 	if (skb_vlan_tag_present(skb))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1857) 		/* Tx queues are bits 7-0 (first Tx queue: bit 7) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1858) 		BYTE_REG_BITS_ON(1 << 7, ioaddr + TQWake);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1859) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1860) 	/* Wake the potentially-idle transmit channel */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1861) 	iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1862) 	       ioaddr + ChipCmd1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1863) 	IOSYNC;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1864) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1865) 	/* dirty_tx may be pessimistically out-of-sync. See rhine_tx. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1866) 	if (rhine_tx_queue_full(rp)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1867) 		netif_stop_queue(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1868) 		smp_rmb();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1869) 		/* Rejuvenate. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1870) 		if (!rhine_tx_queue_full(rp))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1871) 			netif_wake_queue(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1872) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1873) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1874) 	netif_dbg(rp, tx_queued, dev, "Transmit frame #%d queued in slot %d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1875) 		  rp->cur_tx - 1, entry);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1876) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1877) 	return NETDEV_TX_OK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1878) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1879) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1880) static void rhine_irq_disable(struct rhine_private *rp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1881) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1882) 	iowrite16(0x0000, rp->base + IntrEnable);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1883) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1884) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1885) /* The interrupt handler does all of the Rx thread work and cleans up
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1886)    after the Tx thread. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1887) static irqreturn_t rhine_interrupt(int irq, void *dev_instance)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1888) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1889) 	struct net_device *dev = dev_instance;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1890) 	struct rhine_private *rp = netdev_priv(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1891) 	u32 status;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1892) 	int handled = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1893) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1894) 	status = rhine_get_events(rp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1895) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1896) 	netif_dbg(rp, intr, dev, "Interrupt, status %08x\n", status);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1897) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1898) 	if (status & RHINE_EVENT) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1899) 		handled = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1900) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1901) 		rhine_irq_disable(rp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1902) 		napi_schedule(&rp->napi);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1903) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1904) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1905) 	if (status & ~(IntrLinkChange | IntrStatsMax | RHINE_EVENT_NAPI)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1906) 		netif_err(rp, intr, dev, "Something Wicked happened! %08x\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1907) 			  status);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1908) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1909) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1910) 	return IRQ_RETVAL(handled);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1911) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1912) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1913) /* This routine is logically part of the interrupt handler, but isolated
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1914)    for clarity. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1915) static void rhine_tx(struct net_device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1916) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1917) 	struct rhine_private *rp = netdev_priv(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1918) 	struct device *hwdev = dev->dev.parent;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1919) 	unsigned int pkts_compl = 0, bytes_compl = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1920) 	unsigned int dirty_tx = rp->dirty_tx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1921) 	unsigned int cur_tx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1922) 	struct sk_buff *skb;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1923) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1924) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1925) 	 * The race with rhine_start_tx does not matter here as long as the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1926) 	 * driver enforces a value of cur_tx that was relevant when the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1927) 	 * packet was scheduled to the network chipset.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1928) 	 * Executive summary: smp_rmb() balances smp_wmb() in rhine_start_tx.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1929) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1930) 	smp_rmb();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1931) 	cur_tx = rp->cur_tx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1932) 	/* find and cleanup dirty tx descriptors */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1933) 	while (dirty_tx != cur_tx) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1934) 		unsigned int entry = dirty_tx % TX_RING_SIZE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1935) 		u32 txstatus = le32_to_cpu(rp->tx_ring[entry].tx_status);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1936) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1937) 		netif_dbg(rp, tx_done, dev, "Tx scavenge %d status %08x\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1938) 			  entry, txstatus);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1939) 		if (txstatus & DescOwn)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1940) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1941) 		skb = rp->tx_skbuff[entry];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1942) 		if (txstatus & 0x8000) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1943) 			netif_dbg(rp, tx_done, dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1944) 				  "Transmit error, Tx status %08x\n", txstatus);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1945) 			dev->stats.tx_errors++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1946) 			if (txstatus & 0x0400)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1947) 				dev->stats.tx_carrier_errors++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1948) 			if (txstatus & 0x0200)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1949) 				dev->stats.tx_window_errors++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1950) 			if (txstatus & 0x0100)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1951) 				dev->stats.tx_aborted_errors++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1952) 			if (txstatus & 0x0080)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1953) 				dev->stats.tx_heartbeat_errors++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1954) 			if (((rp->quirks & rqRhineI) && txstatus & 0x0002) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1955) 			    (txstatus & 0x0800) || (txstatus & 0x1000)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1956) 				dev->stats.tx_fifo_errors++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1957) 				rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1958) 				break; /* Keep the skb - we try again */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1959) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1960) 			/* Transmitter restarted in 'abnormal' handler. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1961) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1962) 			if (rp->quirks & rqRhineI)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1963) 				dev->stats.collisions += (txstatus >> 3) & 0x0F;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1964) 			else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1965) 				dev->stats.collisions += txstatus & 0x0F;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1966) 			netif_dbg(rp, tx_done, dev, "collisions: %1.1x:%1.1x\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1967) 				  (txstatus >> 3) & 0xF, txstatus & 0xF);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1968) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1969) 			u64_stats_update_begin(&rp->tx_stats.syncp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1970) 			rp->tx_stats.bytes += skb->len;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1971) 			rp->tx_stats.packets++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1972) 			u64_stats_update_end(&rp->tx_stats.syncp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1973) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1974) 		/* Free the original skb. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1975) 		if (rp->tx_skbuff_dma[entry]) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1976) 			dma_unmap_single(hwdev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1977) 					 rp->tx_skbuff_dma[entry],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1978) 					 skb->len,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1979) 					 DMA_TO_DEVICE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1980) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1981) 		bytes_compl += skb->len;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1982) 		pkts_compl++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1983) 		dev_consume_skb_any(skb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1984) 		rp->tx_skbuff[entry] = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1985) 		dirty_tx++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1986) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1987) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1988) 	rp->dirty_tx = dirty_tx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1989) 	/* Pity we can't rely on the nearby BQL completion implicit barrier. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1990) 	smp_wmb();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1991) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1992) 	netdev_completed_queue(dev, pkts_compl, bytes_compl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1993) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1994) 	/* cur_tx may be optimistically out-of-sync. See rhine_start_tx. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1995) 	if (!rhine_tx_queue_full(rp) && netif_queue_stopped(dev)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1996) 		netif_wake_queue(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1997) 		smp_rmb();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1998) 		/* Rejuvenate. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1999) 		if (rhine_tx_queue_full(rp))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2000) 			netif_stop_queue(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2001) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2002) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2003) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2004) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2005)  * rhine_get_vlan_tci - extract TCI from Rx data buffer
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2006)  * @skb: pointer to sk_buff
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2007)  * @data_size: used data area of the buffer including CRC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2008)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2009)  * If hardware VLAN tag extraction is enabled and the chip indicates a 802.1Q
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2010)  * packet, the extracted 802.1Q header (2 bytes TPID + 2 bytes TCI) is 4-byte
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2011)  * aligned following the CRC.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2012)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2013) static inline u16 rhine_get_vlan_tci(struct sk_buff *skb, int data_size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2014) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2015) 	u8 *trailer = (u8 *)skb->data + ((data_size + 3) & ~3) + 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2016) 	return be16_to_cpup((__be16 *)trailer);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2017) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2018) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2019) static inline void rhine_rx_vlan_tag(struct sk_buff *skb, struct rx_desc *desc,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2020) 				     int data_size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2021) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2022) 	dma_rmb();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2023) 	if (unlikely(desc->desc_length & cpu_to_le32(DescTag))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2024) 		u16 vlan_tci;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2025) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2026) 		vlan_tci = rhine_get_vlan_tci(skb, data_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2027) 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2028) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2029) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2030) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2031) /* Process up to limit frames from receive ring */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2032) static int rhine_rx(struct net_device *dev, int limit)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2033) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2034) 	struct rhine_private *rp = netdev_priv(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2035) 	struct device *hwdev = dev->dev.parent;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2036) 	int entry = rp->cur_rx % RX_RING_SIZE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2037) 	int count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2038) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2039) 	netif_dbg(rp, rx_status, dev, "%s(), entry %d status %08x\n", __func__,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2040) 		  entry, le32_to_cpu(rp->rx_ring[entry].rx_status));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2041) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2042) 	/* If EOP is set on the next entry, it's a new packet. Send it up. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2043) 	for (count = 0; count < limit; ++count) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2044) 		struct rx_desc *desc = rp->rx_ring + entry;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2045) 		u32 desc_status = le32_to_cpu(desc->rx_status);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2046) 		int data_size = desc_status >> 16;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2047) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2048) 		if (desc_status & DescOwn)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2049) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2050) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2051) 		netif_dbg(rp, rx_status, dev, "%s() status %08x\n", __func__,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2052) 			  desc_status);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2053) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2054) 		if ((desc_status & (RxWholePkt | RxErr)) != RxWholePkt) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2055) 			if ((desc_status & RxWholePkt) != RxWholePkt) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2056) 				netdev_warn(dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2057) 	"Oversized Ethernet frame spanned multiple buffers, "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2058) 	"entry %#x length %d status %08x!\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2059) 					    entry, data_size,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2060) 					    desc_status);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2061) 				dev->stats.rx_length_errors++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2062) 			} else if (desc_status & RxErr) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2063) 				/* There was a error. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2064) 				netif_dbg(rp, rx_err, dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2065) 					  "%s() Rx error %08x\n", __func__,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2066) 					  desc_status);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2067) 				dev->stats.rx_errors++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2068) 				if (desc_status & 0x0030)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2069) 					dev->stats.rx_length_errors++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2070) 				if (desc_status & 0x0048)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2071) 					dev->stats.rx_fifo_errors++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2072) 				if (desc_status & 0x0004)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2073) 					dev->stats.rx_frame_errors++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2074) 				if (desc_status & 0x0002) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2075) 					/* this can also be updated outside the interrupt handler */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2076) 					spin_lock(&rp->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2077) 					dev->stats.rx_crc_errors++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2078) 					spin_unlock(&rp->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2079) 				}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2080) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2081) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2082) 			/* Length should omit the CRC */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2083) 			int pkt_len = data_size - 4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2084) 			struct sk_buff *skb;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2085) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2086) 			/* Check if the packet is long enough to accept without
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2087) 			   copying to a minimally-sized skbuff. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2088) 			if (pkt_len < rx_copybreak) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2089) 				skb = netdev_alloc_skb_ip_align(dev, pkt_len);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2090) 				if (unlikely(!skb))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2091) 					goto drop;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2092) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2093) 				dma_sync_single_for_cpu(hwdev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2094) 							rp->rx_skbuff_dma[entry],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2095) 							rp->rx_buf_sz,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2096) 							DMA_FROM_DEVICE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2097) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2098) 				skb_copy_to_linear_data(skb,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2099) 						 rp->rx_skbuff[entry]->data,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2100) 						 pkt_len);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2101) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2102) 				dma_sync_single_for_device(hwdev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2103) 							   rp->rx_skbuff_dma[entry],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2104) 							   rp->rx_buf_sz,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2105) 							   DMA_FROM_DEVICE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2106) 			} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2107) 				struct rhine_skb_dma sd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2108) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2109) 				if (unlikely(rhine_skb_dma_init(dev, &sd) < 0))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2110) 					goto drop;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2111) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2112) 				skb = rp->rx_skbuff[entry];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2113) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2114) 				dma_unmap_single(hwdev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2115) 						 rp->rx_skbuff_dma[entry],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2116) 						 rp->rx_buf_sz,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2117) 						 DMA_FROM_DEVICE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2118) 				rhine_skb_dma_nic_store(rp, &sd, entry);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2119) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2120) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2121) 			skb_put(skb, pkt_len);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2122) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2123) 			rhine_rx_vlan_tag(skb, desc, data_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2124) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2125) 			skb->protocol = eth_type_trans(skb, dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2126) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2127) 			netif_receive_skb(skb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2128) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2129) 			u64_stats_update_begin(&rp->rx_stats.syncp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2130) 			rp->rx_stats.bytes += pkt_len;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2131) 			rp->rx_stats.packets++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2132) 			u64_stats_update_end(&rp->rx_stats.syncp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2133) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2134) give_descriptor_to_nic:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2135) 		desc->rx_status = cpu_to_le32(DescOwn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2136) 		entry = (++rp->cur_rx) % RX_RING_SIZE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2137) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2138) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2139) 	return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2140) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2141) drop:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2142) 	dev->stats.rx_dropped++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2143) 	goto give_descriptor_to_nic;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2144) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2145) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2146) static void rhine_restart_tx(struct net_device *dev) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2147) 	struct rhine_private *rp = netdev_priv(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2148) 	void __iomem *ioaddr = rp->base;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2149) 	int entry = rp->dirty_tx % TX_RING_SIZE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2150) 	u32 intr_status;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2151) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2152) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2153) 	 * If new errors occurred, we need to sort them out before doing Tx.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2154) 	 * In that case the ISR will be back here RSN anyway.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2155) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2156) 	intr_status = rhine_get_events(rp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2157) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2158) 	if ((intr_status & IntrTxErrSummary) == 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2159) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2160) 		/* We know better than the chip where it should continue. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2161) 		iowrite32(rp->tx_ring_dma + entry * sizeof(struct tx_desc),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2162) 		       ioaddr + TxRingPtr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2163) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2164) 		iowrite8(ioread8(ioaddr + ChipCmd) | CmdTxOn,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2165) 		       ioaddr + ChipCmd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2166) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2167) 		if (rp->tx_ring[entry].desc_length & cpu_to_le32(0x020000))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2168) 			/* Tx queues are bits 7-0 (first Tx queue: bit 7) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2169) 			BYTE_REG_BITS_ON(1 << 7, ioaddr + TQWake);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2170) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2171) 		iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2172) 		       ioaddr + ChipCmd1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2173) 		IOSYNC;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2174) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2175) 	else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2176) 		/* This should never happen */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2177) 		netif_warn(rp, tx_err, dev, "another error occurred %08x\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2178) 			   intr_status);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2179) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2180) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2181) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2182) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2183) static void rhine_slow_event_task(struct work_struct *work)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2184) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2185) 	struct rhine_private *rp =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2186) 		container_of(work, struct rhine_private, slow_event_task);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2187) 	struct net_device *dev = rp->dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2188) 	u32 intr_status;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2189) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2190) 	mutex_lock(&rp->task_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2191) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2192) 	if (!rp->task_enable)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2193) 		goto out_unlock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2194) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2195) 	intr_status = rhine_get_events(rp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2196) 	rhine_ack_events(rp, intr_status & RHINE_EVENT_SLOW);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2197) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2198) 	if (intr_status & IntrLinkChange)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2199) 		rhine_check_media(dev, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2200) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2201) 	if (intr_status & IntrPCIErr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2202) 		netif_warn(rp, hw, dev, "PCI error\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2203) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2204) 	iowrite16(RHINE_EVENT & 0xffff, rp->base + IntrEnable);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2205) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2206) out_unlock:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2207) 	mutex_unlock(&rp->task_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2208) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2209) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2210) static void
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2211) rhine_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2212) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2213) 	struct rhine_private *rp = netdev_priv(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2214) 	unsigned int start;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2215) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2216) 	spin_lock_bh(&rp->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2217) 	rhine_update_rx_crc_and_missed_errord(rp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2218) 	spin_unlock_bh(&rp->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2219) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2220) 	netdev_stats_to_stats64(stats, &dev->stats);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2221) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2222) 	do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2223) 		start = u64_stats_fetch_begin_irq(&rp->rx_stats.syncp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2224) 		stats->rx_packets = rp->rx_stats.packets;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2225) 		stats->rx_bytes = rp->rx_stats.bytes;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2226) 	} while (u64_stats_fetch_retry_irq(&rp->rx_stats.syncp, start));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2227) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2228) 	do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2229) 		start = u64_stats_fetch_begin_irq(&rp->tx_stats.syncp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2230) 		stats->tx_packets = rp->tx_stats.packets;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2231) 		stats->tx_bytes = rp->tx_stats.bytes;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2232) 	} while (u64_stats_fetch_retry_irq(&rp->tx_stats.syncp, start));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2233) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2234) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2235) static void rhine_set_rx_mode(struct net_device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2236) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2237) 	struct rhine_private *rp = netdev_priv(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2238) 	void __iomem *ioaddr = rp->base;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2239) 	u32 mc_filter[2];	/* Multicast hash filter */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2240) 	u8 rx_mode = 0x0C;	/* Note: 0x02=accept runt, 0x01=accept errs */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2241) 	struct netdev_hw_addr *ha;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2242) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2243) 	if (dev->flags & IFF_PROMISC) {		/* Set promiscuous. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2244) 		rx_mode = 0x1C;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2245) 		iowrite32(0xffffffff, ioaddr + MulticastFilter0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2246) 		iowrite32(0xffffffff, ioaddr + MulticastFilter1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2247) 	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2248) 		   (dev->flags & IFF_ALLMULTI)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2249) 		/* Too many to match, or accept all multicasts. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2250) 		iowrite32(0xffffffff, ioaddr + MulticastFilter0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2251) 		iowrite32(0xffffffff, ioaddr + MulticastFilter1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2252) 	} else if (rp->quirks & rqMgmt) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2253) 		int i = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2254) 		u32 mCAMmask = 0;	/* 32 mCAMs (6105M and better) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2255) 		netdev_for_each_mc_addr(ha, dev) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2256) 			if (i == MCAM_SIZE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2257) 				break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2258) 			rhine_set_cam(ioaddr, i, ha->addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2259) 			mCAMmask |= 1 << i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2260) 			i++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2261) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2262) 		rhine_set_cam_mask(ioaddr, mCAMmask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2263) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2264) 		memset(mc_filter, 0, sizeof(mc_filter));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2265) 		netdev_for_each_mc_addr(ha, dev) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2266) 			int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2267) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2268) 			mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2269) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2270) 		iowrite32(mc_filter[0], ioaddr + MulticastFilter0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2271) 		iowrite32(mc_filter[1], ioaddr + MulticastFilter1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2272) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2273) 	/* enable/disable VLAN receive filtering */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2274) 	if (rp->quirks & rqMgmt) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2275) 		if (dev->flags & IFF_PROMISC)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2276) 			BYTE_REG_BITS_OFF(BCR1_VIDFR, ioaddr + PCIBusConfig1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2277) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2278) 			BYTE_REG_BITS_ON(BCR1_VIDFR, ioaddr + PCIBusConfig1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2279) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2280) 	BYTE_REG_BITS_ON(rx_mode, ioaddr + RxConfig);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2281) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2282) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2283) static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2284) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2285) 	struct device *hwdev = dev->dev.parent;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2286) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2287) 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2288) 	strlcpy(info->bus_info, dev_name(hwdev), sizeof(info->bus_info));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2289) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2290) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2291) static int netdev_get_link_ksettings(struct net_device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2292) 				     struct ethtool_link_ksettings *cmd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2293) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2294) 	struct rhine_private *rp = netdev_priv(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2295) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2296) 	mutex_lock(&rp->task_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2297) 	mii_ethtool_get_link_ksettings(&rp->mii_if, cmd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2298) 	mutex_unlock(&rp->task_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2299) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2300) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2301) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2302) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2303) static int netdev_set_link_ksettings(struct net_device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2304) 				     const struct ethtool_link_ksettings *cmd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2305) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2306) 	struct rhine_private *rp = netdev_priv(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2307) 	int rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2308) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2309) 	mutex_lock(&rp->task_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2310) 	rc = mii_ethtool_set_link_ksettings(&rp->mii_if, cmd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2311) 	rhine_set_carrier(&rp->mii_if);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2312) 	mutex_unlock(&rp->task_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2313) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2314) 	return rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2315) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2316) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2317) static int netdev_nway_reset(struct net_device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2318) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2319) 	struct rhine_private *rp = netdev_priv(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2320) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2321) 	return mii_nway_restart(&rp->mii_if);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2322) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2323) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2324) static u32 netdev_get_link(struct net_device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2325) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2326) 	struct rhine_private *rp = netdev_priv(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2327) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2328) 	return mii_link_ok(&rp->mii_if);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2329) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2330) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2331) static u32 netdev_get_msglevel(struct net_device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2332) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2333) 	struct rhine_private *rp = netdev_priv(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2334) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2335) 	return rp->msg_enable;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2336) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2337) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2338) static void netdev_set_msglevel(struct net_device *dev, u32 value)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2339) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2340) 	struct rhine_private *rp = netdev_priv(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2341) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2342) 	rp->msg_enable = value;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2343) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2344) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2345) static void rhine_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2346) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2347) 	struct rhine_private *rp = netdev_priv(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2348) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2349) 	if (!(rp->quirks & rqWOL))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2350) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2351) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2352) 	spin_lock_irq(&rp->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2353) 	wol->supported = WAKE_PHY | WAKE_MAGIC |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2354) 			 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST;	/* Untested */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2355) 	wol->wolopts = rp->wolopts;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2356) 	spin_unlock_irq(&rp->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2357) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2358) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2359) static int rhine_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2360) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2361) 	struct rhine_private *rp = netdev_priv(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2362) 	u32 support = WAKE_PHY | WAKE_MAGIC |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2363) 		      WAKE_UCAST | WAKE_MCAST | WAKE_BCAST;	/* Untested */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2364) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2365) 	if (!(rp->quirks & rqWOL))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2366) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2367) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2368) 	if (wol->wolopts & ~support)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2369) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2370) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2371) 	spin_lock_irq(&rp->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2372) 	rp->wolopts = wol->wolopts;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2373) 	spin_unlock_irq(&rp->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2374) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2375) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2376) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2377) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2378) static const struct ethtool_ops netdev_ethtool_ops = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2379) 	.get_drvinfo		= netdev_get_drvinfo,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2380) 	.nway_reset		= netdev_nway_reset,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2381) 	.get_link		= netdev_get_link,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2382) 	.get_msglevel		= netdev_get_msglevel,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2383) 	.set_msglevel		= netdev_set_msglevel,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2384) 	.get_wol		= rhine_get_wol,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2385) 	.set_wol		= rhine_set_wol,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2386) 	.get_link_ksettings	= netdev_get_link_ksettings,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2387) 	.set_link_ksettings	= netdev_set_link_ksettings,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2388) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2389) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2390) static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2391) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2392) 	struct rhine_private *rp = netdev_priv(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2393) 	int rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2394) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2395) 	if (!netif_running(dev))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2396) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2397) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2398) 	mutex_lock(&rp->task_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2399) 	rc = generic_mii_ioctl(&rp->mii_if, if_mii(rq), cmd, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2400) 	rhine_set_carrier(&rp->mii_if);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2401) 	mutex_unlock(&rp->task_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2402) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2403) 	return rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2404) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2405) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2406) static int rhine_close(struct net_device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2407) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2408) 	struct rhine_private *rp = netdev_priv(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2409) 	void __iomem *ioaddr = rp->base;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2410) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2411) 	rhine_task_disable(rp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2412) 	napi_disable(&rp->napi);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2413) 	netif_stop_queue(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2414) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2415) 	netif_dbg(rp, ifdown, dev, "Shutting down ethercard, status was %04x\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2416) 		  ioread16(ioaddr + ChipCmd));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2417) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2418) 	/* Switch to loopback mode to avoid hardware races. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2419) 	iowrite8(rp->tx_thresh | 0x02, ioaddr + TxConfig);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2420) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2421) 	rhine_irq_disable(rp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2422) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2423) 	/* Stop the chip's Tx and Rx processes. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2424) 	iowrite16(CmdStop, ioaddr + ChipCmd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2425) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2426) 	free_irq(rp->irq, dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2427) 	free_rbufs(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2428) 	free_tbufs(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2429) 	free_ring(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2430) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2431) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2432) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2433) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2434) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2435) static void rhine_remove_one_pci(struct pci_dev *pdev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2436) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2437) 	struct net_device *dev = pci_get_drvdata(pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2438) 	struct rhine_private *rp = netdev_priv(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2439) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2440) 	unregister_netdev(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2441) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2442) 	pci_iounmap(pdev, rp->base);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2443) 	pci_release_regions(pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2444) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2445) 	free_netdev(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2446) 	pci_disable_device(pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2447) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2448) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2449) static int rhine_remove_one_platform(struct platform_device *pdev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2450) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2451) 	struct net_device *dev = platform_get_drvdata(pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2452) 	struct rhine_private *rp = netdev_priv(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2453) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2454) 	unregister_netdev(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2455) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2456) 	iounmap(rp->base);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2457) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2458) 	free_netdev(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2459) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2460) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2461) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2462) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2463) static void rhine_shutdown_pci(struct pci_dev *pdev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2464) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2465) 	struct net_device *dev = pci_get_drvdata(pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2466) 	struct rhine_private *rp = netdev_priv(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2467) 	void __iomem *ioaddr = rp->base;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2468) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2469) 	if (!(rp->quirks & rqWOL))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2470) 		return; /* Nothing to do for non-WOL adapters */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2471) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2472) 	rhine_power_init(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2473) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2474) 	/* Make sure we use pattern 0, 1 and not 4, 5 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2475) 	if (rp->quirks & rq6patterns)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2476) 		iowrite8(0x04, ioaddr + WOLcgClr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2477) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2478) 	spin_lock(&rp->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2479) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2480) 	if (rp->wolopts & WAKE_MAGIC) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2481) 		iowrite8(WOLmagic, ioaddr + WOLcrSet);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2482) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2483) 		 * Turn EEPROM-controlled wake-up back on -- some hardware may
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2484) 		 * not cooperate otherwise.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2485) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2486) 		iowrite8(ioread8(ioaddr + ConfigA) | 0x03, ioaddr + ConfigA);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2487) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2488) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2489) 	if (rp->wolopts & (WAKE_BCAST|WAKE_MCAST))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2490) 		iowrite8(WOLbmcast, ioaddr + WOLcgSet);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2491) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2492) 	if (rp->wolopts & WAKE_PHY)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2493) 		iowrite8(WOLlnkon | WOLlnkoff, ioaddr + WOLcrSet);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2494) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2495) 	if (rp->wolopts & WAKE_UCAST)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2496) 		iowrite8(WOLucast, ioaddr + WOLcrSet);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2497) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2498) 	if (rp->wolopts) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2499) 		/* Enable legacy WOL (for old motherboards) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2500) 		iowrite8(0x01, ioaddr + PwcfgSet);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2501) 		iowrite8(ioread8(ioaddr + StickyHW) | 0x04, ioaddr + StickyHW);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2502) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2503) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2504) 	spin_unlock(&rp->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2505) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2506) 	if (system_state == SYSTEM_POWER_OFF && !avoid_D3) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2507) 		iowrite8(ioread8(ioaddr + StickyHW) | 0x03, ioaddr + StickyHW);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2508) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2509) 		pci_wake_from_d3(pdev, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2510) 		pci_set_power_state(pdev, PCI_D3hot);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2511) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2512) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2513) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2514) #ifdef CONFIG_PM_SLEEP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2515) static int rhine_suspend(struct device *device)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2516) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2517) 	struct net_device *dev = dev_get_drvdata(device);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2518) 	struct rhine_private *rp = netdev_priv(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2519) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2520) 	if (!netif_running(dev))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2521) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2522) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2523) 	rhine_task_disable(rp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2524) 	rhine_irq_disable(rp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2525) 	napi_disable(&rp->napi);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2526) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2527) 	netif_device_detach(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2528) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2529) 	if (dev_is_pci(device))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2530) 		rhine_shutdown_pci(to_pci_dev(device));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2531) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2532) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2533) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2534) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2535) static int rhine_resume(struct device *device)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2536) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2537) 	struct net_device *dev = dev_get_drvdata(device);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2538) 	struct rhine_private *rp = netdev_priv(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2539) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2540) 	if (!netif_running(dev))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2541) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2542) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2543) 	enable_mmio(rp->pioaddr, rp->quirks);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2544) 	rhine_power_init(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2545) 	free_tbufs(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2546) 	alloc_tbufs(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2547) 	rhine_reset_rbufs(rp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2548) 	rhine_task_enable(rp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2549) 	spin_lock_bh(&rp->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2550) 	init_registers(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2551) 	spin_unlock_bh(&rp->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2552) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2553) 	netif_device_attach(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2554) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2555) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2556) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2557) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2558) static SIMPLE_DEV_PM_OPS(rhine_pm_ops, rhine_suspend, rhine_resume);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2559) #define RHINE_PM_OPS	(&rhine_pm_ops)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2560) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2561) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2562) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2563) #define RHINE_PM_OPS	NULL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2564) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2565) #endif /* !CONFIG_PM_SLEEP */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2566) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2567) static struct pci_driver rhine_driver_pci = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2568) 	.name		= DRV_NAME,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2569) 	.id_table	= rhine_pci_tbl,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2570) 	.probe		= rhine_init_one_pci,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2571) 	.remove		= rhine_remove_one_pci,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2572) 	.shutdown	= rhine_shutdown_pci,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2573) 	.driver.pm	= RHINE_PM_OPS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2574) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2575) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2576) static struct platform_driver rhine_driver_platform = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2577) 	.probe		= rhine_init_one_platform,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2578) 	.remove		= rhine_remove_one_platform,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2579) 	.driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2580) 		.name	= DRV_NAME,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2581) 		.of_match_table	= rhine_of_tbl,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2582) 		.pm		= RHINE_PM_OPS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2583) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2584) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2585) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2586) static const struct dmi_system_id rhine_dmi_table[] __initconst = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2587) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2588) 		.ident = "EPIA-M",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2589) 		.matches = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2590) 			DMI_MATCH(DMI_BIOS_VENDOR, "Award Software International, Inc."),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2591) 			DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2592) 		},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2593) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2594) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2595) 		.ident = "KV7",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2596) 		.matches = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2597) 			DMI_MATCH(DMI_BIOS_VENDOR, "Phoenix Technologies, LTD"),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2598) 			DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2599) 		},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2600) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2601) 	{ NULL }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2602) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2603) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2604) static int __init rhine_init(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2605) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2606) 	int ret_pci, ret_platform;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2607) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2608) /* when a module, this is printed whether or not devices are found in probe */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2609) 	if (dmi_check_system(rhine_dmi_table)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2610) 		/* these BIOSes fail at PXE boot if chip is in D3 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2611) 		avoid_D3 = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2612) 		pr_warn("Broken BIOS detected, avoid_D3 enabled\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2613) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2614) 	else if (avoid_D3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2615) 		pr_info("avoid_D3 set\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2616) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2617) 	ret_pci = pci_register_driver(&rhine_driver_pci);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2618) 	ret_platform = platform_driver_register(&rhine_driver_platform);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2619) 	if ((ret_pci < 0) && (ret_platform < 0))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2620) 		return ret_pci;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2621) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2622) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2623) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2624) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2625) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2626) static void __exit rhine_cleanup(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2627) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2628) 	platform_driver_unregister(&rhine_driver_platform);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2629) 	pci_unregister_driver(&rhine_driver_pci);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2630) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2631) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2632) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2633) module_init(rhine_init);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2634) module_exit(rhine_cleanup);