Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags   |
// SPDX-License-Identifier: GPL-2.0+
/* cassini.c: Sun Microsystems Cassini(+) ethernet driver.
*
* Copyright (C) 2004 Sun Microsystems Inc.
* Copyright (C) 2003 Adrian Sun (asun@darksunrising.com)
*
* This driver uses the sungem driver (c) David Miller
* (davem@redhat.com) as its basis.
*
* The cassini chip has a number of features that distinguish it from
* the gem chip:
* 4 transmit descriptor rings that are used for either QoS (VLAN) or
* load balancing (non-VLAN mode)
* batching of multiple packets
* multiple CPU dispatching
* page-based RX descriptor engine with separate completion rings
* Gigabit support (GMII and PCS interface)
* MIF link up/down detection works
*
* RX is handled by page sized buffers that are attached as fragments to
* the skb. here's what's done:
* -- driver allocates pages at a time and keeps reference counts
* on them.
* -- the upper protocol layers assume that the header is in the skb
* itself. as a result, cassini will copy a small amount (64 bytes)
* to make them happy.
* -- driver appends the rest of the data pages as frags to skbuffs
* and increments the reference count
* -- on page reclamation, the driver swaps the page with a spare page.
* if that page is still in use, it frees its reference to that page,
* and allocates a new page for use. otherwise, it just recycles the
* the page.
*
* NOTE: cassini can parse the header. however, it's not worth it
* as long as the network stack requires a header copy.
*
* TX has 4 queues. currently these queues are used in a round-robin
* fashion for load balancing. They can also be used for QoS. for that
* to work, however, QoS information needs to be exposed down to the driver
* level so that subqueues get targeted to particular transmit rings.
* alternatively, the queues can be configured via use of the all-purpose
* ioctl.
*
* RX DATA: the rx completion ring has all the info, but the rx desc
* ring has all of the data. RX can conceivably come in under multiple
* interrupts, but the INT# assignment needs to be set up properly by
* the BIOS and conveyed to the driver. PCI BIOSes don't know how to do
* that. also, the two descriptor rings are designed to distinguish between
* encrypted and non-encrypted packets, but we use them for buffering
* instead.
*
* by default, the selective clear mask is set up to process rx packets.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/compiler.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/vmalloc.h>
#include <linux/ioport.h>
#include <linux/pci.h>
#include <linux/mm.h>
#include <linux/highmem.h>
#include <linux/list.h>
#include <linux/dma-mapping.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/ethtool.h>
#include <linux/crc32.h>
#include <linux/random.h>
#include <linux/mii.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/mutex.h>
#include <linux/firmware.h>
#include <net/checksum.h>
#include <linux/atomic.h>
#include <asm/io.h>
#include <asm/byteorder.h>
#include <linux/uaccess.h>
#define cas_page_map(x) kmap_atomic((x))
#define cas_page_unmap(x) kunmap_atomic((x))
#define CAS_NCPUS num_online_cpus()
#define cas_skb_release(x) netif_rx(x)
/* select which firmware to use */
#define USE_HP_WORKAROUND
#define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */
#define CAS_HP_ALT_FIRMWARE cas_prog_null /* alternate firmware */
#include "cassini.h"
#define USE_TX_COMPWB /* use completion writeback registers */
#define USE_CSMA_CD_PROTO /* standard CSMA/CD */
#define USE_RX_BLANK /* hw interrupt mitigation */
#undef USE_ENTROPY_DEV /* don't test for entropy device */
/* NOTE: these aren't useable unless PCI interrupts can be assigned.
* also, we need to make cp->lock finer-grained.
*/
#undef USE_PCI_INTB
#undef USE_PCI_INTC
#undef USE_PCI_INTD
#undef USE_QOS
#undef USE_VPD_DEBUG /* debug vpd information if defined */
/* rx processing options */
#define USE_PAGE_ORDER /* specify to allocate large rx pages */
#define RX_DONT_BATCH 0 /* if 1, don't batch flows */
#define RX_COPY_ALWAYS 0 /* if 0, use frags */
#define RX_COPY_MIN 64 /* copy a little to make upper layers happy */
#undef RX_COUNT_BUFFERS /* define to calculate RX buffer stats */
#define DRV_MODULE_NAME "cassini"
#define DRV_MODULE_VERSION "1.6"
#define DRV_MODULE_RELDATE "21 May 2008"
#define CAS_DEF_MSG_ENABLE \
<------>(NETIF_MSG_DRV | \
<------> NETIF_MSG_PROBE | \
<------> NETIF_MSG_LINK | \
<------> NETIF_MSG_TIMER | \
<------> NETIF_MSG_IFDOWN | \
<------> NETIF_MSG_IFUP | \
<------> NETIF_MSG_RX_ERR | \
<------> NETIF_MSG_TX_ERR)
/* length of time before we decide the hardware is borked,
* and dev->tx_timeout() should be called to fix the problem
*/
#define CAS_TX_TIMEOUT (HZ)
#define CAS_LINK_TIMEOUT (22*HZ/10)
#define CAS_LINK_FAST_TIMEOUT (1)
/* timeout values for state changing. these specify the number
* of 10us delays to be used before giving up.
*/
#define STOP_TRIES_PHY 1000
#define STOP_TRIES 5000
/* specify a minimum frame size to deal with some fifo issues
* max mtu == 2 * page size - ethernet header - 64 - swivel =
* 2 * page_size - 0x50
*/
#define CAS_MIN_FRAME 97
#define CAS_1000MB_MIN_FRAME 255
#define CAS_MIN_MTU 60
#define CAS_MAX_MTU min(((cp->page_size << 1) - 0x50), 9000)
#if 1
/*
* Eliminate these and use separate atomic counters for each, to
* avoid a race condition.
*/
#else
#define CAS_RESET_MTU 1
#define CAS_RESET_ALL 2
#define CAS_RESET_SPARE 3
#endif
static char version[] =
<------>DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
static int cassini_debug = -1; /* -1 == use CAS_DEF_MSG_ENABLE as value */
static int link_mode;
MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)");
MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver");
MODULE_LICENSE("GPL");
MODULE_FIRMWARE("sun/cassini.bin");
module_param(cassini_debug, int, 0);
MODULE_PARM_DESC(cassini_debug, "Cassini bitmapped debugging message enable value");
module_param(link_mode, int, 0);
MODULE_PARM_DESC(link_mode, "default link mode");
/*
* Work around for a PCS bug in which the link goes down due to the chip
* being confused and never showing a link status of "up."
*/
#define DEFAULT_LINKDOWN_TIMEOUT 5
/*
* Value in seconds, for user input.
*/
static int linkdown_timeout = DEFAULT_LINKDOWN_TIMEOUT;
module_param(linkdown_timeout, int, 0);
MODULE_PARM_DESC(linkdown_timeout,
"min reset interval in sec. for PCS linkdown issue; disabled if not positive");
/*
* value in 'ticks' (units used by jiffies). Set when we init the
* module because 'HZ' in actually a function call on some flavors of
* Linux. This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ.
*/
static int link_transition_timeout;
static u16 link_modes[] = {
<------>BMCR_ANENABLE, /* 0 : autoneg */
<------>0, /* 1 : 10bt half duplex */
<------>BMCR_SPEED100, /* 2 : 100bt half duplex */
<------>BMCR_FULLDPLX, /* 3 : 10bt full duplex */
<------>BMCR_SPEED100|BMCR_FULLDPLX, /* 4 : 100bt full duplex */
<------>CAS_BMCR_SPEED1000|BMCR_FULLDPLX /* 5 : 1000bt full duplex */
};
static const struct pci_device_id cas_pci_tbl[] = {
<------>{ PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_CASSINI,
<------> PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
<------>{ PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SATURN,
<------> PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
<------>{ 0, }
};
MODULE_DEVICE_TABLE(pci, cas_pci_tbl);
static void cas_set_link_modes(struct cas *cp);
static inline void cas_lock_tx(struct cas *cp)
{
<------>int i;
<------>for (i = 0; i < N_TX_RINGS; i++)
<------><------>spin_lock_nested(&cp->tx_lock[i], i);
}
/* WTZ: QA was finding deadlock problems with the previous
* versions after long test runs with multiple cards per machine.
* See if replacing cas_lock_all with safer versions helps. The
* symptoms QA is reporting match those we'd expect if interrupts
* aren't being properly restored, and we fixed a previous deadlock
* with similar symptoms by using save/restore versions in other
* places.
*/
#define cas_lock_all_save(cp, flags) \
do { \
<------>struct cas *xxxcp = (cp); \
<------>spin_lock_irqsave(&xxxcp->lock, flags); \
<------>cas_lock_tx(xxxcp); \
} while (0)
static inline void cas_unlock_tx(struct cas *cp)
{
<------>int i;
<------>for (i = N_TX_RINGS; i > 0; i--)
<------><------>spin_unlock(&cp->tx_lock[i - 1]);
}
#define cas_unlock_all_restore(cp, flags) \
do { \
<------>struct cas *xxxcp = (cp); \
<------>cas_unlock_tx(xxxcp); \
<------>spin_unlock_irqrestore(&xxxcp->lock, flags); \
} while (0)
static void cas_disable_irq(struct cas *cp, const int ring)
{
<------>/* Make sure we won't get any more interrupts */
<------>if (ring == 0) {
<------><------>writel(0xFFFFFFFF, cp->regs + REG_INTR_MASK);
<------><------>return;
<------>}
<------>/* disable completion interrupts and selectively mask */
<------>if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
<------><------>switch (ring) {
#if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
#ifdef USE_PCI_INTB
<------><------>case 1:
#endif
#ifdef USE_PCI_INTC
<------><------>case 2:
#endif
#ifdef USE_PCI_INTD
<------><------>case 3:
#endif
<------><------><------>writel(INTRN_MASK_CLEAR_ALL | INTRN_MASK_RX_EN,
<------><------><------> cp->regs + REG_PLUS_INTRN_MASK(ring));
<------><------><------>break;
#endif
<------><------>default:
<------><------><------>writel(INTRN_MASK_CLEAR_ALL, cp->regs +
<------><------><------> REG_PLUS_INTRN_MASK(ring));
<------><------><------>break;
<------><------>}
<------>}
}
static inline void cas_mask_intr(struct cas *cp)
{
<------>int i;
<------>for (i = 0; i < N_RX_COMP_RINGS; i++)
<------><------>cas_disable_irq(cp, i);
}
static void cas_enable_irq(struct cas *cp, const int ring)
{
<------>if (ring == 0) { /* all but TX_DONE */
<------><------>writel(INTR_TX_DONE, cp->regs + REG_INTR_MASK);
<------><------>return;
<------>}
<------>if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
<------><------>switch (ring) {
#if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
#ifdef USE_PCI_INTB
<------><------>case 1:
#endif
#ifdef USE_PCI_INTC
<------><------>case 2:
#endif
#ifdef USE_PCI_INTD
<------><------>case 3:
#endif
<------><------><------>writel(INTRN_MASK_RX_EN, cp->regs +
<------><------><------> REG_PLUS_INTRN_MASK(ring));
<------><------><------>break;
#endif
<------><------>default:
<------><------><------>break;
<------><------>}
<------>}
}
static inline void cas_unmask_intr(struct cas *cp)
{
<------>int i;
<------>for (i = 0; i < N_RX_COMP_RINGS; i++)
<------><------>cas_enable_irq(cp, i);
}
static inline void cas_entropy_gather(struct cas *cp)
{
#ifdef USE_ENTROPY_DEV
<------>if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
<------><------>return;
<------>batch_entropy_store(readl(cp->regs + REG_ENTROPY_IV),
<------><------><------> readl(cp->regs + REG_ENTROPY_IV),
<------><------><------> sizeof(uint64_t)*8);
#endif
}
static inline void cas_entropy_reset(struct cas *cp)
{
#ifdef USE_ENTROPY_DEV
<------>if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
<------><------>return;
<------>writel(BIM_LOCAL_DEV_PAD | BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_EXT,
<------> cp->regs + REG_BIM_LOCAL_DEV_EN);
<------>writeb(ENTROPY_RESET_STC_MODE, cp->regs + REG_ENTROPY_RESET);
<------>writeb(0x55, cp->regs + REG_ENTROPY_RAND_REG);
<------>/* if we read back 0x0, we don't have an entropy device */
<------>if (readb(cp->regs + REG_ENTROPY_RAND_REG) == 0)
<------><------>cp->cas_flags &= ~CAS_FLAG_ENTROPY_DEV;
#endif
}
/* access to the phy. the following assumes that we've initialized the MIF to
* be in frame rather than bit-bang mode
*/
static u16 cas_phy_read(struct cas *cp, int reg)
{
<------>u32 cmd;
<------>int limit = STOP_TRIES_PHY;
<------>cmd = MIF_FRAME_ST | MIF_FRAME_OP_READ;
<------>cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
<------>cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
<------>cmd |= MIF_FRAME_TURN_AROUND_MSB;
<------>writel(cmd, cp->regs + REG_MIF_FRAME);
<------>/* poll for completion */
<------>while (limit-- > 0) {
<------><------>udelay(10);
<------><------>cmd = readl(cp->regs + REG_MIF_FRAME);
<------><------>if (cmd & MIF_FRAME_TURN_AROUND_LSB)
<------><------><------>return cmd & MIF_FRAME_DATA_MASK;
<------>}
<------>return 0xFFFF; /* -1 */
}
static int cas_phy_write(struct cas *cp, int reg, u16 val)
{
<------>int limit = STOP_TRIES_PHY;
<------>u32 cmd;
<------>cmd = MIF_FRAME_ST | MIF_FRAME_OP_WRITE;
<------>cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
<------>cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
<------>cmd |= MIF_FRAME_TURN_AROUND_MSB;
<------>cmd |= val & MIF_FRAME_DATA_MASK;
<------>writel(cmd, cp->regs + REG_MIF_FRAME);
<------>/* poll for completion */
<------>while (limit-- > 0) {
<------><------>udelay(10);
<------><------>cmd = readl(cp->regs + REG_MIF_FRAME);
<------><------>if (cmd & MIF_FRAME_TURN_AROUND_LSB)
<------><------><------>return 0;
<------>}
<------>return -1;
}
static void cas_phy_powerup(struct cas *cp)
{
<------>u16 ctl = cas_phy_read(cp, MII_BMCR);
<------>if ((ctl & BMCR_PDOWN) == 0)
<------><------>return;
<------>ctl &= ~BMCR_PDOWN;
<------>cas_phy_write(cp, MII_BMCR, ctl);
}
static void cas_phy_powerdown(struct cas *cp)
{
<------>u16 ctl = cas_phy_read(cp, MII_BMCR);
<------>if (ctl & BMCR_PDOWN)
<------><------>return;
<------>ctl |= BMCR_PDOWN;
<------>cas_phy_write(cp, MII_BMCR, ctl);
}
/* cp->lock held. note: the last put_page will free the buffer */
static int cas_page_free(struct cas *cp, cas_page_t *page)
{
<------>dma_unmap_page(&cp->pdev->dev, page->dma_addr, cp->page_size,
<------><------> DMA_FROM_DEVICE);
<------>__free_pages(page->buffer, cp->page_order);
<------>kfree(page);
<------>return 0;
}
#ifdef RX_COUNT_BUFFERS
#define RX_USED_ADD(x, y) ((x)->used += (y))
#define RX_USED_SET(x, y) ((x)->used = (y))
#else
#define RX_USED_ADD(x, y) do { } while(0)
#define RX_USED_SET(x, y) do { } while(0)
#endif
/* local page allocation routines for the receive buffers. jumbo pages
* require at least 8K contiguous and 8K aligned buffers.
*/
static cas_page_t *cas_page_alloc(struct cas *cp, const gfp_t flags)
{
<------>cas_page_t *page;
<------>page = kmalloc(sizeof(cas_page_t), flags);
<------>if (!page)
<------><------>return NULL;
<------>INIT_LIST_HEAD(&page->list);
<------>RX_USED_SET(page, 0);
<------>page->buffer = alloc_pages(flags, cp->page_order);
<------>if (!page->buffer)
<------><------>goto page_err;
<------>page->dma_addr = dma_map_page(&cp->pdev->dev, page->buffer, 0,
<------><------><------><------> cp->page_size, DMA_FROM_DEVICE);
<------>return page;
page_err:
<------>kfree(page);
<------>return NULL;
}
/* initialize spare pool of rx buffers, but allocate during the open */
static void cas_spare_init(struct cas *cp)
{
spin_lock(&cp->rx_inuse_lock);
<------>INIT_LIST_HEAD(&cp->rx_inuse_list);
<------>spin_unlock(&cp->rx_inuse_lock);
<------>spin_lock(&cp->rx_spare_lock);
<------>INIT_LIST_HEAD(&cp->rx_spare_list);
<------>cp->rx_spares_needed = RX_SPARE_COUNT;
<------>spin_unlock(&cp->rx_spare_lock);
}
/* used on close. free all the spare buffers. */
static void cas_spare_free(struct cas *cp)
{
<------>struct list_head list, *elem, *tmp;
<------>/* free spare buffers */
<------>INIT_LIST_HEAD(&list);
<------>spin_lock(&cp->rx_spare_lock);
<------>list_splice_init(&cp->rx_spare_list, &list);
<------>spin_unlock(&cp->rx_spare_lock);
<------>list_for_each_safe(elem, tmp, &list) {
<------><------>cas_page_free(cp, list_entry(elem, cas_page_t, list));
<------>}
<------>INIT_LIST_HEAD(&list);
#if 1
<------>/*
<------> * Looks like Adrian had protected this with a different
<------> * lock than used everywhere else to manipulate this list.
<------> */
<------>spin_lock(&cp->rx_inuse_lock);
<------>list_splice_init(&cp->rx_inuse_list, &list);
<------>spin_unlock(&cp->rx_inuse_lock);
#else
<------>spin_lock(&cp->rx_spare_lock);
<------>list_splice_init(&cp->rx_inuse_list, &list);
<------>spin_unlock(&cp->rx_spare_lock);
#endif
<------>list_for_each_safe(elem, tmp, &list) {
<------><------>cas_page_free(cp, list_entry(elem, cas_page_t, list));
<------>}
}
/* replenish spares if needed */
static void cas_spare_recover(struct cas *cp, const gfp_t flags)
{
<------>struct list_head list, *elem, *tmp;
<------>int needed, i;
<------>/* check inuse list. if we don't need any more free buffers,
<------> * just free it
<------> */
<------>/* make a local copy of the list */
<------>INIT_LIST_HEAD(&list);
<------>spin_lock(&cp->rx_inuse_lock);
<------>list_splice_init(&cp->rx_inuse_list, &list);
<------>spin_unlock(&cp->rx_inuse_lock);
<------>list_for_each_safe(elem, tmp, &list) {
<------><------>cas_page_t *page = list_entry(elem, cas_page_t, list);
<------><------>/*
<------><------> * With the lockless pagecache, cassini buffering scheme gets
<------><------> * slightly less accurate: we might find that a page has an
<------><------> * elevated reference count here, due to a speculative ref,
<------><------> * and skip it as in-use. Ideally we would be able to reclaim
<------><------> * it. However this would be such a rare case, it doesn't
<------><------> * matter too much as we should pick it up the next time round.
<------><------> *
<------><------> * Importantly, if we find that the page has a refcount of 1
<------><------> * here (our refcount), then we know it is definitely not inuse
<------><------> * so we can reuse it.
<------><------> */
<------><------>if (page_count(page->buffer) > 1)
<------><------><------>continue;
<------><------>list_del(elem);
<------><------>spin_lock(&cp->rx_spare_lock);
<------><------>if (cp->rx_spares_needed > 0) {
<------><------><------>list_add(elem, &cp->rx_spare_list);
<------><------><------>cp->rx_spares_needed--;
<------><------><------>spin_unlock(&cp->rx_spare_lock);
<------><------>} else {
<------><------><------>spin_unlock(&cp->rx_spare_lock);
<------><------><------>cas_page_free(cp, page);
<------><------>}
<------>}
<------>/* put any inuse buffers back on the list */
<------>if (!list_empty(&list)) {
<------><------>spin_lock(&cp->rx_inuse_lock);
<------><------>list_splice(&list, &cp->rx_inuse_list);
<------><------>spin_unlock(&cp->rx_inuse_lock);
<------>}
<------>spin_lock(&cp->rx_spare_lock);
<------>needed = cp->rx_spares_needed;
<------>spin_unlock(&cp->rx_spare_lock);
<------>if (!needed)
<------><------>return;
<------>/* we still need spares, so try to allocate some */
<------>INIT_LIST_HEAD(&list);
<------>i = 0;
<------>while (i < needed) {
<------><------>cas_page_t *spare = cas_page_alloc(cp, flags);
<------><------>if (!spare)
<------><------><------>break;
<------><------>list_add(&spare->list, &list);
<------><------>i++;
<------>}
<------>spin_lock(&cp->rx_spare_lock);
<------>list_splice(&list, &cp->rx_spare_list);
<------>cp->rx_spares_needed -= i;
<------>spin_unlock(&cp->rx_spare_lock);
}
/* pull a page from the list. */
static cas_page_t *cas_page_dequeue(struct cas *cp)
{
<------>struct list_head *entry;
<------>int recover;
<------>spin_lock(&cp->rx_spare_lock);
<------>if (list_empty(&cp->rx_spare_list)) {
<------><------>/* try to do a quick recovery */
<------><------>spin_unlock(&cp->rx_spare_lock);
<------><------>cas_spare_recover(cp, GFP_ATOMIC);
<------><------>spin_lock(&cp->rx_spare_lock);
<------><------>if (list_empty(&cp->rx_spare_list)) {
<------><------><------>netif_err(cp, rx_err, cp->dev,
<------><------><------><------> "no spare buffers available\n");
<------><------><------>spin_unlock(&cp->rx_spare_lock);
<------><------><------>return NULL;
<------><------>}
<------>}
<------>entry = cp->rx_spare_list.next;
<------>list_del(entry);
<------>recover = ++cp->rx_spares_needed;
<------>spin_unlock(&cp->rx_spare_lock);
<------>/* trigger the timer to do the recovery */
<------>if ((recover & (RX_SPARE_RECOVER_VAL - 1)) == 0) {
#if 1
<------><------>atomic_inc(&cp->reset_task_pending);
<------><------>atomic_inc(&cp->reset_task_pending_spare);
<------><------>schedule_work(&cp->reset_task);
#else
<------><------>atomic_set(&cp->reset_task_pending, CAS_RESET_SPARE);
<------><------>schedule_work(&cp->reset_task);
#endif
<------>}
<------>return list_entry(entry, cas_page_t, list);
}
static void cas_mif_poll(struct cas *cp, const int enable)
{
<------>u32 cfg;
<------>cfg = readl(cp->regs + REG_MIF_CFG);
<------>cfg &= (MIF_CFG_MDIO_0 | MIF_CFG_MDIO_1);
<------>if (cp->phy_type & CAS_PHY_MII_MDIO1)
<------><------>cfg |= MIF_CFG_PHY_SELECT;
<------>/* poll and interrupt on link status change. */
<------>if (enable) {
<------><------>cfg |= MIF_CFG_POLL_EN;
<------><------>cfg |= CAS_BASE(MIF_CFG_POLL_REG, MII_BMSR);
<------><------>cfg |= CAS_BASE(MIF_CFG_POLL_PHY, cp->phy_addr);
<------>}
<------>writel((enable) ? ~(BMSR_LSTATUS | BMSR_ANEGCOMPLETE) : 0xFFFF,
<------> cp->regs + REG_MIF_MASK);
<------>writel(cfg, cp->regs + REG_MIF_CFG);
}
/* Must be invoked under cp->lock */
static void cas_begin_auto_negotiation(struct cas *cp,
<------><------><------><------> const struct ethtool_link_ksettings *ep)
{
<------>u16 ctl;
#if 1
<------>int lcntl;
<------>int changed = 0;
<------>int oldstate = cp->lstate;
<------>int link_was_not_down = !(oldstate == link_down);
#endif
<------>/* Setup link parameters */
<------>if (!ep)
<------><------>goto start_aneg;
<------>lcntl = cp->link_cntl;
<------>if (ep->base.autoneg == AUTONEG_ENABLE) {
<------><------>cp->link_cntl = BMCR_ANENABLE;
<------>} else {
<------><------>u32 speed = ep->base.speed;
<------><------>cp->link_cntl = 0;
<------><------>if (speed == SPEED_100)
<------><------><------>cp->link_cntl |= BMCR_SPEED100;
<------><------>else if (speed == SPEED_1000)
<------><------><------>cp->link_cntl |= CAS_BMCR_SPEED1000;
<------><------>if (ep->base.duplex == DUPLEX_FULL)
<------><------><------>cp->link_cntl |= BMCR_FULLDPLX;
<------>}
#if 1
<------>changed = (lcntl != cp->link_cntl);
#endif
start_aneg:
<------>if (cp->lstate == link_up) {
<------><------>netdev_info(cp->dev, "PCS link down\n");
<------>} else {
<------><------>if (changed) {
<------><------><------>netdev_info(cp->dev, "link configuration changed\n");
<------><------>}
<------>}
<------>cp->lstate = link_down;
<------>cp->link_transition = LINK_TRANSITION_LINK_DOWN;
<------>if (!cp->hw_running)
<------><------>return;
#if 1
<------>/*
<------> * WTZ: If the old state was link_up, we turn off the carrier
<------> * to replicate everything we do elsewhere on a link-down
<------> * event when we were already in a link-up state..
<------> */
<------>if (oldstate == link_up)
<------><------>netif_carrier_off(cp->dev);
<------>if (changed && link_was_not_down) {
<------><------>/*
<------><------> * WTZ: This branch will simply schedule a full reset after
<------><------> * we explicitly changed link modes in an ioctl. See if this
<------><------> * fixes the link-problems we were having for forced mode.
<------><------> */
<------><------>atomic_inc(&cp->reset_task_pending);
<------><------>atomic_inc(&cp->reset_task_pending_all);
<------><------>schedule_work(&cp->reset_task);
<------><------>cp->timer_ticks = 0;
<------><------>mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
<------><------>return;
<------>}
#endif
<------>if (cp->phy_type & CAS_PHY_SERDES) {
<------><------>u32 val = readl(cp->regs + REG_PCS_MII_CTRL);
<------><------>if (cp->link_cntl & BMCR_ANENABLE) {
<------><------><------>val |= (PCS_MII_RESTART_AUTONEG | PCS_MII_AUTONEG_EN);
<------><------><------>cp->lstate = link_aneg;
<------><------>} else {
<------><------><------>if (cp->link_cntl & BMCR_FULLDPLX)
<------><------><------><------>val |= PCS_MII_CTRL_DUPLEX;
<------><------><------>val &= ~PCS_MII_AUTONEG_EN;
<------><------><------>cp->lstate = link_force_ok;
<------><------>}
<------><------>cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
<------><------>writel(val, cp->regs + REG_PCS_MII_CTRL);
<------>} else {
<------><------>cas_mif_poll(cp, 0);
<------><------>ctl = cas_phy_read(cp, MII_BMCR);
<------><------>ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 |
<------><------><------> CAS_BMCR_SPEED1000 | BMCR_ANENABLE);
<------><------>ctl |= cp->link_cntl;
<------><------>if (ctl & BMCR_ANENABLE) {
<------><------><------>ctl |= BMCR_ANRESTART;
<------><------><------>cp->lstate = link_aneg;
<------><------>} else {
<------><------><------>cp->lstate = link_force_ok;
<------><------>}
<------><------>cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
<------><------>cas_phy_write(cp, MII_BMCR, ctl);
<------><------>cas_mif_poll(cp, 1);
<------>}
<------>cp->timer_ticks = 0;
<------>mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
}
/* Must be invoked under cp->lock. */
static int cas_reset_mii_phy(struct cas *cp)
{
<------>int limit = STOP_TRIES_PHY;
<------>u16 val;
<------>cas_phy_write(cp, MII_BMCR, BMCR_RESET);
<------>udelay(100);
<------>while (--limit) {
<------><------>val = cas_phy_read(cp, MII_BMCR);
<------><------>if ((val & BMCR_RESET) == 0)
<------><------><------>break;
<------><------>udelay(10);
<------>}
<------>return limit <= 0;
}
static void cas_saturn_firmware_init(struct cas *cp)
{
<------>const struct firmware *fw;
<------>const char fw_name[] = "sun/cassini.bin";
<------>int err;
<------>if (PHY_NS_DP83065 != cp->phy_id)
<------><------>return;
<------>err = request_firmware(&fw, fw_name, &cp->pdev->dev);
<------>if (err) {
<------><------>pr_err("Failed to load firmware \"%s\"\n",
<------><------> fw_name);
<------><------>return;
<------>}
<------>if (fw->size < 2) {
<------><------>pr_err("bogus length %zu in \"%s\"\n",
<------><------> fw->size, fw_name);
<------><------>goto out;
<------>}
<------>cp->fw_load_addr= fw->data[1] << 8 | fw->data[0];
<------>cp->fw_size = fw->size - 2;
<------>cp->fw_data = vmalloc(cp->fw_size);
<------>if (!cp->fw_data)
<------><------>goto out;
<------>memcpy(cp->fw_data, &fw->data[2], cp->fw_size);
out:
<------>release_firmware(fw);
}
static void cas_saturn_firmware_load(struct cas *cp)
{
<------>int i;
<------>if (!cp->fw_data)
<------><------>return;
<------>cas_phy_powerdown(cp);
<------>/* expanded memory access mode */
<------>cas_phy_write(cp, DP83065_MII_MEM, 0x0);
<------>/* pointer configuration for new firmware */
<------>cas_phy_write(cp, DP83065_MII_REGE, 0x8ff9);
<------>cas_phy_write(cp, DP83065_MII_REGD, 0xbd);
<------>cas_phy_write(cp, DP83065_MII_REGE, 0x8ffa);
<------>cas_phy_write(cp, DP83065_MII_REGD, 0x82);
<------>cas_phy_write(cp, DP83065_MII_REGE, 0x8ffb);
<------>cas_phy_write(cp, DP83065_MII_REGD, 0x0);
<------>cas_phy_write(cp, DP83065_MII_REGE, 0x8ffc);
<------>cas_phy_write(cp, DP83065_MII_REGD, 0x39);
<------>/* download new firmware */
<------>cas_phy_write(cp, DP83065_MII_MEM, 0x1);
<------>cas_phy_write(cp, DP83065_MII_REGE, cp->fw_load_addr);
<------>for (i = 0; i < cp->fw_size; i++)
<------><------>cas_phy_write(cp, DP83065_MII_REGD, cp->fw_data[i]);
<------>/* enable firmware */
<------>cas_phy_write(cp, DP83065_MII_REGE, 0x8ff8);
<------>cas_phy_write(cp, DP83065_MII_REGD, 0x1);
}
/* phy initialization */
static void cas_phy_init(struct cas *cp)
{
<------>u16 val;
<------>/* if we're in MII/GMII mode, set up phy */
<------>if (CAS_PHY_MII(cp->phy_type)) {
<------><------>writel(PCS_DATAPATH_MODE_MII,
<------><------> cp->regs + REG_PCS_DATAPATH_MODE);
<------><------>cas_mif_poll(cp, 0);
<------><------>cas_reset_mii_phy(cp); /* take out of isolate mode */
<------><------>if (PHY_LUCENT_B0 == cp->phy_id) {
<------><------><------>/* workaround link up/down issue with lucent */
<------><------><------>cas_phy_write(cp, LUCENT_MII_REG, 0x8000);
<------><------><------>cas_phy_write(cp, MII_BMCR, 0x00f1);
<------><------><------>cas_phy_write(cp, LUCENT_MII_REG, 0x0);
<------><------>} else if (PHY_BROADCOM_B0 == (cp->phy_id & 0xFFFFFFFC)) {
<------><------><------>/* workarounds for broadcom phy */
<------><------><------>cas_phy_write(cp, BROADCOM_MII_REG8, 0x0C20);
<------><------><------>cas_phy_write(cp, BROADCOM_MII_REG7, 0x0012);
<------><------><------>cas_phy_write(cp, BROADCOM_MII_REG5, 0x1804);
<------><------><------>cas_phy_write(cp, BROADCOM_MII_REG7, 0x0013);
<------><------><------>cas_phy_write(cp, BROADCOM_MII_REG5, 0x1204);
<------><------><------>cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
<------><------><------>cas_phy_write(cp, BROADCOM_MII_REG5, 0x0132);
<------><------><------>cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
<------><------><------>cas_phy_write(cp, BROADCOM_MII_REG5, 0x0232);
<------><------><------>cas_phy_write(cp, BROADCOM_MII_REG7, 0x201F);
<------><------><------>cas_phy_write(cp, BROADCOM_MII_REG5, 0x0A20);
<------><------>} else if (PHY_BROADCOM_5411 == cp->phy_id) {
<------><------><------>val = cas_phy_read(cp, BROADCOM_MII_REG4);
<------><------><------>val = cas_phy_read(cp, BROADCOM_MII_REG4);
<------><------><------>if (val & 0x0080) {
<------><------><------><------>/* link workaround */
<------><------><------><------>cas_phy_write(cp, BROADCOM_MII_REG4,
<------><------><------><------><------> val & ~0x0080);
<------><------><------>}
<------><------>} else if (cp->cas_flags & CAS_FLAG_SATURN) {
<------><------><------>writel((cp->phy_type & CAS_PHY_MII_MDIO0) ?
<------><------><------> SATURN_PCFG_FSI : 0x0,
<------><------><------> cp->regs + REG_SATURN_PCFG);
<------><------><------>/* load firmware to address 10Mbps auto-negotiation
<------><------><------> * issue. NOTE: this will need to be changed if the
<------><------><------> * default firmware gets fixed.
<------><------><------> */
<------><------><------>if (PHY_NS_DP83065 == cp->phy_id) {
<------><------><------><------>cas_saturn_firmware_load(cp);
<------><------><------>}
<------><------><------>cas_phy_powerup(cp);
<------><------>}
<------><------>/* advertise capabilities */
<------><------>val = cas_phy_read(cp, MII_BMCR);
<------><------>val &= ~BMCR_ANENABLE;
<------><------>cas_phy_write(cp, MII_BMCR, val);
<------><------>udelay(10);
<------><------>cas_phy_write(cp, MII_ADVERTISE,
<------><------><------> cas_phy_read(cp, MII_ADVERTISE) |
<------><------><------> (ADVERTISE_10HALF | ADVERTISE_10FULL |
<------><------><------> ADVERTISE_100HALF | ADVERTISE_100FULL |
<------><------><------> CAS_ADVERTISE_PAUSE |
<------><------><------> CAS_ADVERTISE_ASYM_PAUSE));
<------><------>if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
<------><------><------>/* make sure that we don't advertise half
<------><------><------> * duplex to avoid a chip issue
<------><------><------> */
<------><------><------>val = cas_phy_read(cp, CAS_MII_1000_CTRL);
<------><------><------>val &= ~CAS_ADVERTISE_1000HALF;
<------><------><------>val |= CAS_ADVERTISE_1000FULL;
<------><------><------>cas_phy_write(cp, CAS_MII_1000_CTRL, val);
<------><------>}
<------>} else {
<------><------>/* reset pcs for serdes */
<------><------>u32 val;
<------><------>int limit;
<------><------>writel(PCS_DATAPATH_MODE_SERDES,
<------><------> cp->regs + REG_PCS_DATAPATH_MODE);
<------><------>/* enable serdes pins on saturn */
<------><------>if (cp->cas_flags & CAS_FLAG_SATURN)
<------><------><------>writel(0, cp->regs + REG_SATURN_PCFG);
<------><------>/* Reset PCS unit. */
<------><------>val = readl(cp->regs + REG_PCS_MII_CTRL);
<------><------>val |= PCS_MII_RESET;
<------><------>writel(val, cp->regs + REG_PCS_MII_CTRL);
<------><------>limit = STOP_TRIES;
<------><------>while (--limit > 0) {
<------><------><------>udelay(10);
<------><------><------>if ((readl(cp->regs + REG_PCS_MII_CTRL) &
<------><------><------> PCS_MII_RESET) == 0)
<------><------><------><------>break;
<------><------>}
<------><------>if (limit <= 0)
<------><------><------>netdev_warn(cp->dev, "PCS reset bit would not clear [%08x]\n",
<------><------><------><------> readl(cp->regs + REG_PCS_STATE_MACHINE));
<------><------>/* Make sure PCS is disabled while changing advertisement
<------><------> * configuration.
<------><------> */
<------><------>writel(0x0, cp->regs + REG_PCS_CFG);
<------><------>/* Advertise all capabilities except half-duplex. */
<------><------>val = readl(cp->regs + REG_PCS_MII_ADVERT);
<------><------>val &= ~PCS_MII_ADVERT_HD;
<------><------>val |= (PCS_MII_ADVERT_FD | PCS_MII_ADVERT_SYM_PAUSE |
<------><------><------>PCS_MII_ADVERT_ASYM_PAUSE);
<------><------>writel(val, cp->regs + REG_PCS_MII_ADVERT);
<------><------>/* enable PCS */
<------><------>writel(PCS_CFG_EN, cp->regs + REG_PCS_CFG);
<------><------>/* pcs workaround: enable sync detect */
<------><------>writel(PCS_SERDES_CTRL_SYNCD_EN,
<------><------> cp->regs + REG_PCS_SERDES_CTRL);
<------>}
}
static int cas_pcs_link_check(struct cas *cp)
{
<------>u32 stat, state_machine;
<------>int retval = 0;
<------>/* The link status bit latches on zero, so you must
<------> * read it twice in such a case to see a transition
<------> * to the link being up.
<------> */
<------>stat = readl(cp->regs + REG_PCS_MII_STATUS);
<------>if ((stat & PCS_MII_STATUS_LINK_STATUS) == 0)
<------><------>stat = readl(cp->regs + REG_PCS_MII_STATUS);
<------>/* The remote-fault indication is only valid
<------> * when autoneg has completed.
<------> */
<------>if ((stat & (PCS_MII_STATUS_AUTONEG_COMP |
<------><------> PCS_MII_STATUS_REMOTE_FAULT)) ==
<------> (PCS_MII_STATUS_AUTONEG_COMP | PCS_MII_STATUS_REMOTE_FAULT))
<------><------>netif_info(cp, link, cp->dev, "PCS RemoteFault\n");
<------>/* work around link detection issue by querying the PCS state
<------> * machine directly.
<------> */
<------>state_machine = readl(cp->regs + REG_PCS_STATE_MACHINE);
<------>if ((state_machine & PCS_SM_LINK_STATE_MASK) != SM_LINK_STATE_UP) {
<------><------>stat &= ~PCS_MII_STATUS_LINK_STATUS;
<------>} else if (state_machine & PCS_SM_WORD_SYNC_STATE_MASK) {
<------><------>stat |= PCS_MII_STATUS_LINK_STATUS;
<------>}
<------>if (stat & PCS_MII_STATUS_LINK_STATUS) {
<------><------>if (cp->lstate != link_up) {
<------><------><------>if (cp->opened) {
<------><------><------><------>cp->lstate = link_up;
<------><------><------><------>cp->link_transition = LINK_TRANSITION_LINK_UP;
<------><------><------><------>cas_set_link_modes(cp);
<------><------><------><------>netif_carrier_on(cp->dev);
<------><------><------>}
<------><------>}
<------>} else if (cp->lstate == link_up) {
<------><------>cp->lstate = link_down;
<------><------>if (link_transition_timeout != 0 &&
<------><------> cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
<------><------> !cp->link_transition_jiffies_valid) {
<------><------><------>/*
<------><------><------> * force a reset, as a workaround for the
<------><------><------> * link-failure problem. May want to move this to a
<------><------><------> * point a bit earlier in the sequence. If we had
<------><------><------> * generated a reset a short time ago, we'll wait for
<------><------><------> * the link timer to check the status until a
<------><------><------> * timer expires (link_transistion_jiffies_valid is
<------><------><------> * true when the timer is running.) Instead of using
<------><------><------> * a system timer, we just do a check whenever the
<------><------><------> * link timer is running - this clears the flag after
<------><------><------> * a suitable delay.
<------><------><------> */
<------><------><------>retval = 1;
<------><------><------>cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
<------><------><------>cp->link_transition_jiffies = jiffies;
<------><------><------>cp->link_transition_jiffies_valid = 1;
<------><------>} else {
<------><------><------>cp->link_transition = LINK_TRANSITION_ON_FAILURE;
<------><------>}
<------><------>netif_carrier_off(cp->dev);
<------><------>if (cp->opened)
<------><------><------>netif_info(cp, link, cp->dev, "PCS link down\n");
<------><------>/* Cassini only: if you force a mode, there can be
<------><------> * sync problems on link down. to fix that, the following
<------><------> * things need to be checked:
<------><------> * 1) read serialink state register
<------><------> * 2) read pcs status register to verify link down.
<------><------> * 3) if link down and serial link == 0x03, then you need
<------><------> * to global reset the chip.
<------><------> */
<------><------>if ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0) {
<------><------><------>/* should check to see if we're in a forced mode */
<------><------><------>stat = readl(cp->regs + REG_PCS_SERDES_STATE);
<------><------><------>if (stat == 0x03)
<------><------><------><------>return 1;
<------><------>}
<------>} else if (cp->lstate == link_down) {
<------><------>if (link_transition_timeout != 0 &&
<------><------> cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
<------><------> !cp->link_transition_jiffies_valid) {
<------><------><------>/* force a reset, as a workaround for the
<------><------><------> * link-failure problem. May want to move
<------><------><------> * this to a point a bit earlier in the
<------><------><------> * sequence.
<------><------><------> */
<------><------><------>retval = 1;
<------><------><------>cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
<------><------><------>cp->link_transition_jiffies = jiffies;
<------><------><------>cp->link_transition_jiffies_valid = 1;
<------><------>} else {
<------><------><------>cp->link_transition = LINK_TRANSITION_STILL_FAILED;
<------><------>}
<------>}
<------>return retval;
}
static int cas_pcs_interrupt(struct net_device *dev,
<------><------><------> struct cas *cp, u32 status)
{
<------>u32 stat = readl(cp->regs + REG_PCS_INTR_STATUS);
<------>if ((stat & PCS_INTR_STATUS_LINK_CHANGE) == 0)
<------><------>return 0;
<------>return cas_pcs_link_check(cp);
}
static int cas_txmac_interrupt(struct net_device *dev,
<------><------><------> struct cas *cp, u32 status)
{
<------>u32 txmac_stat = readl(cp->regs + REG_MAC_TX_STATUS);
<------>if (!txmac_stat)
<------><------>return 0;
<------>netif_printk(cp, intr, KERN_DEBUG, cp->dev,
<------><------> "txmac interrupt, txmac_stat: 0x%x\n", txmac_stat);
<------>/* Defer timer expiration is quite normal,
<------> * don't even log the event.
<------> */
<------>if ((txmac_stat & MAC_TX_DEFER_TIMER) &&
<------> !(txmac_stat & ~MAC_TX_DEFER_TIMER))
<------><------>return 0;
<------>spin_lock(&cp->stat_lock[0]);
<------>if (txmac_stat & MAC_TX_UNDERRUN) {
<------><------>netdev_err(dev, "TX MAC xmit underrun\n");
<------><------>cp->net_stats[0].tx_fifo_errors++;
<------>}
<------>if (txmac_stat & MAC_TX_MAX_PACKET_ERR) {
<------><------>netdev_err(dev, "TX MAC max packet size error\n");
<------><------>cp->net_stats[0].tx_errors++;
<------>}
<------>/* The rest are all cases of one of the 16-bit TX
<------> * counters expiring.
<------> */
<------>if (txmac_stat & MAC_TX_COLL_NORMAL)
<------><------>cp->net_stats[0].collisions += 0x10000;
<------>if (txmac_stat & MAC_TX_COLL_EXCESS) {
<------><------>cp->net_stats[0].tx_aborted_errors += 0x10000;
<------><------>cp->net_stats[0].collisions += 0x10000;
<------>}
<------>if (txmac_stat & MAC_TX_COLL_LATE) {
<------><------>cp->net_stats[0].tx_aborted_errors += 0x10000;
<------><------>cp->net_stats[0].collisions += 0x10000;
<------>}
<------>spin_unlock(&cp->stat_lock[0]);
<------>/* We do not keep track of MAC_TX_COLL_FIRST and
<------> * MAC_TX_PEAK_ATTEMPTS events.
<------> */
<------>return 0;
}
static void cas_load_firmware(struct cas *cp, cas_hp_inst_t *firmware)
{
<------>cas_hp_inst_t *inst;
<------>u32 val;
<------>int i;
<------>i = 0;
<------>while ((inst = firmware) && inst->note) {
<------><------>writel(i, cp->regs + REG_HP_INSTR_RAM_ADDR);
<------><------>val = CAS_BASE(HP_INSTR_RAM_HI_VAL, inst->val);
<------><------>val |= CAS_BASE(HP_INSTR_RAM_HI_MASK, inst->mask);
<------><------>writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_HI);
<------><------>val = CAS_BASE(HP_INSTR_RAM_MID_OUTARG, inst->outarg >> 10);
<------><------>val |= CAS_BASE(HP_INSTR_RAM_MID_OUTOP, inst->outop);
<------><------>val |= CAS_BASE(HP_INSTR_RAM_MID_FNEXT, inst->fnext);
<------><------>val |= CAS_BASE(HP_INSTR_RAM_MID_FOFF, inst->foff);
<------><------>val |= CAS_BASE(HP_INSTR_RAM_MID_SNEXT, inst->snext);
<------><------>val |= CAS_BASE(HP_INSTR_RAM_MID_SOFF, inst->soff);
<------><------>val |= CAS_BASE(HP_INSTR_RAM_MID_OP, inst->op);
<------><------>writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_MID);
<------><------>val = CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK, inst->outmask);
<------><------>val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT, inst->outshift);
<------><------>val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN, inst->outenab);
<------><------>val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG, inst->outarg);
<------><------>writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_LOW);
<------><------>++firmware;
<------><------>++i;
<------>}
}
static void cas_init_rx_dma(struct cas *cp)
{
<------>u64 desc_dma = cp->block_dvma;
<------>u32 val;
<------>int i, size;
<------>/* rx free descriptors */
<------>val = CAS_BASE(RX_CFG_SWIVEL, RX_SWIVEL_OFF_VAL);
<------>val |= CAS_BASE(RX_CFG_DESC_RING, RX_DESC_RINGN_INDEX(0));
<------>val |= CAS_BASE(RX_CFG_COMP_RING, RX_COMP_RINGN_INDEX(0));
<------>if ((N_RX_DESC_RINGS > 1) &&
<------> (cp->cas_flags & CAS_FLAG_REG_PLUS)) /* do desc 2 */
<------><------>val |= CAS_BASE(RX_CFG_DESC_RING1, RX_DESC_RINGN_INDEX(1));
<------>writel(val, cp->regs + REG_RX_CFG);
<------>val = (unsigned long) cp->init_rxds[0] -
<------><------>(unsigned long) cp->init_block;
<------>writel((desc_dma + val) >> 32, cp->regs + REG_RX_DB_HI);
<------>writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_DB_LOW);
<------>writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
<------>if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
<------><------>/* rx desc 2 is for IPSEC packets. however,
<------><------> * we don't it that for that purpose.
<------><------> */
<------><------>val = (unsigned long) cp->init_rxds[1] -
<------><------><------>(unsigned long) cp->init_block;
<------><------>writel((desc_dma + val) >> 32, cp->regs + REG_PLUS_RX_DB1_HI);
<------><------>writel((desc_dma + val) & 0xffffffff, cp->regs +
<------><------> REG_PLUS_RX_DB1_LOW);
<------><------>writel(RX_DESC_RINGN_SIZE(1) - 4, cp->regs +
<------><------> REG_PLUS_RX_KICK1);
<------>}
<------>/* rx completion registers */
<------>val = (unsigned long) cp->init_rxcs[0] -
<------><------>(unsigned long) cp->init_block;
<------>writel((desc_dma + val) >> 32, cp->regs + REG_RX_CB_HI);
<------>writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_CB_LOW);
<------>if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
<------><------>/* rx comp 2-4 */
<------><------>for (i = 1; i < MAX_RX_COMP_RINGS; i++) {
<------><------><------>val = (unsigned long) cp->init_rxcs[i] -
<------><------><------><------>(unsigned long) cp->init_block;
<------><------><------>writel((desc_dma + val) >> 32, cp->regs +
<------><------><------> REG_PLUS_RX_CBN_HI(i));
<------><------><------>writel((desc_dma + val) & 0xffffffff, cp->regs +
<------><------><------> REG_PLUS_RX_CBN_LOW(i));
<------><------>}
<------>}
<------>/* read selective clear regs to prevent spurious interrupts
<------> * on reset because complete == kick.
<------> * selective clear set up to prevent interrupts on resets
<------> */
<------>readl(cp->regs + REG_INTR_STATUS_ALIAS);
<------>writel(INTR_RX_DONE | INTR_RX_BUF_UNAVAIL, cp->regs + REG_ALIAS_CLEAR);
<------>if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
<------><------>for (i = 1; i < N_RX_COMP_RINGS; i++)
<------><------><------>readl(cp->regs + REG_PLUS_INTRN_STATUS_ALIAS(i));
<------><------>/* 2 is different from 3 and 4 */
<------><------>if (N_RX_COMP_RINGS > 1)
<------><------><------>writel(INTR_RX_DONE_ALT | INTR_RX_BUF_UNAVAIL_1,
<------><------><------> cp->regs + REG_PLUS_ALIASN_CLEAR(1));
<------><------>for (i = 2; i < N_RX_COMP_RINGS; i++)
<------><------><------>writel(INTR_RX_DONE_ALT,
<------><------><------> cp->regs + REG_PLUS_ALIASN_CLEAR(i));
<------>}
<------>/* set up pause thresholds */
<------>val = CAS_BASE(RX_PAUSE_THRESH_OFF,
<------><------><------>cp->rx_pause_off / RX_PAUSE_THRESH_QUANTUM);
<------>val |= CAS_BASE(RX_PAUSE_THRESH_ON,
<------><------><------>cp->rx_pause_on / RX_PAUSE_THRESH_QUANTUM);
<------>writel(val, cp->regs + REG_RX_PAUSE_THRESH);
<------>/* zero out dma reassembly buffers */
<------>for (i = 0; i < 64; i++) {
<------><------>writel(i, cp->regs + REG_RX_TABLE_ADDR);
<------><------>writel(0x0, cp->regs + REG_RX_TABLE_DATA_LOW);
<------><------>writel(0x0, cp->regs + REG_RX_TABLE_DATA_MID);
<------><------>writel(0x0, cp->regs + REG_RX_TABLE_DATA_HI);
<------>}
<------>/* make sure address register is 0 for normal operation */
<------>writel(0x0, cp->regs + REG_RX_CTRL_FIFO_ADDR);
<------>writel(0x0, cp->regs + REG_RX_IPP_FIFO_ADDR);
<------>/* interrupt mitigation */
#ifdef USE_RX_BLANK
<------>val = CAS_BASE(RX_BLANK_INTR_TIME, RX_BLANK_INTR_TIME_VAL);
<------>val |= CAS_BASE(RX_BLANK_INTR_PKT, RX_BLANK_INTR_PKT_VAL);
<------>writel(val, cp->regs + REG_RX_BLANK);
#else
<------>writel(0x0, cp->regs + REG_RX_BLANK);
#endif
<------>/* interrupt generation as a function of low water marks for
<------> * free desc and completion entries. these are used to trigger
<------> * housekeeping for rx descs. we don't use the free interrupt
<------> * as it's not very useful
<------> */
<------>/* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */
<------>val = CAS_BASE(RX_AE_THRESH_COMP, RX_AE_COMP_VAL);
<------>writel(val, cp->regs + REG_RX_AE_THRESH);
<------>if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
<------><------>val = CAS_BASE(RX_AE1_THRESH_FREE, RX_AE_FREEN_VAL(1));
<------><------>writel(val, cp->regs + REG_PLUS_RX_AE1_THRESH);
<------>}
<------>/* Random early detect registers. useful for congestion avoidance.
<------> * this should be tunable.
<------> */
<------>writel(0x0, cp->regs + REG_RX_RED);
<------>/* receive page sizes. default == 2K (0x800) */
<------>val = 0;
<------>if (cp->page_size == 0x1000)
<------><------>val = 0x1;
<------>else if (cp->page_size == 0x2000)
<------><------>val = 0x2;
<------>else if (cp->page_size == 0x4000)
<------><------>val = 0x3;
<------>/* round mtu + offset. constrain to page size. */
<------>size = cp->dev->mtu + 64;
<------>if (size > cp->page_size)
<------><------>size = cp->page_size;
<------>if (size <= 0x400)
<------><------>i = 0x0;
<------>else if (size <= 0x800)
<------><------>i = 0x1;
<------>else if (size <= 0x1000)
<------><------>i = 0x2;
<------>else
<------><------>i = 0x3;
<------>cp->mtu_stride = 1 << (i + 10);
<------>val = CAS_BASE(RX_PAGE_SIZE, val);
<------>val |= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE, i);
<------>val |= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT, cp->page_size >> (i + 10));
<------>val |= CAS_BASE(RX_PAGE_SIZE_MTU_OFF, 0x1);
<------>writel(val, cp->regs + REG_RX_PAGE_SIZE);
<------>/* enable the header parser if desired */
<------>if (CAS_HP_FIRMWARE == cas_prog_null)
<------><------>return;
<------>val = CAS_BASE(HP_CFG_NUM_CPU, CAS_NCPUS > 63 ? 0 : CAS_NCPUS);
<------>val |= HP_CFG_PARSE_EN | HP_CFG_SYN_INC_MASK;
<------>val |= CAS_BASE(HP_CFG_TCP_THRESH, HP_TCP_THRESH_VAL);
<------>writel(val, cp->regs + REG_HP_CFG);
}
static inline void cas_rxc_init(struct cas_rx_comp *rxc)
{
<------>memset(rxc, 0, sizeof(*rxc));
<------>rxc->word4 = cpu_to_le64(RX_COMP4_ZERO);
}
/* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1]
* flipping is protected by the fact that the chip will not
* hand back the same page index while it's being processed.
*/
static inline cas_page_t *cas_page_spare(struct cas *cp, const int index)
{
<------>cas_page_t *page = cp->rx_pages[1][index];
<------>cas_page_t *new;
<------>if (page_count(page->buffer) == 1)
<------><------>return page;
<------>new = cas_page_dequeue(cp);
<------>if (new) {
<------><------>spin_lock(&cp->rx_inuse_lock);
<------><------>list_add(&page->list, &cp->rx_inuse_list);
<------><------>spin_unlock(&cp->rx_inuse_lock);
<------>}
<------>return new;
}
/* this needs to be changed if we actually use the ENC RX DESC ring */
static cas_page_t *cas_page_swap(struct cas *cp, const int ring,
<------><------><------><------> const int index)
{
<------>cas_page_t **page0 = cp->rx_pages[0];
<------>cas_page_t **page1 = cp->rx_pages[1];
<------>/* swap if buffer is in use */
<------>if (page_count(page0[index]->buffer) > 1) {
<------><------>cas_page_t *new = cas_page_spare(cp, index);
<------><------>if (new) {
<------><------><------>page1[index] = page0[index];
<------><------><------>page0[index] = new;
<------><------>}
<------>}
<------>RX_USED_SET(page0[index], 0);
<------>return page0[index];
}
static void cas_clean_rxds(struct cas *cp)
{
<------>/* only clean ring 0 as ring 1 is used for spare buffers */
struct cas_rx_desc *rxd = cp->init_rxds[0];
<------>int i, size;
<------>/* release all rx flows */
<------>for (i = 0; i < N_RX_FLOWS; i++) {
<------><------>struct sk_buff *skb;
<------><------>while ((skb = __skb_dequeue(&cp->rx_flows[i]))) {
<------><------><------>cas_skb_release(skb);
<------><------>}
<------>}
<------>/* initialize descriptors */
<------>size = RX_DESC_RINGN_SIZE(0);
<------>for (i = 0; i < size; i++) {
<------><------>cas_page_t *page = cas_page_swap(cp, 0, i);
<------><------>rxd[i].buffer = cpu_to_le64(page->dma_addr);
<------><------>rxd[i].index = cpu_to_le64(CAS_BASE(RX_INDEX_NUM, i) |
<------><------><------><------><------> CAS_BASE(RX_INDEX_RING, 0));
<------>}
<------>cp->rx_old[0] = RX_DESC_RINGN_SIZE(0) - 4;
<------>cp->rx_last[0] = 0;
<------>cp->cas_flags &= ~CAS_FLAG_RXD_POST(0);
}
static void cas_clean_rxcs(struct cas *cp)
{
<------>int i, j;
<------>/* take ownership of rx comp descriptors */
<------>memset(cp->rx_cur, 0, sizeof(*cp->rx_cur)*N_RX_COMP_RINGS);
<------>memset(cp->rx_new, 0, sizeof(*cp->rx_new)*N_RX_COMP_RINGS);
<------>for (i = 0; i < N_RX_COMP_RINGS; i++) {
<------><------>struct cas_rx_comp *rxc = cp->init_rxcs[i];
<------><------>for (j = 0; j < RX_COMP_RINGN_SIZE(i); j++) {
<------><------><------>cas_rxc_init(rxc + j);
<------><------>}
<------>}
}
#if 0
/* When we get a RX fifo overflow, the RX unit is probably hung
* so we do the following.
*
* If any part of the reset goes wrong, we return 1 and that causes the
* whole chip to be reset.
*/
static int cas_rxmac_reset(struct cas *cp)
{
<------>struct net_device *dev = cp->dev;
<------>int limit;
<------>u32 val;
<------>/* First, reset MAC RX. */
<------>writel(cp->mac_rx_cfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
<------>for (limit = 0; limit < STOP_TRIES; limit++) {
<------><------>if (!(readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN))
<------><------><------>break;
<------><------>udelay(10);
<------>}
<------>if (limit == STOP_TRIES) {
<------><------>netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
<------><------>return 1;
<------>}
<------>/* Second, disable RX DMA. */
<------>writel(0, cp->regs + REG_RX_CFG);
<------>for (limit = 0; limit < STOP_TRIES; limit++) {
<------><------>if (!(readl(cp->regs + REG_RX_CFG) & RX_CFG_DMA_EN))
<------><------><------>break;
<------><------>udelay(10);
<------>}
<------>if (limit == STOP_TRIES) {
<------><------>netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
<------><------>return 1;
<------>}
<------>mdelay(5);
<------>/* Execute RX reset command. */
<------>writel(SW_RESET_RX, cp->regs + REG_SW_RESET);
<------>for (limit = 0; limit < STOP_TRIES; limit++) {
<------><------>if (!(readl(cp->regs + REG_SW_RESET) & SW_RESET_RX))
<------><------><------>break;
<------><------>udelay(10);
<------>}
<------>if (limit == STOP_TRIES) {
<------><------>netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
<------><------>return 1;
<------>}
<------>/* reset driver rx state */
<------>cas_clean_rxds(cp);
<------>cas_clean_rxcs(cp);
<------>/* Now, reprogram the rest of RX unit. */
<------>cas_init_rx_dma(cp);
<------>/* re-enable */
<------>val = readl(cp->regs + REG_RX_CFG);
<------>writel(val | RX_CFG_DMA_EN, cp->regs + REG_RX_CFG);
<------>writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
<------>val = readl(cp->regs + REG_MAC_RX_CFG);
<------>writel(val | MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
<------>return 0;
}
#endif
static int cas_rxmac_interrupt(struct net_device *dev, struct cas *cp,
<------><------><------> u32 status)
{
<------>u32 stat = readl(cp->regs + REG_MAC_RX_STATUS);
<------>if (!stat)
<------><------>return 0;
<------>netif_dbg(cp, intr, cp->dev, "rxmac interrupt, stat: 0x%x\n", stat);
<------>/* these are all rollovers */
<------>spin_lock(&cp->stat_lock[0]);
<------>if (stat & MAC_RX_ALIGN_ERR)
<------><------>cp->net_stats[0].rx_frame_errors += 0x10000;
<------>if (stat & MAC_RX_CRC_ERR)
<------><------>cp->net_stats[0].rx_crc_errors += 0x10000;
<------>if (stat & MAC_RX_LEN_ERR)
<------><------>cp->net_stats[0].rx_length_errors += 0x10000;
<------>if (stat & MAC_RX_OVERFLOW) {
<------><------>cp->net_stats[0].rx_over_errors++;
<------><------>cp->net_stats[0].rx_fifo_errors++;
<------>}
<------>/* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR
<------> * events.
<------> */
<------>spin_unlock(&cp->stat_lock[0]);
<------>return 0;
}
static int cas_mac_interrupt(struct net_device *dev, struct cas *cp,
<------><------><------> u32 status)
{
<------>u32 stat = readl(cp->regs + REG_MAC_CTRL_STATUS);
<------>if (!stat)
<------><------>return 0;
<------>netif_printk(cp, intr, KERN_DEBUG, cp->dev,
<------><------> "mac interrupt, stat: 0x%x\n", stat);
<------>/* This interrupt is just for pause frame and pause
<------> * tracking. It is useful for diagnostics and debug
<------> * but probably by default we will mask these events.
<------> */
<------>if (stat & MAC_CTRL_PAUSE_STATE)
<------><------>cp->pause_entered++;
<------>if (stat & MAC_CTRL_PAUSE_RECEIVED)
<------><------>cp->pause_last_time_recvd = (stat >> 16);
<------>return 0;
}
/* Must be invoked under cp->lock. */
static inline int cas_mdio_link_not_up(struct cas *cp)
{
<------>u16 val;
<------>switch (cp->lstate) {
<------>case link_force_ret:
<------><------>netif_info(cp, link, cp->dev, "Autoneg failed again, keeping forced mode\n");
<------><------>cas_phy_write(cp, MII_BMCR, cp->link_fcntl);
<------><------>cp->timer_ticks = 5;
<------><------>cp->lstate = link_force_ok;
<------><------>cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
<------><------>break;
<------>case link_aneg:
<------><------>val = cas_phy_read(cp, MII_BMCR);
<------><------>/* Try forced modes. we try things in the following order:
<------><------> * 1000 full -> 100 full/half -> 10 half
<------><------> */
<------><------>val &= ~(BMCR_ANRESTART | BMCR_ANENABLE);
<------><------>val |= BMCR_FULLDPLX;
<------><------>val |= (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
<------><------><------>CAS_BMCR_SPEED1000 : BMCR_SPEED100;
<------><------>cas_phy_write(cp, MII_BMCR, val);
<------><------>cp->timer_ticks = 5;
<------><------>cp->lstate = link_force_try;
<------><------>cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
<------><------>break;
<------>case link_force_try:
<------><------>/* Downgrade from 1000 to 100 to 10 Mbps if necessary. */
<------><------>val = cas_phy_read(cp, MII_BMCR);
<------><------>cp->timer_ticks = 5;
<------><------>if (val & CAS_BMCR_SPEED1000) { /* gigabit */
<------><------><------>val &= ~CAS_BMCR_SPEED1000;
<------><------><------>val |= (BMCR_SPEED100 | BMCR_FULLDPLX);
<------><------><------>cas_phy_write(cp, MII_BMCR, val);
<------><------><------>break;
<------><------>}
<------><------>if (val & BMCR_SPEED100) {
<------><------><------>if (val & BMCR_FULLDPLX) /* fd failed */
<------><------><------><------>val &= ~BMCR_FULLDPLX;
<------><------><------>else { /* 100Mbps failed */
<------><------><------><------>val &= ~BMCR_SPEED100;
<------><------><------>}
<------><------><------>cas_phy_write(cp, MII_BMCR, val);
<------><------><------>break;
<------><------>}
<------>default:
<------><------>break;
<------>}
<------>return 0;
}
/* must be invoked with cp->lock held */
static int cas_mii_link_check(struct cas *cp, const u16 bmsr)
{
<------>int restart;
<------>if (bmsr & BMSR_LSTATUS) {
<------><------>/* Ok, here we got a link. If we had it due to a forced
<------><------> * fallback, and we were configured for autoneg, we
<------><------> * retry a short autoneg pass. If you know your hub is
<------><------> * broken, use ethtool ;)
<------><------> */
<------><------>if ((cp->lstate == link_force_try) &&
<------><------> (cp->link_cntl & BMCR_ANENABLE)) {
<------><------><------>cp->lstate = link_force_ret;
<------><------><------>cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
<------><------><------>cas_mif_poll(cp, 0);
<------><------><------>cp->link_fcntl = cas_phy_read(cp, MII_BMCR);
<------><------><------>cp->timer_ticks = 5;
<------><------><------>if (cp->opened)
<------><------><------><------>netif_info(cp, link, cp->dev,
<------><------><------><------><------> "Got link after fallback, retrying autoneg once...\n");
<------><------><------>cas_phy_write(cp, MII_BMCR,
<------><------><------><------> cp->link_fcntl | BMCR_ANENABLE |
<------><------><------><------> BMCR_ANRESTART);
<------><------><------>cas_mif_poll(cp, 1);
<------><------>} else if (cp->lstate != link_up) {
<------><------><------>cp->lstate = link_up;
<------><------><------>cp->link_transition = LINK_TRANSITION_LINK_UP;
<------><------><------>if (cp->opened) {
<------><------><------><------>cas_set_link_modes(cp);
<------><------><------><------>netif_carrier_on(cp->dev);
<------><------><------>}
<------><------>}
<------><------>return 0;
<------>}
<------>/* link not up. if the link was previously up, we restart the
<------> * whole process
<------> */
<------>restart = 0;
<------>if (cp->lstate == link_up) {
<------><------>cp->lstate = link_down;
<------><------>cp->link_transition = LINK_TRANSITION_LINK_DOWN;
<------><------>netif_carrier_off(cp->dev);
<------><------>if (cp->opened)
<------><------><------>netif_info(cp, link, cp->dev, "Link down\n");
<------><------>restart = 1;
<------>} else if (++cp->timer_ticks > 10)
<------><------>cas_mdio_link_not_up(cp);
<------>return restart;
}
static int cas_mif_interrupt(struct net_device *dev, struct cas *cp,
<------><------><------> u32 status)
{
<------>u32 stat = readl(cp->regs + REG_MIF_STATUS);
<------>u16 bmsr;
<------>/* check for a link change */
<------>if (CAS_VAL(MIF_STATUS_POLL_STATUS, stat) == 0)
<------><------>return 0;
<------>bmsr = CAS_VAL(MIF_STATUS_POLL_DATA, stat);
<------>return cas_mii_link_check(cp, bmsr);
}
static int cas_pci_interrupt(struct net_device *dev, struct cas *cp,
<------><------><------> u32 status)
{
<------>u32 stat = readl(cp->regs + REG_PCI_ERR_STATUS);
<------>if (!stat)
<------><------>return 0;
<------>netdev_err(dev, "PCI error [%04x:%04x]",
<------><------> stat, readl(cp->regs + REG_BIM_DIAG));
<------>/* cassini+ has this reserved */
<------>if ((stat & PCI_ERR_BADACK) &&
<------> ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0))
<------><------>pr_cont(" <No ACK64# during ABS64 cycle>");
<------>if (stat & PCI_ERR_DTRTO)
<------><------>pr_cont(" <Delayed transaction timeout>");
<------>if (stat & PCI_ERR_OTHER)
<------><------>pr_cont(" <other>");
<------>if (stat & PCI_ERR_BIM_DMA_WRITE)
<------><------>pr_cont(" <BIM DMA 0 write req>");
<------>if (stat & PCI_ERR_BIM_DMA_READ)
<------><------>pr_cont(" <BIM DMA 0 read req>");
<------>pr_cont("\n");
<------>if (stat & PCI_ERR_OTHER) {
<------><------>int pci_errs;
<------><------>/* Interrogate PCI config space for the
<------><------> * true cause.
<------><------> */
<------><------>pci_errs = pci_status_get_and_clear_errors(cp->pdev);
<------><------>netdev_err(dev, "PCI status errors[%04x]\n", pci_errs);
<------><------>if (pci_errs & PCI_STATUS_PARITY)
<------><------><------>netdev_err(dev, "PCI parity error detected\n");
<------><------>if (pci_errs & PCI_STATUS_SIG_TARGET_ABORT)
<------><------><------>netdev_err(dev, "PCI target abort\n");
<------><------>if (pci_errs & PCI_STATUS_REC_TARGET_ABORT)
<------><------><------>netdev_err(dev, "PCI master acks target abort\n");
<------><------>if (pci_errs & PCI_STATUS_REC_MASTER_ABORT)
<------><------><------>netdev_err(dev, "PCI master abort\n");
<------><------>if (pci_errs & PCI_STATUS_SIG_SYSTEM_ERROR)
<------><------><------>netdev_err(dev, "PCI system error SERR#\n");
<------><------>if (pci_errs & PCI_STATUS_DETECTED_PARITY)
<------><------><------>netdev_err(dev, "PCI parity error\n");
<------>}
<------>/* For all PCI errors, we should reset the chip. */
<------>return 1;
}
/* All non-normal interrupt conditions get serviced here.
* Returns non-zero if we should just exit the interrupt
* handler right now (ie. if we reset the card which invalidates
* all of the other original irq status bits).
*/
static int cas_abnormal_irq(struct net_device *dev, struct cas *cp,
<------><------><------> u32 status)
{
<------>if (status & INTR_RX_TAG_ERROR) {
<------><------>/* corrupt RX tag framing */
<------><------>netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
<------><------><------> "corrupt rx tag framing\n");
<------><------>spin_lock(&cp->stat_lock[0]);
<------><------>cp->net_stats[0].rx_errors++;
<------><------>spin_unlock(&cp->stat_lock[0]);
<------><------>goto do_reset;
<------>}
<------>if (status & INTR_RX_LEN_MISMATCH) {
<------><------>/* length mismatch. */
<------><------>netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
<------><------><------> "length mismatch for rx frame\n");
<------><------>spin_lock(&cp->stat_lock[0]);
<------><------>cp->net_stats[0].rx_errors++;
<------><------>spin_unlock(&cp->stat_lock[0]);
<------><------>goto do_reset;
<------>}
<------>if (status & INTR_PCS_STATUS) {
<------><------>if (cas_pcs_interrupt(dev, cp, status))
<------><------><------>goto do_reset;
<------>}
<------>if (status & INTR_TX_MAC_STATUS) {
<------><------>if (cas_txmac_interrupt(dev, cp, status))
<------><------><------>goto do_reset;
<------>}
<------>if (status & INTR_RX_MAC_STATUS) {
<------><------>if (cas_rxmac_interrupt(dev, cp, status))
<------><------><------>goto do_reset;
<------>}
<------>if (status & INTR_MAC_CTRL_STATUS) {
<------><------>if (cas_mac_interrupt(dev, cp, status))
<------><------><------>goto do_reset;
<------>}
<------>if (status & INTR_MIF_STATUS) {
<------><------>if (cas_mif_interrupt(dev, cp, status))
<------><------><------>goto do_reset;
<------>}
<------>if (status & INTR_PCI_ERROR_STATUS) {
<------><------>if (cas_pci_interrupt(dev, cp, status))
<------><------><------>goto do_reset;
<------>}
<------>return 0;
do_reset:
#if 1
<------>atomic_inc(&cp->reset_task_pending);
<------>atomic_inc(&cp->reset_task_pending_all);
<------>netdev_err(dev, "reset called in cas_abnormal_irq [0x%x]\n", status);
<------>schedule_work(&cp->reset_task);
#else
<------>atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
<------>netdev_err(dev, "reset called in cas_abnormal_irq\n");
<------>schedule_work(&cp->reset_task);
#endif
<------>return 1;
}
/* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when
* determining whether to do a netif_stop/wakeup
*/
#define CAS_TABORT(x) (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1)
#define CAS_ROUND_PAGE(x) (((x) + PAGE_SIZE - 1) & PAGE_MASK)
static inline int cas_calc_tabort(struct cas *cp, const unsigned long addr,
<------><------><------><------> const int len)
{
<------>unsigned long off = addr + len;
<------>if (CAS_TABORT(cp) == 1)
<------><------>return 0;
<------>if ((CAS_ROUND_PAGE(off) - off) > TX_TARGET_ABORT_LEN)
<------><------>return 0;
<------>return TX_TARGET_ABORT_LEN;
}
static inline void cas_tx_ringN(struct cas *cp, int ring, int limit)
{
<------>struct cas_tx_desc *txds;
<------>struct sk_buff **skbs;
<------>struct net_device *dev = cp->dev;
<------>int entry, count;
<------>spin_lock(&cp->tx_lock[ring]);
<------>txds = cp->init_txds[ring];
<------>skbs = cp->tx_skbs[ring];
<------>entry = cp->tx_old[ring];
<------>count = TX_BUFF_COUNT(ring, entry, limit);
<------>while (entry != limit) {
<------><------>struct sk_buff *skb = skbs[entry];
<------><------>dma_addr_t daddr;
<------><------>u32 dlen;
<------><------>int frag;
<------><------>if (!skb) {
<------><------><------>/* this should never occur */
<------><------><------>entry = TX_DESC_NEXT(ring, entry);
<------><------><------>continue;
<------><------>}
<------><------>/* however, we might get only a partial skb release. */
<------><------>count -= skb_shinfo(skb)->nr_frags +
<------><------><------>+ cp->tx_tiny_use[ring][entry].nbufs + 1;
<------><------>if (count < 0)
<------><------><------>break;
<------><------>netif_printk(cp, tx_done, KERN_DEBUG, cp->dev,
<------><------><------> "tx[%d] done, slot %d\n", ring, entry);
<------><------>skbs[entry] = NULL;
<------><------>cp->tx_tiny_use[ring][entry].nbufs = 0;
<------><------>for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
<------><------><------>struct cas_tx_desc *txd = txds + entry;
<------><------><------>daddr = le64_to_cpu(txd->buffer);
<------><------><------>dlen = CAS_VAL(TX_DESC_BUFLEN,
<------><------><------><------> le64_to_cpu(txd->control));
<------><------><------>dma_unmap_page(&cp->pdev->dev, daddr, dlen,
<------><------><------><------> DMA_TO_DEVICE);
<------><------><------>entry = TX_DESC_NEXT(ring, entry);
<------><------><------>/* tiny buffer may follow */
<------><------><------>if (cp->tx_tiny_use[ring][entry].used) {
<------><------><------><------>cp->tx_tiny_use[ring][entry].used = 0;
<------><------><------><------>entry = TX_DESC_NEXT(ring, entry);
<------><------><------>}
<------><------>}
<------><------>spin_lock(&cp->stat_lock[ring]);
<------><------>cp->net_stats[ring].tx_packets++;
<------><------>cp->net_stats[ring].tx_bytes += skb->len;
<------><------>spin_unlock(&cp->stat_lock[ring]);
<------><------>dev_consume_skb_irq(skb);
<------>}
<------>cp->tx_old[ring] = entry;
<------>/* this is wrong for multiple tx rings. the net device needs
<------> * multiple queues for this to do the right thing. we wait
<------> * for 2*packets to be available when using tiny buffers
<------> */
<------>if (netif_queue_stopped(dev) &&
<------> (TX_BUFFS_AVAIL(cp, ring) > CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1)))
<------><------>netif_wake_queue(dev);
<------>spin_unlock(&cp->tx_lock[ring]);
}
static void cas_tx(struct net_device *dev, struct cas *cp,
<------><------> u32 status)
{
int limit, ring;
#ifdef USE_TX_COMPWB
<------>u64 compwb = le64_to_cpu(cp->init_block->tx_compwb);
#endif
<------>netif_printk(cp, intr, KERN_DEBUG, cp->dev,
<------><------> "tx interrupt, status: 0x%x, %llx\n",
<------><------> status, (unsigned long long)compwb);
<------>/* process all the rings */
<------>for (ring = 0; ring < N_TX_RINGS; ring++) {
#ifdef USE_TX_COMPWB
<------><------>/* use the completion writeback registers */
<------><------>limit = (CAS_VAL(TX_COMPWB_MSB, compwb) << 8) |
<------><------><------>CAS_VAL(TX_COMPWB_LSB, compwb);
<------><------>compwb = TX_COMPWB_NEXT(compwb);
#else
<------><------>limit = readl(cp->regs + REG_TX_COMPN(ring));
#endif
<------><------>if (cp->tx_old[ring] != limit)
<------><------><------>cas_tx_ringN(cp, ring, limit);
<------>}
}
static int cas_rx_process_pkt(struct cas *cp, struct cas_rx_comp *rxc,
<------><------><------> int entry, const u64 *words,
<------><------><------> struct sk_buff **skbref)
{
<------>int dlen, hlen, len, i, alloclen;
<------>int off, swivel = RX_SWIVEL_OFF_VAL;
<------>struct cas_page *page;
<------>struct sk_buff *skb;
<------>void *addr, *crcaddr;
<------>__sum16 csum;
<------>char *p;
<------>hlen = CAS_VAL(RX_COMP2_HDR_SIZE, words[1]);
<------>dlen = CAS_VAL(RX_COMP1_DATA_SIZE, words[0]);
<------>len = hlen + dlen;
<------>if (RX_COPY_ALWAYS || (words[2] & RX_COMP3_SMALL_PKT))
<------><------>alloclen = len;
<------>else
<------><------>alloclen = max(hlen, RX_COPY_MIN);
<------>skb = netdev_alloc_skb(cp->dev, alloclen + swivel + cp->crc_size);
<------>if (skb == NULL)
<------><------>return -1;
<------>*skbref = skb;
<------>skb_reserve(skb, swivel);
<------>p = skb->data;
<------>addr = crcaddr = NULL;
<------>if (hlen) { /* always copy header pages */
<------><------>i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
<------><------>page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
<------><------>off = CAS_VAL(RX_COMP2_HDR_OFF, words[1]) * 0x100 +
<------><------><------>swivel;
<------><------>i = hlen;
<------><------>if (!dlen) /* attach FCS */
<------><------><------>i += cp->crc_size;
<------><------>dma_sync_single_for_cpu(&cp->pdev->dev, page->dma_addr + off,
<------><------><------><------><------>i, DMA_FROM_DEVICE);
<------><------>addr = cas_page_map(page->buffer);
<------><------>memcpy(p, addr + off, i);
<------><------>dma_sync_single_for_device(&cp->pdev->dev,
<------><------><------><------><------> page->dma_addr + off, i,
<------><------><------><------><------> DMA_FROM_DEVICE);
<------><------>cas_page_unmap(addr);
<------><------>RX_USED_ADD(page, 0x100);
<------><------>p += hlen;
<------><------>swivel = 0;
<------>}
<------>if (alloclen < (hlen + dlen)) {
<------><------>skb_frag_t *frag = skb_shinfo(skb)->frags;
<------><------>/* normal or jumbo packets. we use frags */
<------><------>i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
<------><------>page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
<------><------>off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
<------><------>hlen = min(cp->page_size - off, dlen);
<------><------>if (hlen < 0) {
<------><------><------>netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
<------><------><------><------> "rx page overflow: %d\n", hlen);
<------><------><------>dev_kfree_skb_irq(skb);
<------><------><------>return -1;
<------><------>}
<------><------>i = hlen;
<------><------>if (i == dlen) /* attach FCS */
<------><------><------>i += cp->crc_size;
<------><------>dma_sync_single_for_cpu(&cp->pdev->dev, page->dma_addr + off,
<------><------><------><------><------>i, DMA_FROM_DEVICE);
<------><------>/* make sure we always copy a header */
<------><------>swivel = 0;
<------><------>if (p == (char *) skb->data) { /* not split */
<------><------><------>addr = cas_page_map(page->buffer);
<------><------><------>memcpy(p, addr + off, RX_COPY_MIN);
<------><------><------>dma_sync_single_for_device(&cp->pdev->dev,
<------><------><------><------><------><------> page->dma_addr + off, i,
<------><------><------><------><------><------> DMA_FROM_DEVICE);
<------><------><------>cas_page_unmap(addr);
<------><------><------>off += RX_COPY_MIN;
<------><------><------>swivel = RX_COPY_MIN;
<------><------><------>RX_USED_ADD(page, cp->mtu_stride);
<------><------>} else {
<------><------><------>RX_USED_ADD(page, hlen);
<------><------>}
<------><------>skb_put(skb, alloclen);
<------><------>skb_shinfo(skb)->nr_frags++;
<------><------>skb->data_len += hlen - swivel;
<------><------>skb->truesize += hlen - swivel;
<------><------>skb->len += hlen - swivel;
<------><------>__skb_frag_set_page(frag, page->buffer);
<------><------>__skb_frag_ref(frag);
<------><------>skb_frag_off_set(frag, off);
<------><------>skb_frag_size_set(frag, hlen - swivel);
<------><------>/* any more data? */
<------><------>if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
<------><------><------>hlen = dlen;
<------><------><------>off = 0;
<------><------><------>i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
<------><------><------>page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
<------><------><------>dma_sync_single_for_cpu(&cp->pdev->dev,
<------><------><------><------><------><------>page->dma_addr,
<------><------><------><------><------><------>hlen + cp->crc_size,
<------><------><------><------><------><------>DMA_FROM_DEVICE);
<------><------><------>dma_sync_single_for_device(&cp->pdev->dev,
<------><------><------><------><------><------> page->dma_addr,
<------><------><------><------><------><------> hlen + cp->crc_size,
<------><------><------><------><------><------> DMA_FROM_DEVICE);
<------><------><------>skb_shinfo(skb)->nr_frags++;
<------><------><------>skb->data_len += hlen;
<------><------><------>skb->len += hlen;
<------><------><------>frag++;
<------><------><------>__skb_frag_set_page(frag, page->buffer);
<------><------><------>__skb_frag_ref(frag);
<------><------><------>skb_frag_off_set(frag, 0);
<------><------><------>skb_frag_size_set(frag, hlen);
<------><------><------>RX_USED_ADD(page, hlen + cp->crc_size);
<------><------>}
<------><------>if (cp->crc_size) {
<------><------><------>addr = cas_page_map(page->buffer);
<------><------><------>crcaddr = addr + off + hlen;
<------><------>}
<------>} else {
<------><------>/* copying packet */
<------><------>if (!dlen)
<------><------><------>goto end_copy_pkt;
<------><------>i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
<------><------>page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
<------><------>off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
<------><------>hlen = min(cp->page_size - off, dlen);
<------><------>if (hlen < 0) {
<------><------><------>netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
<------><------><------><------> "rx page overflow: %d\n", hlen);
<------><------><------>dev_kfree_skb_irq(skb);
<------><------><------>return -1;
<------><------>}
<------><------>i = hlen;
<------><------>if (i == dlen) /* attach FCS */
<------><------><------>i += cp->crc_size;
<------><------>dma_sync_single_for_cpu(&cp->pdev->dev, page->dma_addr + off,
<------><------><------><------><------>i, DMA_FROM_DEVICE);
<------><------>addr = cas_page_map(page->buffer);
<------><------>memcpy(p, addr + off, i);
<------><------>dma_sync_single_for_device(&cp->pdev->dev,
<------><------><------><------><------> page->dma_addr + off, i,
<------><------><------><------><------> DMA_FROM_DEVICE);
<------><------>cas_page_unmap(addr);
<------><------>if (p == (char *) skb->data) /* not split */
<------><------><------>RX_USED_ADD(page, cp->mtu_stride);
<------><------>else
<------><------><------>RX_USED_ADD(page, i);
<------><------>/* any more data? */
<------><------>if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
<------><------><------>p += hlen;
<------><------><------>i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
<------><------><------>page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
<------><------><------>dma_sync_single_for_cpu(&cp->pdev->dev,
<------><------><------><------><------><------>page->dma_addr,
<------><------><------><------><------><------>dlen + cp->crc_size,
<------><------><------><------><------><------>DMA_FROM_DEVICE);
<------><------><------>addr = cas_page_map(page->buffer);
<------><------><------>memcpy(p, addr, dlen + cp->crc_size);
<------><------><------>dma_sync_single_for_device(&cp->pdev->dev,
<------><------><------><------><------><------> page->dma_addr,
<------><------><------><------><------><------> dlen + cp->crc_size,
<------><------><------><------><------><------> DMA_FROM_DEVICE);
<------><------><------>cas_page_unmap(addr);
<------><------><------>RX_USED_ADD(page, dlen + cp->crc_size);
<------><------>}
end_copy_pkt:
<------><------>if (cp->crc_size) {
<------><------><------>addr = NULL;
<------><------><------>crcaddr = skb->data + alloclen;
<------><------>}
<------><------>skb_put(skb, alloclen);
<------>}
<------>csum = (__force __sum16)htons(CAS_VAL(RX_COMP4_TCP_CSUM, words[3]));
<------>if (cp->crc_size) {
<------><------>/* checksum includes FCS. strip it out. */
<------><------>csum = csum_fold(csum_partial(crcaddr, cp->crc_size,
<------><------><------><------><------> csum_unfold(csum)));
<------><------>if (addr)
<------><------><------>cas_page_unmap(addr);
<------>}
<------>skb->protocol = eth_type_trans(skb, cp->dev);
<------>if (skb->protocol == htons(ETH_P_IP)) {
<------><------>skb->csum = csum_unfold(~csum);
<------><------>skb->ip_summed = CHECKSUM_COMPLETE;
<------>} else
<------><------>skb_checksum_none_assert(skb);
<------>return len;
}
/* we can handle up to 64 rx flows at a time. we do the same thing
* as nonreassm except that we batch up the buffers.
* NOTE: we currently just treat each flow as a bunch of packets that
* we pass up. a better way would be to coalesce the packets
* into a jumbo packet. to do that, we need to do the following:
* 1) the first packet will have a clean split between header and
* data. save both.
* 2) each time the next flow packet comes in, extend the
* data length and merge the checksums.
* 3) on flow release, fix up the header.
* 4) make sure the higher layer doesn't care.
* because packets get coalesced, we shouldn't run into fragment count
* issues.
*/
static inline void cas_rx_flow_pkt(struct cas *cp, const u64 *words,
<------><------><------><------> struct sk_buff *skb)
{
<------>int flowid = CAS_VAL(RX_COMP3_FLOWID, words[2]) & (N_RX_FLOWS - 1);
<------>struct sk_buff_head *flow = &cp->rx_flows[flowid];
<------>/* this is protected at a higher layer, so no need to
<------> * do any additional locking here. stick the buffer
<------> * at the end.
<------> */
<------>__skb_queue_tail(flow, skb);
<------>if (words[0] & RX_COMP1_RELEASE_FLOW) {
<------><------>while ((skb = __skb_dequeue(flow))) {
<------><------><------>cas_skb_release(skb);
<------><------>}
<------>}
}
/* put rx descriptor back on ring. if a buffer is in use by a higher
* layer, this will need to put in a replacement.
*/
static void cas_post_page(struct cas *cp, const int ring, const int index)
{
<------>cas_page_t *new;
<------>int entry;
<------>entry = cp->rx_old[ring];
<------>new = cas_page_swap(cp, ring, index);
<------>cp->init_rxds[ring][entry].buffer = cpu_to_le64(new->dma_addr);
<------>cp->init_rxds[ring][entry].index =
<------><------>cpu_to_le64(CAS_BASE(RX_INDEX_NUM, index) |
<------><------><------> CAS_BASE(RX_INDEX_RING, ring));
<------>entry = RX_DESC_ENTRY(ring, entry + 1);
<------>cp->rx_old[ring] = entry;
<------>if (entry % 4)
<------><------>return;
<------>if (ring == 0)
<------><------>writel(entry, cp->regs + REG_RX_KICK);
<------>else if ((N_RX_DESC_RINGS > 1) &&
<------><------> (cp->cas_flags & CAS_FLAG_REG_PLUS))
<------><------>writel(entry, cp->regs + REG_PLUS_RX_KICK1);
}
/* only when things are bad */
static int cas_post_rxds_ringN(struct cas *cp, int ring, int num)
{
<------>unsigned int entry, last, count, released;
<------>int cluster;
<------>cas_page_t **page = cp->rx_pages[ring];
<------>entry = cp->rx_old[ring];
<------>netif_printk(cp, intr, KERN_DEBUG, cp->dev,
<------><------> "rxd[%d] interrupt, done: %d\n", ring, entry);
<------>cluster = -1;
<------>count = entry & 0x3;
<------>last = RX_DESC_ENTRY(ring, num ? entry + num - 4: entry - 4);
<------>released = 0;
<------>while (entry != last) {
<------><------>/* make a new buffer if it's still in use */
<------><------>if (page_count(page[entry]->buffer) > 1) {
<------><------><------>cas_page_t *new = cas_page_dequeue(cp);
<------><------><------>if (!new) {
<------><------><------><------>/* let the timer know that we need to
<------><------><------><------> * do this again
<------><------><------><------> */
<------><------><------><------>cp->cas_flags |= CAS_FLAG_RXD_POST(ring);
<------><------><------><------>if (!timer_pending(&cp->link_timer))
<------><------><------><------><------>mod_timer(&cp->link_timer, jiffies +
<------><------><------><------><------><------> CAS_LINK_FAST_TIMEOUT);
<------><------><------><------>cp->rx_old[ring] = entry;
<------><------><------><------>cp->rx_last[ring] = num ? num - released : 0;
<------><------><------><------>return -ENOMEM;
<------><------><------>}
<------><------><------>spin_lock(&cp->rx_inuse_lock);
<------><------><------>list_add(&page[entry]->list, &cp->rx_inuse_list);
<------><------><------>spin_unlock(&cp->rx_inuse_lock);
<------><------><------>cp->init_rxds[ring][entry].buffer =
<------><------><------><------>cpu_to_le64(new->dma_addr);
<------><------><------>page[entry] = new;
<------><------>}
<------><------>if (++count == 4) {
<------><------><------>cluster = entry;
<------><------><------>count = 0;
<------><------>}
<------><------>released++;
<------><------>entry = RX_DESC_ENTRY(ring, entry + 1);
<------>}
<------>cp->rx_old[ring] = entry;
<------>if (cluster < 0)
<------><------>return 0;
<------>if (ring == 0)
<------><------>writel(cluster, cp->regs + REG_RX_KICK);
<------>else if ((N_RX_DESC_RINGS > 1) &&
<------><------> (cp->cas_flags & CAS_FLAG_REG_PLUS))
<------><------>writel(cluster, cp->regs + REG_PLUS_RX_KICK1);
<------>return 0;
}
/* process a completion ring. packets are set up in three basic ways:
* small packets: should be copied header + data in single buffer.
* large packets: header and data in a single buffer.
* split packets: header in a separate buffer from data.
* data may be in multiple pages. data may be > 256
* bytes but in a single page.
*
* NOTE: RX page posting is done in this routine as well. while there's
* the capability of using multiple RX completion rings, it isn't
* really worthwhile due to the fact that the page posting will
* force serialization on the single descriptor ring.
*/
static int cas_rx_ringN(struct cas *cp, int ring, int budget)
{
<------>struct cas_rx_comp *rxcs = cp->init_rxcs[ring];
<------>int entry, drops;
<------>int npackets = 0;
<------>netif_printk(cp, intr, KERN_DEBUG, cp->dev,
<------><------> "rx[%d] interrupt, done: %d/%d\n",
<------><------> ring,
<------><------> readl(cp->regs + REG_RX_COMP_HEAD), cp->rx_new[ring]);
<------>entry = cp->rx_new[ring];
<------>drops = 0;
<------>while (1) {
<------><------>struct cas_rx_comp *rxc = rxcs + entry;
<------><------>struct sk_buff *skb;
<------><------>int type, len;
<------><------>u64 words[4];
<------><------>int i, dring;
<------><------>words[0] = le64_to_cpu(rxc->word1);
<------><------>words[1] = le64_to_cpu(rxc->word2);
<------><------>words[2] = le64_to_cpu(rxc->word3);
<------><------>words[3] = le64_to_cpu(rxc->word4);
<------><------>/* don't touch if still owned by hw */
<------><------>type = CAS_VAL(RX_COMP1_TYPE, words[0]);
<------><------>if (type == 0)
<------><------><------>break;
<------><------>/* hw hasn't cleared the zero bit yet */
<------><------>if (words[3] & RX_COMP4_ZERO) {
<------><------><------>break;
<------><------>}
<------><------>/* get info on the packet */
<------><------>if (words[3] & (RX_COMP4_LEN_MISMATCH | RX_COMP4_BAD)) {
<------><------><------>spin_lock(&cp->stat_lock[ring]);
<------><------><------>cp->net_stats[ring].rx_errors++;
<------><------><------>if (words[3] & RX_COMP4_LEN_MISMATCH)
<------><------><------><------>cp->net_stats[ring].rx_length_errors++;
<------><------><------>if (words[3] & RX_COMP4_BAD)
<------><------><------><------>cp->net_stats[ring].rx_crc_errors++;
<------><------><------>spin_unlock(&cp->stat_lock[ring]);
<------><------><------>/* We'll just return it to Cassini. */
<------><------>drop_it:
<------><------><------>spin_lock(&cp->stat_lock[ring]);
<------><------><------>++cp->net_stats[ring].rx_dropped;
<------><------><------>spin_unlock(&cp->stat_lock[ring]);
<------><------><------>goto next;
<------><------>}
<------><------>len = cas_rx_process_pkt(cp, rxc, entry, words, &skb);
<------><------>if (len < 0) {
<------><------><------>++drops;
<------><------><------>goto drop_it;
<------><------>}
<------><------>/* see if it's a flow re-assembly or not. the driver
<------><------> * itself handles release back up.
<------><------> */
<------><------>if (RX_DONT_BATCH || (type == 0x2)) {
<------><------><------>/* non-reassm: these always get released */
<------><------><------>cas_skb_release(skb);
<------><------>} else {
<------><------><------>cas_rx_flow_pkt(cp, words, skb);
<------><------>}
<------><------>spin_lock(&cp->stat_lock[ring]);
<------><------>cp->net_stats[ring].rx_packets++;
<------><------>cp->net_stats[ring].rx_bytes += len;
<------><------>spin_unlock(&cp->stat_lock[ring]);
<------>next:
<------><------>npackets++;
<------><------>/* should it be released? */
<------><------>if (words[0] & RX_COMP1_RELEASE_HDR) {
<------><------><------>i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
<------><------><------>dring = CAS_VAL(RX_INDEX_RING, i);
<------><------><------>i = CAS_VAL(RX_INDEX_NUM, i);
<------><------><------>cas_post_page(cp, dring, i);
<------><------>}
<------><------>if (words[0] & RX_COMP1_RELEASE_DATA) {
<------><------><------>i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
<------><------><------>dring = CAS_VAL(RX_INDEX_RING, i);
<------><------><------>i = CAS_VAL(RX_INDEX_NUM, i);
<------><------><------>cas_post_page(cp, dring, i);
<------><------>}
<------><------>if (words[0] & RX_COMP1_RELEASE_NEXT) {
<------><------><------>i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
<------><------><------>dring = CAS_VAL(RX_INDEX_RING, i);
<------><------><------>i = CAS_VAL(RX_INDEX_NUM, i);
<------><------><------>cas_post_page(cp, dring, i);
<------><------>}
<------><------>/* skip to the next entry */
<------><------>entry = RX_COMP_ENTRY(ring, entry + 1 +
<------><------><------><------> CAS_VAL(RX_COMP1_SKIP, words[0]));
#ifdef USE_NAPI
<------><------>if (budget && (npackets >= budget))
<------><------><------>break;
#endif
<------>}
<------>cp->rx_new[ring] = entry;
<------>if (drops)
<------><------>netdev_info(cp->dev, "Memory squeeze, deferring packet\n");
<------>return npackets;
}
/* put completion entries back on the ring */
static void cas_post_rxcs_ringN(struct net_device *dev,
<------><------><------><------>struct cas *cp, int ring)
{
<------>struct cas_rx_comp *rxc = cp->init_rxcs[ring];
<------>int last, entry;
<------>last = cp->rx_cur[ring];
<------>entry = cp->rx_new[ring];
<------>netif_printk(cp, intr, KERN_DEBUG, dev,
<------><------> "rxc[%d] interrupt, done: %d/%d\n",
<------><------> ring, readl(cp->regs + REG_RX_COMP_HEAD), entry);
<------>/* zero and re-mark descriptors */
<------>while (last != entry) {
<------><------>cas_rxc_init(rxc + last);
<------><------>last = RX_COMP_ENTRY(ring, last + 1);
<------>}
<------>cp->rx_cur[ring] = last;
<------>if (ring == 0)
<------><------>writel(last, cp->regs + REG_RX_COMP_TAIL);
<------>else if (cp->cas_flags & CAS_FLAG_REG_PLUS)
<------><------>writel(last, cp->regs + REG_PLUS_RX_COMPN_TAIL(ring));
}
/* cassini can use all four PCI interrupts for the completion ring.
* rings 3 and 4 are identical
*/
#if defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
static inline void cas_handle_irqN(struct net_device *dev,
<------><------><------><------> struct cas *cp, const u32 status,
<------><------><------><------> const int ring)
{
<------>if (status & (INTR_RX_COMP_FULL_ALT | INTR_RX_COMP_AF_ALT))
<------><------>cas_post_rxcs_ringN(dev, cp, ring);
}
static irqreturn_t cas_interruptN(int irq, void *dev_id)
{
<------>struct net_device *dev = dev_id;
<------>struct cas *cp = netdev_priv(dev);
<------>unsigned long flags;
<------>int ring = (irq == cp->pci_irq_INTC) ? 2 : 3;
<------>u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(ring));
<------>/* check for shared irq */
<------>if (status == 0)
<------><------>return IRQ_NONE;
<------>spin_lock_irqsave(&cp->lock, flags);
<------>if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
#ifdef USE_NAPI
<------><------>cas_mask_intr(cp);
<------><------>napi_schedule(&cp->napi);
#else
<------><------>cas_rx_ringN(cp, ring, 0);
#endif
<------><------>status &= ~INTR_RX_DONE_ALT;
<------>}
<------>if (status)
<------><------>cas_handle_irqN(dev, cp, status, ring);
<------>spin_unlock_irqrestore(&cp->lock, flags);
<------>return IRQ_HANDLED;
}
#endif
#ifdef USE_PCI_INTB
/* everything but rx packets */
static inline void cas_handle_irq1(struct cas *cp, const u32 status)
{
<------>if (status & INTR_RX_BUF_UNAVAIL_1) {
<------><------>/* Frame arrived, no free RX buffers available.
<------><------> * NOTE: we can get this on a link transition. */
<------><------>cas_post_rxds_ringN(cp, 1, 0);
<------><------>spin_lock(&cp->stat_lock[1]);
<------><------>cp->net_stats[1].rx_dropped++;
<------><------>spin_unlock(&cp->stat_lock[1]);
<------>}
<------>if (status & INTR_RX_BUF_AE_1)
<------><------>cas_post_rxds_ringN(cp, 1, RX_DESC_RINGN_SIZE(1) -
<------><------><------><------> RX_AE_FREEN_VAL(1));
<------>if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
<------><------>cas_post_rxcs_ringN(cp, 1);
}
/* ring 2 handles a few more events than 3 and 4 */
static irqreturn_t cas_interrupt1(int irq, void *dev_id)
{
<------>struct net_device *dev = dev_id;
<------>struct cas *cp = netdev_priv(dev);
<------>unsigned long flags;
<------>u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
<------>/* check for shared interrupt */
<------>if (status == 0)
<------><------>return IRQ_NONE;
<------>spin_lock_irqsave(&cp->lock, flags);
<------>if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
#ifdef USE_NAPI
<------><------>cas_mask_intr(cp);
<------><------>napi_schedule(&cp->napi);
#else
<------><------>cas_rx_ringN(cp, 1, 0);
#endif
<------><------>status &= ~INTR_RX_DONE_ALT;
<------>}
<------>if (status)
<------><------>cas_handle_irq1(cp, status);
<------>spin_unlock_irqrestore(&cp->lock, flags);
<------>return IRQ_HANDLED;
}
#endif
static inline void cas_handle_irq(struct net_device *dev,
<------><------><------><------> struct cas *cp, const u32 status)
{
<------>/* housekeeping interrupts */
<------>if (status & INTR_ERROR_MASK)
<------><------>cas_abnormal_irq(dev, cp, status);
<------>if (status & INTR_RX_BUF_UNAVAIL) {
<------><------>/* Frame arrived, no free RX buffers available.
<------><------> * NOTE: we can get this on a link transition.
<------><------> */
<------><------>cas_post_rxds_ringN(cp, 0, 0);
<------><------>spin_lock(&cp->stat_lock[0]);
<------><------>cp->net_stats[0].rx_dropped++;
<------><------>spin_unlock(&cp->stat_lock[0]);
<------>} else if (status & INTR_RX_BUF_AE) {
<------><------>cas_post_rxds_ringN(cp, 0, RX_DESC_RINGN_SIZE(0) -
<------><------><------><------> RX_AE_FREEN_VAL(0));
<------>}
<------>if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
<------><------>cas_post_rxcs_ringN(dev, cp, 0);
}
static irqreturn_t cas_interrupt(int irq, void *dev_id)
{
<------>struct net_device *dev = dev_id;
<------>struct cas *cp = netdev_priv(dev);
<------>unsigned long flags;
<------>u32 status = readl(cp->regs + REG_INTR_STATUS);
<------>if (status == 0)
<------><------>return IRQ_NONE;
<------>spin_lock_irqsave(&cp->lock, flags);
<------>if (status & (INTR_TX_ALL | INTR_TX_INTME)) {
<------><------>cas_tx(dev, cp, status);
<------><------>status &= ~(INTR_TX_ALL | INTR_TX_INTME);
<------>}
<------>if (status & INTR_RX_DONE) {
#ifdef USE_NAPI
<------><------>cas_mask_intr(cp);
<------><------>napi_schedule(&cp->napi);
#else
<------><------>cas_rx_ringN(cp, 0, 0);
#endif
<------><------>status &= ~INTR_RX_DONE;
<------>}
<------>if (status)
<------><------>cas_handle_irq(dev, cp, status);
<------>spin_unlock_irqrestore(&cp->lock, flags);
<------>return IRQ_HANDLED;
}
#ifdef USE_NAPI
static int cas_poll(struct napi_struct *napi, int budget)
{
<------>struct cas *cp = container_of(napi, struct cas, napi);
<------>struct net_device *dev = cp->dev;
<------>int i, enable_intr, credits;
<------>u32 status = readl(cp->regs + REG_INTR_STATUS);
<------>unsigned long flags;
<------>spin_lock_irqsave(&cp->lock, flags);
<------>cas_tx(dev, cp, status);
<------>spin_unlock_irqrestore(&cp->lock, flags);
<------>/* NAPI rx packets. we spread the credits across all of the
<------> * rxc rings
<------> *
<------> * to make sure we're fair with the work we loop through each
<------> * ring N_RX_COMP_RING times with a request of
<------> * budget / N_RX_COMP_RINGS
<------> */
<------>enable_intr = 1;
<------>credits = 0;
<------>for (i = 0; i < N_RX_COMP_RINGS; i++) {
<------><------>int j;
<------><------>for (j = 0; j < N_RX_COMP_RINGS; j++) {
<------><------><------>credits += cas_rx_ringN(cp, j, budget / N_RX_COMP_RINGS);
<------><------><------>if (credits >= budget) {
<------><------><------><------>enable_intr = 0;
<------><------><------><------>goto rx_comp;
<------><------><------>}
<------><------>}
<------>}
rx_comp:
<------>/* final rx completion */
<------>spin_lock_irqsave(&cp->lock, flags);
<------>if (status)
<------><------>cas_handle_irq(dev, cp, status);
#ifdef USE_PCI_INTB
<------>if (N_RX_COMP_RINGS > 1) {
<------><------>status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
<------><------>if (status)
<------><------><------>cas_handle_irq1(dev, cp, status);
<------>}
#endif
#ifdef USE_PCI_INTC
<------>if (N_RX_COMP_RINGS > 2) {
<------><------>status = readl(cp->regs + REG_PLUS_INTRN_STATUS(2));
<------><------>if (status)
<------><------><------>cas_handle_irqN(dev, cp, status, 2);
<------>}
#endif
#ifdef USE_PCI_INTD
<------>if (N_RX_COMP_RINGS > 3) {
<------><------>status = readl(cp->regs + REG_PLUS_INTRN_STATUS(3));
<------><------>if (status)
<------><------><------>cas_handle_irqN(dev, cp, status, 3);
<------>}
#endif
<------>spin_unlock_irqrestore(&cp->lock, flags);
<------>if (enable_intr) {
<------><------>napi_complete(napi);
<------><------>cas_unmask_intr(cp);
<------>}
<------>return credits;
}
#endif
#ifdef CONFIG_NET_POLL_CONTROLLER
static void cas_netpoll(struct net_device *dev)
{
<------>struct cas *cp = netdev_priv(dev);
<------>cas_disable_irq(cp, 0);
<------>cas_interrupt(cp->pdev->irq, dev);
<------>cas_enable_irq(cp, 0);
#ifdef USE_PCI_INTB
<------>if (N_RX_COMP_RINGS > 1) {
<------><------>/* cas_interrupt1(); */
<------>}
#endif
#ifdef USE_PCI_INTC
<------>if (N_RX_COMP_RINGS > 2) {
<------><------>/* cas_interruptN(); */
<------>}
#endif
#ifdef USE_PCI_INTD
<------>if (N_RX_COMP_RINGS > 3) {
<------><------>/* cas_interruptN(); */
<------>}
#endif
}
#endif
static void cas_tx_timeout(struct net_device *dev, unsigned int txqueue)
{
<------>struct cas *cp = netdev_priv(dev);
<------>netdev_err(dev, "transmit timed out, resetting\n");
<------>if (!cp->hw_running) {
<------><------>netdev_err(dev, "hrm.. hw not running!\n");
<------><------>return;
<------>}
<------>netdev_err(dev, "MIF_STATE[%08x]\n",
<------><------> readl(cp->regs + REG_MIF_STATE_MACHINE));
<------>netdev_err(dev, "MAC_STATE[%08x]\n",
<------><------> readl(cp->regs + REG_MAC_STATE_MACHINE));
<------>netdev_err(dev, "TX_STATE[%08x:%08x:%08x] FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n",
<------><------> readl(cp->regs + REG_TX_CFG),
<------><------> readl(cp->regs + REG_MAC_TX_STATUS),
<------><------> readl(cp->regs + REG_MAC_TX_CFG),
<------><------> readl(cp->regs + REG_TX_FIFO_PKT_CNT),
<------><------> readl(cp->regs + REG_TX_FIFO_WRITE_PTR),
<------><------> readl(cp->regs + REG_TX_FIFO_READ_PTR),
<------><------> readl(cp->regs + REG_TX_SM_1),
<------><------> readl(cp->regs + REG_TX_SM_2));
<------>netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
<------><------> readl(cp->regs + REG_RX_CFG),
<------><------> readl(cp->regs + REG_MAC_RX_STATUS),
<------><------> readl(cp->regs + REG_MAC_RX_CFG));
<------>netdev_err(dev, "HP_STATE[%08x:%08x:%08x:%08x]\n",
<------><------> readl(cp->regs + REG_HP_STATE_MACHINE),
<------><------> readl(cp->regs + REG_HP_STATUS0),
<------><------> readl(cp->regs + REG_HP_STATUS1),
<------><------> readl(cp->regs + REG_HP_STATUS2));
#if 1
<------>atomic_inc(&cp->reset_task_pending);
<------>atomic_inc(&cp->reset_task_pending_all);
<------>schedule_work(&cp->reset_task);
#else
<------>atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
<------>schedule_work(&cp->reset_task);
#endif
}
static inline int cas_intme(int ring, int entry)
{
<------>/* Algorithm: IRQ every 1/2 of descriptors. */
<------>if (!(entry & ((TX_DESC_RINGN_SIZE(ring) >> 1) - 1)))
<------><------>return 1;
<------>return 0;
}
static void cas_write_txd(struct cas *cp, int ring, int entry,
<------><------><------> dma_addr_t mapping, int len, u64 ctrl, int last)
{
<------>struct cas_tx_desc *txd = cp->init_txds[ring] + entry;
<------>ctrl |= CAS_BASE(TX_DESC_BUFLEN, len);
<------>if (cas_intme(ring, entry))
<------><------>ctrl |= TX_DESC_INTME;
<------>if (last)
<------><------>ctrl |= TX_DESC_EOF;
<------>txd->control = cpu_to_le64(ctrl);
<------>txd->buffer = cpu_to_le64(mapping);
}
static inline void *tx_tiny_buf(struct cas *cp, const int ring,
<------><------><------><------>const int entry)
{
<------>return cp->tx_tiny_bufs[ring] + TX_TINY_BUF_LEN*entry;
}
static inline dma_addr_t tx_tiny_map(struct cas *cp, const int ring,
<------><------><------><------> const int entry, const int tentry)
{
<------>cp->tx_tiny_use[ring][tentry].nbufs++;
<------>cp->tx_tiny_use[ring][entry].used = 1;
<------>return cp->tx_tiny_dvma[ring] + TX_TINY_BUF_LEN*entry;
}
static inline int cas_xmit_tx_ringN(struct cas *cp, int ring,
<------><------><------><------> struct sk_buff *skb)
{
<------>struct net_device *dev = cp->dev;
<------>int entry, nr_frags, frag, tabort, tentry;
<------>dma_addr_t mapping;
<------>unsigned long flags;
<------>u64 ctrl;
<------>u32 len;
<------>spin_lock_irqsave(&cp->tx_lock[ring], flags);
<------>/* This is a hard error, log it. */
<------>if (TX_BUFFS_AVAIL(cp, ring) <=
<------> CAS_TABORT(cp)*(skb_shinfo(skb)->nr_frags + 1)) {
<------><------>netif_stop_queue(dev);
<------><------>spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
<------><------>netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
<------><------>return 1;
<------>}
<------>ctrl = 0;
<------>if (skb->ip_summed == CHECKSUM_PARTIAL) {
<------><------>const u64 csum_start_off = skb_checksum_start_offset(skb);
<------><------>const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
<------><------>ctrl = TX_DESC_CSUM_EN |
<------><------><------>CAS_BASE(TX_DESC_CSUM_START, csum_start_off) |
<------><------><------>CAS_BASE(TX_DESC_CSUM_STUFF, csum_stuff_off);
<------>}
<------>entry = cp->tx_new[ring];
<------>cp->tx_skbs[ring][entry] = skb;
<------>nr_frags = skb_shinfo(skb)->nr_frags;
<------>len = skb_headlen(skb);
<------>mapping = dma_map_page(&cp->pdev->dev, virt_to_page(skb->data),
<------><------><------> offset_in_page(skb->data), len, DMA_TO_DEVICE);
<------>tentry = entry;
<------>tabort = cas_calc_tabort(cp, (unsigned long) skb->data, len);
<------>if (unlikely(tabort)) {
<------><------>/* NOTE: len is always > tabort */
<------><------>cas_write_txd(cp, ring, entry, mapping, len - tabort,
<------><------><------> ctrl | TX_DESC_SOF, 0);
<------><------>entry = TX_DESC_NEXT(ring, entry);
<------><------>skb_copy_from_linear_data_offset(skb, len - tabort,
<------><------><------> tx_tiny_buf(cp, ring, entry), tabort);
<------><------>mapping = tx_tiny_map(cp, ring, entry, tentry);
<------><------>cas_write_txd(cp, ring, entry, mapping, tabort, ctrl,
<------><------><------> (nr_frags == 0));
<------>} else {
<------><------>cas_write_txd(cp, ring, entry, mapping, len, ctrl |
<------><------><------> TX_DESC_SOF, (nr_frags == 0));
<------>}
<------>entry = TX_DESC_NEXT(ring, entry);
<------>for (frag = 0; frag < nr_frags; frag++) {
<------><------>const skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag];
<------><------>len = skb_frag_size(fragp);
<------><------>mapping = skb_frag_dma_map(&cp->pdev->dev, fragp, 0, len,
<------><------><------><------><------> DMA_TO_DEVICE);
<------><------>tabort = cas_calc_tabort(cp, skb_frag_off(fragp), len);
<------><------>if (unlikely(tabort)) {
<------><------><------>void *addr;
<------><------><------>/* NOTE: len is always > tabort */
<------><------><------>cas_write_txd(cp, ring, entry, mapping, len - tabort,
<------><------><------><------> ctrl, 0);
<------><------><------>entry = TX_DESC_NEXT(ring, entry);
<------><------><------>addr = cas_page_map(skb_frag_page(fragp));
<------><------><------>memcpy(tx_tiny_buf(cp, ring, entry),
<------><------><------> addr + skb_frag_off(fragp) + len - tabort,
<------><------><------> tabort);
<------><------><------>cas_page_unmap(addr);
<------><------><------>mapping = tx_tiny_map(cp, ring, entry, tentry);
<------><------><------>len = tabort;
<------><------>}
<------><------>cas_write_txd(cp, ring, entry, mapping, len, ctrl,
<------><------><------> (frag + 1 == nr_frags));
<------><------>entry = TX_DESC_NEXT(ring, entry);
<------>}
<------>cp->tx_new[ring] = entry;
<------>if (TX_BUFFS_AVAIL(cp, ring) <= CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1))
<------><------>netif_stop_queue(dev);
<------>netif_printk(cp, tx_queued, KERN_DEBUG, dev,
<------><------> "tx[%d] queued, slot %d, skblen %d, avail %d\n",
<------><------> ring, entry, skb->len, TX_BUFFS_AVAIL(cp, ring));
<------>writel(entry, cp->regs + REG_TX_KICKN(ring));
<------>spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
<------>return 0;
}
static netdev_tx_t cas_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
<------>struct cas *cp = netdev_priv(dev);
<------>/* this is only used as a load-balancing hint, so it doesn't
<------> * need to be SMP safe
<------> */
<------>static int ring;
<------>if (skb_padto(skb, cp->min_frame_size))
<------><------>return NETDEV_TX_OK;
<------>/* XXX: we need some higher-level QoS hooks to steer packets to
<------> * individual queues.
<------> */
<------>if (cas_xmit_tx_ringN(cp, ring++ & N_TX_RINGS_MASK, skb))
<------><------>return NETDEV_TX_BUSY;
<------>return NETDEV_TX_OK;
}
static void cas_init_tx_dma(struct cas *cp)
{
<------>u64 desc_dma = cp->block_dvma;
<------>unsigned long off;
<------>u32 val;
<------>int i;
<------>/* set up tx completion writeback registers. must be 8-byte aligned */
#ifdef USE_TX_COMPWB
<------>off = offsetof(struct cas_init_block, tx_compwb);
<------>writel((desc_dma + off) >> 32, cp->regs + REG_TX_COMPWB_DB_HI);
<------>writel((desc_dma + off) & 0xffffffff, cp->regs + REG_TX_COMPWB_DB_LOW);
#endif
<------>/* enable completion writebacks, enable paced mode,
<------> * disable read pipe, and disable pre-interrupt compwbs
<------> */
<------>val = TX_CFG_COMPWB_Q1 | TX_CFG_COMPWB_Q2 |
<------><------>TX_CFG_COMPWB_Q3 | TX_CFG_COMPWB_Q4 |
<------><------>TX_CFG_DMA_RDPIPE_DIS | TX_CFG_PACED_MODE |
<------><------>TX_CFG_INTR_COMPWB_DIS;
<------>/* write out tx ring info and tx desc bases */
<------>for (i = 0; i < MAX_TX_RINGS; i++) {
<------><------>off = (unsigned long) cp->init_txds[i] -
<------><------><------>(unsigned long) cp->init_block;
<------><------>val |= CAS_TX_RINGN_BASE(i);
<------><------>writel((desc_dma + off) >> 32, cp->regs + REG_TX_DBN_HI(i));
<------><------>writel((desc_dma + off) & 0xffffffff, cp->regs +
<------><------> REG_TX_DBN_LOW(i));
<------><------>/* don't zero out the kick register here as the system
<------><------> * will wedge
<------><------> */
<------>}
<------>writel(val, cp->regs + REG_TX_CFG);
<------>/* program max burst sizes. these numbers should be different
<------> * if doing QoS.
<------> */
#ifdef USE_QOS
<------>writel(0x800, cp->regs + REG_TX_MAXBURST_0);
<------>writel(0x1600, cp->regs + REG_TX_MAXBURST_1);
<------>writel(0x2400, cp->regs + REG_TX_MAXBURST_2);
<------>writel(0x4800, cp->regs + REG_TX_MAXBURST_3);
#else
<------>writel(0x800, cp->regs + REG_TX_MAXBURST_0);
<------>writel(0x800, cp->regs + REG_TX_MAXBURST_1);
<------>writel(0x800, cp->regs + REG_TX_MAXBURST_2);
<------>writel(0x800, cp->regs + REG_TX_MAXBURST_3);
#endif
}
/* Must be invoked under cp->lock. */
static inline void cas_init_dma(struct cas *cp)
{
<------>cas_init_tx_dma(cp);
<------>cas_init_rx_dma(cp);
}
static void cas_process_mc_list(struct cas *cp)
{
<------>u16 hash_table[16];
<------>u32 crc;
<------>struct netdev_hw_addr *ha;
<------>int i = 1;
<------>memset(hash_table, 0, sizeof(hash_table));
<------>netdev_for_each_mc_addr(ha, cp->dev) {
<------><------>if (i <= CAS_MC_EXACT_MATCH_SIZE) {
<------><------><------>/* use the alternate mac address registers for the
<------><------><------> * first 15 multicast addresses
<------><------><------> */
<------><------><------>writel((ha->addr[4] << 8) | ha->addr[5],
<------><------><------> cp->regs + REG_MAC_ADDRN(i*3 + 0));
<------><------><------>writel((ha->addr[2] << 8) | ha->addr[3],
<------><------><------> cp->regs + REG_MAC_ADDRN(i*3 + 1));
<------><------><------>writel((ha->addr[0] << 8) | ha->addr[1],
<------><------><------> cp->regs + REG_MAC_ADDRN(i*3 + 2));
<------><------><------>i++;
<------><------>}
<------><------>else {
<------><------><------>/* use hw hash table for the next series of
<------><------><------> * multicast addresses
<------><------><------> */
<------><------><------>crc = ether_crc_le(ETH_ALEN, ha->addr);
<------><------><------>crc >>= 24;
<------><------><------>hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
<------><------>}
<------>}
<------>for (i = 0; i < 16; i++)
<------><------>writel(hash_table[i], cp->regs + REG_MAC_HASH_TABLEN(i));
}
/* Must be invoked under cp->lock. */
static u32 cas_setup_multicast(struct cas *cp)
{
<------>u32 rxcfg = 0;
<------>int i;
<------>if (cp->dev->flags & IFF_PROMISC) {
<------><------>rxcfg |= MAC_RX_CFG_PROMISC_EN;
<------>} else if (cp->dev->flags & IFF_ALLMULTI) {
<------> for (i=0; i < 16; i++)
<------><------><------>writel(0xFFFF, cp->regs + REG_MAC_HASH_TABLEN(i));
<------><------>rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
<------>} else {
<------><------>cas_process_mc_list(cp);
<------><------>rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
<------>}
<------>return rxcfg;
}
/* must be invoked under cp->stat_lock[N_TX_RINGS] */
static void cas_clear_mac_err(struct cas *cp)
{
<------>writel(0, cp->regs + REG_MAC_COLL_NORMAL);
<------>writel(0, cp->regs + REG_MAC_COLL_FIRST);
<------>writel(0, cp->regs + REG_MAC_COLL_EXCESS);
<------>writel(0, cp->regs + REG_MAC_COLL_LATE);
<------>writel(0, cp->regs + REG_MAC_TIMER_DEFER);
<------>writel(0, cp->regs + REG_MAC_ATTEMPTS_PEAK);
<------>writel(0, cp->regs + REG_MAC_RECV_FRAME);
<------>writel(0, cp->regs + REG_MAC_LEN_ERR);
<------>writel(0, cp->regs + REG_MAC_ALIGN_ERR);
<------>writel(0, cp->regs + REG_MAC_FCS_ERR);
<------>writel(0, cp->regs + REG_MAC_RX_CODE_ERR);
}
static void cas_mac_reset(struct cas *cp)
{
<------>int i;
<------>/* do both TX and RX reset */
<------>writel(0x1, cp->regs + REG_MAC_TX_RESET);
<------>writel(0x1, cp->regs + REG_MAC_RX_RESET);
<------>/* wait for TX */
<------>i = STOP_TRIES;
<------>while (i-- > 0) {
<------><------>if (readl(cp->regs + REG_MAC_TX_RESET) == 0)
<------><------><------>break;
<------><------>udelay(10);
<------>}
<------>/* wait for RX */
<------>i = STOP_TRIES;
<------>while (i-- > 0) {
<------><------>if (readl(cp->regs + REG_MAC_RX_RESET) == 0)
<------><------><------>break;
<------><------>udelay(10);
<------>}
<------>if (readl(cp->regs + REG_MAC_TX_RESET) |
<------> readl(cp->regs + REG_MAC_RX_RESET))
<------><------>netdev_err(cp->dev, "mac tx[%d]/rx[%d] reset failed [%08x]\n",
<------><------><------> readl(cp->regs + REG_MAC_TX_RESET),
<------><------><------> readl(cp->regs + REG_MAC_RX_RESET),
<------><------><------> readl(cp->regs + REG_MAC_STATE_MACHINE));
}
/* Must be invoked under cp->lock. */
static void cas_init_mac(struct cas *cp)
{
<------>unsigned char *e = &cp->dev->dev_addr[0];
<------>int i;
<------>cas_mac_reset(cp);
<------>/* setup core arbitration weight register */
<------>writel(CAWR_RR_DIS, cp->regs + REG_CAWR);
#if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
<------>/* set the infinite burst register for chips that don't have
<------> * pci issues.
<------> */
<------>if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) == 0)
<------><------>writel(INF_BURST_EN, cp->regs + REG_INF_BURST);
#endif
<------>writel(0x1BF0, cp->regs + REG_MAC_SEND_PAUSE);
<------>writel(0x00, cp->regs + REG_MAC_IPG0);
<------>writel(0x08, cp->regs + REG_MAC_IPG1);
<------>writel(0x04, cp->regs + REG_MAC_IPG2);
<------>/* change later for 802.3z */
<------>writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
<------>/* min frame + FCS */
<------>writel(ETH_ZLEN + 4, cp->regs + REG_MAC_FRAMESIZE_MIN);
<------>/* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we
<------> * specify the maximum frame size to prevent RX tag errors on
<------> * oversized frames.
<------> */
<------>writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST, 0x2000) |
<------> CAS_BASE(MAC_FRAMESIZE_MAX_FRAME,
<------><------><------>(CAS_MAX_MTU + ETH_HLEN + 4 + 4)),
<------> cp->regs + REG_MAC_FRAMESIZE_MAX);
<------>/* NOTE: crc_size is used as a surrogate for half-duplex.
<------> * workaround saturn half-duplex issue by increasing preamble
<------> * size to 65 bytes.
<------> */
<------>if ((cp->cas_flags & CAS_FLAG_SATURN) && cp->crc_size)
<------><------>writel(0x41, cp->regs + REG_MAC_PA_SIZE);
<------>else
<------><------>writel(0x07, cp->regs + REG_MAC_PA_SIZE);
<------>writel(0x04, cp->regs + REG_MAC_JAM_SIZE);
<------>writel(0x10, cp->regs + REG_MAC_ATTEMPT_LIMIT);
<------>writel(0x8808, cp->regs + REG_MAC_CTRL_TYPE);
<------>writel((e[5] | (e[4] << 8)) & 0x3ff, cp->regs + REG_MAC_RANDOM_SEED);
<------>writel(0, cp->regs + REG_MAC_ADDR_FILTER0);
<------>writel(0, cp->regs + REG_MAC_ADDR_FILTER1);
<------>writel(0, cp->regs + REG_MAC_ADDR_FILTER2);
<------>writel(0, cp->regs + REG_MAC_ADDR_FILTER2_1_MASK);
<------>writel(0, cp->regs + REG_MAC_ADDR_FILTER0_MASK);
<------>/* setup mac address in perfect filter array */
<------>for (i = 0; i < 45; i++)
<------><------>writel(0x0, cp->regs + REG_MAC_ADDRN(i));
<------>writel((e[4] << 8) | e[5], cp->regs + REG_MAC_ADDRN(0));
<------>writel((e[2] << 8) | e[3], cp->regs + REG_MAC_ADDRN(1));
<------>writel((e[0] << 8) | e[1], cp->regs + REG_MAC_ADDRN(2));
<------>writel(0x0001, cp->regs + REG_MAC_ADDRN(42));
<------>writel(0xc200, cp->regs + REG_MAC_ADDRN(43));
<------>writel(0x0180, cp->regs + REG_MAC_ADDRN(44));
<------>cp->mac_rx_cfg = cas_setup_multicast(cp);
<------>spin_lock(&cp->stat_lock[N_TX_RINGS]);
<------>cas_clear_mac_err(cp);
<------>spin_unlock(&cp->stat_lock[N_TX_RINGS]);
<------>/* Setup MAC interrupts. We want to get all of the interesting
<------> * counter expiration events, but we do not want to hear about
<------> * normal rx/tx as the DMA engine tells us that.
<------> */
<------>writel(MAC_TX_FRAME_XMIT, cp->regs + REG_MAC_TX_MASK);
<------>writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
<------>/* Don't enable even the PAUSE interrupts for now, we
<------> * make no use of those events other than to record them.
<------> */
<------>writel(0xffffffff, cp->regs + REG_MAC_CTRL_MASK);
}
/* Must be invoked under cp->lock. */
static void cas_init_pause_thresholds(struct cas *cp)
{
<------>/* Calculate pause thresholds. Setting the OFF threshold to the
<------> * full RX fifo size effectively disables PAUSE generation
<------> */
<------>if (cp->rx_fifo_size <= (2 * 1024)) {
<------><------>cp->rx_pause_off = cp->rx_pause_on = cp->rx_fifo_size;
<------>} else {
<------><------>int max_frame = (cp->dev->mtu + ETH_HLEN + 4 + 4 + 64) & ~63;
<------><------>if (max_frame * 3 > cp->rx_fifo_size) {
<------><------><------>cp->rx_pause_off = 7104;
<------><------><------>cp->rx_pause_on = 960;
<------><------>} else {
<------><------><------>int off = (cp->rx_fifo_size - (max_frame * 2));
<------><------><------>int on = off - max_frame;
<------><------><------>cp->rx_pause_off = off;
<------><------><------>cp->rx_pause_on = on;
<------><------>}
<------>}
}
static int cas_vpd_match(const void __iomem *p, const char *str)
{
<------>int len = strlen(str) + 1;
<------>int i;
<------>for (i = 0; i < len; i++) {
<------><------>if (readb(p + i) != str[i])
<------><------><------>return 0;
<------>}
<------>return 1;
}
/* get the mac address by reading the vpd information in the rom.
* also get the phy type and determine if there's an entropy generator.
* NOTE: this is a bit convoluted for the following reasons:
* 1) vpd info has order-dependent mac addresses for multinic cards
* 2) the only way to determine the nic order is to use the slot
* number.
* 3) fiber cards don't have bridges, so their slot numbers don't
* mean anything.
* 4) we don't actually know we have a fiber card until after
* the mac addresses are parsed.
*/
static int cas_get_vpd_info(struct cas *cp, unsigned char *dev_addr,
<------><------><------> const int offset)
{
<------>void __iomem *p = cp->regs + REG_EXPANSION_ROM_RUN_START;
<------>void __iomem *base, *kstart;
<------>int i, len;
<------>int found = 0;
#define VPD_FOUND_MAC 0x01
#define VPD_FOUND_PHY 0x02
<------>int phy_type = CAS_PHY_MII_MDIO0; /* default phy type */
<------>int mac_off = 0;
#if defined(CONFIG_SPARC)
<------>const unsigned char *addr;
#endif
<------>/* give us access to the PROM */
<------>writel(BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_PAD,
<------> cp->regs + REG_BIM_LOCAL_DEV_EN);
<------>/* check for an expansion rom */
<------>if (readb(p) != 0x55 || readb(p + 1) != 0xaa)
<------><------>goto use_random_mac_addr;
<------>/* search for beginning of vpd */
<------>base = NULL;
<------>for (i = 2; i < EXPANSION_ROM_SIZE; i++) {
<------><------>/* check for PCIR */
<------><------>if ((readb(p + i + 0) == 0x50) &&
<------><------> (readb(p + i + 1) == 0x43) &&
<------><------> (readb(p + i + 2) == 0x49) &&
<------><------> (readb(p + i + 3) == 0x52)) {
<------><------><------>base = p + (readb(p + i + 8) |
<------><------><------><------> (readb(p + i + 9) << 8));
<------><------><------>break;
<------><------>}
<------>}
<------>if (!base || (readb(base) != 0x82))
<------><------>goto use_random_mac_addr;
<------>i = (readb(base + 1) | (readb(base + 2) << 8)) + 3;
<------>while (i < EXPANSION_ROM_SIZE) {
<------><------>if (readb(base + i) != 0x90) /* no vpd found */
<------><------><------>goto use_random_mac_addr;
<------><------>/* found a vpd field */
<------><------>len = readb(base + i + 1) | (readb(base + i + 2) << 8);
<------><------>/* extract keywords */
<------><------>kstart = base + i + 3;
<------><------>p = kstart;
<------><------>while ((p - kstart) < len) {
<------><------><------>int klen = readb(p + 2);
<------><------><------>int j;
<------><------><------>char type;
<------><------><------>p += 3;
<------><------><------>/* look for the following things:
<------><------><------> * -- correct length == 29
<------><------><------> * 3 (type) + 2 (size) +
<------><------><------> * 18 (strlen("local-mac-address") + 1) +
<------><------><------> * 6 (mac addr)
<------><------><------> * -- VPD Instance 'I'
<------><------><------> * -- VPD Type Bytes 'B'
<------><------><------> * -- VPD data length == 6
<------><------><------> * -- property string == local-mac-address
<------><------><------> *
<------><------><------> * -- correct length == 24
<------><------><------> * 3 (type) + 2 (size) +
<------><------><------> * 12 (strlen("entropy-dev") + 1) +
<------><------><------> * 7 (strlen("vms110") + 1)
<------><------><------> * -- VPD Instance 'I'
<------><------><------> * -- VPD Type String 'B'
<------><------><------> * -- VPD data length == 7
<------><------><------> * -- property string == entropy-dev
<------><------><------> *
<------><------><------> * -- correct length == 18
<------><------><------> * 3 (type) + 2 (size) +
<------><------><------> * 9 (strlen("phy-type") + 1) +
<------><------><------> * 4 (strlen("pcs") + 1)
<------><------><------> * -- VPD Instance 'I'
<------><------><------> * -- VPD Type String 'S'
<------><------><------> * -- VPD data length == 4
<------><------><------> * -- property string == phy-type
<------><------><------> *
<------><------><------> * -- correct length == 23
<------><------><------> * 3 (type) + 2 (size) +
<------><------><------> * 14 (strlen("phy-interface") + 1) +
<------><------><------> * 4 (strlen("pcs") + 1)
<------><------><------> * -- VPD Instance 'I'
<------><------><------> * -- VPD Type String 'S'
<------><------><------> * -- VPD data length == 4
<------><------><------> * -- property string == phy-interface
<------><------><------> */
<------><------><------>if (readb(p) != 'I')
<------><------><------><------>goto next;
<------><------><------>/* finally, check string and length */
<------><------><------>type = readb(p + 3);
<------><------><------>if (type == 'B') {
<------><------><------><------>if ((klen == 29) && readb(p + 4) == 6 &&
<------><------><------><------> cas_vpd_match(p + 5,
<------><------><------><------><------><------> "local-mac-address")) {
<------><------><------><------><------>if (mac_off++ > offset)
<------><------><------><------><------><------>goto next;
<------><------><------><------><------>/* set mac address */
<------><------><------><------><------>for (j = 0; j < 6; j++)
<------><------><------><------><------><------>dev_addr[j] =
<------><------><------><------><------><------><------>readb(p + 23 + j);
<------><------><------><------><------>goto found_mac;
<------><------><------><------>}
<------><------><------>}
<------><------><------>if (type != 'S')
<------><------><------><------>goto next;
#ifdef USE_ENTROPY_DEV
<------><------><------>if ((klen == 24) &&
<------><------><------> cas_vpd_match(p + 5, "entropy-dev") &&
<------><------><------> cas_vpd_match(p + 17, "vms110")) {
<------><------><------><------>cp->cas_flags |= CAS_FLAG_ENTROPY_DEV;
<------><------><------><------>goto next;
<------><------><------>}
#endif
<------><------><------>if (found & VPD_FOUND_PHY)
<------><------><------><------>goto next;
<------><------><------>if ((klen == 18) && readb(p + 4) == 4 &&
<------><------><------> cas_vpd_match(p + 5, "phy-type")) {
<------><------><------><------>if (cas_vpd_match(p + 14, "pcs")) {
<------><------><------><------><------>phy_type = CAS_PHY_SERDES;
<------><------><------><------><------>goto found_phy;
<------><------><------><------>}
<------><------><------>}
<------><------><------>if ((klen == 23) && readb(p + 4) == 4 &&
<------><------><------> cas_vpd_match(p + 5, "phy-interface")) {
<------><------><------><------>if (cas_vpd_match(p + 19, "pcs")) {
<------><------><------><------><------>phy_type = CAS_PHY_SERDES;
<------><------><------><------><------>goto found_phy;
<------><------><------><------>}
<------><------><------>}
found_mac:
<------><------><------>found |= VPD_FOUND_MAC;
<------><------><------>goto next;
found_phy:
<------><------><------>found |= VPD_FOUND_PHY;
next:
<------><------><------>p += klen;
<------><------>}
<------><------>i += len + 3;
<------>}
use_random_mac_addr:
<------>if (found & VPD_FOUND_MAC)
<------><------>goto done;
#if defined(CONFIG_SPARC)
<------>addr = of_get_property(cp->of_node, "local-mac-address", NULL);
<------>if (addr != NULL) {
<------><------>memcpy(dev_addr, addr, ETH_ALEN);
<------><------>goto done;
<------>}
#endif
<------>/* Sun MAC prefix then 3 random bytes. */
<------>pr_info("MAC address not found in ROM VPD\n");
<------>dev_addr[0] = 0x08;
<------>dev_addr[1] = 0x00;
<------>dev_addr[2] = 0x20;
<------>get_random_bytes(dev_addr + 3, 3);
done:
<------>writel(0, cp->regs + REG_BIM_LOCAL_DEV_EN);
<------>return phy_type;
}
/* check pci invariants */
static void cas_check_pci_invariants(struct cas *cp)
{
<------>struct pci_dev *pdev = cp->pdev;
<------>cp->cas_flags = 0;
<------>if ((pdev->vendor == PCI_VENDOR_ID_SUN) &&
<------> (pdev->device == PCI_DEVICE_ID_SUN_CASSINI)) {
<------><------>if (pdev->revision >= CAS_ID_REVPLUS)
<------><------><------>cp->cas_flags |= CAS_FLAG_REG_PLUS;
<------><------>if (pdev->revision < CAS_ID_REVPLUS02u)
<------><------><------>cp->cas_flags |= CAS_FLAG_TARGET_ABORT;
<------><------>/* Original Cassini supports HW CSUM, but it's not
<------><------> * enabled by default as it can trigger TX hangs.
<------><------> */
<------><------>if (pdev->revision < CAS_ID_REV2)
<------><------><------>cp->cas_flags |= CAS_FLAG_NO_HW_CSUM;
<------>} else {
<------><------>/* Only sun has original cassini chips. */
<------><------>cp->cas_flags |= CAS_FLAG_REG_PLUS;
<------><------>/* We use a flag because the same phy might be externally
<------><------> * connected.
<------><------> */
<------><------>if ((pdev->vendor == PCI_VENDOR_ID_NS) &&
<------><------> (pdev->device == PCI_DEVICE_ID_NS_SATURN))
<------><------><------>cp->cas_flags |= CAS_FLAG_SATURN;
<------>}
}
static int cas_check_invariants(struct cas *cp)
{
<------>struct pci_dev *pdev = cp->pdev;
<------>u32 cfg;
<------>int i;
<------>/* get page size for rx buffers. */
<------>cp->page_order = 0;
#ifdef USE_PAGE_ORDER
<------>if (PAGE_SHIFT < CAS_JUMBO_PAGE_SHIFT) {
<------><------>/* see if we can allocate larger pages */
<------><------>struct page *page = alloc_pages(GFP_ATOMIC,
<------><------><------><------><------><------>CAS_JUMBO_PAGE_SHIFT -
<------><------><------><------><------><------>PAGE_SHIFT);
<------><------>if (page) {
<------><------><------>__free_pages(page, CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT);
<------><------><------>cp->page_order = CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT;
<------><------>} else {
<------><------><------>printk("MTU limited to %d bytes\n", CAS_MAX_MTU);
<------><------>}
<------>}
#endif
<------>cp->page_size = (PAGE_SIZE << cp->page_order);
<------>/* Fetch the FIFO configurations. */
<------>cp->tx_fifo_size = readl(cp->regs + REG_TX_FIFO_SIZE) * 64;
<------>cp->rx_fifo_size = RX_FIFO_SIZE;
<------>/* finish phy determination. MDIO1 takes precedence over MDIO0 if
<------> * they're both connected.
<------> */
<------>cp->phy_type = cas_get_vpd_info(cp, cp->dev->dev_addr,
<------><------><------><------><------>PCI_SLOT(pdev->devfn));
<------>if (cp->phy_type & CAS_PHY_SERDES) {
<------><------>cp->cas_flags |= CAS_FLAG_1000MB_CAP;
<------><------>return 0; /* no more checking needed */
<------>}
<------>/* MII */
<------>cfg = readl(cp->regs + REG_MIF_CFG);
<------>if (cfg & MIF_CFG_MDIO_1) {
<------><------>cp->phy_type = CAS_PHY_MII_MDIO1;
<------>} else if (cfg & MIF_CFG_MDIO_0) {
<------><------>cp->phy_type = CAS_PHY_MII_MDIO0;
<------>}
<------>cas_mif_poll(cp, 0);
<------>writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
<------>for (i = 0; i < 32; i++) {
<------><------>u32 phy_id;
<------><------>int j;
<------><------>for (j = 0; j < 3; j++) {
<------><------><------>cp->phy_addr = i;
<------><------><------>phy_id = cas_phy_read(cp, MII_PHYSID1) << 16;
<------><------><------>phy_id |= cas_phy_read(cp, MII_PHYSID2);
<------><------><------>if (phy_id && (phy_id != 0xFFFFFFFF)) {
<------><------><------><------>cp->phy_id = phy_id;
<------><------><------><------>goto done;
<------><------><------>}
<------><------>}
<------>}
<------>pr_err("MII phy did not respond [%08x]\n",
<------> readl(cp->regs + REG_MIF_STATE_MACHINE));
<------>return -1;
done:
<------>/* see if we can do gigabit */
<------>cfg = cas_phy_read(cp, MII_BMSR);
<------>if ((cfg & CAS_BMSR_1000_EXTEND) &&
<------> cas_phy_read(cp, CAS_MII_1000_EXTEND))
<------><------>cp->cas_flags |= CAS_FLAG_1000MB_CAP;
<------>return 0;
}
/* Must be invoked under cp->lock. */
static inline void cas_start_dma(struct cas *cp)
{
<------>int i;
<------>u32 val;
<------>int txfailed = 0;
<------>/* enable dma */
<------>val = readl(cp->regs + REG_TX_CFG) | TX_CFG_DMA_EN;
<------>writel(val, cp->regs + REG_TX_CFG);
<------>val = readl(cp->regs + REG_RX_CFG) | RX_CFG_DMA_EN;
<------>writel(val, cp->regs + REG_RX_CFG);
<------>/* enable the mac */
<------>val = readl(cp->regs + REG_MAC_TX_CFG) | MAC_TX_CFG_EN;
<------>writel(val, cp->regs + REG_MAC_TX_CFG);
<------>val = readl(cp->regs + REG_MAC_RX_CFG) | MAC_RX_CFG_EN;
<------>writel(val, cp->regs + REG_MAC_RX_CFG);
<------>i = STOP_TRIES;
<------>while (i-- > 0) {
<------><------>val = readl(cp->regs + REG_MAC_TX_CFG);
<------><------>if ((val & MAC_TX_CFG_EN))
<------><------><------>break;
<------><------>udelay(10);
<------>}
<------>if (i < 0) txfailed = 1;
<------>i = STOP_TRIES;
<------>while (i-- > 0) {
<------><------>val = readl(cp->regs + REG_MAC_RX_CFG);
<------><------>if ((val & MAC_RX_CFG_EN)) {
<------><------><------>if (txfailed) {
<------><------><------><------>netdev_err(cp->dev,
<------><------><------><------><------> "enabling mac failed [tx:%08x:%08x]\n",
<------><------><------><------><------> readl(cp->regs + REG_MIF_STATE_MACHINE),
<------><------><------><------><------> readl(cp->regs + REG_MAC_STATE_MACHINE));
<------><------><------>}
<------><------><------>goto enable_rx_done;
<------><------>}
<------><------>udelay(10);
<------>}
<------>netdev_err(cp->dev, "enabling mac failed [%s:%08x:%08x]\n",
<------><------> (txfailed ? "tx,rx" : "rx"),
<------><------> readl(cp->regs + REG_MIF_STATE_MACHINE),
<------><------> readl(cp->regs + REG_MAC_STATE_MACHINE));
enable_rx_done:
<------>cas_unmask_intr(cp); /* enable interrupts */
<------>writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
<------>writel(0, cp->regs + REG_RX_COMP_TAIL);
<------>if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
<------><------>if (N_RX_DESC_RINGS > 1)
<------><------><------>writel(RX_DESC_RINGN_SIZE(1) - 4,
<------><------><------> cp->regs + REG_PLUS_RX_KICK1);
<------><------>for (i = 1; i < N_RX_COMP_RINGS; i++)
<------><------><------>writel(0, cp->regs + REG_PLUS_RX_COMPN_TAIL(i));
<------>}
}
/* Must be invoked under cp->lock. */
static void cas_read_pcs_link_mode(struct cas *cp, int *fd, int *spd,
<------><------><------><------> int *pause)
{
<------>u32 val = readl(cp->regs + REG_PCS_MII_LPA);
<------>*fd = (val & PCS_MII_LPA_FD) ? 1 : 0;
<------>*pause = (val & PCS_MII_LPA_SYM_PAUSE) ? 0x01 : 0x00;
<------>if (val & PCS_MII_LPA_ASYM_PAUSE)
<------><------>*pause |= 0x10;
<------>*spd = 1000;
}
/* Must be invoked under cp->lock. */
static void cas_read_mii_link_mode(struct cas *cp, int *fd, int *spd,
<------><------><------><------> int *pause)
{
<------>u32 val;
<------>*fd = 0;
<------>*spd = 10;
<------>*pause = 0;
<------>/* use GMII registers */
<------>val = cas_phy_read(cp, MII_LPA);
<------>if (val & CAS_LPA_PAUSE)
<------><------>*pause = 0x01;
<------>if (val & CAS_LPA_ASYM_PAUSE)
<------><------>*pause |= 0x10;
<------>if (val & LPA_DUPLEX)
<------><------>*fd = 1;
<------>if (val & LPA_100)
<------><------>*spd = 100;
<------>if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
<------><------>val = cas_phy_read(cp, CAS_MII_1000_STATUS);
<------><------>if (val & (CAS_LPA_1000FULL | CAS_LPA_1000HALF))
<------><------><------>*spd = 1000;
<------><------>if (val & CAS_LPA_1000FULL)
<------><------><------>*fd = 1;
<------>}
}
/* A link-up condition has occurred, initialize and enable the
* rest of the chip.
*
* Must be invoked under cp->lock.
*/
static void cas_set_link_modes(struct cas *cp)
{
<------>u32 val;
<------>int full_duplex, speed, pause;
<------>full_duplex = 0;
<------>speed = 10;
<------>pause = 0;
<------>if (CAS_PHY_MII(cp->phy_type)) {
<------><------>cas_mif_poll(cp, 0);
<------><------>val = cas_phy_read(cp, MII_BMCR);
<------><------>if (val & BMCR_ANENABLE) {
<------><------><------>cas_read_mii_link_mode(cp, &full_duplex, &speed,
<------><------><------><------><------> &pause);
<------><------>} else {
<------><------><------>if (val & BMCR_FULLDPLX)
<------><------><------><------>full_duplex = 1;
<------><------><------>if (val & BMCR_SPEED100)
<------><------><------><------>speed = 100;
<------><------><------>else if (val & CAS_BMCR_SPEED1000)
<------><------><------><------>speed = (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
<------><------><------><------><------>1000 : 100;
<------><------>}
<------><------>cas_mif_poll(cp, 1);
<------>} else {
<------><------>val = readl(cp->regs + REG_PCS_MII_CTRL);
<------><------>cas_read_pcs_link_mode(cp, &full_duplex, &speed, &pause);
<------><------>if ((val & PCS_MII_AUTONEG_EN) == 0) {
<------><------><------>if (val & PCS_MII_CTRL_DUPLEX)
<------><------><------><------>full_duplex = 1;
<------><------>}
<------>}
<------>netif_info(cp, link, cp->dev, "Link up at %d Mbps, %s-duplex\n",
<------><------> speed, full_duplex ? "full" : "half");
<------>val = MAC_XIF_TX_MII_OUTPUT_EN | MAC_XIF_LINK_LED;
<------>if (CAS_PHY_MII(cp->phy_type)) {
<------><------>val |= MAC_XIF_MII_BUFFER_OUTPUT_EN;
<------><------>if (!full_duplex)
<------><------><------>val |= MAC_XIF_DISABLE_ECHO;
<------>}
<------>if (full_duplex)
<------><------>val |= MAC_XIF_FDPLX_LED;
<------>if (speed == 1000)
<------><------>val |= MAC_XIF_GMII_MODE;
<------>writel(val, cp->regs + REG_MAC_XIF_CFG);
<------>/* deal with carrier and collision detect. */
<------>val = MAC_TX_CFG_IPG_EN;
<------>if (full_duplex) {
<------><------>val |= MAC_TX_CFG_IGNORE_CARRIER;
<------><------>val |= MAC_TX_CFG_IGNORE_COLL;
<------>} else {
#ifndef USE_CSMA_CD_PROTO
<------><------>val |= MAC_TX_CFG_NEVER_GIVE_UP_EN;
<------><------>val |= MAC_TX_CFG_NEVER_GIVE_UP_LIM;
#endif
<------>}
<------>/* val now set up for REG_MAC_TX_CFG */
<------>/* If gigabit and half-duplex, enable carrier extension
<------> * mode. increase slot time to 512 bytes as well.
<------> * else, disable it and make sure slot time is 64 bytes.
<------> * also activate checksum bug workaround
<------> */
<------>if ((speed == 1000) && !full_duplex) {
<------><------>writel(val | MAC_TX_CFG_CARRIER_EXTEND,
<------><------> cp->regs + REG_MAC_TX_CFG);
<------><------>val = readl(cp->regs + REG_MAC_RX_CFG);
<------><------>val &= ~MAC_RX_CFG_STRIP_FCS; /* checksum workaround */
<------><------>writel(val | MAC_RX_CFG_CARRIER_EXTEND,
<------><------> cp->regs + REG_MAC_RX_CFG);
<------><------>writel(0x200, cp->regs + REG_MAC_SLOT_TIME);
<------><------>cp->crc_size = 4;
<------><------>/* minimum size gigabit frame at half duplex */
<------><------>cp->min_frame_size = CAS_1000MB_MIN_FRAME;
<------>} else {
<------><------>writel(val, cp->regs + REG_MAC_TX_CFG);
<------><------>/* checksum bug workaround. don't strip FCS when in
<------><------> * half-duplex mode
<------><------> */
<------><------>val = readl(cp->regs + REG_MAC_RX_CFG);
<------><------>if (full_duplex) {
<------><------><------>val |= MAC_RX_CFG_STRIP_FCS;
<------><------><------>cp->crc_size = 0;
<------><------><------>cp->min_frame_size = CAS_MIN_MTU;
<------><------>} else {
<------><------><------>val &= ~MAC_RX_CFG_STRIP_FCS;
<------><------><------>cp->crc_size = 4;
<------><------><------>cp->min_frame_size = CAS_MIN_FRAME;
<------><------>}
<------><------>writel(val & ~MAC_RX_CFG_CARRIER_EXTEND,
<------><------> cp->regs + REG_MAC_RX_CFG);
<------><------>writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
<------>}
<------>if (netif_msg_link(cp)) {
<------><------>if (pause & 0x01) {
<------><------><------>netdev_info(cp->dev, "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
<------><------><------><------> cp->rx_fifo_size,
<------><------><------><------> cp->rx_pause_off,
<------><------><------><------> cp->rx_pause_on);
<------><------>} else if (pause & 0x10) {
<------><------><------>netdev_info(cp->dev, "TX pause enabled\n");
<------><------>} else {
<------><------><------>netdev_info(cp->dev, "Pause is disabled\n");
<------><------>}
<------>}
<------>val = readl(cp->regs + REG_MAC_CTRL_CFG);
<------>val &= ~(MAC_CTRL_CFG_SEND_PAUSE_EN | MAC_CTRL_CFG_RECV_PAUSE_EN);
<------>if (pause) { /* symmetric or asymmetric pause */
<------><------>val |= MAC_CTRL_CFG_SEND_PAUSE_EN;
<------><------>if (pause & 0x01) { /* symmetric pause */
<------><------><------>val |= MAC_CTRL_CFG_RECV_PAUSE_EN;
<------><------>}
<------>}
<------>writel(val, cp->regs + REG_MAC_CTRL_CFG);
<------>cas_start_dma(cp);
}
/* Must be invoked under cp->lock. */
static void cas_init_hw(struct cas *cp, int restart_link)
{
<------>if (restart_link)
<------><------>cas_phy_init(cp);
<------>cas_init_pause_thresholds(cp);
<------>cas_init_mac(cp);
<------>cas_init_dma(cp);
<------>if (restart_link) {
<------><------>/* Default aneg parameters */
<------><------>cp->timer_ticks = 0;
<------><------>cas_begin_auto_negotiation(cp, NULL);
<------>} else if (cp->lstate == link_up) {
<------><------>cas_set_link_modes(cp);
<------><------>netif_carrier_on(cp->dev);
<------>}
}
/* Must be invoked under cp->lock. on earlier cassini boards,
* SOFT_0 is tied to PCI reset. we use this to force a pci reset,
* let it settle out, and then restore pci state.
*/
static void cas_hard_reset(struct cas *cp)
{
<------>writel(BIM_LOCAL_DEV_SOFT_0, cp->regs + REG_BIM_LOCAL_DEV_EN);
<------>udelay(20);
<------>pci_restore_state(cp->pdev);
}
static void cas_global_reset(struct cas *cp, int blkflag)
{
<------>int limit;
<------>/* issue a global reset. don't use RSTOUT. */
<------>if (blkflag && !CAS_PHY_MII(cp->phy_type)) {
<------><------>/* For PCS, when the blkflag is set, we should set the
<------><------> * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of
<------><------> * the last autonegotiation from being cleared. We'll
<------><------> * need some special handling if the chip is set into a
<------><------> * loopback mode.
<------><------> */
<------><------>writel((SW_RESET_TX | SW_RESET_RX | SW_RESET_BLOCK_PCS_SLINK),
<------><------> cp->regs + REG_SW_RESET);
<------>} else {
<------><------>writel(SW_RESET_TX | SW_RESET_RX, cp->regs + REG_SW_RESET);
<------>}
<------>/* need to wait at least 3ms before polling register */
<------>mdelay(3);
<------>limit = STOP_TRIES;
<------>while (limit-- > 0) {
<------><------>u32 val = readl(cp->regs + REG_SW_RESET);
<------><------>if ((val & (SW_RESET_TX | SW_RESET_RX)) == 0)
<------><------><------>goto done;
<------><------>udelay(10);
<------>}
<------>netdev_err(cp->dev, "sw reset failed\n");
done:
<------>/* enable various BIM interrupts */
<------>writel(BIM_CFG_DPAR_INTR_ENABLE | BIM_CFG_RMA_INTR_ENABLE |
<------> BIM_CFG_RTA_INTR_ENABLE, cp->regs + REG_BIM_CFG);
<------>/* clear out pci error status mask for handled errors.
<------> * we don't deal with DMA counter overflows as they happen
<------> * all the time.
<------> */
<------>writel(0xFFFFFFFFU & ~(PCI_ERR_BADACK | PCI_ERR_DTRTO |
<------><------><------> PCI_ERR_OTHER | PCI_ERR_BIM_DMA_WRITE |
<------><------><------> PCI_ERR_BIM_DMA_READ), cp->regs +
<------> REG_PCI_ERR_STATUS_MASK);
<------>/* set up for MII by default to address mac rx reset timeout
<------> * issue
<------> */
<------>writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
}
static void cas_reset(struct cas *cp, int blkflag)
{
<------>u32 val;
<------>cas_mask_intr(cp);
<------>cas_global_reset(cp, blkflag);
<------>cas_mac_reset(cp);
<------>cas_entropy_reset(cp);
<------>/* disable dma engines. */
<------>val = readl(cp->regs + REG_TX_CFG);
<------>val &= ~TX_CFG_DMA_EN;
<------>writel(val, cp->regs + REG_TX_CFG);
<------>val = readl(cp->regs + REG_RX_CFG);
<------>val &= ~RX_CFG_DMA_EN;
<------>writel(val, cp->regs + REG_RX_CFG);
<------>/* program header parser */
<------>if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) ||
<------> (CAS_HP_ALT_FIRMWARE == cas_prog_null)) {
<------><------>cas_load_firmware(cp, CAS_HP_FIRMWARE);
<------>} else {
<------><------>cas_load_firmware(cp, CAS_HP_ALT_FIRMWARE);
<------>}
<------>/* clear out error registers */
<------>spin_lock(&cp->stat_lock[N_TX_RINGS]);
<------>cas_clear_mac_err(cp);
<------>spin_unlock(&cp->stat_lock[N_TX_RINGS]);
}
/* Shut down the chip, must be called with pm_mutex held. */
static void cas_shutdown(struct cas *cp)
{
<------>unsigned long flags;
<------>/* Make us not-running to avoid timers respawning */
<------>cp->hw_running = 0;
<------>del_timer_sync(&cp->link_timer);
<------>/* Stop the reset task */
#if 0
<------>while (atomic_read(&cp->reset_task_pending_mtu) ||
<------> atomic_read(&cp->reset_task_pending_spare) ||
<------> atomic_read(&cp->reset_task_pending_all))
<------><------>schedule();
#else
<------>while (atomic_read(&cp->reset_task_pending))
<------><------>schedule();
#endif
<------>/* Actually stop the chip */
<------>cas_lock_all_save(cp, flags);
<------>cas_reset(cp, 0);
<------>if (cp->cas_flags & CAS_FLAG_SATURN)
<------><------>cas_phy_powerdown(cp);
<------>cas_unlock_all_restore(cp, flags);
}
static int cas_change_mtu(struct net_device *dev, int new_mtu)
{
<------>struct cas *cp = netdev_priv(dev);
<------>dev->mtu = new_mtu;
<------>if (!netif_running(dev) || !netif_device_present(dev))
<------><------>return 0;
<------>/* let the reset task handle it */
#if 1
<------>atomic_inc(&cp->reset_task_pending);
<------>if ((cp->phy_type & CAS_PHY_SERDES)) {
<------><------>atomic_inc(&cp->reset_task_pending_all);
<------>} else {
<------><------>atomic_inc(&cp->reset_task_pending_mtu);
<------>}
<------>schedule_work(&cp->reset_task);
#else
<------>atomic_set(&cp->reset_task_pending, (cp->phy_type & CAS_PHY_SERDES) ?
<------><------> CAS_RESET_ALL : CAS_RESET_MTU);
<------>pr_err("reset called in cas_change_mtu\n");
<------>schedule_work(&cp->reset_task);
#endif
<------>flush_work(&cp->reset_task);
<------>return 0;
}
static void cas_clean_txd(struct cas *cp, int ring)
{
<------>struct cas_tx_desc *txd = cp->init_txds[ring];
<------>struct sk_buff *skb, **skbs = cp->tx_skbs[ring];
<------>u64 daddr, dlen;
<------>int i, size;
<------>size = TX_DESC_RINGN_SIZE(ring);
<------>for (i = 0; i < size; i++) {
<------><------>int frag;
<------><------>if (skbs[i] == NULL)
<------><------><------>continue;
<------><------>skb = skbs[i];
<------><------>skbs[i] = NULL;
<------><------>for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
<------><------><------>int ent = i & (size - 1);
<------><------><------>/* first buffer is never a tiny buffer and so
<------><------><------> * needs to be unmapped.
<------><------><------> */
<------><------><------>daddr = le64_to_cpu(txd[ent].buffer);
<------><------><------>dlen = CAS_VAL(TX_DESC_BUFLEN,
<------><------><------><------><------> le64_to_cpu(txd[ent].control));
<------><------><------>dma_unmap_page(&cp->pdev->dev, daddr, dlen,
<------><------><------><------> DMA_TO_DEVICE);
<------><------><------>if (frag != skb_shinfo(skb)->nr_frags) {
<------><------><------><------>i++;
<------><------><------><------>/* next buffer might by a tiny buffer.
<------><------><------><------> * skip past it.
<------><------><------><------> */
<------><------><------><------>ent = i & (size - 1);
<------><------><------><------>if (cp->tx_tiny_use[ring][ent].used)
<------><------><------><------><------>i++;
<------><------><------>}
<------><------>}
<------><------>dev_kfree_skb_any(skb);
<------>}
<------>/* zero out tiny buf usage */
<------>memset(cp->tx_tiny_use[ring], 0, size*sizeof(*cp->tx_tiny_use[ring]));
}
/* freed on close */
static inline void cas_free_rx_desc(struct cas *cp, int ring)
{
<------>cas_page_t **page = cp->rx_pages[ring];
<------>int i, size;
<------>size = RX_DESC_RINGN_SIZE(ring);
<------>for (i = 0; i < size; i++) {
<------><------>if (page[i]) {
<------><------><------>cas_page_free(cp, page[i]);
<------><------><------>page[i] = NULL;
<------><------>}
<------>}
}
static void cas_free_rxds(struct cas *cp)
{
<------>int i;
<------>for (i = 0; i < N_RX_DESC_RINGS; i++)
<------><------>cas_free_rx_desc(cp, i);
}
/* Must be invoked under cp->lock. */
static void cas_clean_rings(struct cas *cp)
{
<------>int i;
<------>/* need to clean all tx rings */
<------>memset(cp->tx_old, 0, sizeof(*cp->tx_old)*N_TX_RINGS);
<------>memset(cp->tx_new, 0, sizeof(*cp->tx_new)*N_TX_RINGS);
<------>for (i = 0; i < N_TX_RINGS; i++)
<------><------>cas_clean_txd(cp, i);
<------>/* zero out init block */
<------>memset(cp->init_block, 0, sizeof(struct cas_init_block));
<------>cas_clean_rxds(cp);
<------>cas_clean_rxcs(cp);
}
/* allocated on open */
static inline int cas_alloc_rx_desc(struct cas *cp, int ring)
{
<------>cas_page_t **page = cp->rx_pages[ring];
<------>int size, i = 0;
<------>size = RX_DESC_RINGN_SIZE(ring);
<------>for (i = 0; i < size; i++) {
<------><------>if ((page[i] = cas_page_alloc(cp, GFP_KERNEL)) == NULL)
<------><------><------>return -1;
<------>}
<------>return 0;
}
static int cas_alloc_rxds(struct cas *cp)
{
<------>int i;
<------>for (i = 0; i < N_RX_DESC_RINGS; i++) {
<------><------>if (cas_alloc_rx_desc(cp, i) < 0) {
<------><------><------>cas_free_rxds(cp);
<------><------><------>return -1;
<------><------>}
<------>}
<------>return 0;
}
static void cas_reset_task(struct work_struct *work)
{
<------>struct cas *cp = container_of(work, struct cas, reset_task);
#if 0
<------>int pending = atomic_read(&cp->reset_task_pending);
#else
<------>int pending_all = atomic_read(&cp->reset_task_pending_all);
<------>int pending_spare = atomic_read(&cp->reset_task_pending_spare);
<------>int pending_mtu = atomic_read(&cp->reset_task_pending_mtu);
<------>if (pending_all == 0 && pending_spare == 0 && pending_mtu == 0) {
<------><------>/* We can have more tasks scheduled than actually
<------><------> * needed.
<------><------> */
<------><------>atomic_dec(&cp->reset_task_pending);
<------><------>return;
<------>}
#endif
<------>/* The link went down, we reset the ring, but keep
<------> * DMA stopped. Use this function for reset
<------> * on error as well.
<------> */
<------>if (cp->hw_running) {
<------><------>unsigned long flags;
<------><------>/* Make sure we don't get interrupts or tx packets */
<------><------>netif_device_detach(cp->dev);
<------><------>cas_lock_all_save(cp, flags);
<------><------>if (cp->opened) {
<------><------><------>/* We call cas_spare_recover when we call cas_open.
<------><------><------> * but we do not initialize the lists cas_spare_recover
<------><------><------> * uses until cas_open is called.
<------><------><------> */
<------><------><------>cas_spare_recover(cp, GFP_ATOMIC);
<------><------>}
#if 1
<------><------>/* test => only pending_spare set */
<------><------>if (!pending_all && !pending_mtu)
<------><------><------>goto done;
#else
<------><------>if (pending == CAS_RESET_SPARE)
<------><------><------>goto done;
#endif
<------><------>/* when pending == CAS_RESET_ALL, the following
<------><------> * call to cas_init_hw will restart auto negotiation.
<------><------> * Setting the second argument of cas_reset to
<------><------> * !(pending == CAS_RESET_ALL) will set this argument
<------><------> * to 1 (avoiding reinitializing the PHY for the normal
<------><------> * PCS case) when auto negotiation is not restarted.
<------><------> */
#if 1
<------><------>cas_reset(cp, !(pending_all > 0));
<------><------>if (cp->opened)
<------><------><------>cas_clean_rings(cp);
<------><------>cas_init_hw(cp, (pending_all > 0));
#else
<------><------>cas_reset(cp, !(pending == CAS_RESET_ALL));
<------><------>if (cp->opened)
<------><------><------>cas_clean_rings(cp);
<------><------>cas_init_hw(cp, pending == CAS_RESET_ALL);
#endif
done:
<------><------>cas_unlock_all_restore(cp, flags);
<------><------>netif_device_attach(cp->dev);
<------>}
#if 1
<------>atomic_sub(pending_all, &cp->reset_task_pending_all);
<------>atomic_sub(pending_spare, &cp->reset_task_pending_spare);
<------>atomic_sub(pending_mtu, &cp->reset_task_pending_mtu);
<------>atomic_dec(&cp->reset_task_pending);
#else
<------>atomic_set(&cp->reset_task_pending, 0);
#endif
}
static void cas_link_timer(struct timer_list *t)
{
<------>struct cas *cp = from_timer(cp, t, link_timer);
<------>int mask, pending = 0, reset = 0;
<------>unsigned long flags;
<------>if (link_transition_timeout != 0 &&
<------> cp->link_transition_jiffies_valid &&
<------> ((jiffies - cp->link_transition_jiffies) >
<------> (link_transition_timeout))) {
<------><------>/* One-second counter so link-down workaround doesn't
<------><------> * cause resets to occur so fast as to fool the switch
<------><------> * into thinking the link is down.
<------><------> */
<------><------>cp->link_transition_jiffies_valid = 0;
<------>}
<------>if (!cp->hw_running)
<------><------>return;
<------>spin_lock_irqsave(&cp->lock, flags);
<------>cas_lock_tx(cp);
<------>cas_entropy_gather(cp);
<------>/* If the link task is still pending, we just
<------> * reschedule the link timer
<------> */
#if 1
<------>if (atomic_read(&cp->reset_task_pending_all) ||
<------> atomic_read(&cp->reset_task_pending_spare) ||
<------> atomic_read(&cp->reset_task_pending_mtu))
<------><------>goto done;
#else
<------>if (atomic_read(&cp->reset_task_pending))
<------><------>goto done;
#endif
<------>/* check for rx cleaning */
<------>if ((mask = (cp->cas_flags & CAS_FLAG_RXD_POST_MASK))) {
<------><------>int i, rmask;
<------><------>for (i = 0; i < MAX_RX_DESC_RINGS; i++) {
<------><------><------>rmask = CAS_FLAG_RXD_POST(i);
<------><------><------>if ((mask & rmask) == 0)
<------><------><------><------>continue;
<------><------><------>/* post_rxds will do a mod_timer */
<------><------><------>if (cas_post_rxds_ringN(cp, i, cp->rx_last[i]) < 0) {
<------><------><------><------>pending = 1;
<------><------><------><------>continue;
<------><------><------>}
<------><------><------>cp->cas_flags &= ~rmask;
<------><------>}
<------>}
<------>if (CAS_PHY_MII(cp->phy_type)) {
<------><------>u16 bmsr;
<------><------>cas_mif_poll(cp, 0);
<------><------>bmsr = cas_phy_read(cp, MII_BMSR);
<------><------>/* WTZ: Solaris driver reads this twice, but that
<------><------> * may be due to the PCS case and the use of a
<------><------> * common implementation. Read it twice here to be
<------><------> * safe.
<------><------> */
<------><------>bmsr = cas_phy_read(cp, MII_BMSR);
<------><------>cas_mif_poll(cp, 1);
<------><------>readl(cp->regs + REG_MIF_STATUS); /* avoid dups */
<------><------>reset = cas_mii_link_check(cp, bmsr);
<------>} else {
<------><------>reset = cas_pcs_link_check(cp);
<------>}
<------>if (reset)
<------><------>goto done;
<------>/* check for tx state machine confusion */
<------>if ((readl(cp->regs + REG_MAC_TX_STATUS) & MAC_TX_FRAME_XMIT) == 0) {
<------><------>u32 val = readl(cp->regs + REG_MAC_STATE_MACHINE);
<------><------>u32 wptr, rptr;
<------><------>int tlm = CAS_VAL(MAC_SM_TLM, val);
<------><------>if (((tlm == 0x5) || (tlm == 0x3)) &&
<------><------> (CAS_VAL(MAC_SM_ENCAP_SM, val) == 0)) {
<------><------><------>netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
<------><------><------><------> "tx err: MAC_STATE[%08x]\n", val);
<------><------><------>reset = 1;
<------><------><------>goto done;
<------><------>}
<------><------>val = readl(cp->regs + REG_TX_FIFO_PKT_CNT);
<------><------>wptr = readl(cp->regs + REG_TX_FIFO_WRITE_PTR);
<------><------>rptr = readl(cp->regs + REG_TX_FIFO_READ_PTR);
<------><------>if ((val == 0) && (wptr != rptr)) {
<------><------><------>netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
<------><------><------><------> "tx err: TX_FIFO[%08x:%08x:%08x]\n",
<------><------><------><------> val, wptr, rptr);
<------><------><------>reset = 1;
<------><------>}
<------><------>if (reset)
<------><------><------>cas_hard_reset(cp);
<------>}
done:
<------>if (reset) {
#if 1
<------><------>atomic_inc(&cp->reset_task_pending);
<------><------>atomic_inc(&cp->reset_task_pending_all);
<------><------>schedule_work(&cp->reset_task);
#else
<------><------>atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
<------><------>pr_err("reset called in cas_link_timer\n");
<------><------>schedule_work(&cp->reset_task);
#endif
<------>}
<------>if (!pending)
<------><------>mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
<------>cas_unlock_tx(cp);
<------>spin_unlock_irqrestore(&cp->lock, flags);
}
/* tiny buffers are used to avoid target abort issues with
* older cassini's
*/
static void cas_tx_tiny_free(struct cas *cp)
{
<------>struct pci_dev *pdev = cp->pdev;
<------>int i;
<------>for (i = 0; i < N_TX_RINGS; i++) {
<------><------>if (!cp->tx_tiny_bufs[i])
<------><------><------>continue;
<------><------>dma_free_coherent(&pdev->dev, TX_TINY_BUF_BLOCK,
<------><------><------><------> cp->tx_tiny_bufs[i], cp->tx_tiny_dvma[i]);
<------><------>cp->tx_tiny_bufs[i] = NULL;
<------>}
}
static int cas_tx_tiny_alloc(struct cas *cp)
{
<------>struct pci_dev *pdev = cp->pdev;
<------>int i;
<------>for (i = 0; i < N_TX_RINGS; i++) {
<------><------>cp->tx_tiny_bufs[i] =
<------><------><------>dma_alloc_coherent(&pdev->dev, TX_TINY_BUF_BLOCK,
<------><------><------><------><------> &cp->tx_tiny_dvma[i], GFP_KERNEL);
<------><------>if (!cp->tx_tiny_bufs[i]) {
<------><------><------>cas_tx_tiny_free(cp);
<------><------><------>return -1;
<------><------>}
<------>}
<------>return 0;
}
static int cas_open(struct net_device *dev)
{
<------>struct cas *cp = netdev_priv(dev);
<------>int hw_was_up, err;
<------>unsigned long flags;
<------>mutex_lock(&cp->pm_mutex);
<------>hw_was_up = cp->hw_running;
<------>/* The power-management mutex protects the hw_running
<------> * etc. state so it is safe to do this bit without cp->lock
<------> */
<------>if (!cp->hw_running) {
<------><------>/* Reset the chip */
<------><------>cas_lock_all_save(cp, flags);
<------><------>/* We set the second arg to cas_reset to zero
<------><------> * because cas_init_hw below will have its second
<------><------> * argument set to non-zero, which will force
<------><------> * autonegotiation to start.
<------><------> */
<------><------>cas_reset(cp, 0);
<------><------>cp->hw_running = 1;
<------><------>cas_unlock_all_restore(cp, flags);
<------>}
<------>err = -ENOMEM;
<------>if (cas_tx_tiny_alloc(cp) < 0)
<------><------>goto err_unlock;
<------>/* alloc rx descriptors */
<------>if (cas_alloc_rxds(cp) < 0)
<------><------>goto err_tx_tiny;
<------>/* allocate spares */
<------>cas_spare_init(cp);
<------>cas_spare_recover(cp, GFP_KERNEL);
<------>/* We can now request the interrupt as we know it's masked
<------> * on the controller. cassini+ has up to 4 interrupts
<------> * that can be used, but you need to do explicit pci interrupt
<------> * mapping to expose them
<------> */
<------>if (request_irq(cp->pdev->irq, cas_interrupt,
<------><------><------>IRQF_SHARED, dev->name, (void *) dev)) {
<------><------>netdev_err(cp->dev, "failed to request irq !\n");
<------><------>err = -EAGAIN;
<------><------>goto err_spare;
<------>}
#ifdef USE_NAPI
<------>napi_enable(&cp->napi);
#endif
<------>/* init hw */
<------>cas_lock_all_save(cp, flags);
<------>cas_clean_rings(cp);
<------>cas_init_hw(cp, !hw_was_up);
<------>cp->opened = 1;
<------>cas_unlock_all_restore(cp, flags);
<------>netif_start_queue(dev);
<------>mutex_unlock(&cp->pm_mutex);
<------>return 0;
err_spare:
<------>cas_spare_free(cp);
<------>cas_free_rxds(cp);
err_tx_tiny:
<------>cas_tx_tiny_free(cp);
err_unlock:
<------>mutex_unlock(&cp->pm_mutex);
<------>return err;
}
static int cas_close(struct net_device *dev)
{
<------>unsigned long flags;
<------>struct cas *cp = netdev_priv(dev);
#ifdef USE_NAPI
<------>napi_disable(&cp->napi);
#endif
<------>/* Make sure we don't get distracted by suspend/resume */
<------>mutex_lock(&cp->pm_mutex);
<------>netif_stop_queue(dev);
<------>/* Stop traffic, mark us closed */
<------>cas_lock_all_save(cp, flags);
<------>cp->opened = 0;
<------>cas_reset(cp, 0);
<------>cas_phy_init(cp);
<------>cas_begin_auto_negotiation(cp, NULL);
<------>cas_clean_rings(cp);
<------>cas_unlock_all_restore(cp, flags);
<------>free_irq(cp->pdev->irq, (void *) dev);
<------>cas_spare_free(cp);
<------>cas_free_rxds(cp);
<------>cas_tx_tiny_free(cp);
<------>mutex_unlock(&cp->pm_mutex);
<------>return 0;
}
static struct {
<------>const char name[ETH_GSTRING_LEN];
} ethtool_cassini_statnames[] = {
<------>{"collisions"},
<------>{"rx_bytes"},
<------>{"rx_crc_errors"},
<------>{"rx_dropped"},
<------>{"rx_errors"},
<------>{"rx_fifo_errors"},
<------>{"rx_frame_errors"},
<------>{"rx_length_errors"},
<------>{"rx_over_errors"},
<------>{"rx_packets"},
<------>{"tx_aborted_errors"},
<------>{"tx_bytes"},
<------>{"tx_dropped"},
<------>{"tx_errors"},
<------>{"tx_fifo_errors"},
<------>{"tx_packets"}
};
#define CAS_NUM_STAT_KEYS ARRAY_SIZE(ethtool_cassini_statnames)
static struct {
<------>const int offsets; /* neg. values for 2nd arg to cas_read_phy */
} ethtool_register_table[] = {
<------>{-MII_BMSR},
<------>{-MII_BMCR},
<------>{REG_CAWR},
<------>{REG_INF_BURST},
<------>{REG_BIM_CFG},
<------>{REG_RX_CFG},
<------>{REG_HP_CFG},
<------>{REG_MAC_TX_CFG},
<------>{REG_MAC_RX_CFG},
<------>{REG_MAC_CTRL_CFG},
<------>{REG_MAC_XIF_CFG},
<------>{REG_MIF_CFG},
<------>{REG_PCS_CFG},
<------>{REG_SATURN_PCFG},
<------>{REG_PCS_MII_STATUS},
<------>{REG_PCS_STATE_MACHINE},
<------>{REG_MAC_COLL_EXCESS},
<------>{REG_MAC_COLL_LATE}
};
#define CAS_REG_LEN ARRAY_SIZE(ethtool_register_table)
#define CAS_MAX_REGS (sizeof (u32)*CAS_REG_LEN)
static void cas_read_regs(struct cas *cp, u8 *ptr, int len)
{
<------>u8 *p;
<------>int i;
<------>unsigned long flags;
<------>spin_lock_irqsave(&cp->lock, flags);
<------>for (i = 0, p = ptr; i < len ; i ++, p += sizeof(u32)) {
<------><------>u16 hval;
<------><------>u32 val;
<------><------>if (ethtool_register_table[i].offsets < 0) {
<------><------><------>hval = cas_phy_read(cp,
<------><------><------><------> -ethtool_register_table[i].offsets);
<------><------><------>val = hval;
<------><------>} else {
<------><------><------>val= readl(cp->regs+ethtool_register_table[i].offsets);
<------><------>}
<------><------>memcpy(p, (u8 *)&val, sizeof(u32));
<------>}
<------>spin_unlock_irqrestore(&cp->lock, flags);
}
static struct net_device_stats *cas_get_stats(struct net_device *dev)
{
<------>struct cas *cp = netdev_priv(dev);
<------>struct net_device_stats *stats = cp->net_stats;
<------>unsigned long flags;
<------>int i;
<------>unsigned long tmp;
<------>/* we collate all of the stats into net_stats[N_TX_RING] */
<------>if (!cp->hw_running)
<------><------>return stats + N_TX_RINGS;
<------>/* collect outstanding stats */
<------>/* WTZ: the Cassini spec gives these as 16 bit counters but
<------> * stored in 32-bit words. Added a mask of 0xffff to be safe,
<------> * in case the chip somehow puts any garbage in the other bits.
<------> * Also, counter usage didn't seem to mach what Adrian did
<------> * in the parts of the code that set these quantities. Made
<------> * that consistent.
<------> */
<------>spin_lock_irqsave(&cp->stat_lock[N_TX_RINGS], flags);
<------>stats[N_TX_RINGS].rx_crc_errors +=
<------> readl(cp->regs + REG_MAC_FCS_ERR) & 0xffff;
<------>stats[N_TX_RINGS].rx_frame_errors +=
<------><------>readl(cp->regs + REG_MAC_ALIGN_ERR) &0xffff;
<------>stats[N_TX_RINGS].rx_length_errors +=
<------><------>readl(cp->regs + REG_MAC_LEN_ERR) & 0xffff;
#if 1
<------>tmp = (readl(cp->regs + REG_MAC_COLL_EXCESS) & 0xffff) +
<------><------>(readl(cp->regs + REG_MAC_COLL_LATE) & 0xffff);
<------>stats[N_TX_RINGS].tx_aborted_errors += tmp;
<------>stats[N_TX_RINGS].collisions +=
<------> tmp + (readl(cp->regs + REG_MAC_COLL_NORMAL) & 0xffff);
#else
<------>stats[N_TX_RINGS].tx_aborted_errors +=
<------><------>readl(cp->regs + REG_MAC_COLL_EXCESS);
<------>stats[N_TX_RINGS].collisions += readl(cp->regs + REG_MAC_COLL_EXCESS) +
<------><------>readl(cp->regs + REG_MAC_COLL_LATE);
#endif
<------>cas_clear_mac_err(cp);
<------>/* saved bits that are unique to ring 0 */
<------>spin_lock(&cp->stat_lock[0]);
<------>stats[N_TX_RINGS].collisions += stats[0].collisions;
<------>stats[N_TX_RINGS].rx_over_errors += stats[0].rx_over_errors;
<------>stats[N_TX_RINGS].rx_frame_errors += stats[0].rx_frame_errors;
<------>stats[N_TX_RINGS].rx_fifo_errors += stats[0].rx_fifo_errors;
<------>stats[N_TX_RINGS].tx_aborted_errors += stats[0].tx_aborted_errors;
<------>stats[N_TX_RINGS].tx_fifo_errors += stats[0].tx_fifo_errors;
<------>spin_unlock(&cp->stat_lock[0]);
<------>for (i = 0; i < N_TX_RINGS; i++) {
<------><------>spin_lock(&cp->stat_lock[i]);
<------><------>stats[N_TX_RINGS].rx_length_errors +=
<------><------><------>stats[i].rx_length_errors;
<------><------>stats[N_TX_RINGS].rx_crc_errors += stats[i].rx_crc_errors;
<------><------>stats[N_TX_RINGS].rx_packets += stats[i].rx_packets;
<------><------>stats[N_TX_RINGS].tx_packets += stats[i].tx_packets;
<------><------>stats[N_TX_RINGS].rx_bytes += stats[i].rx_bytes;
<------><------>stats[N_TX_RINGS].tx_bytes += stats[i].tx_bytes;
<------><------>stats[N_TX_RINGS].rx_errors += stats[i].rx_errors;
<------><------>stats[N_TX_RINGS].tx_errors += stats[i].tx_errors;
<------><------>stats[N_TX_RINGS].rx_dropped += stats[i].rx_dropped;
<------><------>stats[N_TX_RINGS].tx_dropped += stats[i].tx_dropped;
<------><------>memset(stats + i, 0, sizeof(struct net_device_stats));
<------><------>spin_unlock(&cp->stat_lock[i]);
<------>}
<------>spin_unlock_irqrestore(&cp->stat_lock[N_TX_RINGS], flags);
<------>return stats + N_TX_RINGS;
}
static void cas_set_multicast(struct net_device *dev)
{
<------>struct cas *cp = netdev_priv(dev);
<------>u32 rxcfg, rxcfg_new;
<------>unsigned long flags;
<------>int limit = STOP_TRIES;
<------>if (!cp->hw_running)
<------><------>return;
<------>spin_lock_irqsave(&cp->lock, flags);
<------>rxcfg = readl(cp->regs + REG_MAC_RX_CFG);
<------>/* disable RX MAC and wait for completion */
<------>writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
<------>while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN) {
<------><------>if (!limit--)
<------><------><------>break;
<------><------>udelay(10);
<------>}
<------>/* disable hash filter and wait for completion */
<------>limit = STOP_TRIES;
<------>rxcfg &= ~(MAC_RX_CFG_PROMISC_EN | MAC_RX_CFG_HASH_FILTER_EN);
<------>writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
<------>while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_HASH_FILTER_EN) {
<------><------>if (!limit--)
<------><------><------>break;
<------><------>udelay(10);
<------>}
<------>/* program hash filters */
<------>cp->mac_rx_cfg = rxcfg_new = cas_setup_multicast(cp);
<------>rxcfg |= rxcfg_new;
<------>writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
<------>spin_unlock_irqrestore(&cp->lock, flags);
}
static void cas_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
{
<------>struct cas *cp = netdev_priv(dev);
<------>strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
<------>strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
<------>strlcpy(info->bus_info, pci_name(cp->pdev), sizeof(info->bus_info));
}
static int cas_get_link_ksettings(struct net_device *dev,
<------><------><------><------> struct ethtool_link_ksettings *cmd)
{
<------>struct cas *cp = netdev_priv(dev);
<------>u16 bmcr;
<------>int full_duplex, speed, pause;
<------>unsigned long flags;
<------>enum link_state linkstate = link_up;
<------>u32 supported, advertising;
<------>advertising = 0;
<------>supported = SUPPORTED_Autoneg;
<------>if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
<------><------>supported |= SUPPORTED_1000baseT_Full;
<------><------>advertising |= ADVERTISED_1000baseT_Full;
<------>}
<------>/* Record PHY settings if HW is on. */
<------>spin_lock_irqsave(&cp->lock, flags);
<------>bmcr = 0;
<------>linkstate = cp->lstate;
<------>if (CAS_PHY_MII(cp->phy_type)) {
<------><------>cmd->base.port = PORT_MII;
<------><------>cmd->base.phy_address = cp->phy_addr;
<------><------>advertising |= ADVERTISED_TP | ADVERTISED_MII |
<------><------><------>ADVERTISED_10baseT_Half |
<------><------><------>ADVERTISED_10baseT_Full |
<------><------><------>ADVERTISED_100baseT_Half |
<------><------><------>ADVERTISED_100baseT_Full;
<------><------>supported |=
<------><------><------>(SUPPORTED_10baseT_Half |
<------><------><------> SUPPORTED_10baseT_Full |
<------><------><------> SUPPORTED_100baseT_Half |
<------><------><------> SUPPORTED_100baseT_Full |
<------><------><------> SUPPORTED_TP | SUPPORTED_MII);
<------><------>if (cp->hw_running) {
<------><------><------>cas_mif_poll(cp, 0);
<------><------><------>bmcr = cas_phy_read(cp, MII_BMCR);
<------><------><------>cas_read_mii_link_mode(cp, &full_duplex,
<------><------><------><------><------> &speed, &pause);
<------><------><------>cas_mif_poll(cp, 1);
<------><------>}
<------>} else {
<------><------>cmd->base.port = PORT_FIBRE;
<------><------>cmd->base.phy_address = 0;
<------><------>supported |= SUPPORTED_FIBRE;
<------><------>advertising |= ADVERTISED_FIBRE;
<------><------>if (cp->hw_running) {
<------><------><------>/* pcs uses the same bits as mii */
<------><------><------>bmcr = readl(cp->regs + REG_PCS_MII_CTRL);
<------><------><------>cas_read_pcs_link_mode(cp, &full_duplex,
<------><------><------><------><------> &speed, &pause);
<------><------>}
<------>}
<------>spin_unlock_irqrestore(&cp->lock, flags);
<------>if (bmcr & BMCR_ANENABLE) {
<------><------>advertising |= ADVERTISED_Autoneg;
<------><------>cmd->base.autoneg = AUTONEG_ENABLE;
<------><------>cmd->base.speed = ((speed == 10) ?
<------><------><------><------><------> SPEED_10 :
<------><------><------><------><------> ((speed == 1000) ?
<------><------><------><------><------> SPEED_1000 : SPEED_100));
<------><------>cmd->base.duplex = full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
<------>} else {
<------><------>cmd->base.autoneg = AUTONEG_DISABLE;
<------><------>cmd->base.speed = ((bmcr & CAS_BMCR_SPEED1000) ?
<------><------><------><------><------> SPEED_1000 :
<------><------><------><------><------> ((bmcr & BMCR_SPEED100) ?
<------><------><------><------><------> SPEED_100 : SPEED_10));
<------><------>cmd->base.duplex = (bmcr & BMCR_FULLDPLX) ?
<------><------><------>DUPLEX_FULL : DUPLEX_HALF;
<------>}
<------>if (linkstate != link_up) {
<------><------>/* Force these to "unknown" if the link is not up and
<------><------> * autonogotiation in enabled. We can set the link
<------><------> * speed to 0, but not cmd->duplex,
<------><------> * because its legal values are 0 and 1. Ethtool will
<------><------> * print the value reported in parentheses after the
<------><------> * word "Unknown" for unrecognized values.
<------><------> *
<------><------> * If in forced mode, we report the speed and duplex
<------><------> * settings that we configured.
<------><------> */
<------><------>if (cp->link_cntl & BMCR_ANENABLE) {
<------><------><------>cmd->base.speed = 0;
<------><------><------>cmd->base.duplex = 0xff;
<------><------>} else {
<------><------><------>cmd->base.speed = SPEED_10;
<------><------><------>if (cp->link_cntl & BMCR_SPEED100) {
<------><------><------><------>cmd->base.speed = SPEED_100;
<------><------><------>} else if (cp->link_cntl & CAS_BMCR_SPEED1000) {
<------><------><------><------>cmd->base.speed = SPEED_1000;
<------><------><------>}
<------><------><------>cmd->base.duplex = (cp->link_cntl & BMCR_FULLDPLX) ?
<------><------><------><------>DUPLEX_FULL : DUPLEX_HALF;
<------><------>}
<------>}
<------>ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
<------><------><------><------><------><------>supported);
<------>ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
<------><------><------><------><------><------>advertising);
<------>return 0;
}
static int cas_set_link_ksettings(struct net_device *dev,
<------><------><------><------> const struct ethtool_link_ksettings *cmd)
{
<------>struct cas *cp = netdev_priv(dev);
<------>unsigned long flags;
<------>u32 speed = cmd->base.speed;
<------>/* Verify the settings we care about. */
<------>if (cmd->base.autoneg != AUTONEG_ENABLE &&
<------> cmd->base.autoneg != AUTONEG_DISABLE)
<------><------>return -EINVAL;
<------>if (cmd->base.autoneg == AUTONEG_DISABLE &&
<------> ((speed != SPEED_1000 &&
<------> speed != SPEED_100 &&
<------> speed != SPEED_10) ||
<------> (cmd->base.duplex != DUPLEX_HALF &&
<------> cmd->base.duplex != DUPLEX_FULL)))
<------><------>return -EINVAL;
<------>/* Apply settings and restart link process. */
<------>spin_lock_irqsave(&cp->lock, flags);
<------>cas_begin_auto_negotiation(cp, cmd);
<------>spin_unlock_irqrestore(&cp->lock, flags);
<------>return 0;
}
static int cas_nway_reset(struct net_device *dev)
{
<------>struct cas *cp = netdev_priv(dev);
<------>unsigned long flags;
<------>if ((cp->link_cntl & BMCR_ANENABLE) == 0)
<------><------>return -EINVAL;
<------>/* Restart link process. */
<------>spin_lock_irqsave(&cp->lock, flags);
<------>cas_begin_auto_negotiation(cp, NULL);
<------>spin_unlock_irqrestore(&cp->lock, flags);
<------>return 0;
}
static u32 cas_get_link(struct net_device *dev)
{
<------>struct cas *cp = netdev_priv(dev);
<------>return cp->lstate == link_up;
}
static u32 cas_get_msglevel(struct net_device *dev)
{
<------>struct cas *cp = netdev_priv(dev);
<------>return cp->msg_enable;
}
static void cas_set_msglevel(struct net_device *dev, u32 value)
{
<------>struct cas *cp = netdev_priv(dev);
<------>cp->msg_enable = value;
}
static int cas_get_regs_len(struct net_device *dev)
{
<------>struct cas *cp = netdev_priv(dev);
<------>return cp->casreg_len < CAS_MAX_REGS ? cp->casreg_len: CAS_MAX_REGS;
}
static void cas_get_regs(struct net_device *dev, struct ethtool_regs *regs,
<------><------><------> void *p)
{
<------>struct cas *cp = netdev_priv(dev);
<------>regs->version = 0;
<------>/* cas_read_regs handles locks (cp->lock). */
<------>cas_read_regs(cp, p, regs->len / sizeof(u32));
}
static int cas_get_sset_count(struct net_device *dev, int sset)
{
<------>switch (sset) {
<------>case ETH_SS_STATS:
<------><------>return CAS_NUM_STAT_KEYS;
<------>default:
<------><------>return -EOPNOTSUPP;
<------>}
}
static void cas_get_strings(struct net_device *dev, u32 stringset, u8 *data)
{
<------> memcpy(data, &ethtool_cassini_statnames,
<------><------><------><------><------> CAS_NUM_STAT_KEYS * ETH_GSTRING_LEN);
}
static void cas_get_ethtool_stats(struct net_device *dev,
<------><------><------><------> struct ethtool_stats *estats, u64 *data)
{
<------>struct cas *cp = netdev_priv(dev);
<------>struct net_device_stats *stats = cas_get_stats(cp->dev);
<------>int i = 0;
<------>data[i++] = stats->collisions;
<------>data[i++] = stats->rx_bytes;
<------>data[i++] = stats->rx_crc_errors;
<------>data[i++] = stats->rx_dropped;
<------>data[i++] = stats->rx_errors;
<------>data[i++] = stats->rx_fifo_errors;
<------>data[i++] = stats->rx_frame_errors;
<------>data[i++] = stats->rx_length_errors;
<------>data[i++] = stats->rx_over_errors;
<------>data[i++] = stats->rx_packets;
<------>data[i++] = stats->tx_aborted_errors;
<------>data[i++] = stats->tx_bytes;
<------>data[i++] = stats->tx_dropped;
<------>data[i++] = stats->tx_errors;
<------>data[i++] = stats->tx_fifo_errors;
<------>data[i++] = stats->tx_packets;
<------>BUG_ON(i != CAS_NUM_STAT_KEYS);
}
static const struct ethtool_ops cas_ethtool_ops = {
<------>.get_drvinfo = cas_get_drvinfo,
<------>.nway_reset = cas_nway_reset,
<------>.get_link = cas_get_link,
<------>.get_msglevel = cas_get_msglevel,
<------>.set_msglevel = cas_set_msglevel,
<------>.get_regs_len = cas_get_regs_len,
<------>.get_regs = cas_get_regs,
<------>.get_sset_count = cas_get_sset_count,
<------>.get_strings = cas_get_strings,
<------>.get_ethtool_stats = cas_get_ethtool_stats,
<------>.get_link_ksettings = cas_get_link_ksettings,
<------>.set_link_ksettings = cas_set_link_ksettings,
};
static int cas_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
<------>struct cas *cp = netdev_priv(dev);
<------>struct mii_ioctl_data *data = if_mii(ifr);
<------>unsigned long flags;
<------>int rc = -EOPNOTSUPP;
<------>/* Hold the PM mutex while doing ioctl's or we may collide
<------> * with open/close and power management and oops.
<------> */
<------>mutex_lock(&cp->pm_mutex);
<------>switch (cmd) {
<------>case SIOCGMIIPHY: /* Get address of MII PHY in use. */
<------><------>data->phy_id = cp->phy_addr;
<------><------>fallthrough;
<------>case SIOCGMIIREG: /* Read MII PHY register. */
<------><------>spin_lock_irqsave(&cp->lock, flags);
<------><------>cas_mif_poll(cp, 0);
<------><------>data->val_out = cas_phy_read(cp, data->reg_num & 0x1f);
<------><------>cas_mif_poll(cp, 1);
<------><------>spin_unlock_irqrestore(&cp->lock, flags);
<------><------>rc = 0;
<------><------>break;
<------>case SIOCSMIIREG: /* Write MII PHY register. */
<------><------>spin_lock_irqsave(&cp->lock, flags);
<------><------>cas_mif_poll(cp, 0);
<------><------>rc = cas_phy_write(cp, data->reg_num & 0x1f, data->val_in);
<------><------>cas_mif_poll(cp, 1);
<------><------>spin_unlock_irqrestore(&cp->lock, flags);
<------><------>break;
<------>default:
<------><------>break;
<------>}
<------>mutex_unlock(&cp->pm_mutex);
<------>return rc;
}
/* When this chip sits underneath an Intel 31154 bridge, it is the
* only subordinate device and we can tweak the bridge settings to
* reflect that fact.
*/
static void cas_program_bridge(struct pci_dev *cas_pdev)
{
<------>struct pci_dev *pdev = cas_pdev->bus->self;
<------>u32 val;
<------>if (!pdev)
<------><------>return;
<------>if (pdev->vendor != 0x8086 || pdev->device != 0x537c)
<------><------>return;
<------>/* Clear bit 10 (Bus Parking Control) in the Secondary
<------> * Arbiter Control/Status Register which lives at offset
<------> * 0x41. Using a 32-bit word read/modify/write at 0x40
<------> * is much simpler so that's how we do this.
<------> */
<------>pci_read_config_dword(pdev, 0x40, &val);
<------>val &= ~0x00040000;
<------>pci_write_config_dword(pdev, 0x40, val);
<------>/* Max out the Multi-Transaction Timer settings since
<------> * Cassini is the only device present.
<------> *
<------> * The register is 16-bit and lives at 0x50. When the
<------> * settings are enabled, it extends the GRANT# signal
<------> * for a requestor after a transaction is complete. This
<------> * allows the next request to run without first needing
<------> * to negotiate the GRANT# signal back.
<------> *
<------> * Bits 12:10 define the grant duration:
<------> *
<------> * 1 -- 16 clocks
<------> * 2 -- 32 clocks
<------> * 3 -- 64 clocks
<------> * 4 -- 128 clocks
<------> * 5 -- 256 clocks
<------> *
<------> * All other values are illegal.
<------> *
<------> * Bits 09:00 define which REQ/GNT signal pairs get the
<------> * GRANT# signal treatment. We set them all.
<------> */
<------>pci_write_config_word(pdev, 0x50, (5 << 10) | 0x3ff);
<------>/* The Read Prefecth Policy register is 16-bit and sits at
<------> * offset 0x52. It enables a "smart" pre-fetch policy. We
<------> * enable it and max out all of the settings since only one
<------> * device is sitting underneath and thus bandwidth sharing is
<------> * not an issue.
<------> *
<------> * The register has several 3 bit fields, which indicates a
<------> * multiplier applied to the base amount of prefetching the
<------> * chip would do. These fields are at:
<------> *
<------> * 15:13 --- ReRead Primary Bus
<------> * 12:10 --- FirstRead Primary Bus
<------> * 09:07 --- ReRead Secondary Bus
<------> * 06:04 --- FirstRead Secondary Bus
<------> *
<------> * Bits 03:00 control which REQ/GNT pairs the prefetch settings
<------> * get enabled on. Bit 3 is a grouped enabler which controls
<------> * all of the REQ/GNT pairs from [8:3]. Bits 2 to 0 control
<------> * the individual REQ/GNT pairs [2:0].
<------> */
<------>pci_write_config_word(pdev, 0x52,
<------><------><------> (0x7 << 13) |
<------><------><------> (0x7 << 10) |
<------><------><------> (0x7 << 7) |
<------><------><------> (0x7 << 4) |
<------><------><------> (0xf << 0));
<------>/* Force cacheline size to 0x8 */
<------>pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 0x08);
<------>/* Force latency timer to maximum setting so Cassini can
<------> * sit on the bus as long as it likes.
<------> */
<------>pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xff);
}
static const struct net_device_ops cas_netdev_ops = {
<------>.ndo_open = cas_open,
<------>.ndo_stop = cas_close,
<------>.ndo_start_xmit = cas_start_xmit,
<------>.ndo_get_stats = cas_get_stats,
<------>.ndo_set_rx_mode = cas_set_multicast,
<------>.ndo_do_ioctl = cas_ioctl,
<------>.ndo_tx_timeout = cas_tx_timeout,
<------>.ndo_change_mtu = cas_change_mtu,
<------>.ndo_set_mac_address = eth_mac_addr,
<------>.ndo_validate_addr = eth_validate_addr,
#ifdef CONFIG_NET_POLL_CONTROLLER
<------>.ndo_poll_controller = cas_netpoll,
#endif
};
static int cas_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
{
<------>static int cas_version_printed = 0;
<------>unsigned long casreg_len;
<------>struct net_device *dev;
<------>struct cas *cp;
<------>int i, err, pci_using_dac;
<------>u16 pci_cmd;
<------>u8 orig_cacheline_size = 0, cas_cacheline_size = 0;
<------>if (cas_version_printed++ == 0)
<------><------>pr_info("%s", version);
<------>err = pci_enable_device(pdev);
<------>if (err) {
<------><------>dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
<------><------>return err;
<------>}
<------>if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
<------><------>dev_err(&pdev->dev, "Cannot find proper PCI device "
<------><------> "base address, aborting\n");
<------><------>err = -ENODEV;
<------><------>goto err_out_disable_pdev;
<------>}
<------>dev = alloc_etherdev(sizeof(*cp));
<------>if (!dev) {
<------><------>err = -ENOMEM;
<------><------>goto err_out_disable_pdev;
<------>}
<------>SET_NETDEV_DEV(dev, &pdev->dev);
<------>err = pci_request_regions(pdev, dev->name);
<------>if (err) {
<------><------>dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
<------><------>goto err_out_free_netdev;
<------>}
<------>pci_set_master(pdev);
<------>/* we must always turn on parity response or else parity
<------> * doesn't get generated properly. disable SERR/PERR as well.
<------> * in addition, we want to turn MWI on.
<------> */
<------>pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
<------>pci_cmd &= ~PCI_COMMAND_SERR;
<------>pci_cmd |= PCI_COMMAND_PARITY;
<------>pci_write_config_word(pdev, PCI_COMMAND, pci_cmd);
<------>if (pci_try_set_mwi(pdev))
<------><------>pr_warn("Could not enable MWI for %s\n", pci_name(pdev));
<------>cas_program_bridge(pdev);
<------>/*
<------> * On some architectures, the default cache line size set
<------> * by pci_try_set_mwi reduces perforamnce. We have to increase
<------> * it for this case. To start, we'll print some configuration
<------> * data.
<------> */
#if 1
<------>pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE,
<------><------><------> &orig_cacheline_size);
<------>if (orig_cacheline_size < CAS_PREF_CACHELINE_SIZE) {
<------><------>cas_cacheline_size =
<------><------><------>(CAS_PREF_CACHELINE_SIZE < SMP_CACHE_BYTES) ?
<------><------><------>CAS_PREF_CACHELINE_SIZE : SMP_CACHE_BYTES;
<------><------>if (pci_write_config_byte(pdev,
<------><------><------><------><------> PCI_CACHE_LINE_SIZE,
<------><------><------><------><------> cas_cacheline_size)) {
<------><------><------>dev_err(&pdev->dev, "Could not set PCI cache "
<------><------><------> "line size\n");
<------><------><------>goto err_out_free_res;
<------><------>}
<------>}
#endif
<------>/* Configure DMA attributes. */
<------>if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
<------><------>pci_using_dac = 1;
<------><------>err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
<------><------>if (err < 0) {
<------><------><------>dev_err(&pdev->dev, "Unable to obtain 64-bit DMA "
<------><------><------> "for consistent allocations\n");
<------><------><------>goto err_out_free_res;
<------><------>}
<------>} else {
<------><------>err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
<------><------>if (err) {
<------><------><------>dev_err(&pdev->dev, "No usable DMA configuration, "
<------><------><------> "aborting\n");
<------><------><------>goto err_out_free_res;
<------><------>}
<------><------>pci_using_dac = 0;
<------>}
<------>casreg_len = pci_resource_len(pdev, 0);
<------>cp = netdev_priv(dev);
<------>cp->pdev = pdev;
#if 1
<------>/* A value of 0 indicates we never explicitly set it */
<------>cp->orig_cacheline_size = cas_cacheline_size ? orig_cacheline_size: 0;
#endif
<------>cp->dev = dev;
<------>cp->msg_enable = (cassini_debug < 0) ? CAS_DEF_MSG_ENABLE :
<------> cassini_debug;
#if defined(CONFIG_SPARC)
<------>cp->of_node = pci_device_to_OF_node(pdev);
#endif
<------>cp->link_transition = LINK_TRANSITION_UNKNOWN;
<------>cp->link_transition_jiffies_valid = 0;
<------>spin_lock_init(&cp->lock);
<------>spin_lock_init(&cp->rx_inuse_lock);
<------>spin_lock_init(&cp->rx_spare_lock);
<------>for (i = 0; i < N_TX_RINGS; i++) {
<------><------>spin_lock_init(&cp->stat_lock[i]);
<------><------>spin_lock_init(&cp->tx_lock[i]);
<------>}
<------>spin_lock_init(&cp->stat_lock[N_TX_RINGS]);
<------>mutex_init(&cp->pm_mutex);
<------>timer_setup(&cp->link_timer, cas_link_timer, 0);
#if 1
<------>/* Just in case the implementation of atomic operations
<------> * change so that an explicit initialization is necessary.
<------> */
<------>atomic_set(&cp->reset_task_pending, 0);
<------>atomic_set(&cp->reset_task_pending_all, 0);
<------>atomic_set(&cp->reset_task_pending_spare, 0);
<------>atomic_set(&cp->reset_task_pending_mtu, 0);
#endif
<------>INIT_WORK(&cp->reset_task, cas_reset_task);
<------>/* Default link parameters */
<------>if (link_mode >= 0 && link_mode < 6)
<------><------>cp->link_cntl = link_modes[link_mode];
<------>else
<------><------>cp->link_cntl = BMCR_ANENABLE;
<------>cp->lstate = link_down;
<------>cp->link_transition = LINK_TRANSITION_LINK_DOWN;
<------>netif_carrier_off(cp->dev);
<------>cp->timer_ticks = 0;
<------>/* give us access to cassini registers */
<------>cp->regs = pci_iomap(pdev, 0, casreg_len);
<------>if (!cp->regs) {
<------><------>dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
<------><------>goto err_out_free_res;
<------>}
<------>cp->casreg_len = casreg_len;
<------>pci_save_state(pdev);
<------>cas_check_pci_invariants(cp);
<------>cas_hard_reset(cp);
<------>cas_reset(cp, 0);
<------>if (cas_check_invariants(cp))
<------><------>goto err_out_iounmap;
<------>if (cp->cas_flags & CAS_FLAG_SATURN)
<------><------>cas_saturn_firmware_init(cp);
<------>cp->init_block =
<------><------>dma_alloc_coherent(&pdev->dev, sizeof(struct cas_init_block),
<------><------><------><------> &cp->block_dvma, GFP_KERNEL);
<------>if (!cp->init_block) {
<------><------>dev_err(&pdev->dev, "Cannot allocate init block, aborting\n");
<------><------>goto err_out_iounmap;
<------>}
<------>for (i = 0; i < N_TX_RINGS; i++)
<------><------>cp->init_txds[i] = cp->init_block->txds[i];
<------>for (i = 0; i < N_RX_DESC_RINGS; i++)
<------><------>cp->init_rxds[i] = cp->init_block->rxds[i];
<------>for (i = 0; i < N_RX_COMP_RINGS; i++)
<------><------>cp->init_rxcs[i] = cp->init_block->rxcs[i];
<------>for (i = 0; i < N_RX_FLOWS; i++)
<------><------>skb_queue_head_init(&cp->rx_flows[i]);
<------>dev->netdev_ops = &cas_netdev_ops;
<------>dev->ethtool_ops = &cas_ethtool_ops;
<------>dev->watchdog_timeo = CAS_TX_TIMEOUT;
#ifdef USE_NAPI
<------>netif_napi_add(dev, &cp->napi, cas_poll, 64);
#endif
<------>dev->irq = pdev->irq;
<------>dev->dma = 0;
<------>/* Cassini features. */
<------>if ((cp->cas_flags & CAS_FLAG_NO_HW_CSUM) == 0)
<------><------>dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
<------>if (pci_using_dac)
<------><------>dev->features |= NETIF_F_HIGHDMA;
<------>/* MTU range: 60 - varies or 9000 */
<------>dev->min_mtu = CAS_MIN_MTU;
<------>dev->max_mtu = CAS_MAX_MTU;
<------>if (register_netdev(dev)) {
<------><------>dev_err(&pdev->dev, "Cannot register net device, aborting\n");
<------><------>goto err_out_free_consistent;
<------>}
<------>i = readl(cp->regs + REG_BIM_CFG);
<------>netdev_info(dev, "Sun Cassini%s (%sbit/%sMHz PCI/%s) Ethernet[%d] %pM\n",
<------><------> (cp->cas_flags & CAS_FLAG_REG_PLUS) ? "+" : "",
<------><------> (i & BIM_CFG_32BIT) ? "32" : "64",
<------><------> (i & BIM_CFG_66MHZ) ? "66" : "33",
<------><------> (cp->phy_type == CAS_PHY_SERDES) ? "Fi" : "Cu", pdev->irq,
<------><------> dev->dev_addr);
<------>pci_set_drvdata(pdev, dev);
<------>cp->hw_running = 1;
<------>cas_entropy_reset(cp);
<------>cas_phy_init(cp);
<------>cas_begin_auto_negotiation(cp, NULL);
<------>return 0;
err_out_free_consistent:
<------>dma_free_coherent(&pdev->dev, sizeof(struct cas_init_block),
<------><------><------> cp->init_block, cp->block_dvma);
err_out_iounmap:
<------>mutex_lock(&cp->pm_mutex);
<------>if (cp->hw_running)
<------><------>cas_shutdown(cp);
<------>mutex_unlock(&cp->pm_mutex);
<------>pci_iounmap(pdev, cp->regs);
err_out_free_res:
<------>pci_release_regions(pdev);
<------>/* Try to restore it in case the error occurred after we
<------> * set it.
<------> */
<------>pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, orig_cacheline_size);
err_out_free_netdev:
<------>free_netdev(dev);
err_out_disable_pdev:
<------>pci_disable_device(pdev);
<------>return -ENODEV;
}
static void cas_remove_one(struct pci_dev *pdev)
{
<------>struct net_device *dev = pci_get_drvdata(pdev);
<------>struct cas *cp;
<------>if (!dev)
<------><------>return;
<------>cp = netdev_priv(dev);
<------>unregister_netdev(dev);
<------>vfree(cp->fw_data);
<------>mutex_lock(&cp->pm_mutex);
<------>cancel_work_sync(&cp->reset_task);
<------>if (cp->hw_running)
<------><------>cas_shutdown(cp);
<------>mutex_unlock(&cp->pm_mutex);
#if 1
<------>if (cp->orig_cacheline_size) {
<------><------>/* Restore the cache line size if we had modified
<------><------> * it.
<------><------> */
<------><------>pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
<------><------><------><------> cp->orig_cacheline_size);
<------>}
#endif
<------>dma_free_coherent(&pdev->dev, sizeof(struct cas_init_block),
<------><------><------> cp->init_block, cp->block_dvma);
<------>pci_iounmap(pdev, cp->regs);
<------>free_netdev(dev);
<------>pci_release_regions(pdev);
<------>pci_disable_device(pdev);
}
static int __maybe_unused cas_suspend(struct device *dev_d)
{
<------>struct net_device *dev = dev_get_drvdata(dev_d);
<------>struct cas *cp = netdev_priv(dev);
<------>unsigned long flags;
<------>mutex_lock(&cp->pm_mutex);
<------>/* If the driver is opened, we stop the DMA */
<------>if (cp->opened) {
<------><------>netif_device_detach(dev);
<------><------>cas_lock_all_save(cp, flags);
<------><------>/* We can set the second arg of cas_reset to 0
<------><------> * because on resume, we'll call cas_init_hw with
<------><------> * its second arg set so that autonegotiation is
<------><------> * restarted.
<------><------> */
<------><------>cas_reset(cp, 0);
<------><------>cas_clean_rings(cp);
<------><------>cas_unlock_all_restore(cp, flags);
<------>}
<------>if (cp->hw_running)
<------><------>cas_shutdown(cp);
<------>mutex_unlock(&cp->pm_mutex);
<------>return 0;
}
static int __maybe_unused cas_resume(struct device *dev_d)
{
<------>struct net_device *dev = dev_get_drvdata(dev_d);
<------>struct cas *cp = netdev_priv(dev);
<------>netdev_info(dev, "resuming\n");
<------>mutex_lock(&cp->pm_mutex);
<------>cas_hard_reset(cp);
<------>if (cp->opened) {
<------><------>unsigned long flags;
<------><------>cas_lock_all_save(cp, flags);
<------><------>cas_reset(cp, 0);
<------><------>cp->hw_running = 1;
<------><------>cas_clean_rings(cp);
<------><------>cas_init_hw(cp, 1);
<------><------>cas_unlock_all_restore(cp, flags);
<------><------>netif_device_attach(dev);
<------>}
<------>mutex_unlock(&cp->pm_mutex);
<------>return 0;
}
static SIMPLE_DEV_PM_OPS(cas_pm_ops, cas_suspend, cas_resume);
static struct pci_driver cas_driver = {
<------>.name = DRV_MODULE_NAME,
<------>.id_table = cas_pci_tbl,
<------>.probe = cas_init_one,
<------>.remove = cas_remove_one,
<------>.driver.pm = &cas_pm_ops,
};
static int __init cas_init(void)
{
<------>if (linkdown_timeout > 0)
<------><------>link_transition_timeout = linkdown_timeout * HZ;
<------>else
<------><------>link_transition_timeout = 0;
<------>return pci_register_driver(&cas_driver);
}
static void __exit cas_cleanup(void)
{
<------>pci_unregister_driver(&cas_driver);
}
module_init(cas_init);
module_exit(cas_cleanup);