| |
| |
| |
| |
| |
| #include <linux/prefetch.h> |
| #include <linux/mm.h> |
| #include <linux/bpf_trace.h> |
| #include <net/xdp.h> |
| #include "ice_txrx_lib.h" |
| #include "ice_lib.h" |
| #include "ice.h" |
| #include "ice_dcb_lib.h" |
| #include "ice_xsk.h" |
| |
| #define ICE_RX_HDR_SIZE 256 |
| |
| #define FDIR_DESC_RXDID 0x40 |
| #define ICE_FDIR_CLEAN_DELAY 10 |
| |
| |
| |
| |
| |
| |
| |
| int |
| ice_prgm_fdir_fltr(struct ice_vsi *vsi, struct ice_fltr_desc *fdir_desc, |
| <------><------> u8 *raw_packet) |
| { |
| <------>struct ice_tx_buf *tx_buf, *first; |
| <------>struct ice_fltr_desc *f_desc; |
| <------>struct ice_tx_desc *tx_desc; |
| <------>struct ice_ring *tx_ring; |
| <------>struct device *dev; |
| <------>dma_addr_t dma; |
| <------>u32 td_cmd; |
| <------>u16 i; |
| |
| <------> |
| <------>if (!vsi) |
| <------><------>return -ENOENT; |
| <------>tx_ring = vsi->tx_rings[0]; |
| <------>if (!tx_ring || !tx_ring->desc) |
| <------><------>return -ENOENT; |
| <------>dev = tx_ring->dev; |
| |
| <------> |
| <------>for (i = ICE_FDIR_CLEAN_DELAY; ICE_DESC_UNUSED(tx_ring) < 2; i--) { |
| <------><------>if (!i) |
| <------><------><------>return -EAGAIN; |
| <------><------>msleep_interruptible(1); |
| <------>} |
| |
| <------>dma = dma_map_single(dev, raw_packet, ICE_FDIR_MAX_RAW_PKT_SIZE, |
| <------><------><------> DMA_TO_DEVICE); |
| |
| <------>if (dma_mapping_error(dev, dma)) |
| <------><------>return -EINVAL; |
| |
| <------> |
| <------>i = tx_ring->next_to_use; |
| <------>first = &tx_ring->tx_buf[i]; |
| <------>f_desc = ICE_TX_FDIRDESC(tx_ring, i); |
| <------>memcpy(f_desc, fdir_desc, sizeof(*f_desc)); |
| |
| <------>i++; |
| <------>i = (i < tx_ring->count) ? i : 0; |
| <------>tx_desc = ICE_TX_DESC(tx_ring, i); |
| <------>tx_buf = &tx_ring->tx_buf[i]; |
| |
| <------>i++; |
| <------>tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; |
| |
| <------>memset(tx_buf, 0, sizeof(*tx_buf)); |
| <------>dma_unmap_len_set(tx_buf, len, ICE_FDIR_MAX_RAW_PKT_SIZE); |
| <------>dma_unmap_addr_set(tx_buf, dma, dma); |
| |
| <------>tx_desc->buf_addr = cpu_to_le64(dma); |
| <------>td_cmd = ICE_TXD_LAST_DESC_CMD | ICE_TX_DESC_CMD_DUMMY | |
| <------><------> ICE_TX_DESC_CMD_RE; |
| |
| <------>tx_buf->tx_flags = ICE_TX_FLAGS_DUMMY_PKT; |
| <------>tx_buf->raw_buf = raw_packet; |
| |
| <------>tx_desc->cmd_type_offset_bsz = |
| <------><------>ice_build_ctob(td_cmd, 0, ICE_FDIR_MAX_RAW_PKT_SIZE, 0); |
| |
| <------> |
| <------> * there are new descriptors to fetch. |
| <------> */ |
| <------>wmb(); |
| |
| <------> |
| <------>first->next_to_watch = tx_desc; |
| |
| <------>writel(tx_ring->next_to_use, tx_ring->tail); |
| |
| <------>return 0; |
| } |
| |
| |
| |
| |
| |
| |
| static void |
| ice_unmap_and_free_tx_buf(struct ice_ring *ring, struct ice_tx_buf *tx_buf) |
| { |
| <------>if (tx_buf->skb) { |
| <------><------>if (tx_buf->tx_flags & ICE_TX_FLAGS_DUMMY_PKT) |
| <------><------><------>devm_kfree(ring->dev, tx_buf->raw_buf); |
| <------><------>else if (ice_ring_is_xdp(ring)) |
| <------><------><------>page_frag_free(tx_buf->raw_buf); |
| <------><------>else |
| <------><------><------>dev_kfree_skb_any(tx_buf->skb); |
| <------><------>if (dma_unmap_len(tx_buf, len)) |
| <------><------><------>dma_unmap_single(ring->dev, |
| <------><------><------><------><------> dma_unmap_addr(tx_buf, dma), |
| <------><------><------><------><------> dma_unmap_len(tx_buf, len), |
| <------><------><------><------><------> DMA_TO_DEVICE); |
| <------>} else if (dma_unmap_len(tx_buf, len)) { |
| <------><------>dma_unmap_page(ring->dev, |
| <------><------><------> dma_unmap_addr(tx_buf, dma), |
| <------><------><------> dma_unmap_len(tx_buf, len), |
| <------><------><------> DMA_TO_DEVICE); |
| <------>} |
| |
| <------>tx_buf->next_to_watch = NULL; |
| <------>tx_buf->skb = NULL; |
| <------>dma_unmap_len_set(tx_buf, len, 0); |
| <------> |
| } |
| |
| static struct netdev_queue *txring_txq(const struct ice_ring *ring) |
| { |
| <------>return netdev_get_tx_queue(ring->netdev, ring->q_index); |
| } |
| |
| |
| |
| |
| |
| void ice_clean_tx_ring(struct ice_ring *tx_ring) |
| { |
| <------>u16 i; |
| |
| <------>if (ice_ring_is_xdp(tx_ring) && tx_ring->xsk_pool) { |
| <------><------>ice_xsk_clean_xdp_ring(tx_ring); |
| <------><------>goto tx_skip_free; |
| <------>} |
| |
| <------> |
| <------>if (!tx_ring->tx_buf) |
| <------><------>return; |
| |
| <------> |
| <------>for (i = 0; i < tx_ring->count; i++) |
| <------><------>ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]); |
| |
| tx_skip_free: |
| <------>memset(tx_ring->tx_buf, 0, sizeof(*tx_ring->tx_buf) * tx_ring->count); |
| |
| <------> |
| <------>memset(tx_ring->desc, 0, tx_ring->size); |
| |
| <------>tx_ring->next_to_use = 0; |
| <------>tx_ring->next_to_clean = 0; |
| |
| <------>if (!tx_ring->netdev) |
| <------><------>return; |
| |
| <------> |
| <------>netdev_tx_reset_queue(txring_txq(tx_ring)); |
| } |
| |
| |
| |
| |
| |
| |
| |
| void ice_free_tx_ring(struct ice_ring *tx_ring) |
| { |
| <------>ice_clean_tx_ring(tx_ring); |
| <------>devm_kfree(tx_ring->dev, tx_ring->tx_buf); |
| <------>tx_ring->tx_buf = NULL; |
| |
| <------>if (tx_ring->desc) { |
| <------><------>dmam_free_coherent(tx_ring->dev, tx_ring->size, |
| <------><------><------><------> tx_ring->desc, tx_ring->dma); |
| <------><------>tx_ring->desc = NULL; |
| <------>} |
| } |
| |
| |
| |
| |
| |
| |
| |
| |
| static bool ice_clean_tx_irq(struct ice_ring *tx_ring, int napi_budget) |
| { |
| <------>unsigned int total_bytes = 0, total_pkts = 0; |
| <------>unsigned int budget = ICE_DFLT_IRQ_WORK; |
| <------>struct ice_vsi *vsi = tx_ring->vsi; |
| <------>s16 i = tx_ring->next_to_clean; |
| <------>struct ice_tx_desc *tx_desc; |
| <------>struct ice_tx_buf *tx_buf; |
| |
| <------>tx_buf = &tx_ring->tx_buf[i]; |
| <------>tx_desc = ICE_TX_DESC(tx_ring, i); |
| <------>i -= tx_ring->count; |
| |
| <------>prefetch(&vsi->state); |
| |
| <------>do { |
| <------><------>struct ice_tx_desc *eop_desc = tx_buf->next_to_watch; |
| |
| <------><------> |
| <------><------>if (!eop_desc) |
| <------><------><------>break; |
| |
| <------><------>smp_rmb(); |
| |
| <------><------> |
| <------><------>if (!(eop_desc->cmd_type_offset_bsz & |
| <------><------> cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE))) |
| <------><------><------>break; |
| |
| <------><------> |
| <------><------>tx_buf->next_to_watch = NULL; |
| |
| <------><------> |
| <------><------>total_bytes += tx_buf->bytecount; |
| <------><------>total_pkts += tx_buf->gso_segs; |
| |
| <------><------>if (ice_ring_is_xdp(tx_ring)) |
| <------><------><------>page_frag_free(tx_buf->raw_buf); |
| <------><------>else |
| <------><------><------> |
| <------><------><------>napi_consume_skb(tx_buf->skb, napi_budget); |
| |
| <------><------> |
| <------><------>dma_unmap_single(tx_ring->dev, |
| <------><------><------><------> dma_unmap_addr(tx_buf, dma), |
| <------><------><------><------> dma_unmap_len(tx_buf, len), |
| <------><------><------><------> DMA_TO_DEVICE); |
| |
| <------><------> |
| <------><------>tx_buf->skb = NULL; |
| <------><------>dma_unmap_len_set(tx_buf, len, 0); |
| |
| <------><------> |
| <------><------>while (tx_desc != eop_desc) { |
| <------><------><------>tx_buf++; |
| <------><------><------>tx_desc++; |
| <------><------><------>i++; |
| <------><------><------>if (unlikely(!i)) { |
| <------><------><------><------>i -= tx_ring->count; |
| <------><------><------><------>tx_buf = tx_ring->tx_buf; |
| <------><------><------><------>tx_desc = ICE_TX_DESC(tx_ring, 0); |
| <------><------><------>} |
| |
| <------><------><------> |
| <------><------><------>if (dma_unmap_len(tx_buf, len)) { |
| <------><------><------><------>dma_unmap_page(tx_ring->dev, |
| <------><------><------><------><------> dma_unmap_addr(tx_buf, dma), |
| <------><------><------><------><------> dma_unmap_len(tx_buf, len), |
| <------><------><------><------><------> DMA_TO_DEVICE); |
| <------><------><------><------>dma_unmap_len_set(tx_buf, len, 0); |
| <------><------><------>} |
| <------><------>} |
| |
| <------><------> |
| <------><------>tx_buf++; |
| <------><------>tx_desc++; |
| <------><------>i++; |
| <------><------>if (unlikely(!i)) { |
| <------><------><------>i -= tx_ring->count; |
| <------><------><------>tx_buf = tx_ring->tx_buf; |
| <------><------><------>tx_desc = ICE_TX_DESC(tx_ring, 0); |
| <------><------>} |
| |
| <------><------>prefetch(tx_desc); |
| |
| <------><------> |
| <------><------>budget--; |
| <------>} while (likely(budget)); |
| |
| <------>i += tx_ring->count; |
| <------>tx_ring->next_to_clean = i; |
| |
| <------>ice_update_tx_ring_stats(tx_ring, total_pkts, total_bytes); |
| |
| <------>if (ice_ring_is_xdp(tx_ring)) |
| <------><------>return !!budget; |
| |
| <------>netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts, |
| <------><------><------><------> total_bytes); |
| |
| #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2)) |
| <------>if (unlikely(total_pkts && netif_carrier_ok(tx_ring->netdev) && |
| <------><------> (ICE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) { |
| <------><------> |
| <------><------> * sees the new next_to_clean. |
| <------><------> */ |
| <------><------>smp_mb(); |
| <------><------>if (__netif_subqueue_stopped(tx_ring->netdev, |
| <------><------><------><------><------> tx_ring->q_index) && |
| <------><------> !test_bit(__ICE_DOWN, vsi->state)) { |
| <------><------><------>netif_wake_subqueue(tx_ring->netdev, |
| <------><------><------><------><------> tx_ring->q_index); |
| <------><------><------>++tx_ring->tx_stats.restart_q; |
| <------><------>} |
| <------>} |
| |
| <------>return !!budget; |
| } |
| |
| |
| |
| |
| |
| |
| |
| int ice_setup_tx_ring(struct ice_ring *tx_ring) |
| { |
| <------>struct device *dev = tx_ring->dev; |
| |
| <------>if (!dev) |
| <------><------>return -ENOMEM; |
| |
| <------> |
| <------>WARN_ON(tx_ring->tx_buf); |
| <------>tx_ring->tx_buf = |
| <------><------>devm_kzalloc(dev, sizeof(*tx_ring->tx_buf) * tx_ring->count, |
| <------><------><------> GFP_KERNEL); |
| <------>if (!tx_ring->tx_buf) |
| <------><------>return -ENOMEM; |
| |
| <------> |
| <------>tx_ring->size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc), |
| <------><------><------> PAGE_SIZE); |
| <------>tx_ring->desc = dmam_alloc_coherent(dev, tx_ring->size, &tx_ring->dma, |
| <------><------><------><------><------> GFP_KERNEL); |
| <------>if (!tx_ring->desc) { |
| <------><------>dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n", |
| <------><------><------>tx_ring->size); |
| <------><------>goto err; |
| <------>} |
| |
| <------>tx_ring->next_to_use = 0; |
| <------>tx_ring->next_to_clean = 0; |
| <------>tx_ring->tx_stats.prev_pkt = -1; |
| <------>return 0; |
| |
| err: |
| <------>devm_kfree(dev, tx_ring->tx_buf); |
| <------>tx_ring->tx_buf = NULL; |
| <------>return -ENOMEM; |
| } |
| |
| |
| |
| |
| |
| void ice_clean_rx_ring(struct ice_ring *rx_ring) |
| { |
| <------>struct device *dev = rx_ring->dev; |
| <------>u16 i; |
| |
| <------> |
| <------>if (!rx_ring->rx_buf) |
| <------><------>return; |
| |
| <------>if (rx_ring->xsk_pool) { |
| <------><------>ice_xsk_clean_rx_ring(rx_ring); |
| <------><------>goto rx_skip_free; |
| <------>} |
| |
| <------> |
| <------>for (i = 0; i < rx_ring->count; i++) { |
| <------><------>struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i]; |
| |
| <------><------>if (rx_buf->skb) { |
| <------><------><------>dev_kfree_skb(rx_buf->skb); |
| <------><------><------>rx_buf->skb = NULL; |
| <------><------>} |
| <------><------>if (!rx_buf->page) |
| <------><------><------>continue; |
| |
| <------><------> |
| <------><------> * device so that we avoid corrupting memory. |
| <------><------> */ |
| <------><------>dma_sync_single_range_for_cpu(dev, rx_buf->dma, |
| <------><------><------><------><------> rx_buf->page_offset, |
| <------><------><------><------><------> rx_ring->rx_buf_len, |
| <------><------><------><------><------> DMA_FROM_DEVICE); |
| |
| <------><------> |
| <------><------>dma_unmap_page_attrs(dev, rx_buf->dma, ice_rx_pg_size(rx_ring), |
| <------><------><------><------> DMA_FROM_DEVICE, ICE_RX_DMA_ATTR); |
| <------><------>__page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias); |
| |
| <------><------>rx_buf->page = NULL; |
| <------><------>rx_buf->page_offset = 0; |
| <------>} |
| |
| rx_skip_free: |
| <------>memset(rx_ring->rx_buf, 0, sizeof(*rx_ring->rx_buf) * rx_ring->count); |
| |
| <------> |
| <------>memset(rx_ring->desc, 0, rx_ring->size); |
| |
| <------>rx_ring->next_to_alloc = 0; |
| <------>rx_ring->next_to_clean = 0; |
| <------>rx_ring->next_to_use = 0; |
| } |
| |
| |
| |
| |
| |
| |
| |
| void ice_free_rx_ring(struct ice_ring *rx_ring) |
| { |
| <------>ice_clean_rx_ring(rx_ring); |
| <------>if (rx_ring->vsi->type == ICE_VSI_PF) |
| <------><------>if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq)) |
| <------><------><------>xdp_rxq_info_unreg(&rx_ring->xdp_rxq); |
| <------>rx_ring->xdp_prog = NULL; |
| <------>devm_kfree(rx_ring->dev, rx_ring->rx_buf); |
| <------>rx_ring->rx_buf = NULL; |
| |
| <------>if (rx_ring->desc) { |
| <------><------>dmam_free_coherent(rx_ring->dev, rx_ring->size, |
| <------><------><------><------> rx_ring->desc, rx_ring->dma); |
| <------><------>rx_ring->desc = NULL; |
| <------>} |
| } |
| |
| |
| |
| |
| |
| |
| |
| int ice_setup_rx_ring(struct ice_ring *rx_ring) |
| { |
| <------>struct device *dev = rx_ring->dev; |
| |
| <------>if (!dev) |
| <------><------>return -ENOMEM; |
| |
| <------> |
| <------>WARN_ON(rx_ring->rx_buf); |
| <------>rx_ring->rx_buf = |
| <------><------>devm_kzalloc(dev, sizeof(*rx_ring->rx_buf) * rx_ring->count, |
| <------><------><------> GFP_KERNEL); |
| <------>if (!rx_ring->rx_buf) |
| <------><------>return -ENOMEM; |
| |
| <------> |
| <------>rx_ring->size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc), |
| <------><------><------> PAGE_SIZE); |
| <------>rx_ring->desc = dmam_alloc_coherent(dev, rx_ring->size, &rx_ring->dma, |
| <------><------><------><------><------> GFP_KERNEL); |
| <------>if (!rx_ring->desc) { |
| <------><------>dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n", |
| <------><------><------>rx_ring->size); |
| <------><------>goto err; |
| <------>} |
| |
| <------>rx_ring->next_to_use = 0; |
| <------>rx_ring->next_to_clean = 0; |
| |
| <------>if (ice_is_xdp_ena_vsi(rx_ring->vsi)) |
| <------><------>WRITE_ONCE(rx_ring->xdp_prog, rx_ring->vsi->xdp_prog); |
| |
| <------>if (rx_ring->vsi->type == ICE_VSI_PF && |
| <------> !xdp_rxq_info_is_reg(&rx_ring->xdp_rxq)) |
| <------><------>if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev, |
| <------><------><------><------> rx_ring->q_index)) |
| <------><------><------>goto err; |
| <------>return 0; |
| |
| err: |
| <------>devm_kfree(dev, rx_ring->rx_buf); |
| <------>rx_ring->rx_buf = NULL; |
| <------>return -ENOMEM; |
| } |
| |
| |
| |
| |
| |
| |
| |
| static unsigned int ice_rx_offset(struct ice_ring *rx_ring) |
| { |
| <------>if (ice_ring_uses_build_skb(rx_ring)) |
| <------><------>return ICE_SKB_PAD; |
| <------>else if (ice_is_xdp_ena_vsi(rx_ring->vsi)) |
| <------><------>return XDP_PACKET_HEADROOM; |
| |
| <------>return 0; |
| } |
| |
| static unsigned int |
| ice_rx_frame_truesize(struct ice_ring *rx_ring, unsigned int __maybe_unused size) |
| { |
| <------>unsigned int truesize; |
| |
| #if (PAGE_SIZE < 8192) |
| <------>truesize = ice_rx_pg_size(rx_ring) / 2; |
| #else |
| <------>truesize = ice_rx_offset(rx_ring) ? |
| <------><------>SKB_DATA_ALIGN(ice_rx_offset(rx_ring) + size) + |
| <------><------>SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) : |
| <------><------>SKB_DATA_ALIGN(size); |
| #endif |
| <------>return truesize; |
| } |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| static int |
| ice_run_xdp(struct ice_ring *rx_ring, struct xdp_buff *xdp, |
| <------> struct bpf_prog *xdp_prog) |
| { |
| <------>struct ice_ring *xdp_ring; |
| <------>int err, result; |
| <------>u32 act; |
| |
| <------>act = bpf_prog_run_xdp(xdp_prog, xdp); |
| <------>switch (act) { |
| <------>case XDP_PASS: |
| <------><------>return ICE_XDP_PASS; |
| <------>case XDP_TX: |
| <------><------>xdp_ring = rx_ring->vsi->xdp_rings[smp_processor_id()]; |
| <------><------>result = ice_xmit_xdp_buff(xdp, xdp_ring); |
| <------><------>if (result == ICE_XDP_CONSUMED) |
| <------><------><------>goto out_failure; |
| <------><------>return result; |
| <------>case XDP_REDIRECT: |
| <------><------>err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog); |
| <------><------>if (err) |
| <------><------><------>goto out_failure; |
| <------><------>return ICE_XDP_REDIR; |
| <------>default: |
| <------><------>bpf_warn_invalid_xdp_action(act); |
| <------><------>fallthrough; |
| <------>case XDP_ABORTED: |
| out_failure: |
| <------><------>trace_xdp_exception(rx_ring->netdev, xdp_prog, act); |
| <------><------>fallthrough; |
| <------>case XDP_DROP: |
| <------><------>return ICE_XDP_CONSUMED; |
| <------>} |
| } |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| int |
| ice_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames, |
| <------> u32 flags) |
| { |
| <------>struct ice_netdev_priv *np = netdev_priv(dev); |
| <------>unsigned int queue_index = smp_processor_id(); |
| <------>struct ice_vsi *vsi = np->vsi; |
| <------>struct ice_ring *xdp_ring; |
| <------>int drops = 0, i; |
| |
| <------>if (test_bit(__ICE_DOWN, vsi->state)) |
| <------><------>return -ENETDOWN; |
| |
| <------>if (!ice_is_xdp_ena_vsi(vsi) || queue_index >= vsi->num_xdp_txq) |
| <------><------>return -ENXIO; |
| |
| <------>if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) |
| <------><------>return -EINVAL; |
| |
| <------>xdp_ring = vsi->xdp_rings[queue_index]; |
| <------>for (i = 0; i < n; i++) { |
| <------><------>struct xdp_frame *xdpf = frames[i]; |
| <------><------>int err; |
| |
| <------><------>err = ice_xmit_xdp_ring(xdpf->data, xdpf->len, xdp_ring); |
| <------><------>if (err != ICE_XDP_TX) { |
| <------><------><------>xdp_return_frame_rx_napi(xdpf); |
| <------><------><------>drops++; |
| <------><------>} |
| <------>} |
| |
| <------>if (unlikely(flags & XDP_XMIT_FLUSH)) |
| <------><------>ice_xdp_ring_update_tail(xdp_ring); |
| |
| <------>return n - drops; |
| } |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| static bool |
| ice_alloc_mapped_page(struct ice_ring *rx_ring, struct ice_rx_buf *bi) |
| { |
| <------>struct page *page = bi->page; |
| <------>dma_addr_t dma; |
| |
| <------> |
| <------>if (likely(page)) |
| <------><------>return true; |
| |
| <------> |
| <------>page = dev_alloc_pages(ice_rx_pg_order(rx_ring)); |
| <------>if (unlikely(!page)) { |
| <------><------>rx_ring->rx_stats.alloc_page_failed++; |
| <------><------>return false; |
| <------>} |
| |
| <------> |
| <------>dma = dma_map_page_attrs(rx_ring->dev, page, 0, ice_rx_pg_size(rx_ring), |
| <------><------><------><------> DMA_FROM_DEVICE, ICE_RX_DMA_ATTR); |
| |
| <------> |
| <------> * there isn't much point in holding memory we can't use |
| <------> */ |
| <------>if (dma_mapping_error(rx_ring->dev, dma)) { |
| <------><------>__free_pages(page, ice_rx_pg_order(rx_ring)); |
| <------><------>rx_ring->rx_stats.alloc_page_failed++; |
| <------><------>return false; |
| <------>} |
| |
| <------>bi->dma = dma; |
| <------>bi->page = page; |
| <------>bi->page_offset = ice_rx_offset(rx_ring); |
| <------>page_ref_add(page, USHRT_MAX - 1); |
| <------>bi->pagecnt_bias = USHRT_MAX; |
| |
| <------>return true; |
| } |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| bool ice_alloc_rx_bufs(struct ice_ring *rx_ring, u16 cleaned_count) |
| { |
| <------>union ice_32b_rx_flex_desc *rx_desc; |
| <------>u16 ntu = rx_ring->next_to_use; |
| <------>struct ice_rx_buf *bi; |
| |
| <------> |
| <------>if ((!rx_ring->netdev && rx_ring->vsi->type != ICE_VSI_CTRL) || |
| <------> !cleaned_count) |
| <------><------>return false; |
| |
| <------> |
| <------>rx_desc = ICE_RX_DESC(rx_ring, ntu); |
| <------>bi = &rx_ring->rx_buf[ntu]; |
| |
| <------>do { |
| <------><------> |
| <------><------>if (!ice_alloc_mapped_page(rx_ring, bi)) |
| <------><------><------>break; |
| |
| <------><------> |
| <------><------>dma_sync_single_range_for_device(rx_ring->dev, bi->dma, |
| <------><------><------><------><------><------> bi->page_offset, |
| <------><------><------><------><------><------> rx_ring->rx_buf_len, |
| <------><------><------><------><------><------> DMA_FROM_DEVICE); |
| |
| <------><------> |
| <------><------> * because each write-back erases this info. |
| <------><------> */ |
| <------><------>rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); |
| |
| <------><------>rx_desc++; |
| <------><------>bi++; |
| <------><------>ntu++; |
| <------><------>if (unlikely(ntu == rx_ring->count)) { |
| <------><------><------>rx_desc = ICE_RX_DESC(rx_ring, 0); |
| <------><------><------>bi = rx_ring->rx_buf; |
| <------><------><------>ntu = 0; |
| <------><------>} |
| |
| <------><------> |
| <------><------>rx_desc->wb.status_error0 = 0; |
| |
| <------><------>cleaned_count--; |
| <------>} while (cleaned_count); |
| |
| <------>if (rx_ring->next_to_use != ntu) |
| <------><------>ice_release_rx_desc(rx_ring, ntu); |
| |
| <------>return !!cleaned_count; |
| } |
| |
| |
| |
| |
| |
| static bool ice_page_is_reserved(struct page *page) |
| { |
| <------>return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page); |
| } |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| static void |
| ice_rx_buf_adjust_pg_offset(struct ice_rx_buf *rx_buf, unsigned int size) |
| { |
| #if (PAGE_SIZE < 8192) |
| <------> |
| <------>rx_buf->page_offset ^= size; |
| #else |
| <------> |
| <------>rx_buf->page_offset += size; |
| #endif |
| } |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| static bool |
| ice_can_reuse_rx_page(struct ice_rx_buf *rx_buf, int rx_buf_pgcnt) |
| { |
| <------>unsigned int pagecnt_bias = rx_buf->pagecnt_bias; |
| <------>struct page *page = rx_buf->page; |
| |
| <------> |
| <------>if (unlikely(ice_page_is_reserved(page))) |
| <------><------>return false; |
| |
| #if (PAGE_SIZE < 8192) |
| <------> |
| <------>if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1)) |
| <------><------>return false; |
| #else |
| #define ICE_LAST_OFFSET \ |
| <------>(SKB_WITH_OVERHEAD(PAGE_SIZE) - ICE_RXBUF_2048) |
| <------>if (rx_buf->page_offset > ICE_LAST_OFFSET) |
| <------><------>return false; |
| #endif |
| |
| <------> |
| <------> * the pagecnt_bias and page count so that we fully restock the |
| <------> * number of references the driver holds. |
| <------> */ |
| <------>if (unlikely(pagecnt_bias == 1)) { |
| <------><------>page_ref_add(page, USHRT_MAX - 1); |
| <------><------>rx_buf->pagecnt_bias = USHRT_MAX; |
| <------>} |
| |
| <------>return true; |
| } |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| static void |
| ice_add_rx_frag(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf, |
| <------><------>struct sk_buff *skb, unsigned int size) |
| { |
| #if (PAGE_SIZE >= 8192) |
| <------>unsigned int truesize = SKB_DATA_ALIGN(size + ice_rx_offset(rx_ring)); |
| #else |
| <------>unsigned int truesize = ice_rx_pg_size(rx_ring) / 2; |
| #endif |
| |
| <------>if (!size) |
| <------><------>return; |
| <------>skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buf->page, |
| <------><------><------>rx_buf->page_offset, size, truesize); |
| |
| <------> |
| <------>ice_rx_buf_adjust_pg_offset(rx_buf, truesize); |
| } |
| |
| |
| |
| |
| |
| |
| |
| |
| static void |
| ice_reuse_rx_page(struct ice_ring *rx_ring, struct ice_rx_buf *old_buf) |
| { |
| <------>u16 nta = rx_ring->next_to_alloc; |
| <------>struct ice_rx_buf *new_buf; |
| |
| <------>new_buf = &rx_ring->rx_buf[nta]; |
| |
| <------> |
| <------>nta++; |
| <------>rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; |
| |
| <------> |
| <------> * Move each member individually to avoid possible store |
| <------> * forwarding stalls and unnecessary copy of skb. |
| <------> */ |
| <------>new_buf->dma = old_buf->dma; |
| <------>new_buf->page = old_buf->page; |
| <------>new_buf->page_offset = old_buf->page_offset; |
| <------>new_buf->pagecnt_bias = old_buf->pagecnt_bias; |
| } |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| static struct ice_rx_buf * |
| ice_get_rx_buf(struct ice_ring *rx_ring, struct sk_buff **skb, |
| <------> const unsigned int size, int *rx_buf_pgcnt) |
| { |
| <------>struct ice_rx_buf *rx_buf; |
| |
| <------>rx_buf = &rx_ring->rx_buf[rx_ring->next_to_clean]; |
| <------>*rx_buf_pgcnt = |
| #if (PAGE_SIZE < 8192) |
| <------><------>page_count(rx_buf->page); |
| #else |
| <------><------>0; |
| #endif |
| <------>prefetchw(rx_buf->page); |
| <------>*skb = rx_buf->skb; |
| |
| <------>if (!size) |
| <------><------>return rx_buf; |
| <------> |
| <------>dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma, |
| <------><------><------><------> rx_buf->page_offset, size, |
| <------><------><------><------> DMA_FROM_DEVICE); |
| |
| <------> |
| <------>rx_buf->pagecnt_bias--; |
| |
| <------>return rx_buf; |
| } |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| static struct sk_buff * |
| ice_build_skb(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf, |
| <------> struct xdp_buff *xdp) |
| { |
| <------>u8 metasize = xdp->data - xdp->data_meta; |
| #if (PAGE_SIZE < 8192) |
| <------>unsigned int truesize = ice_rx_pg_size(rx_ring) / 2; |
| #else |
| <------>unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + |
| <------><------><------><------>SKB_DATA_ALIGN(xdp->data_end - |
| <------><------><------><------><------> xdp->data_hard_start); |
| #endif |
| <------>struct sk_buff *skb; |
| |
| <------> |
| <------> * is unused, this points exactly as xdp->data, otherwise we |
| <------> * likely have a consumer accessing first few bytes of meta |
| <------> * data, and then actual data. |
| <------> */ |
| <------>net_prefetch(xdp->data_meta); |
| <------> |
| <------>skb = build_skb(xdp->data_hard_start, truesize); |
| <------>if (unlikely(!skb)) |
| <------><------>return NULL; |
| |
| <------> |
| <------> * symmetric queue won't work |
| <------> */ |
| <------>skb_record_rx_queue(skb, rx_ring->q_index); |
| |
| <------> |
| <------>skb_reserve(skb, xdp->data - xdp->data_hard_start); |
| <------>__skb_put(skb, xdp->data_end - xdp->data); |
| <------>if (metasize) |
| <------><------>skb_metadata_set(skb, metasize); |
| |
| <------> |
| <------>ice_rx_buf_adjust_pg_offset(rx_buf, truesize); |
| |
| <------>return skb; |
| } |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| static struct sk_buff * |
| ice_construct_skb(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf, |
| <------><------> struct xdp_buff *xdp) |
| { |
| <------>unsigned int size = xdp->data_end - xdp->data; |
| <------>unsigned int headlen; |
| <------>struct sk_buff *skb; |
| |
| <------> |
| <------>net_prefetch(xdp->data); |
| |
| <------> |
| <------>skb = __napi_alloc_skb(&rx_ring->q_vector->napi, ICE_RX_HDR_SIZE, |
| <------><------><------> GFP_ATOMIC | __GFP_NOWARN); |
| <------>if (unlikely(!skb)) |
| <------><------>return NULL; |
| |
| <------>skb_record_rx_queue(skb, rx_ring->q_index); |
| <------> |
| <------>headlen = size; |
| <------>if (headlen > ICE_RX_HDR_SIZE) |
| <------><------>headlen = eth_get_headlen(skb->dev, xdp->data, ICE_RX_HDR_SIZE); |
| |
| <------> |
| <------>memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen, |
| <------><------><------><------><------><------><------> sizeof(long))); |
| |
| <------> |
| <------>size -= headlen; |
| <------>if (size) { |
| #if (PAGE_SIZE >= 8192) |
| <------><------>unsigned int truesize = SKB_DATA_ALIGN(size); |
| #else |
| <------><------>unsigned int truesize = ice_rx_pg_size(rx_ring) / 2; |
| #endif |
| <------><------>skb_add_rx_frag(skb, 0, rx_buf->page, |
| <------><------><------><------>rx_buf->page_offset + headlen, size, truesize); |
| <------><------> |
| <------><------>ice_rx_buf_adjust_pg_offset(rx_buf, truesize); |
| <------>} else { |
| <------><------> |
| <------><------> * onto skb's linear part so there's no need for adjusting |
| <------><------> * page offset and we can reuse this buffer as-is |
| <------><------> */ |
| <------><------>rx_buf->pagecnt_bias++; |
| <------>} |
| |
| <------>return skb; |
| } |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| static void |
| ice_put_rx_buf(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf, |
| <------> int rx_buf_pgcnt) |
| { |
| <------>u16 ntc = rx_ring->next_to_clean + 1; |
| |
| <------> |
| <------>ntc = (ntc < rx_ring->count) ? ntc : 0; |
| <------>rx_ring->next_to_clean = ntc; |
| |
| <------>if (!rx_buf) |
| <------><------>return; |
| |
| <------>if (ice_can_reuse_rx_page(rx_buf, rx_buf_pgcnt)) { |
| <------><------> |
| <------><------>ice_reuse_rx_page(rx_ring, rx_buf); |
| <------>} else { |
| <------><------> |
| <------><------>dma_unmap_page_attrs(rx_ring->dev, rx_buf->dma, |
| <------><------><------><------> ice_rx_pg_size(rx_ring), DMA_FROM_DEVICE, |
| <------><------><------><------> ICE_RX_DMA_ATTR); |
| <------><------>__page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias); |
| <------>} |
| |
| <------> |
| <------>rx_buf->page = NULL; |
| <------>rx_buf->skb = NULL; |
| } |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| static bool |
| ice_is_non_eop(struct ice_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc, |
| <------> struct sk_buff *skb) |
| { |
| <------> |
| #define ICE_RXD_EOF BIT(ICE_RX_FLEX_DESC_STATUS0_EOF_S) |
| <------>if (likely(ice_test_staterr(rx_desc, ICE_RXD_EOF))) |
| <------><------>return false; |
| |
| <------> |
| <------>rx_ring->rx_buf[rx_ring->next_to_clean].skb = skb; |
| <------>rx_ring->rx_stats.non_eop_descs++; |
| |
| <------>return true; |
| } |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| int ice_clean_rx_irq(struct ice_ring *rx_ring, int budget) |
| { |
| <------>unsigned int total_rx_bytes = 0, total_rx_pkts = 0; |
| <------>u16 cleaned_count = ICE_DESC_UNUSED(rx_ring); |
| <------>unsigned int xdp_res, xdp_xmit = 0; |
| <------>struct bpf_prog *xdp_prog = NULL; |
| <------>struct xdp_buff xdp; |
| <------>bool failure; |
| |
| <------>xdp.rxq = &rx_ring->xdp_rxq; |
| <------> |
| #if (PAGE_SIZE < 8192) |
| <------>xdp.frame_sz = ice_rx_frame_truesize(rx_ring, 0); |
| #endif |
| |
| <------> |
| <------>while (likely(total_rx_pkts < (unsigned int)budget)) { |
| <------><------>union ice_32b_rx_flex_desc *rx_desc; |
| <------><------>struct ice_rx_buf *rx_buf; |
| <------><------>struct sk_buff *skb; |
| <------><------>unsigned int size; |
| <------><------>u16 stat_err_bits; |
| <------><------>int rx_buf_pgcnt; |
| <------><------>u16 vlan_tag = 0; |
| <------><------>u8 rx_ptype; |
| |
| <------><------> |
| <------><------>rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean); |
| |
| <------><------> |
| <------><------> * because it's cleared in cleanup, and overlaps with hdr_addr |
| <------><------> * which is always zero because packet split isn't used, if the |
| <------><------> * hardware wrote DD then it will be non-zero |
| <------><------> */ |
| <------><------>stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S); |
| <------><------>if (!ice_test_staterr(rx_desc, stat_err_bits)) |
| <------><------><------>break; |
| |
| <------><------> |
| <------><------> * any other fields out of the rx_desc until we know the |
| <------><------> * DD bit is set. |
| <------><------> */ |
| <------><------>dma_rmb(); |
| |
| <------><------>if (rx_desc->wb.rxdid == FDIR_DESC_RXDID || !rx_ring->netdev) { |
| <------><------><------>ice_put_rx_buf(rx_ring, NULL, 0); |
| <------><------><------>cleaned_count++; |
| <------><------><------>continue; |
| <------><------>} |
| |
| <------><------>size = le16_to_cpu(rx_desc->wb.pkt_len) & |
| <------><------><------>ICE_RX_FLX_DESC_PKT_LEN_M; |
| |
| <------><------> |
| <------><------>rx_buf = ice_get_rx_buf(rx_ring, &skb, size, &rx_buf_pgcnt); |
| |
| <------><------>if (!size) { |
| <------><------><------>xdp.data = NULL; |
| <------><------><------>xdp.data_end = NULL; |
| <------><------><------>xdp.data_hard_start = NULL; |
| <------><------><------>xdp.data_meta = NULL; |
| <------><------><------>goto construct_skb; |
| <------><------>} |
| |
| <------><------>xdp.data = page_address(rx_buf->page) + rx_buf->page_offset; |
| <------><------>xdp.data_hard_start = xdp.data - ice_rx_offset(rx_ring); |
| <------><------>xdp.data_meta = xdp.data; |
| <------><------>xdp.data_end = xdp.data + size; |
| #if (PAGE_SIZE > 4096) |
| <------><------> |
| <------><------>xdp.frame_sz = ice_rx_frame_truesize(rx_ring, size); |
| #endif |
| |
| <------><------>rcu_read_lock(); |
| <------><------>xdp_prog = READ_ONCE(rx_ring->xdp_prog); |
| <------><------>if (!xdp_prog) { |
| <------><------><------>rcu_read_unlock(); |
| <------><------><------>goto construct_skb; |
| <------><------>} |
| |
| <------><------>xdp_res = ice_run_xdp(rx_ring, &xdp, xdp_prog); |
| <------><------>rcu_read_unlock(); |
| <------><------>if (!xdp_res) |
| <------><------><------>goto construct_skb; |
| <------><------>if (xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR)) { |
| <------><------><------>xdp_xmit |= xdp_res; |
| <------><------><------>ice_rx_buf_adjust_pg_offset(rx_buf, xdp.frame_sz); |
| <------><------>} else { |
| <------><------><------>rx_buf->pagecnt_bias++; |
| <------><------>} |
| <------><------>total_rx_bytes += size; |
| <------><------>total_rx_pkts++; |
| |
| <------><------>cleaned_count++; |
| <------><------>ice_put_rx_buf(rx_ring, rx_buf, rx_buf_pgcnt); |
| <------><------>continue; |
| construct_skb: |
| <------><------>if (skb) { |
| <------><------><------>ice_add_rx_frag(rx_ring, rx_buf, skb, size); |
| <------><------>} else if (likely(xdp.data)) { |
| <------><------><------>if (ice_ring_uses_build_skb(rx_ring)) |
| <------><------><------><------>skb = ice_build_skb(rx_ring, rx_buf, &xdp); |
| <------><------><------>else |
| <------><------><------><------>skb = ice_construct_skb(rx_ring, rx_buf, &xdp); |
| <------><------>} |
| <------><------> |
| <------><------>if (!skb) { |
| <------><------><------>rx_ring->rx_stats.alloc_buf_failed++; |
| <------><------><------>if (rx_buf) |
| <------><------><------><------>rx_buf->pagecnt_bias++; |
| <------><------><------>break; |
| <------><------>} |
| |
| <------><------>ice_put_rx_buf(rx_ring, rx_buf, rx_buf_pgcnt); |
| <------><------>cleaned_count++; |
| |
| <------><------> |
| <------><------>if (ice_is_non_eop(rx_ring, rx_desc, skb)) |
| <------><------><------>continue; |
| |
| <------><------>stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S); |
| <------><------>if (unlikely(ice_test_staterr(rx_desc, stat_err_bits))) { |
| <------><------><------>dev_kfree_skb_any(skb); |
| <------><------><------>continue; |
| <------><------>} |
| |
| <------><------>stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S); |
| <------><------>if (ice_test_staterr(rx_desc, stat_err_bits)) |
| <------><------><------>vlan_tag = le16_to_cpu(rx_desc->wb.l2tag1); |
| |
| <------><------> |
| <------><------>if (eth_skb_pad(skb)) { |
| <------><------><------>skb = NULL; |
| <------><------><------>continue; |
| <------><------>} |
| |
| <------><------> |
| <------><------>total_rx_bytes += skb->len; |
| |
| <------><------> |
| <------><------>rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) & |
| <------><------><------>ICE_RX_FLEX_DESC_PTYPE_M; |
| |
| <------><------>ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype); |
| |
| <------><------> |
| <------><------>ice_receive_skb(rx_ring, skb, vlan_tag); |
| |
| <------><------> |
| <------><------>total_rx_pkts++; |
| <------>} |
| |
| <------> |
| <------>failure = ice_alloc_rx_bufs(rx_ring, cleaned_count); |
| |
| <------>if (xdp_prog) |
| <------><------>ice_finalize_xdp_rx(rx_ring, xdp_xmit); |
| |
| <------>ice_update_rx_ring_stats(rx_ring, total_rx_pkts, total_rx_bytes); |
| |
| <------> |
| <------>return failure ? budget : (int)total_rx_pkts; |
| } |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| static unsigned int |
| ice_adjust_itr_by_size_and_speed(struct ice_port_info *port_info, |
| <------><------><------><------> unsigned int avg_pkt_size, |
| <------><------><------><------> unsigned int itr) |
| { |
| <------>switch (port_info->phy.link_info.link_speed) { |
| <------>case ICE_AQ_LINK_SPEED_100GB: |
| <------><------>itr += DIV_ROUND_UP(17 * (avg_pkt_size + 24), |
| <------><------><------><------> avg_pkt_size + 640); |
| <------><------>break; |
| <------>case ICE_AQ_LINK_SPEED_50GB: |
| <------><------>itr += DIV_ROUND_UP(34 * (avg_pkt_size + 24), |
| <------><------><------><------> avg_pkt_size + 640); |
| <------><------>break; |
| <------>case ICE_AQ_LINK_SPEED_40GB: |
| <------><------>itr += DIV_ROUND_UP(43 * (avg_pkt_size + 24), |
| <------><------><------><------> avg_pkt_size + 640); |
| <------><------>break; |
| <------>case ICE_AQ_LINK_SPEED_25GB: |
| <------><------>itr += DIV_ROUND_UP(68 * (avg_pkt_size + 24), |
| <------><------><------><------> avg_pkt_size + 640); |
| <------><------>break; |
| <------>case ICE_AQ_LINK_SPEED_20GB: |
| <------><------>itr += DIV_ROUND_UP(85 * (avg_pkt_size + 24), |
| <------><------><------><------> avg_pkt_size + 640); |
| <------><------>break; |
| <------>case ICE_AQ_LINK_SPEED_10GB: |
| <------>default: |
| <------><------>itr += DIV_ROUND_UP(170 * (avg_pkt_size + 24), |
| <------><------><------><------> avg_pkt_size + 640); |
| <------><------>break; |
| <------>} |
| |
| <------>if ((itr & ICE_ITR_MASK) > ICE_ITR_ADAPTIVE_MAX_USECS) { |
| <------><------>itr &= ICE_ITR_ADAPTIVE_LATENCY; |
| <------><------>itr += ICE_ITR_ADAPTIVE_MAX_USECS; |
| <------>} |
| |
| <------>return itr; |
| } |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| static void |
| ice_update_itr(struct ice_q_vector *q_vector, struct ice_ring_container *rc) |
| { |
| <------>unsigned long next_update = jiffies; |
| <------>unsigned int packets, bytes, itr; |
| <------>bool container_is_rx; |
| |
| <------>if (!rc->ring || !ITR_IS_DYNAMIC(rc->itr_setting)) |
| <------><------>return; |
| |
| <------> |
| <------> * the last 4 interrupt cycles. This has a side effect of us |
| <------> * potentially firing an early interrupt. In order to work around |
| <------> * this we need to throw out any data received for a few |
| <------> * interrupts following the update. |
| <------> */ |
| <------>if (q_vector->itr_countdown) { |
| <------><------>itr = rc->target_itr; |
| <------><------>goto clear_counts; |
| <------>} |
| |
| <------>container_is_rx = (&q_vector->rx == rc); |
| <------> |
| <------> * for Tx we want to pull the delay down and default to high latency. |
| <------> */ |
| <------>itr = container_is_rx ? |
| <------><------>ICE_ITR_ADAPTIVE_MIN_USECS | ICE_ITR_ADAPTIVE_LATENCY : |
| <------><------>ICE_ITR_ADAPTIVE_MAX_USECS | ICE_ITR_ADAPTIVE_LATENCY; |
| |
| <------> |
| <------> * that either packets are coming in so slow there hasn't been |
| <------> * any work, or that there is so much work that NAPI is dealing |
| <------> * with interrupt moderation and we don't need to do anything. |
| <------> */ |
| <------>if (time_after(next_update, rc->next_update)) |
| <------><------>goto clear_counts; |
| |
| <------>prefetch(q_vector->vsi->port_info); |
| |
| <------>packets = rc->total_pkts; |
| <------>bytes = rc->total_bytes; |
| |
| <------>if (container_is_rx) { |
| <------><------> |
| <------><------> * 9000 assume insufficient data to use bulk rate limiting |
| <------><------> * approach unless Tx is already in bulk rate limiting. We |
| <------><------> * are likely latency driven. |
| <------><------> */ |
| <------><------>if (packets && packets < 4 && bytes < 9000 && |
| <------><------> (q_vector->tx.target_itr & ICE_ITR_ADAPTIVE_LATENCY)) { |
| <------><------><------>itr = ICE_ITR_ADAPTIVE_LATENCY; |
| <------><------><------>goto adjust_by_size_and_speed; |
| <------><------>} |
| <------>} else if (packets < 4) { |
| <------><------> |
| <------><------> * bulk mode and we are receiving 4 or fewer packets just |
| <------><------> * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so |
| <------><------> * that the Rx can relax. |
| <------><------> */ |
| <------><------>if (rc->target_itr == ICE_ITR_ADAPTIVE_MAX_USECS && |
| <------><------> (q_vector->rx.target_itr & ICE_ITR_MASK) == |
| <------><------> ICE_ITR_ADAPTIVE_MAX_USECS) |
| <------><------><------>goto clear_counts; |
| <------>} else if (packets > 32) { |
| <------><------> |
| <------><------> * for Tx assume we need to switch over to "bulk" mode. |
| <------><------> */ |
| <------><------>rc->target_itr &= ~ICE_ITR_ADAPTIVE_LATENCY; |
| <------>} |
| |
| <------> |
| <------> * either one of the other queues on this vector is active or |
| <------> * we are a Tx queue doing TSO with too high of an interrupt rate. |
| <------> * |
| <------> * Between 4 and 56 we can assume that our current interrupt delay |
| <------> * is only slightly too low. As such we should increase it by a small |
| <------> * fixed amount. |
| <------> */ |
| <------>if (packets < 56) { |
| <------><------>itr = rc->target_itr + ICE_ITR_ADAPTIVE_MIN_INC; |
| <------><------>if ((itr & ICE_ITR_MASK) > ICE_ITR_ADAPTIVE_MAX_USECS) { |
| <------><------><------>itr &= ICE_ITR_ADAPTIVE_LATENCY; |
| <------><------><------>itr += ICE_ITR_ADAPTIVE_MAX_USECS; |
| <------><------>} |
| <------><------>goto clear_counts; |
| <------>} |
| |
| <------>if (packets <= 256) { |
| <------><------>itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr); |
| <------><------>itr &= ICE_ITR_MASK; |
| |
| <------><------> |
| <------><------> * working out "just right". Just report that our current |
| <------><------> * ITR is good for us. |
| <------><------> */ |
| <------><------>if (packets <= 112) |
| <------><------><------>goto clear_counts; |
| |
| <------><------> |
| <------><------> * at a slight overrun of the delay we want. Try halving |
| <------><------> * our delay to see if that will cut the number of packets |
| <------><------> * in half per interrupt. |
| <------><------> */ |
| <------><------>itr >>= 1; |
| <------><------>itr &= ICE_ITR_MASK; |
| <------><------>if (itr < ICE_ITR_ADAPTIVE_MIN_USECS) |
| <------><------><------>itr = ICE_ITR_ADAPTIVE_MIN_USECS; |
| |
| <------><------>goto clear_counts; |
| <------>} |
| |
| <------> |
| <------> * number of packets is greater than 256. We are just going to have |
| <------> * to compute a value and try to bring the count under control, |
| <------> * though for smaller packet sizes there isn't much we can do as |
| <------> * NAPI polling will likely be kicking in sooner rather than later. |
| <------> */ |
| <------>itr = ICE_ITR_ADAPTIVE_BULK; |
| |
| adjust_by_size_and_speed: |
| |
| <------> |
| <------>itr = ice_adjust_itr_by_size_and_speed(q_vector->vsi->port_info, |
| <------><------><------><------><------> bytes / packets, itr); |
| |
| clear_counts: |
| <------> |
| <------>rc->target_itr = itr; |
| |
| <------> |
| <------>rc->next_update = next_update + 1; |
| |
| <------>rc->total_bytes = 0; |
| <------>rc->total_pkts = 0; |
| } |
| |
| |
| |
| |
| |
| |
| static u32 ice_buildreg_itr(u16 itr_idx, u16 itr) |
| { |
| <------> |
| <------> * recorded in 2 microsecond units. For this reason we only need to |
| <------> * shift by the GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S to apply this |
| <------> * granularity as a shift instead of division. The mask makes sure the |
| <------> * ITR value is never odd so we don't accidentally write into the field |
| <------> * prior to the ITR field. |
| <------> */ |
| <------>itr &= ICE_ITR_MASK; |
| |
| <------>return GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M | |
| <------><------>(itr_idx << GLINT_DYN_CTL_ITR_INDX_S) | |
| <------><------>(itr << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S)); |
| } |
| |
| |
| |
| |
| |
| |
| |
| |
| #define ITR_COUNTDOWN_START 3 |
| |
| |
| |
| |
| |
| static void ice_update_ena_itr(struct ice_q_vector *q_vector) |
| { |
| <------>struct ice_ring_container *tx = &q_vector->tx; |
| <------>struct ice_ring_container *rx = &q_vector->rx; |
| <------>struct ice_vsi *vsi = q_vector->vsi; |
| <------>u32 itr_val; |
| |
| <------> |
| <------> * interrupts to expire right away in case we have more work ready to go |
| <------> * already |
| <------> */ |
| <------>if (q_vector->itr_countdown == ICE_IN_WB_ON_ITR_MODE) { |
| <------><------>itr_val = ice_buildreg_itr(rx->itr_idx, ICE_WB_ON_ITR_USECS); |
| <------><------>wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), itr_val); |
| <------><------> |
| <------><------>rx->target_itr = rx->itr_setting; |
| <------><------> |
| <------><------>rx->current_itr = ICE_WB_ON_ITR_USECS | |
| <------><------><------>(rx->itr_setting & ICE_ITR_DYNAMIC); |
| <------><------> |
| <------><------>q_vector->itr_countdown = 0; |
| <------><------>return; |
| <------>} |
| |
| <------> |
| <------>ice_update_itr(q_vector, tx); |
| <------>ice_update_itr(q_vector, rx); |
| |
| <------> |
| <------> * one ITR value with each interrupt. The idea is to perform a |
| <------> * pseudo-lazy update with the following criteria. |
| <------> * |
| <------> * 1. Rx is given higher priority than Tx if both are in same state |
| <------> * 2. If we must reduce an ITR that is given highest priority. |
| <------> * 3. We then give priority to increasing ITR based on amount. |
| <------> */ |
| <------>if (rx->target_itr < rx->current_itr) { |
| <------><------> |
| <------><------>itr_val = ice_buildreg_itr(rx->itr_idx, rx->target_itr); |
| <------><------>rx->current_itr = rx->target_itr; |
| <------><------>q_vector->itr_countdown = ITR_COUNTDOWN_START; |
| <------>} else if ((tx->target_itr < tx->current_itr) || |
| <------><------> ((rx->target_itr - rx->current_itr) < |
| <------><------> (tx->target_itr - tx->current_itr))) { |
| <------><------> |
| <------><------> * Tx ITR needs to be increased more than Rx, fourth priority |
| <------><------> */ |
| <------><------>itr_val = ice_buildreg_itr(tx->itr_idx, tx->target_itr); |
| <------><------>tx->current_itr = tx->target_itr; |
| <------><------>q_vector->itr_countdown = ITR_COUNTDOWN_START; |
| <------>} else if (rx->current_itr != rx->target_itr) { |
| <------><------> |
| <------><------>itr_val = ice_buildreg_itr(rx->itr_idx, rx->target_itr); |
| <------><------>rx->current_itr = rx->target_itr; |
| <------><------>q_vector->itr_countdown = ITR_COUNTDOWN_START; |
| <------>} else { |
| <------><------> |
| <------><------>itr_val = ice_buildreg_itr(ICE_ITR_NONE, 0); |
| <------><------>if (q_vector->itr_countdown) |
| <------><------><------>q_vector->itr_countdown--; |
| <------>} |
| |
| <------>if (!test_bit(__ICE_DOWN, q_vector->vsi->state)) |
| <------><------>wr32(&q_vector->vsi->back->hw, |
| <------><------> GLINT_DYN_CTL(q_vector->reg_idx), |
| <------><------> itr_val); |
| } |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| static void ice_set_wb_on_itr(struct ice_q_vector *q_vector) |
| { |
| <------>struct ice_vsi *vsi = q_vector->vsi; |
| |
| <------> |
| <------>if (q_vector->itr_countdown == ICE_IN_WB_ON_ITR_MODE) |
| <------><------>return; |
| |
| <------>if (q_vector->num_ring_rx) |
| <------><------>wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), |
| <------><------> ICE_GLINT_DYN_CTL_WB_ON_ITR(ICE_WB_ON_ITR_USECS, |
| <------><------><------><------><------><------> ICE_RX_ITR)); |
| |
| <------>if (q_vector->num_ring_tx) |
| <------><------>wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), |
| <------><------> ICE_GLINT_DYN_CTL_WB_ON_ITR(ICE_WB_ON_ITR_USECS, |
| <------><------><------><------><------><------> ICE_TX_ITR)); |
| |
| <------>q_vector->itr_countdown = ICE_IN_WB_ON_ITR_MODE; |
| } |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| int ice_napi_poll(struct napi_struct *napi, int budget) |
| { |
| <------>struct ice_q_vector *q_vector = |
| <------><------><------><------>container_of(napi, struct ice_q_vector, napi); |
| <------>bool clean_complete = true; |
| <------>struct ice_ring *ring; |
| <------>int budget_per_ring; |
| <------>int work_done = 0; |
| |
| <------> |
| <------> * budget and be more aggressive about cleaning up the Tx descriptors. |
| <------> */ |
| <------>ice_for_each_ring(ring, q_vector->tx) { |
| <------><------>bool wd = ring->xsk_pool ? |
| <------><------><------> ice_clean_tx_irq_zc(ring, budget) : |
| <------><------><------> ice_clean_tx_irq(ring, budget); |
| |
| <------><------>if (!wd) |
| <------><------><------>clean_complete = false; |
| <------>} |
| |
| <------> |
| <------>if (unlikely(budget <= 0)) |
| <------><------>return budget; |
| |
| <------> |
| <------>if (unlikely(q_vector->num_ring_rx > 1)) |
| <------><------> |
| <------><------> * don't allow the budget to go below 1 because that would exit |
| <------><------> * polling early. |
| <------><------> */ |
| <------><------>budget_per_ring = max_t(int, budget / q_vector->num_ring_rx, 1); |
| <------>else |
| <------><------> |
| <------><------>budget_per_ring = budget; |
| |
| <------>ice_for_each_ring(ring, q_vector->rx) { |
| <------><------>int cleaned; |
| |
| <------><------> |
| <------><------> * comparison in the irq context instead of many inside the |
| <------><------> * ice_clean_rx_irq function and makes the codebase cleaner. |
| <------><------> */ |
| <------><------>cleaned = ring->xsk_pool ? |
| <------><------><------> ice_clean_rx_irq_zc(ring, budget_per_ring) : |
| <------><------><------> ice_clean_rx_irq(ring, budget_per_ring); |
| <------><------>work_done += cleaned; |
| <------><------> |
| <------><------>if (cleaned >= budget_per_ring) |
| <------><------><------>clean_complete = false; |
| <------>} |
| |
| <------> |
| <------>if (!clean_complete) |
| <------><------>return budget; |
| |
| <------> |
| <------> * poll us due to busy-polling |
| <------> */ |
| <------>if (likely(napi_complete_done(napi, work_done))) |
| <------><------>ice_update_ena_itr(q_vector); |
| <------>else |
| <------><------>ice_set_wb_on_itr(q_vector); |
| |
| <------>return min_t(int, work_done, budget - 1); |
| } |
| |
| |
| |
| |
| |
| |
| |
| |
| static int __ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size) |
| { |
| <------>netif_stop_subqueue(tx_ring->netdev, tx_ring->q_index); |
| <------> |
| <------>smp_mb(); |
| |
| <------> |
| <------>if (likely(ICE_DESC_UNUSED(tx_ring) < size)) |
| <------><------>return -EBUSY; |
| |
| <------> |
| <------>netif_start_subqueue(tx_ring->netdev, tx_ring->q_index); |
| <------>++tx_ring->tx_stats.restart_q; |
| <------>return 0; |
| } |
| |
| |
| |
| |
| |
| |
| |
| |
| static int ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size) |
| { |
| <------>if (likely(ICE_DESC_UNUSED(tx_ring) >= size)) |
| <------><------>return 0; |
| |
| <------>return __ice_maybe_stop_tx(tx_ring, size); |
| } |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| static void |
| ice_tx_map(struct ice_ring *tx_ring, struct ice_tx_buf *first, |
| <------> struct ice_tx_offload_params *off) |
| { |
| <------>u64 td_offset, td_tag, td_cmd; |
| <------>u16 i = tx_ring->next_to_use; |
| <------>unsigned int data_len, size; |
| <------>struct ice_tx_desc *tx_desc; |
| <------>struct ice_tx_buf *tx_buf; |
| <------>struct sk_buff *skb; |
| <------>skb_frag_t *frag; |
| <------>dma_addr_t dma; |
| |
| <------>td_tag = off->td_l2tag1; |
| <------>td_cmd = off->td_cmd; |
| <------>td_offset = off->td_offset; |
| <------>skb = first->skb; |
| |
| <------>data_len = skb->data_len; |
| <------>size = skb_headlen(skb); |
| |
| <------>tx_desc = ICE_TX_DESC(tx_ring, i); |
| |
| <------>if (first->tx_flags & ICE_TX_FLAGS_HW_VLAN) { |
| <------><------>td_cmd |= (u64)ICE_TX_DESC_CMD_IL2TAG1; |
| <------><------>td_tag = (first->tx_flags & ICE_TX_FLAGS_VLAN_M) >> |
| <------><------><------> ICE_TX_FLAGS_VLAN_S; |
| <------>} |
| |
| <------>dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); |
| |
| <------>tx_buf = first; |
| |
| <------>for (frag = &skb_shinfo(skb)->frags[0];; frag++) { |
| <------><------>unsigned int max_data = ICE_MAX_DATA_PER_TXD_ALIGNED; |
| |
| <------><------>if (dma_mapping_error(tx_ring->dev, dma)) |
| <------><------><------>goto dma_error; |
| |
| <------><------> |
| <------><------>dma_unmap_len_set(tx_buf, len, size); |
| <------><------>dma_unmap_addr_set(tx_buf, dma, dma); |
| |
| <------><------> |
| <------><------>max_data += -dma & (ICE_MAX_READ_REQ_SIZE - 1); |
| <------><------>tx_desc->buf_addr = cpu_to_le64(dma); |
| |
| <------><------> |
| <------><------> * can handle |
| <------><------> */ |
| <------><------>while (unlikely(size > ICE_MAX_DATA_PER_TXD)) { |
| <------><------><------>tx_desc->cmd_type_offset_bsz = |
| <------><------><------><------>ice_build_ctob(td_cmd, td_offset, max_data, |
| <------><------><------><------><------> td_tag); |
| |
| <------><------><------>tx_desc++; |
| <------><------><------>i++; |
| |
| <------><------><------>if (i == tx_ring->count) { |
| <------><------><------><------>tx_desc = ICE_TX_DESC(tx_ring, 0); |
| <------><------><------><------>i = 0; |
| <------><------><------>} |
| |
| <------><------><------>dma += max_data; |
| <------><------><------>size -= max_data; |
| |
| <------><------><------>max_data = ICE_MAX_DATA_PER_TXD_ALIGNED; |
| <------><------><------>tx_desc->buf_addr = cpu_to_le64(dma); |
| <------><------>} |
| |
| <------><------>if (likely(!data_len)) |
| <------><------><------>break; |
| |
| <------><------>tx_desc->cmd_type_offset_bsz = ice_build_ctob(td_cmd, td_offset, |
| <------><------><------><------><------><------><------> size, td_tag); |
| |
| <------><------>tx_desc++; |
| <------><------>i++; |
| |
| <------><------>if (i == tx_ring->count) { |
| <------><------><------>tx_desc = ICE_TX_DESC(tx_ring, 0); |
| <------><------><------>i = 0; |
| <------><------>} |
| |
| <------><------>size = skb_frag_size(frag); |
| <------><------>data_len -= size; |
| |
| <------><------>dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, |
| <------><------><------><------> DMA_TO_DEVICE); |
| |
| <------><------>tx_buf = &tx_ring->tx_buf[i]; |
| <------>} |
| |
| <------> |
| <------>netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); |
| |
| <------> |
| <------>skb_tx_timestamp(first->skb); |
| |
| <------>i++; |
| <------>if (i == tx_ring->count) |
| <------><------>i = 0; |
| |
| <------> |
| <------>td_cmd |= (u64)ICE_TXD_LAST_DESC_CMD; |
| <------>tx_desc->cmd_type_offset_bsz = |
| <------><------><------>ice_build_ctob(td_cmd, td_offset, size, td_tag); |
| |
| <------> |
| <------> * are new descriptors to fetch. |
| <------> * |
| <------> * We also use this memory barrier to make certain all of the |
| <------> * status bits have been updated before next_to_watch is written. |
| <------> */ |
| <------>wmb(); |
| |
| <------> |
| <------>first->next_to_watch = tx_desc; |
| |
| <------>tx_ring->next_to_use = i; |
| |
| <------>ice_maybe_stop_tx(tx_ring, DESC_NEEDED); |
| |
| <------> |
| <------>if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) |
| <------><------>writel(i, tx_ring->tail); |
| |
| <------>return; |
| |
| dma_error: |
| <------> |
| <------>for (;;) { |
| <------><------>tx_buf = &tx_ring->tx_buf[i]; |
| <------><------>ice_unmap_and_free_tx_buf(tx_ring, tx_buf); |
| <------><------>if (tx_buf == first) |
| <------><------><------>break; |
| <------><------>if (i == 0) |
| <------><------><------>i = tx_ring->count; |
| <------><------>i--; |
| <------>} |
| |
| <------>tx_ring->next_to_use = i; |
| } |
| |
| |
| |
| |
| |
| |
| |
| |
| static |
| int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off) |
| { |
| <------>u32 l4_len = 0, l3_len = 0, l2_len = 0; |
| <------>struct sk_buff *skb = first->skb; |
| <------>union { |
| <------><------>struct iphdr *v4; |
| <------><------>struct ipv6hdr *v6; |
| <------><------>unsigned char *hdr; |
| <------>} ip; |
| <------>union { |
| <------><------>struct tcphdr *tcp; |
| <------><------>unsigned char *hdr; |
| <------>} l4; |
| <------>__be16 frag_off, protocol; |
| <------>unsigned char *exthdr; |
| <------>u32 offset, cmd = 0; |
| <------>u8 l4_proto = 0; |
| |
| <------>if (skb->ip_summed != CHECKSUM_PARTIAL) |
| <------><------>return 0; |
| |
| <------>ip.hdr = skb_network_header(skb); |
| <------>l4.hdr = skb_transport_header(skb); |
| |
| <------> |
| <------>l2_len = ip.hdr - skb->data; |
| <------>offset = (l2_len / 2) << ICE_TX_DESC_LEN_MACLEN_S; |
| |
| <------>protocol = vlan_get_protocol(skb); |
| |
| <------>if (protocol == htons(ETH_P_IP)) |
| <------><------>first->tx_flags |= ICE_TX_FLAGS_IPV4; |
| <------>else if (protocol == htons(ETH_P_IPV6)) |
| <------><------>first->tx_flags |= ICE_TX_FLAGS_IPV6; |
| |
| <------>if (skb->encapsulation) { |
| <------><------>bool gso_ena = false; |
| <------><------>u32 tunnel = 0; |
| |
| <------><------> |
| <------><------>if (first->tx_flags & ICE_TX_FLAGS_IPV4) { |
| <------><------><------>tunnel |= (first->tx_flags & ICE_TX_FLAGS_TSO) ? |
| <------><------><------><------> ICE_TX_CTX_EIPT_IPV4 : |
| <------><------><------><------> ICE_TX_CTX_EIPT_IPV4_NO_CSUM; |
| <------><------><------>l4_proto = ip.v4->protocol; |
| <------><------>} else if (first->tx_flags & ICE_TX_FLAGS_IPV6) { |
| <------><------><------>int ret; |
| |
| <------><------><------>tunnel |= ICE_TX_CTX_EIPT_IPV6; |
| <------><------><------>exthdr = ip.hdr + sizeof(*ip.v6); |
| <------><------><------>l4_proto = ip.v6->nexthdr; |
| <------><------><------>ret = ipv6_skip_exthdr(skb, exthdr - skb->data, |
| <------><------><------><------><------> &l4_proto, &frag_off); |
| <------><------><------>if (ret < 0) |
| <------><------><------><------>return -1; |
| <------><------>} |
| |
| <------><------> |
| <------><------>switch (l4_proto) { |
| <------><------>case IPPROTO_UDP: |
| <------><------><------>tunnel |= ICE_TXD_CTX_UDP_TUNNELING; |
| <------><------><------>first->tx_flags |= ICE_TX_FLAGS_TUNNEL; |
| <------><------><------>break; |
| <------><------>case IPPROTO_GRE: |
| <------><------><------>tunnel |= ICE_TXD_CTX_GRE_TUNNELING; |
| <------><------><------>first->tx_flags |= ICE_TX_FLAGS_TUNNEL; |
| <------><------><------>break; |
| <------><------>case IPPROTO_IPIP: |
| <------><------>case IPPROTO_IPV6: |
| <------><------><------>first->tx_flags |= ICE_TX_FLAGS_TUNNEL; |
| <------><------><------>l4.hdr = skb_inner_network_header(skb); |
| <------><------><------>break; |
| <------><------>default: |
| <------><------><------>if (first->tx_flags & ICE_TX_FLAGS_TSO) |
| <------><------><------><------>return -1; |
| |
| <------><------><------>skb_checksum_help(skb); |
| <------><------><------>return 0; |
| <------><------>} |
| |
| <------><------> |
| <------><------>tunnel |= ((l4.hdr - ip.hdr) / 4) << |
| <------><------><------> ICE_TXD_CTX_QW0_EIPLEN_S; |
| |
| <------><------> |
| <------><------>ip.hdr = skb_inner_network_header(skb); |
| |
| <------><------> |
| <------><------>tunnel |= ((ip.hdr - l4.hdr) / 2) << |
| <------><------><------> ICE_TXD_CTX_QW0_NATLEN_S; |
| |
| <------><------>gso_ena = skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL; |
| <------><------> |
| <------><------>if ((first->tx_flags & ICE_TX_FLAGS_TSO) && !gso_ena && |
| <------><------> (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) |
| <------><------><------>tunnel |= ICE_TXD_CTX_QW0_L4T_CS_M; |
| |
| <------><------> |
| <------><------>off->cd_tunnel_params |= tunnel; |
| |
| <------><------> |
| <------><------> * in IPsec tunnel mode with Tx offloads in Quad word 1 |
| <------><------> */ |
| <------><------>off->cd_qw1 |= (u64)ICE_TX_DESC_DTYPE_CTX; |
| |
| <------><------> |
| <------><------>l4.hdr = skb_inner_transport_header(skb); |
| <------><------>l4_proto = 0; |
| |
| <------><------> |
| <------><------>first->tx_flags &= ~(ICE_TX_FLAGS_IPV4 | ICE_TX_FLAGS_IPV6); |
| <------><------>if (ip.v4->version == 4) |
| <------><------><------>first->tx_flags |= ICE_TX_FLAGS_IPV4; |
| <------><------>if (ip.v6->version == 6) |
| <------><------><------>first->tx_flags |= ICE_TX_FLAGS_IPV6; |
| <------>} |
| |
| <------> |
| <------>if (first->tx_flags & ICE_TX_FLAGS_IPV4) { |
| <------><------>l4_proto = ip.v4->protocol; |
| <------><------> |
| <------><------> * need the hardware to recompute it is in the case of TSO. |
| <------><------> */ |
| <------><------>if (first->tx_flags & ICE_TX_FLAGS_TSO) |
| <------><------><------>cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM; |
| <------><------>else |
| <------><------><------>cmd |= ICE_TX_DESC_CMD_IIPT_IPV4; |
| |
| <------>} else if (first->tx_flags & ICE_TX_FLAGS_IPV6) { |
| <------><------>cmd |= ICE_TX_DESC_CMD_IIPT_IPV6; |
| <------><------>exthdr = ip.hdr + sizeof(*ip.v6); |
| <------><------>l4_proto = ip.v6->nexthdr; |
| <------><------>if (l4.hdr != exthdr) |
| <------><------><------>ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto, |
| <------><------><------><------><------> &frag_off); |
| <------>} else { |
| <------><------>return -1; |
| <------>} |
| |
| <------> |
| <------>l3_len = l4.hdr - ip.hdr; |
| <------>offset |= (l3_len / 4) << ICE_TX_DESC_LEN_IPLEN_S; |
| |
| <------> |
| <------>switch (l4_proto) { |
| <------>case IPPROTO_TCP: |
| <------><------> |
| <------><------>cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP; |
| <------><------>l4_len = l4.tcp->doff; |
| <------><------>offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S; |
| <------><------>break; |
| <------>case IPPROTO_UDP: |
| <------><------> |
| <------><------>cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP; |
| <------><------>l4_len = (sizeof(struct udphdr) >> 2); |
| <------><------>offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S; |
| <------><------>break; |
| <------>case IPPROTO_SCTP: |
| <------><------> |
| <------><------>cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP; |
| <------><------>l4_len = sizeof(struct sctphdr) >> 2; |
| <------><------>offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S; |
| <------><------>break; |
| |
| <------>default: |
| <------><------>if (first->tx_flags & ICE_TX_FLAGS_TSO) |
| <------><------><------>return -1; |
| <------><------>skb_checksum_help(skb); |
| <------><------>return 0; |
| <------>} |
| |
| <------>off->td_cmd |= cmd; |
| <------>off->td_offset |= offset; |
| <------>return 1; |
| } |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| static void |
| ice_tx_prepare_vlan_flags(struct ice_ring *tx_ring, struct ice_tx_buf *first) |
| { |
| <------>struct sk_buff *skb = first->skb; |
| |
| <------> |
| <------>if (!skb_vlan_tag_present(skb) && eth_type_vlan(skb->protocol)) |
| <------><------>return; |
| |
| <------> |
| <------> * insertion for 802.1AD is not supported |
| <------> */ |
| <------>if (skb_vlan_tag_present(skb)) { |
| <------><------>first->tx_flags |= skb_vlan_tag_get(skb) << ICE_TX_FLAGS_VLAN_S; |
| <------><------>first->tx_flags |= ICE_TX_FLAGS_HW_VLAN; |
| <------>} |
| |
| <------>ice_tx_prepare_vlan_flags_dcb(tx_ring, first); |
| } |
| |
| |
| |
| |
| |
| |
| |
| |
| static |
| int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off) |
| { |
| <------>struct sk_buff *skb = first->skb; |
| <------>union { |
| <------><------>struct iphdr *v4; |
| <------><------>struct ipv6hdr *v6; |
| <------><------>unsigned char *hdr; |
| <------>} ip; |
| <------>union { |
| <------><------>struct tcphdr *tcp; |
| <------><------>struct udphdr *udp; |
| <------><------>unsigned char *hdr; |
| <------>} l4; |
| <------>u64 cd_mss, cd_tso_len; |
| <------>u32 paylen; |
| <------>u8 l4_start; |
| <------>int err; |
| |
| <------>if (skb->ip_summed != CHECKSUM_PARTIAL) |
| <------><------>return 0; |
| |
| <------>if (!skb_is_gso(skb)) |
| <------><------>return 0; |
| |
| <------>err = skb_cow_head(skb, 0); |
| <------>if (err < 0) |
| <------><------>return err; |
| |
| <------> |
| <------>ip.hdr = skb_network_header(skb); |
| <------>l4.hdr = skb_transport_header(skb); |
| |
| <------> |
| <------>if (ip.v4->version == 4) { |
| <------><------>ip.v4->tot_len = 0; |
| <------><------>ip.v4->check = 0; |
| <------>} else { |
| <------><------>ip.v6->payload_len = 0; |
| <------>} |
| |
| <------>if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE | |
| <------><------><------><------><------> SKB_GSO_GRE_CSUM | |
| <------><------><------><------><------> SKB_GSO_IPXIP4 | |
| <------><------><------><------><------> SKB_GSO_IPXIP6 | |
| <------><------><------><------><------> SKB_GSO_UDP_TUNNEL | |
| <------><------><------><------><------> SKB_GSO_UDP_TUNNEL_CSUM)) { |
| <------><------>if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) && |
| <------><------> (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) { |
| <------><------><------>l4.udp->len = 0; |
| |
| <------><------><------> |
| <------><------><------>l4_start = (u8)(l4.hdr - skb->data); |
| |
| <------><------><------> |
| <------><------><------>paylen = skb->len - l4_start; |
| <------><------><------>csum_replace_by_diff(&l4.udp->check, |
| <------><------><------><------><------> (__force __wsum)htonl(paylen)); |
| <------><------>} |
| |
| <------><------> |
| |
| <------><------> |
| <------><------>ip.hdr = skb_inner_network_header(skb); |
| <------><------>l4.hdr = skb_inner_transport_header(skb); |
| |
| <------><------> |
| <------><------>if (ip.v4->version == 4) { |
| <------><------><------>ip.v4->tot_len = 0; |
| <------><------><------>ip.v4->check = 0; |
| <------><------>} else { |
| <------><------><------>ip.v6->payload_len = 0; |
| <------><------>} |
| <------>} |
| |
| <------> |
| <------>l4_start = (u8)(l4.hdr - skb->data); |
| |
| <------> |
| <------>paylen = skb->len - l4_start; |
| |
| <------>if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { |
| <------><------>csum_replace_by_diff(&l4.udp->check, |
| <------><------><------><------> (__force __wsum)htonl(paylen)); |
| <------><------> |
| <------><------>off->header_len = (u8)sizeof(l4.udp) + l4_start; |
| <------>} else { |
| <------><------>csum_replace_by_diff(&l4.tcp->check, |
| <------><------><------><------> (__force __wsum)htonl(paylen)); |
| <------><------> |
| <------><------>off->header_len = (u8)((l4.tcp->doff * 4) + l4_start); |
| <------>} |
| |
| <------> |
| <------>first->gso_segs = skb_shinfo(skb)->gso_segs; |
| <------>first->bytecount += (first->gso_segs - 1) * off->header_len; |
| |
| <------>cd_tso_len = skb->len - off->header_len; |
| <------>cd_mss = skb_shinfo(skb)->gso_size; |
| |
| <------> |
| <------>off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX | |
| <------><------><------> (ICE_TX_CTX_DESC_TSO << ICE_TXD_CTX_QW1_CMD_S) | |
| <------><------><------> (cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) | |
| <------><------><------> (cd_mss << ICE_TXD_CTX_QW1_MSS_S)); |
| <------>first->tx_flags |= ICE_TX_FLAGS_TSO; |
| <------>return 1; |
| } |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| static unsigned int ice_txd_use_count(unsigned int size) |
| { |
| <------>return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR; |
| } |
| |
| |
| |
| |
| |
| |
| |
| static unsigned int ice_xmit_desc_count(struct sk_buff *skb) |
| { |
| <------>const skb_frag_t *frag = &skb_shinfo(skb)->frags[0]; |
| <------>unsigned int nr_frags = skb_shinfo(skb)->nr_frags; |
| <------>unsigned int count = 0, size = skb_headlen(skb); |
| |
| <------>for (;;) { |
| <------><------>count += ice_txd_use_count(size); |
| |
| <------><------>if (!nr_frags--) |
| <------><------><------>break; |
| |
| <------><------>size = skb_frag_size(frag++); |
| <------>} |
| |
| <------>return count; |
| } |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| static bool __ice_chk_linearize(struct sk_buff *skb) |
| { |
| <------>const skb_frag_t *frag, *stale; |
| <------>int nr_frags, sum; |
| |
| <------> |
| <------>nr_frags = skb_shinfo(skb)->nr_frags; |
| <------>if (nr_frags < (ICE_MAX_BUF_TXD - 1)) |
| <------><------>return false; |
| |
| <------> |
| <------> * of 6 fragments totals at least gso_size. |
| <------> */ |
| <------>nr_frags -= ICE_MAX_BUF_TXD - 2; |
| <------>frag = &skb_shinfo(skb)->frags[0]; |
| |
| <------> |
| <------> * use this as the worst case scenario in which the frag ahead |
| <------> * of us only provides one byte which is why we are limited to 6 |
| <------> * descriptors for a single transmit as the header and previous |
| <------> * fragment are already consuming 2 descriptors. |
| <------> */ |
| <------>sum = 1 - skb_shinfo(skb)->gso_size; |
| |
| <------> |
| <------>sum += skb_frag_size(frag++); |
| <------>sum += skb_frag_size(frag++); |
| <------>sum += skb_frag_size(frag++); |
| <------>sum += skb_frag_size(frag++); |
| <------>sum += skb_frag_size(frag++); |
| |
| <------> |
| <------> * then removing stale fragments from the sum. |
| <------> */ |
| <------>for (stale = &skb_shinfo(skb)->frags[0];; stale++) { |
| <------><------>int stale_size = skb_frag_size(stale); |
| |
| <------><------>sum += skb_frag_size(frag++); |
| |
| <------><------> |
| <------><------> * descriptor than the actual fragment size. To account |
| <------><------> * for that we need to remove all the data on the front and |
| <------><------> * figure out what the remainder would be in the last |
| <------><------> * descriptor associated with the fragment. |
| <------><------> */ |
| <------><------>if (stale_size > ICE_MAX_DATA_PER_TXD) { |
| <------><------><------>int align_pad = -(skb_frag_off(stale)) & |
| <------><------><------><------><------>(ICE_MAX_READ_REQ_SIZE - 1); |
| |
| <------><------><------>sum -= align_pad; |
| <------><------><------>stale_size -= align_pad; |
| |
| <------><------><------>do { |
| <------><------><------><------>sum -= ICE_MAX_DATA_PER_TXD_ALIGNED; |
| <------><------><------><------>stale_size -= ICE_MAX_DATA_PER_TXD_ALIGNED; |
| <------><------><------>} while (stale_size > ICE_MAX_DATA_PER_TXD); |
| <------><------>} |
| |
| <------><------> |
| <------><------>if (sum < 0) |
| <------><------><------>return true; |
| |
| <------><------>if (!nr_frags--) |
| <------><------><------>break; |
| |
| <------><------>sum -= stale_size; |
| <------>} |
| |
| <------>return false; |
| } |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count) |
| { |
| <------> |
| <------>if (likely(count < ICE_MAX_BUF_TXD)) |
| <------><------>return false; |
| |
| <------>if (skb_is_gso(skb)) |
| <------><------>return __ice_chk_linearize(skb); |
| |
| <------> |
| <------>return count != ICE_MAX_BUF_TXD; |
| } |
| |
| |
| |
| |
| |
| |
| |
| |
| static netdev_tx_t |
| ice_xmit_frame_ring(struct sk_buff *skb, struct ice_ring *tx_ring) |
| { |
| <------>struct ice_tx_offload_params offload = { 0 }; |
| <------>struct ice_vsi *vsi = tx_ring->vsi; |
| <------>struct ice_tx_buf *first; |
| <------>struct ethhdr *eth; |
| <------>unsigned int count; |
| <------>int tso, csum; |
| |
| <------>count = ice_xmit_desc_count(skb); |
| <------>if (ice_chk_linearize(skb, count)) { |
| <------><------>if (__skb_linearize(skb)) |
| <------><------><------>goto out_drop; |
| <------><------>count = ice_txd_use_count(skb->len); |
| <------><------>tx_ring->tx_stats.tx_linearize++; |
| <------>} |
| |
| <------> |
| <------> * + 1 desc for skb_head_len/ICE_MAX_DATA_PER_TXD, |
| <------> * + 4 desc gap to avoid the cache line where head is, |
| <------> * + 1 desc for context descriptor, |
| <------> * otherwise try next time |
| <------> */ |
| <------>if (ice_maybe_stop_tx(tx_ring, count + ICE_DESCS_PER_CACHE_LINE + |
| <------><------><------> ICE_DESCS_FOR_CTX_DESC)) { |
| <------><------>tx_ring->tx_stats.tx_busy++; |
| <------><------>return NETDEV_TX_BUSY; |
| <------>} |
| |
| <------>offload.tx_ring = tx_ring; |
| |
| <------> |
| <------>first = &tx_ring->tx_buf[tx_ring->next_to_use]; |
| <------>first->skb = skb; |
| <------>first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN); |
| <------>first->gso_segs = 1; |
| <------>first->tx_flags = 0; |
| |
| <------> |
| <------>ice_tx_prepare_vlan_flags(tx_ring, first); |
| |
| <------> |
| <------>tso = ice_tso(first, &offload); |
| <------>if (tso < 0) |
| <------><------>goto out_drop; |
| |
| <------> |
| <------>csum = ice_tx_csum(first, &offload); |
| <------>if (csum < 0) |
| <------><------>goto out_drop; |
| |
| <------> |
| <------>eth = (struct ethhdr *)skb_mac_header(skb); |
| <------>if (unlikely((skb->priority == TC_PRIO_CONTROL || |
| <------><------> eth->h_proto == htons(ETH_P_LLDP)) && |
| <------><------> vsi->type == ICE_VSI_PF && |
| <------><------> vsi->port_info->qos_cfg.is_sw_lldp)) |
| <------><------>offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX | |
| <------><------><------><------><------>ICE_TX_CTX_DESC_SWTCH_UPLINK << |
| <------><------><------><------><------>ICE_TXD_CTX_QW1_CMD_S); |
| |
| <------>if (offload.cd_qw1 & ICE_TX_DESC_DTYPE_CTX) { |
| <------><------>struct ice_tx_ctx_desc *cdesc; |
| <------><------>u16 i = tx_ring->next_to_use; |
| |
| <------><------> |
| <------><------>cdesc = ICE_TX_CTX_DESC(tx_ring, i); |
| <------><------>i++; |
| <------><------>tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; |
| |
| <------><------> |
| <------><------>cdesc->tunneling_params = cpu_to_le32(offload.cd_tunnel_params); |
| <------><------>cdesc->l2tag2 = cpu_to_le16(offload.cd_l2tag2); |
| <------><------>cdesc->rsvd = cpu_to_le16(0); |
| <------><------>cdesc->qw1 = cpu_to_le64(offload.cd_qw1); |
| <------>} |
| |
| <------>ice_tx_map(tx_ring, first, &offload); |
| <------>return NETDEV_TX_OK; |
| |
| out_drop: |
| <------>dev_kfree_skb_any(skb); |
| <------>return NETDEV_TX_OK; |
| } |
| |
| |
| |
| |
| |
| |
| |
| |
| netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev) |
| { |
| <------>struct ice_netdev_priv *np = netdev_priv(netdev); |
| <------>struct ice_vsi *vsi = np->vsi; |
| <------>struct ice_ring *tx_ring; |
| |
| <------>tx_ring = vsi->tx_rings[skb->queue_mapping]; |
| |
| <------> |
| <------> * beyond this point |
| <------> */ |
| <------>if (skb_put_padto(skb, ICE_MIN_TX_LEN)) |
| <------><------>return NETDEV_TX_OK; |
| |
| <------>return ice_xmit_frame_ring(skb, tx_ring); |
| } |
| |
| |
| |
| |
| |
| void ice_clean_ctrl_tx_irq(struct ice_ring *tx_ring) |
| { |
| <------>struct ice_vsi *vsi = tx_ring->vsi; |
| <------>s16 i = tx_ring->next_to_clean; |
| <------>int budget = ICE_DFLT_IRQ_WORK; |
| <------>struct ice_tx_desc *tx_desc; |
| <------>struct ice_tx_buf *tx_buf; |
| |
| <------>tx_buf = &tx_ring->tx_buf[i]; |
| <------>tx_desc = ICE_TX_DESC(tx_ring, i); |
| <------>i -= tx_ring->count; |
| |
| <------>do { |
| <------><------>struct ice_tx_desc *eop_desc = tx_buf->next_to_watch; |
| |
| <------><------> |
| <------><------>if (!eop_desc) |
| <------><------><------>break; |
| |
| <------><------> |
| <------><------>smp_rmb(); |
| |
| <------><------> |
| <------><------>if (!(eop_desc->cmd_type_offset_bsz & |
| <------><------> cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE))) |
| <------><------><------>break; |
| |
| <------><------> |
| <------><------>tx_buf->next_to_watch = NULL; |
| <------><------>tx_desc->buf_addr = 0; |
| <------><------>tx_desc->cmd_type_offset_bsz = 0; |
| |
| <------><------> |
| <------><------>tx_buf++; |
| <------><------>tx_desc++; |
| <------><------>i++; |
| <------><------>if (unlikely(!i)) { |
| <------><------><------>i -= tx_ring->count; |
| <------><------><------>tx_buf = tx_ring->tx_buf; |
| <------><------><------>tx_desc = ICE_TX_DESC(tx_ring, 0); |
| <------><------>} |
| |
| <------><------> |
| <------><------>if (dma_unmap_len(tx_buf, len)) |
| <------><------><------>dma_unmap_single(tx_ring->dev, |
| <------><------><------><------><------> dma_unmap_addr(tx_buf, dma), |
| <------><------><------><------><------> dma_unmap_len(tx_buf, len), |
| <------><------><------><------><------> DMA_TO_DEVICE); |
| <------><------>if (tx_buf->tx_flags & ICE_TX_FLAGS_DUMMY_PKT) |
| <------><------><------>devm_kfree(tx_ring->dev, tx_buf->raw_buf); |
| |
| <------><------> |
| <------><------>tx_buf->raw_buf = NULL; |
| <------><------>tx_buf->tx_flags = 0; |
| <------><------>tx_buf->next_to_watch = NULL; |
| <------><------>dma_unmap_len_set(tx_buf, len, 0); |
| <------><------>tx_desc->buf_addr = 0; |
| <------><------>tx_desc->cmd_type_offset_bsz = 0; |
| |
| <------><------> |
| <------><------>tx_buf++; |
| <------><------>tx_desc++; |
| <------><------>i++; |
| <------><------>if (unlikely(!i)) { |
| <------><------><------>i -= tx_ring->count; |
| <------><------><------>tx_buf = tx_ring->tx_buf; |
| <------><------><------>tx_desc = ICE_TX_DESC(tx_ring, 0); |
| <------><------>} |
| |
| <------><------>budget--; |
| <------>} while (likely(budget)); |
| |
| <------>i += tx_ring->count; |
| <------>tx_ring->next_to_clean = i; |
| |
| <------> |
| <------>ice_irq_dynamic_ena(&vsi->back->hw, vsi, vsi->q_vectors[0]); |
| } |
| |