Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags   |
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2018, Intel Corporation. */
/* The driver transmit and receive code */
#include <linux/prefetch.h>
#include <linux/mm.h>
#include <linux/bpf_trace.h>
#include <net/xdp.h>
#include "ice_txrx_lib.h"
#include "ice_lib.h"
#include "ice.h"
#include "ice_dcb_lib.h"
#include "ice_xsk.h"
#define ICE_RX_HDR_SIZE 256
#define FDIR_DESC_RXDID 0x40
#define ICE_FDIR_CLEAN_DELAY 10
/**
* ice_prgm_fdir_fltr - Program a Flow Director filter
* @vsi: VSI to send dummy packet
* @fdir_desc: flow director descriptor
* @raw_packet: allocated buffer for flow director
*/
int
ice_prgm_fdir_fltr(struct ice_vsi *vsi, struct ice_fltr_desc *fdir_desc,
<------><------> u8 *raw_packet)
{
<------>struct ice_tx_buf *tx_buf, *first;
<------>struct ice_fltr_desc *f_desc;
<------>struct ice_tx_desc *tx_desc;
<------>struct ice_ring *tx_ring;
<------>struct device *dev;
<------>dma_addr_t dma;
<------>u32 td_cmd;
<------>u16 i;
<------>/* VSI and Tx ring */
<------>if (!vsi)
<------><------>return -ENOENT;
<------>tx_ring = vsi->tx_rings[0];
<------>if (!tx_ring || !tx_ring->desc)
<------><------>return -ENOENT;
<------>dev = tx_ring->dev;
<------>/* we are using two descriptors to add/del a filter and we can wait */
<------>for (i = ICE_FDIR_CLEAN_DELAY; ICE_DESC_UNUSED(tx_ring) < 2; i--) {
<------><------>if (!i)
<------><------><------>return -EAGAIN;
<------><------>msleep_interruptible(1);
<------>}
<------>dma = dma_map_single(dev, raw_packet, ICE_FDIR_MAX_RAW_PKT_SIZE,
<------><------><------> DMA_TO_DEVICE);
<------>if (dma_mapping_error(dev, dma))
<------><------>return -EINVAL;
<------>/* grab the next descriptor */
<------>i = tx_ring->next_to_use;
<------>first = &tx_ring->tx_buf[i];
<------>f_desc = ICE_TX_FDIRDESC(tx_ring, i);
<------>memcpy(f_desc, fdir_desc, sizeof(*f_desc));
<------>i++;
<------>i = (i < tx_ring->count) ? i : 0;
<------>tx_desc = ICE_TX_DESC(tx_ring, i);
<------>tx_buf = &tx_ring->tx_buf[i];
<------>i++;
<------>tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
<------>memset(tx_buf, 0, sizeof(*tx_buf));
<------>dma_unmap_len_set(tx_buf, len, ICE_FDIR_MAX_RAW_PKT_SIZE);
<------>dma_unmap_addr_set(tx_buf, dma, dma);
<------>tx_desc->buf_addr = cpu_to_le64(dma);
<------>td_cmd = ICE_TXD_LAST_DESC_CMD | ICE_TX_DESC_CMD_DUMMY |
<------><------> ICE_TX_DESC_CMD_RE;
<------>tx_buf->tx_flags = ICE_TX_FLAGS_DUMMY_PKT;
<------>tx_buf->raw_buf = raw_packet;
<------>tx_desc->cmd_type_offset_bsz =
<------><------>ice_build_ctob(td_cmd, 0, ICE_FDIR_MAX_RAW_PKT_SIZE, 0);
<------>/* Force memory write to complete before letting h/w know
<------> * there are new descriptors to fetch.
<------> */
<------>wmb();
<------>/* mark the data descriptor to be watched */
<------>first->next_to_watch = tx_desc;
<------>writel(tx_ring->next_to_use, tx_ring->tail);
<------>return 0;
}
/**
* ice_unmap_and_free_tx_buf - Release a Tx buffer
* @ring: the ring that owns the buffer
* @tx_buf: the buffer to free
*/
static void
ice_unmap_and_free_tx_buf(struct ice_ring *ring, struct ice_tx_buf *tx_buf)
{
<------>if (tx_buf->skb) {
<------><------>if (tx_buf->tx_flags & ICE_TX_FLAGS_DUMMY_PKT)
<------><------><------>devm_kfree(ring->dev, tx_buf->raw_buf);
<------><------>else if (ice_ring_is_xdp(ring))
<------><------><------>page_frag_free(tx_buf->raw_buf);
<------><------>else
<------><------><------>dev_kfree_skb_any(tx_buf->skb);
<------><------>if (dma_unmap_len(tx_buf, len))
<------><------><------>dma_unmap_single(ring->dev,
<------><------><------><------><------> dma_unmap_addr(tx_buf, dma),
<------><------><------><------><------> dma_unmap_len(tx_buf, len),
<------><------><------><------><------> DMA_TO_DEVICE);
<------>} else if (dma_unmap_len(tx_buf, len)) {
<------><------>dma_unmap_page(ring->dev,
<------><------><------> dma_unmap_addr(tx_buf, dma),
<------><------><------> dma_unmap_len(tx_buf, len),
<------><------><------> DMA_TO_DEVICE);
<------>}
<------>tx_buf->next_to_watch = NULL;
<------>tx_buf->skb = NULL;
<------>dma_unmap_len_set(tx_buf, len, 0);
<------>/* tx_buf must be completely set up in the transmit path */
}
static struct netdev_queue *txring_txq(const struct ice_ring *ring)
{
<------>return netdev_get_tx_queue(ring->netdev, ring->q_index);
}
/**
* ice_clean_tx_ring - Free any empty Tx buffers
* @tx_ring: ring to be cleaned
*/
void ice_clean_tx_ring(struct ice_ring *tx_ring)
{
<------>u16 i;
<------>if (ice_ring_is_xdp(tx_ring) && tx_ring->xsk_pool) {
<------><------>ice_xsk_clean_xdp_ring(tx_ring);
<------><------>goto tx_skip_free;
<------>}
<------>/* ring already cleared, nothing to do */
<------>if (!tx_ring->tx_buf)
<------><------>return;
<------>/* Free all the Tx ring sk_buffs */
<------>for (i = 0; i < tx_ring->count; i++)
<------><------>ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]);
tx_skip_free:
<------>memset(tx_ring->tx_buf, 0, sizeof(*tx_ring->tx_buf) * tx_ring->count);
<------>/* Zero out the descriptor ring */
<------>memset(tx_ring->desc, 0, tx_ring->size);
<------>tx_ring->next_to_use = 0;
<------>tx_ring->next_to_clean = 0;
<------>if (!tx_ring->netdev)
<------><------>return;
<------>/* cleanup Tx queue statistics */
<------>netdev_tx_reset_queue(txring_txq(tx_ring));
}
/**
* ice_free_tx_ring - Free Tx resources per queue
* @tx_ring: Tx descriptor ring for a specific queue
*
* Free all transmit software resources
*/
void ice_free_tx_ring(struct ice_ring *tx_ring)
{
<------>ice_clean_tx_ring(tx_ring);
<------>devm_kfree(tx_ring->dev, tx_ring->tx_buf);
<------>tx_ring->tx_buf = NULL;
<------>if (tx_ring->desc) {
<------><------>dmam_free_coherent(tx_ring->dev, tx_ring->size,
<------><------><------><------> tx_ring->desc, tx_ring->dma);
<------><------>tx_ring->desc = NULL;
<------>}
}
/**
* ice_clean_tx_irq - Reclaim resources after transmit completes
* @tx_ring: Tx ring to clean
* @napi_budget: Used to determine if we are in netpoll
*
* Returns true if there's any budget left (e.g. the clean is finished)
*/
static bool ice_clean_tx_irq(struct ice_ring *tx_ring, int napi_budget)
{
<------>unsigned int total_bytes = 0, total_pkts = 0;
<------>unsigned int budget = ICE_DFLT_IRQ_WORK;
<------>struct ice_vsi *vsi = tx_ring->vsi;
<------>s16 i = tx_ring->next_to_clean;
<------>struct ice_tx_desc *tx_desc;
<------>struct ice_tx_buf *tx_buf;
<------>tx_buf = &tx_ring->tx_buf[i];
<------>tx_desc = ICE_TX_DESC(tx_ring, i);
<------>i -= tx_ring->count;
<------>prefetch(&vsi->state);
<------>do {
<------><------>struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
<------><------>/* if next_to_watch is not set then there is no work pending */
<------><------>if (!eop_desc)
<------><------><------>break;
<------><------>smp_rmb(); /* prevent any other reads prior to eop_desc */
<------><------>/* if the descriptor isn't done, no work yet to do */
<------><------>if (!(eop_desc->cmd_type_offset_bsz &
<------><------> cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
<------><------><------>break;
<------><------>/* clear next_to_watch to prevent false hangs */
<------><------>tx_buf->next_to_watch = NULL;
<------><------>/* update the statistics for this packet */
<------><------>total_bytes += tx_buf->bytecount;
<------><------>total_pkts += tx_buf->gso_segs;
<------><------>if (ice_ring_is_xdp(tx_ring))
<------><------><------>page_frag_free(tx_buf->raw_buf);
<------><------>else
<------><------><------>/* free the skb */
<------><------><------>napi_consume_skb(tx_buf->skb, napi_budget);
<------><------>/* unmap skb header data */
<------><------>dma_unmap_single(tx_ring->dev,
<------><------><------><------> dma_unmap_addr(tx_buf, dma),
<------><------><------><------> dma_unmap_len(tx_buf, len),
<------><------><------><------> DMA_TO_DEVICE);
<------><------>/* clear tx_buf data */
<------><------>tx_buf->skb = NULL;
<------><------>dma_unmap_len_set(tx_buf, len, 0);
<------><------>/* unmap remaining buffers */
<------><------>while (tx_desc != eop_desc) {
<------><------><------>tx_buf++;
<------><------><------>tx_desc++;
<------><------><------>i++;
<------><------><------>if (unlikely(!i)) {
<------><------><------><------>i -= tx_ring->count;
<------><------><------><------>tx_buf = tx_ring->tx_buf;
<------><------><------><------>tx_desc = ICE_TX_DESC(tx_ring, 0);
<------><------><------>}
<------><------><------>/* unmap any remaining paged data */
<------><------><------>if (dma_unmap_len(tx_buf, len)) {
<------><------><------><------>dma_unmap_page(tx_ring->dev,
<------><------><------><------><------> dma_unmap_addr(tx_buf, dma),
<------><------><------><------><------> dma_unmap_len(tx_buf, len),
<------><------><------><------><------> DMA_TO_DEVICE);
<------><------><------><------>dma_unmap_len_set(tx_buf, len, 0);
<------><------><------>}
<------><------>}
<------><------>/* move us one more past the eop_desc for start of next pkt */
<------><------>tx_buf++;
<------><------>tx_desc++;
<------><------>i++;
<------><------>if (unlikely(!i)) {
<------><------><------>i -= tx_ring->count;
<------><------><------>tx_buf = tx_ring->tx_buf;
<------><------><------>tx_desc = ICE_TX_DESC(tx_ring, 0);
<------><------>}
<------><------>prefetch(tx_desc);
<------><------>/* update budget accounting */
<------><------>budget--;
<------>} while (likely(budget));
<------>i += tx_ring->count;
<------>tx_ring->next_to_clean = i;
<------>ice_update_tx_ring_stats(tx_ring, total_pkts, total_bytes);
<------>if (ice_ring_is_xdp(tx_ring))
<------><------>return !!budget;
<------>netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts,
<------><------><------><------> total_bytes);
#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
<------>if (unlikely(total_pkts && netif_carrier_ok(tx_ring->netdev) &&
<------><------> (ICE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
<------><------>/* Make sure that anybody stopping the queue after this
<------><------> * sees the new next_to_clean.
<------><------> */
<------><------>smp_mb();
<------><------>if (__netif_subqueue_stopped(tx_ring->netdev,
<------><------><------><------><------> tx_ring->q_index) &&
<------><------> !test_bit(__ICE_DOWN, vsi->state)) {
<------><------><------>netif_wake_subqueue(tx_ring->netdev,
<------><------><------><------><------> tx_ring->q_index);
<------><------><------>++tx_ring->tx_stats.restart_q;
<------><------>}
<------>}
<------>return !!budget;
}
/**
* ice_setup_tx_ring - Allocate the Tx descriptors
* @tx_ring: the Tx ring to set up
*
* Return 0 on success, negative on error
*/
int ice_setup_tx_ring(struct ice_ring *tx_ring)
{
<------>struct device *dev = tx_ring->dev;
<------>if (!dev)
<------><------>return -ENOMEM;
<------>/* warn if we are about to overwrite the pointer */
<------>WARN_ON(tx_ring->tx_buf);
<------>tx_ring->tx_buf =
<------><------>devm_kzalloc(dev, sizeof(*tx_ring->tx_buf) * tx_ring->count,
<------><------><------> GFP_KERNEL);
<------>if (!tx_ring->tx_buf)
<------><------>return -ENOMEM;
<------>/* round up to nearest page */
<------>tx_ring->size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
<------><------><------> PAGE_SIZE);
<------>tx_ring->desc = dmam_alloc_coherent(dev, tx_ring->size, &tx_ring->dma,
<------><------><------><------><------> GFP_KERNEL);
<------>if (!tx_ring->desc) {
<------><------>dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
<------><------><------>tx_ring->size);
<------><------>goto err;
<------>}
<------>tx_ring->next_to_use = 0;
<------>tx_ring->next_to_clean = 0;
<------>tx_ring->tx_stats.prev_pkt = -1;
<------>return 0;
err:
<------>devm_kfree(dev, tx_ring->tx_buf);
<------>tx_ring->tx_buf = NULL;
<------>return -ENOMEM;
}
/**
* ice_clean_rx_ring - Free Rx buffers
* @rx_ring: ring to be cleaned
*/
void ice_clean_rx_ring(struct ice_ring *rx_ring)
{
<------>struct device *dev = rx_ring->dev;
<------>u16 i;
<------>/* ring already cleared, nothing to do */
<------>if (!rx_ring->rx_buf)
<------><------>return;
<------>if (rx_ring->xsk_pool) {
<------><------>ice_xsk_clean_rx_ring(rx_ring);
<------><------>goto rx_skip_free;
<------>}
<------>/* Free all the Rx ring sk_buffs */
<------>for (i = 0; i < rx_ring->count; i++) {
<------><------>struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i];
<------><------>if (rx_buf->skb) {
<------><------><------>dev_kfree_skb(rx_buf->skb);
<------><------><------>rx_buf->skb = NULL;
<------><------>}
<------><------>if (!rx_buf->page)
<------><------><------>continue;
<------><------>/* Invalidate cache lines that may have been written to by
<------><------> * device so that we avoid corrupting memory.
<------><------> */
<------><------>dma_sync_single_range_for_cpu(dev, rx_buf->dma,
<------><------><------><------><------> rx_buf->page_offset,
<------><------><------><------><------> rx_ring->rx_buf_len,
<------><------><------><------><------> DMA_FROM_DEVICE);
<------><------>/* free resources associated with mapping */
<------><------>dma_unmap_page_attrs(dev, rx_buf->dma, ice_rx_pg_size(rx_ring),
<------><------><------><------> DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
<------><------>__page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
<------><------>rx_buf->page = NULL;
<------><------>rx_buf->page_offset = 0;
<------>}
rx_skip_free:
<------>memset(rx_ring->rx_buf, 0, sizeof(*rx_ring->rx_buf) * rx_ring->count);
<------>/* Zero out the descriptor ring */
<------>memset(rx_ring->desc, 0, rx_ring->size);
<------>rx_ring->next_to_alloc = 0;
<------>rx_ring->next_to_clean = 0;
<------>rx_ring->next_to_use = 0;
}
/**
* ice_free_rx_ring - Free Rx resources
* @rx_ring: ring to clean the resources from
*
* Free all receive software resources
*/
void ice_free_rx_ring(struct ice_ring *rx_ring)
{
<------>ice_clean_rx_ring(rx_ring);
<------>if (rx_ring->vsi->type == ICE_VSI_PF)
<------><------>if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
<------><------><------>xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
<------>rx_ring->xdp_prog = NULL;
<------>devm_kfree(rx_ring->dev, rx_ring->rx_buf);
<------>rx_ring->rx_buf = NULL;
<------>if (rx_ring->desc) {
<------><------>dmam_free_coherent(rx_ring->dev, rx_ring->size,
<------><------><------><------> rx_ring->desc, rx_ring->dma);
<------><------>rx_ring->desc = NULL;
<------>}
}
/**
* ice_setup_rx_ring - Allocate the Rx descriptors
* @rx_ring: the Rx ring to set up
*
* Return 0 on success, negative on error
*/
int ice_setup_rx_ring(struct ice_ring *rx_ring)
{
<------>struct device *dev = rx_ring->dev;
<------>if (!dev)
<------><------>return -ENOMEM;
<------>/* warn if we are about to overwrite the pointer */
<------>WARN_ON(rx_ring->rx_buf);
<------>rx_ring->rx_buf =
<------><------>devm_kzalloc(dev, sizeof(*rx_ring->rx_buf) * rx_ring->count,
<------><------><------> GFP_KERNEL);
<------>if (!rx_ring->rx_buf)
<------><------>return -ENOMEM;
<------>/* round up to nearest page */
<------>rx_ring->size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc),
<------><------><------> PAGE_SIZE);
<------>rx_ring->desc = dmam_alloc_coherent(dev, rx_ring->size, &rx_ring->dma,
<------><------><------><------><------> GFP_KERNEL);
<------>if (!rx_ring->desc) {
<------><------>dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
<------><------><------>rx_ring->size);
<------><------>goto err;
<------>}
<------>rx_ring->next_to_use = 0;
<------>rx_ring->next_to_clean = 0;
<------>if (ice_is_xdp_ena_vsi(rx_ring->vsi))
<------><------>WRITE_ONCE(rx_ring->xdp_prog, rx_ring->vsi->xdp_prog);
<------>if (rx_ring->vsi->type == ICE_VSI_PF &&
<------> !xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
<------><------>if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
<------><------><------><------> rx_ring->q_index))
<------><------><------>goto err;
<------>return 0;
err:
<------>devm_kfree(dev, rx_ring->rx_buf);
<------>rx_ring->rx_buf = NULL;
<------>return -ENOMEM;
}
/**
* ice_rx_offset - Return expected offset into page to access data
* @rx_ring: Ring we are requesting offset of
*
* Returns the offset value for ring into the data buffer.
*/
static unsigned int ice_rx_offset(struct ice_ring *rx_ring)
{
<------>if (ice_ring_uses_build_skb(rx_ring))
<------><------>return ICE_SKB_PAD;
<------>else if (ice_is_xdp_ena_vsi(rx_ring->vsi))
<------><------>return XDP_PACKET_HEADROOM;
<------>return 0;
}
static unsigned int
ice_rx_frame_truesize(struct ice_ring *rx_ring, unsigned int __maybe_unused size)
{
<------>unsigned int truesize;
#if (PAGE_SIZE < 8192)
<------>truesize = ice_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
#else
<------>truesize = ice_rx_offset(rx_ring) ?
<------><------>SKB_DATA_ALIGN(ice_rx_offset(rx_ring) + size) +
<------><------>SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
<------><------>SKB_DATA_ALIGN(size);
#endif
<------>return truesize;
}
/**
* ice_run_xdp - Executes an XDP program on initialized xdp_buff
* @rx_ring: Rx ring
* @xdp: xdp_buff used as input to the XDP program
* @xdp_prog: XDP program to run
*
* Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR}
*/
static int
ice_run_xdp(struct ice_ring *rx_ring, struct xdp_buff *xdp,
<------> struct bpf_prog *xdp_prog)
{
<------>struct ice_ring *xdp_ring;
<------>int err, result;
<------>u32 act;
<------>act = bpf_prog_run_xdp(xdp_prog, xdp);
<------>switch (act) {
<------>case XDP_PASS:
<------><------>return ICE_XDP_PASS;
<------>case XDP_TX:
<------><------>xdp_ring = rx_ring->vsi->xdp_rings[smp_processor_id()];
<------><------>result = ice_xmit_xdp_buff(xdp, xdp_ring);
<------><------>if (result == ICE_XDP_CONSUMED)
<------><------><------>goto out_failure;
<------><------>return result;
<------>case XDP_REDIRECT:
<------><------>err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
<------><------>if (err)
<------><------><------>goto out_failure;
<------><------>return ICE_XDP_REDIR;
<------>default:
<------><------>bpf_warn_invalid_xdp_action(act);
<------><------>fallthrough;
<------>case XDP_ABORTED:
out_failure:
<------><------>trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
<------><------>fallthrough;
<------>case XDP_DROP:
<------><------>return ICE_XDP_CONSUMED;
<------>}
}
/**
* ice_xdp_xmit - submit packets to XDP ring for transmission
* @dev: netdev
* @n: number of XDP frames to be transmitted
* @frames: XDP frames to be transmitted
* @flags: transmit flags
*
* Returns number of frames successfully sent. Frames that fail are
* free'ed via XDP return API.
* For error cases, a negative errno code is returned and no-frames
* are transmitted (caller must handle freeing frames).
*/
int
ice_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
<------> u32 flags)
{
<------>struct ice_netdev_priv *np = netdev_priv(dev);
<------>unsigned int queue_index = smp_processor_id();
<------>struct ice_vsi *vsi = np->vsi;
<------>struct ice_ring *xdp_ring;
<------>int drops = 0, i;
<------>if (test_bit(__ICE_DOWN, vsi->state))
<------><------>return -ENETDOWN;
<------>if (!ice_is_xdp_ena_vsi(vsi) || queue_index >= vsi->num_xdp_txq)
<------><------>return -ENXIO;
<------>if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
<------><------>return -EINVAL;
<------>xdp_ring = vsi->xdp_rings[queue_index];
<------>for (i = 0; i < n; i++) {
<------><------>struct xdp_frame *xdpf = frames[i];
<------><------>int err;
<------><------>err = ice_xmit_xdp_ring(xdpf->data, xdpf->len, xdp_ring);
<------><------>if (err != ICE_XDP_TX) {
<------><------><------>xdp_return_frame_rx_napi(xdpf);
<------><------><------>drops++;
<------><------>}
<------>}
<------>if (unlikely(flags & XDP_XMIT_FLUSH))
<------><------>ice_xdp_ring_update_tail(xdp_ring);
<------>return n - drops;
}
/**
* ice_alloc_mapped_page - recycle or make a new page
* @rx_ring: ring to use
* @bi: rx_buf struct to modify
*
* Returns true if the page was successfully allocated or
* reused.
*/
static bool
ice_alloc_mapped_page(struct ice_ring *rx_ring, struct ice_rx_buf *bi)
{
<------>struct page *page = bi->page;
<------>dma_addr_t dma;
<------>/* since we are recycling buffers we should seldom need to alloc */
<------>if (likely(page))
<------><------>return true;
<------>/* alloc new page for storage */
<------>page = dev_alloc_pages(ice_rx_pg_order(rx_ring));
<------>if (unlikely(!page)) {
<------><------>rx_ring->rx_stats.alloc_page_failed++;
<------><------>return false;
<------>}
<------>/* map page for use */
<------>dma = dma_map_page_attrs(rx_ring->dev, page, 0, ice_rx_pg_size(rx_ring),
<------><------><------><------> DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
<------>/* if mapping failed free memory back to system since
<------> * there isn't much point in holding memory we can't use
<------> */
<------>if (dma_mapping_error(rx_ring->dev, dma)) {
<------><------>__free_pages(page, ice_rx_pg_order(rx_ring));
<------><------>rx_ring->rx_stats.alloc_page_failed++;
<------><------>return false;
<------>}
<------>bi->dma = dma;
<------>bi->page = page;
<------>bi->page_offset = ice_rx_offset(rx_ring);
<------>page_ref_add(page, USHRT_MAX - 1);
<------>bi->pagecnt_bias = USHRT_MAX;
<------>return true;
}
/**
* ice_alloc_rx_bufs - Replace used receive buffers
* @rx_ring: ring to place buffers on
* @cleaned_count: number of buffers to replace
*
* Returns false if all allocations were successful, true if any fail. Returning
* true signals to the caller that we didn't replace cleaned_count buffers and
* there is more work to do.
*
* First, try to clean "cleaned_count" Rx buffers. Then refill the cleaned Rx
* buffers. Then bump tail at most one time. Grouping like this lets us avoid
* multiple tail writes per call.
*/
bool ice_alloc_rx_bufs(struct ice_ring *rx_ring, u16 cleaned_count)
{
<------>union ice_32b_rx_flex_desc *rx_desc;
<------>u16 ntu = rx_ring->next_to_use;
<------>struct ice_rx_buf *bi;
<------>/* do nothing if no valid netdev defined */
<------>if ((!rx_ring->netdev && rx_ring->vsi->type != ICE_VSI_CTRL) ||
<------> !cleaned_count)
<------><------>return false;
<------>/* get the Rx descriptor and buffer based on next_to_use */
<------>rx_desc = ICE_RX_DESC(rx_ring, ntu);
<------>bi = &rx_ring->rx_buf[ntu];
<------>do {
<------><------>/* if we fail here, we have work remaining */
<------><------>if (!ice_alloc_mapped_page(rx_ring, bi))
<------><------><------>break;
<------><------>/* sync the buffer for use by the device */
<------><------>dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
<------><------><------><------><------><------> bi->page_offset,
<------><------><------><------><------><------> rx_ring->rx_buf_len,
<------><------><------><------><------><------> DMA_FROM_DEVICE);
<------><------>/* Refresh the desc even if buffer_addrs didn't change
<------><------> * because each write-back erases this info.
<------><------> */
<------><------>rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
<------><------>rx_desc++;
<------><------>bi++;
<------><------>ntu++;
<------><------>if (unlikely(ntu == rx_ring->count)) {
<------><------><------>rx_desc = ICE_RX_DESC(rx_ring, 0);
<------><------><------>bi = rx_ring->rx_buf;
<------><------><------>ntu = 0;
<------><------>}
<------><------>/* clear the status bits for the next_to_use descriptor */
<------><------>rx_desc->wb.status_error0 = 0;
<------><------>cleaned_count--;
<------>} while (cleaned_count);
<------>if (rx_ring->next_to_use != ntu)
<------><------>ice_release_rx_desc(rx_ring, ntu);
<------>return !!cleaned_count;
}
/**
* ice_page_is_reserved - check if reuse is possible
* @page: page struct to check
*/
static bool ice_page_is_reserved(struct page *page)
{
<------>return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
}
/**
* ice_rx_buf_adjust_pg_offset - Prepare Rx buffer for reuse
* @rx_buf: Rx buffer to adjust
* @size: Size of adjustment
*
* Update the offset within page so that Rx buf will be ready to be reused.
* For systems with PAGE_SIZE < 8192 this function will flip the page offset
* so the second half of page assigned to Rx buffer will be used, otherwise
* the offset is moved by "size" bytes
*/
static void
ice_rx_buf_adjust_pg_offset(struct ice_rx_buf *rx_buf, unsigned int size)
{
#if (PAGE_SIZE < 8192)
<------>/* flip page offset to other buffer */
<------>rx_buf->page_offset ^= size;
#else
<------>/* move offset up to the next cache line */
<------>rx_buf->page_offset += size;
#endif
}
/**
* ice_can_reuse_rx_page - Determine if page can be reused for another Rx
* @rx_buf: buffer containing the page
* @rx_buf_pgcnt: rx_buf page refcount pre xdp_do_redirect() call
*
* If page is reusable, we have a green light for calling ice_reuse_rx_page,
* which will assign the current buffer to the buffer that next_to_alloc is
* pointing to; otherwise, the DMA mapping needs to be destroyed and
* page freed
*/
static bool
ice_can_reuse_rx_page(struct ice_rx_buf *rx_buf, int rx_buf_pgcnt)
{
<------>unsigned int pagecnt_bias = rx_buf->pagecnt_bias;
<------>struct page *page = rx_buf->page;
<------>/* avoid re-using remote pages */
<------>if (unlikely(ice_page_is_reserved(page)))
<------><------>return false;
#if (PAGE_SIZE < 8192)
<------>/* if we are only owner of page we can reuse it */
<------>if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1))
<------><------>return false;
#else
#define ICE_LAST_OFFSET \
<------>(SKB_WITH_OVERHEAD(PAGE_SIZE) - ICE_RXBUF_2048)
<------>if (rx_buf->page_offset > ICE_LAST_OFFSET)
<------><------>return false;
#endif /* PAGE_SIZE < 8192) */
<------>/* If we have drained the page fragment pool we need to update
<------> * the pagecnt_bias and page count so that we fully restock the
<------> * number of references the driver holds.
<------> */
<------>if (unlikely(pagecnt_bias == 1)) {
<------><------>page_ref_add(page, USHRT_MAX - 1);
<------><------>rx_buf->pagecnt_bias = USHRT_MAX;
<------>}
<------>return true;
}
/**
* ice_add_rx_frag - Add contents of Rx buffer to sk_buff as a frag
* @rx_ring: Rx descriptor ring to transact packets on
* @rx_buf: buffer containing page to add
* @skb: sk_buff to place the data into
* @size: packet length from rx_desc
*
* This function will add the data contained in rx_buf->page to the skb.
* It will just attach the page as a frag to the skb.
* The function will then update the page offset.
*/
static void
ice_add_rx_frag(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
<------><------>struct sk_buff *skb, unsigned int size)
{
#if (PAGE_SIZE >= 8192)
<------>unsigned int truesize = SKB_DATA_ALIGN(size + ice_rx_offset(rx_ring));
#else
<------>unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
#endif
<------>if (!size)
<------><------>return;
<------>skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buf->page,
<------><------><------>rx_buf->page_offset, size, truesize);
<------>/* page is being used so we must update the page offset */
<------>ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
}
/**
* ice_reuse_rx_page - page flip buffer and store it back on the ring
* @rx_ring: Rx descriptor ring to store buffers on
* @old_buf: donor buffer to have page reused
*
* Synchronizes page for reuse by the adapter
*/
static void
ice_reuse_rx_page(struct ice_ring *rx_ring, struct ice_rx_buf *old_buf)
{
<------>u16 nta = rx_ring->next_to_alloc;
<------>struct ice_rx_buf *new_buf;
<------>new_buf = &rx_ring->rx_buf[nta];
<------>/* update, and store next to alloc */
<------>nta++;
<------>rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
<------>/* Transfer page from old buffer to new buffer.
<------> * Move each member individually to avoid possible store
<------> * forwarding stalls and unnecessary copy of skb.
<------> */
<------>new_buf->dma = old_buf->dma;
<------>new_buf->page = old_buf->page;
<------>new_buf->page_offset = old_buf->page_offset;
<------>new_buf->pagecnt_bias = old_buf->pagecnt_bias;
}
/**
* ice_get_rx_buf - Fetch Rx buffer and synchronize data for use
* @rx_ring: Rx descriptor ring to transact packets on
* @skb: skb to be used
* @size: size of buffer to add to skb
* @rx_buf_pgcnt: rx_buf page refcount
*
* This function will pull an Rx buffer from the ring and synchronize it
* for use by the CPU.
*/
static struct ice_rx_buf *
ice_get_rx_buf(struct ice_ring *rx_ring, struct sk_buff **skb,
<------> const unsigned int size, int *rx_buf_pgcnt)
{
<------>struct ice_rx_buf *rx_buf;
<------>rx_buf = &rx_ring->rx_buf[rx_ring->next_to_clean];
<------>*rx_buf_pgcnt =
#if (PAGE_SIZE < 8192)
<------><------>page_count(rx_buf->page);
#else
<------><------>0;
#endif
<------>prefetchw(rx_buf->page);
<------>*skb = rx_buf->skb;
<------>if (!size)
<------><------>return rx_buf;
<------>/* we are reusing so sync this buffer for CPU use */
<------>dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma,
<------><------><------><------> rx_buf->page_offset, size,
<------><------><------><------> DMA_FROM_DEVICE);
<------>/* We have pulled a buffer for use, so decrement pagecnt_bias */
<------>rx_buf->pagecnt_bias--;
<------>return rx_buf;
}
/**
* ice_build_skb - Build skb around an existing buffer
* @rx_ring: Rx descriptor ring to transact packets on
* @rx_buf: Rx buffer to pull data from
* @xdp: xdp_buff pointing to the data
*
* This function builds an skb around an existing Rx buffer, taking care
* to set up the skb correctly and avoid any memcpy overhead.
*/
static struct sk_buff *
ice_build_skb(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
<------> struct xdp_buff *xdp)
{
<------>u8 metasize = xdp->data - xdp->data_meta;
#if (PAGE_SIZE < 8192)
<------>unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
#else
<------>unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
<------><------><------><------>SKB_DATA_ALIGN(xdp->data_end -
<------><------><------><------><------> xdp->data_hard_start);
#endif
<------>struct sk_buff *skb;
<------>/* Prefetch first cache line of first page. If xdp->data_meta
<------> * is unused, this points exactly as xdp->data, otherwise we
<------> * likely have a consumer accessing first few bytes of meta
<------> * data, and then actual data.
<------> */
<------>net_prefetch(xdp->data_meta);
<------>/* build an skb around the page buffer */
<------>skb = build_skb(xdp->data_hard_start, truesize);
<------>if (unlikely(!skb))
<------><------>return NULL;
<------>/* must to record Rx queue, otherwise OS features such as
<------> * symmetric queue won't work
<------> */
<------>skb_record_rx_queue(skb, rx_ring->q_index);
<------>/* update pointers within the skb to store the data */
<------>skb_reserve(skb, xdp->data - xdp->data_hard_start);
<------>__skb_put(skb, xdp->data_end - xdp->data);
<------>if (metasize)
<------><------>skb_metadata_set(skb, metasize);
<------>/* buffer is used by skb, update page_offset */
<------>ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
<------>return skb;
}
/**
* ice_construct_skb - Allocate skb and populate it
* @rx_ring: Rx descriptor ring to transact packets on
* @rx_buf: Rx buffer to pull data from
* @xdp: xdp_buff pointing to the data
*
* This function allocates an skb. It then populates it with the page
* data from the current receive descriptor, taking care to set up the
* skb correctly.
*/
static struct sk_buff *
ice_construct_skb(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
<------><------> struct xdp_buff *xdp)
{
<------>unsigned int size = xdp->data_end - xdp->data;
<------>unsigned int headlen;
<------>struct sk_buff *skb;
<------>/* prefetch first cache line of first page */
<------>net_prefetch(xdp->data);
<------>/* allocate a skb to store the frags */
<------>skb = __napi_alloc_skb(&rx_ring->q_vector->napi, ICE_RX_HDR_SIZE,
<------><------><------> GFP_ATOMIC | __GFP_NOWARN);
<------>if (unlikely(!skb))
<------><------>return NULL;
<------>skb_record_rx_queue(skb, rx_ring->q_index);
<------>/* Determine available headroom for copy */
<------>headlen = size;
<------>if (headlen > ICE_RX_HDR_SIZE)
<------><------>headlen = eth_get_headlen(skb->dev, xdp->data, ICE_RX_HDR_SIZE);
<------>/* align pull length to size of long to optimize memcpy performance */
<------>memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen,
<------><------><------><------><------><------><------> sizeof(long)));
<------>/* if we exhaust the linear part then add what is left as a frag */
<------>size -= headlen;
<------>if (size) {
#if (PAGE_SIZE >= 8192)
<------><------>unsigned int truesize = SKB_DATA_ALIGN(size);
#else
<------><------>unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
#endif
<------><------>skb_add_rx_frag(skb, 0, rx_buf->page,
<------><------><------><------>rx_buf->page_offset + headlen, size, truesize);
<------><------>/* buffer is used by skb, update page_offset */
<------><------>ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
<------>} else {
<------><------>/* buffer is unused, reset bias back to rx_buf; data was copied
<------><------> * onto skb's linear part so there's no need for adjusting
<------><------> * page offset and we can reuse this buffer as-is
<------><------> */
<------><------>rx_buf->pagecnt_bias++;
<------>}
<------>return skb;
}
/**
* ice_put_rx_buf - Clean up used buffer and either recycle or free
* @rx_ring: Rx descriptor ring to transact packets on
* @rx_buf: Rx buffer to pull data from
* @rx_buf_pgcnt: Rx buffer page count pre xdp_do_redirect()
*
* This function will update next_to_clean and then clean up the contents
* of the rx_buf. It will either recycle the buffer or unmap it and free
* the associated resources.
*/
static void
ice_put_rx_buf(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
<------> int rx_buf_pgcnt)
{
<------>u16 ntc = rx_ring->next_to_clean + 1;
<------>/* fetch, update, and store next to clean */
<------>ntc = (ntc < rx_ring->count) ? ntc : 0;
<------>rx_ring->next_to_clean = ntc;
<------>if (!rx_buf)
<------><------>return;
<------>if (ice_can_reuse_rx_page(rx_buf, rx_buf_pgcnt)) {
<------><------>/* hand second half of page back to the ring */
<------><------>ice_reuse_rx_page(rx_ring, rx_buf);
<------>} else {
<------><------>/* we are not reusing the buffer so unmap it */
<------><------>dma_unmap_page_attrs(rx_ring->dev, rx_buf->dma,
<------><------><------><------> ice_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
<------><------><------><------> ICE_RX_DMA_ATTR);
<------><------>__page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
<------>}
<------>/* clear contents of buffer_info */
<------>rx_buf->page = NULL;
<------>rx_buf->skb = NULL;
}
/**
* ice_is_non_eop - process handling of non-EOP buffers
* @rx_ring: Rx ring being processed
* @rx_desc: Rx descriptor for current buffer
* @skb: Current socket buffer containing buffer in progress
*
* If the buffer is an EOP buffer, this function exits returning false,
* otherwise return true indicating that this is in fact a non-EOP buffer.
*/
static bool
ice_is_non_eop(struct ice_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc,
<------> struct sk_buff *skb)
{
<------>/* if we are the last buffer then there is nothing else to do */
#define ICE_RXD_EOF BIT(ICE_RX_FLEX_DESC_STATUS0_EOF_S)
<------>if (likely(ice_test_staterr(rx_desc, ICE_RXD_EOF)))
<------><------>return false;
<------>/* place skb in next buffer to be received */
<------>rx_ring->rx_buf[rx_ring->next_to_clean].skb = skb;
<------>rx_ring->rx_stats.non_eop_descs++;
<------>return true;
}
/**
* ice_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
* @rx_ring: Rx descriptor ring to transact packets on
* @budget: Total limit on number of packets to process
*
* This function provides a "bounce buffer" approach to Rx interrupt
* processing. The advantage to this is that on systems that have
* expensive overhead for IOMMU access this provides a means of avoiding
* it by maintaining the mapping of the page to the system.
*
* Returns amount of work completed
*/
int ice_clean_rx_irq(struct ice_ring *rx_ring, int budget)
{
<------>unsigned int total_rx_bytes = 0, total_rx_pkts = 0;
<------>u16 cleaned_count = ICE_DESC_UNUSED(rx_ring);
<------>unsigned int xdp_res, xdp_xmit = 0;
<------>struct bpf_prog *xdp_prog = NULL;
<------>struct xdp_buff xdp;
<------>bool failure;
<------>xdp.rxq = &rx_ring->xdp_rxq;
<------>/* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
#if (PAGE_SIZE < 8192)
<------>xdp.frame_sz = ice_rx_frame_truesize(rx_ring, 0);
#endif
<------>/* start the loop to process Rx packets bounded by 'budget' */
<------>while (likely(total_rx_pkts < (unsigned int)budget)) {
<------><------>union ice_32b_rx_flex_desc *rx_desc;
<------><------>struct ice_rx_buf *rx_buf;
<------><------>struct sk_buff *skb;
<------><------>unsigned int size;
<------><------>u16 stat_err_bits;
<------><------>int rx_buf_pgcnt;
<------><------>u16 vlan_tag = 0;
<------><------>u8 rx_ptype;
<------><------>/* get the Rx desc from Rx ring based on 'next_to_clean' */
<------><------>rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean);
<------><------>/* status_error_len will always be zero for unused descriptors
<------><------> * because it's cleared in cleanup, and overlaps with hdr_addr
<------><------> * which is always zero because packet split isn't used, if the
<------><------> * hardware wrote DD then it will be non-zero
<------><------> */
<------><------>stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
<------><------>if (!ice_test_staterr(rx_desc, stat_err_bits))
<------><------><------>break;
<------><------>/* This memory barrier is needed to keep us from reading
<------><------> * any other fields out of the rx_desc until we know the
<------><------> * DD bit is set.
<------><------> */
<------><------>dma_rmb();
<------><------>if (rx_desc->wb.rxdid == FDIR_DESC_RXDID || !rx_ring->netdev) {
<------><------><------>ice_put_rx_buf(rx_ring, NULL, 0);
<------><------><------>cleaned_count++;
<------><------><------>continue;
<------><------>}
<------><------>size = le16_to_cpu(rx_desc->wb.pkt_len) &
<------><------><------>ICE_RX_FLX_DESC_PKT_LEN_M;
<------><------>/* retrieve a buffer from the ring */
<------><------>rx_buf = ice_get_rx_buf(rx_ring, &skb, size, &rx_buf_pgcnt);
<------><------>if (!size) {
<------><------><------>xdp.data = NULL;
<------><------><------>xdp.data_end = NULL;
<------><------><------>xdp.data_hard_start = NULL;
<------><------><------>xdp.data_meta = NULL;
<------><------><------>goto construct_skb;
<------><------>}
<------><------>xdp.data = page_address(rx_buf->page) + rx_buf->page_offset;
<------><------>xdp.data_hard_start = xdp.data - ice_rx_offset(rx_ring);
<------><------>xdp.data_meta = xdp.data;
<------><------>xdp.data_end = xdp.data + size;
#if (PAGE_SIZE > 4096)
<------><------>/* At larger PAGE_SIZE, frame_sz depend on len size */
<------><------>xdp.frame_sz = ice_rx_frame_truesize(rx_ring, size);
#endif
<------><------>rcu_read_lock();
<------><------>xdp_prog = READ_ONCE(rx_ring->xdp_prog);
<------><------>if (!xdp_prog) {
<------><------><------>rcu_read_unlock();
<------><------><------>goto construct_skb;
<------><------>}
<------><------>xdp_res = ice_run_xdp(rx_ring, &xdp, xdp_prog);
<------><------>rcu_read_unlock();
<------><------>if (!xdp_res)
<------><------><------>goto construct_skb;
<------><------>if (xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR)) {
<------><------><------>xdp_xmit |= xdp_res;
<------><------><------>ice_rx_buf_adjust_pg_offset(rx_buf, xdp.frame_sz);
<------><------>} else {
<------><------><------>rx_buf->pagecnt_bias++;
<------><------>}
<------><------>total_rx_bytes += size;
<------><------>total_rx_pkts++;
<------><------>cleaned_count++;
<------><------>ice_put_rx_buf(rx_ring, rx_buf, rx_buf_pgcnt);
<------><------>continue;
construct_skb:
<------><------>if (skb) {
<------><------><------>ice_add_rx_frag(rx_ring, rx_buf, skb, size);
<------><------>} else if (likely(xdp.data)) {
<------><------><------>if (ice_ring_uses_build_skb(rx_ring))
<------><------><------><------>skb = ice_build_skb(rx_ring, rx_buf, &xdp);
<------><------><------>else
<------><------><------><------>skb = ice_construct_skb(rx_ring, rx_buf, &xdp);
<------><------>}
<------><------>/* exit if we failed to retrieve a buffer */
<------><------>if (!skb) {
<------><------><------>rx_ring->rx_stats.alloc_buf_failed++;
<------><------><------>if (rx_buf)
<------><------><------><------>rx_buf->pagecnt_bias++;
<------><------><------>break;
<------><------>}
<------><------>ice_put_rx_buf(rx_ring, rx_buf, rx_buf_pgcnt);
<------><------>cleaned_count++;
<------><------>/* skip if it is NOP desc */
<------><------>if (ice_is_non_eop(rx_ring, rx_desc, skb))
<------><------><------>continue;
<------><------>stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S);
<------><------>if (unlikely(ice_test_staterr(rx_desc, stat_err_bits))) {
<------><------><------>dev_kfree_skb_any(skb);
<------><------><------>continue;
<------><------>}
<------><------>stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S);
<------><------>if (ice_test_staterr(rx_desc, stat_err_bits))
<------><------><------>vlan_tag = le16_to_cpu(rx_desc->wb.l2tag1);
<------><------>/* pad the skb if needed, to make a valid ethernet frame */
<------><------>if (eth_skb_pad(skb)) {
<------><------><------>skb = NULL;
<------><------><------>continue;
<------><------>}
<------><------>/* probably a little skewed due to removing CRC */
<------><------>total_rx_bytes += skb->len;
<------><------>/* populate checksum, VLAN, and protocol */
<------><------>rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) &
<------><------><------>ICE_RX_FLEX_DESC_PTYPE_M;
<------><------>ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
<------><------>/* send completed skb up the stack */
<------><------>ice_receive_skb(rx_ring, skb, vlan_tag);
<------><------>/* update budget accounting */
<------><------>total_rx_pkts++;
<------>}
<------>/* return up to cleaned_count buffers to hardware */
<------>failure = ice_alloc_rx_bufs(rx_ring, cleaned_count);
<------>if (xdp_prog)
<------><------>ice_finalize_xdp_rx(rx_ring, xdp_xmit);
<------>ice_update_rx_ring_stats(rx_ring, total_rx_pkts, total_rx_bytes);
<------>/* guarantee a trip back through this routine if there was a failure */
<------>return failure ? budget : (int)total_rx_pkts;
}
/**
* ice_adjust_itr_by_size_and_speed - Adjust ITR based on current traffic
* @port_info: port_info structure containing the current link speed
* @avg_pkt_size: average size of Tx or Rx packets based on clean routine
* @itr: ITR value to update
*
* Calculate how big of an increment should be applied to the ITR value passed
* in based on wmem_default, SKB overhead, ethernet overhead, and the current
* link speed.
*
* The following is a calculation derived from:
* wmem_default / (size + overhead) = desired_pkts_per_int
* rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
* (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
*
* Assuming wmem_default is 212992 and overhead is 640 bytes per
* packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
* formula down to:
*
* wmem_default * bits_per_byte * usecs_per_sec pkt_size + 24
* ITR = -------------------------------------------- * --------------
* rate pkt_size + 640
*/
static unsigned int
ice_adjust_itr_by_size_and_speed(struct ice_port_info *port_info,
<------><------><------><------> unsigned int avg_pkt_size,
<------><------><------><------> unsigned int itr)
{
<------>switch (port_info->phy.link_info.link_speed) {
<------>case ICE_AQ_LINK_SPEED_100GB:
<------><------>itr += DIV_ROUND_UP(17 * (avg_pkt_size + 24),
<------><------><------><------> avg_pkt_size + 640);
<------><------>break;
<------>case ICE_AQ_LINK_SPEED_50GB:
<------><------>itr += DIV_ROUND_UP(34 * (avg_pkt_size + 24),
<------><------><------><------> avg_pkt_size + 640);
<------><------>break;
<------>case ICE_AQ_LINK_SPEED_40GB:
<------><------>itr += DIV_ROUND_UP(43 * (avg_pkt_size + 24),
<------><------><------><------> avg_pkt_size + 640);
<------><------>break;
<------>case ICE_AQ_LINK_SPEED_25GB:
<------><------>itr += DIV_ROUND_UP(68 * (avg_pkt_size + 24),
<------><------><------><------> avg_pkt_size + 640);
<------><------>break;
<------>case ICE_AQ_LINK_SPEED_20GB:
<------><------>itr += DIV_ROUND_UP(85 * (avg_pkt_size + 24),
<------><------><------><------> avg_pkt_size + 640);
<------><------>break;
<------>case ICE_AQ_LINK_SPEED_10GB:
<------>default:
<------><------>itr += DIV_ROUND_UP(170 * (avg_pkt_size + 24),
<------><------><------><------> avg_pkt_size + 640);
<------><------>break;
<------>}
<------>if ((itr & ICE_ITR_MASK) > ICE_ITR_ADAPTIVE_MAX_USECS) {
<------><------>itr &= ICE_ITR_ADAPTIVE_LATENCY;
<------><------>itr += ICE_ITR_ADAPTIVE_MAX_USECS;
<------>}
<------>return itr;
}
/**
* ice_update_itr - update the adaptive ITR value based on statistics
* @q_vector: structure containing interrupt and ring information
* @rc: structure containing ring performance data
*
* Stores a new ITR value based on packets and byte
* counts during the last interrupt. The advantage of per interrupt
* computation is faster updates and more accurate ITR for the current
* traffic pattern. Constants in this function were computed
* based on theoretical maximum wire speed and thresholds were set based
* on testing data as well as attempting to minimize response time
* while increasing bulk throughput.
*/
static void
ice_update_itr(struct ice_q_vector *q_vector, struct ice_ring_container *rc)
{
<------>unsigned long next_update = jiffies;
<------>unsigned int packets, bytes, itr;
<------>bool container_is_rx;
<------>if (!rc->ring || !ITR_IS_DYNAMIC(rc->itr_setting))
<------><------>return;
<------>/* If itr_countdown is set it means we programmed an ITR within
<------> * the last 4 interrupt cycles. This has a side effect of us
<------> * potentially firing an early interrupt. In order to work around
<------> * this we need to throw out any data received for a few
<------> * interrupts following the update.
<------> */
<------>if (q_vector->itr_countdown) {
<------><------>itr = rc->target_itr;
<------><------>goto clear_counts;
<------>}
<------>container_is_rx = (&q_vector->rx == rc);
<------>/* For Rx we want to push the delay up and default to low latency.
<------> * for Tx we want to pull the delay down and default to high latency.
<------> */
<------>itr = container_is_rx ?
<------><------>ICE_ITR_ADAPTIVE_MIN_USECS | ICE_ITR_ADAPTIVE_LATENCY :
<------><------>ICE_ITR_ADAPTIVE_MAX_USECS | ICE_ITR_ADAPTIVE_LATENCY;
<------>/* If we didn't update within up to 1 - 2 jiffies we can assume
<------> * that either packets are coming in so slow there hasn't been
<------> * any work, or that there is so much work that NAPI is dealing
<------> * with interrupt moderation and we don't need to do anything.
<------> */
<------>if (time_after(next_update, rc->next_update))
<------><------>goto clear_counts;
<------>prefetch(q_vector->vsi->port_info);
<------>packets = rc->total_pkts;
<------>bytes = rc->total_bytes;
<------>if (container_is_rx) {
<------><------>/* If Rx there are 1 to 4 packets and bytes are less than
<------><------> * 9000 assume insufficient data to use bulk rate limiting
<------><------> * approach unless Tx is already in bulk rate limiting. We
<------><------> * are likely latency driven.
<------><------> */
<------><------>if (packets && packets < 4 && bytes < 9000 &&
<------><------> (q_vector->tx.target_itr & ICE_ITR_ADAPTIVE_LATENCY)) {
<------><------><------>itr = ICE_ITR_ADAPTIVE_LATENCY;
<------><------><------>goto adjust_by_size_and_speed;
<------><------>}
<------>} else if (packets < 4) {
<------><------>/* If we have Tx and Rx ITR maxed and Tx ITR is running in
<------><------> * bulk mode and we are receiving 4 or fewer packets just
<------><------> * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
<------><------> * that the Rx can relax.
<------><------> */
<------><------>if (rc->target_itr == ICE_ITR_ADAPTIVE_MAX_USECS &&
<------><------> (q_vector->rx.target_itr & ICE_ITR_MASK) ==
<------><------> ICE_ITR_ADAPTIVE_MAX_USECS)
<------><------><------>goto clear_counts;
<------>} else if (packets > 32) {
<------><------>/* If we have processed over 32 packets in a single interrupt
<------><------> * for Tx assume we need to switch over to "bulk" mode.
<------><------> */
<------><------>rc->target_itr &= ~ICE_ITR_ADAPTIVE_LATENCY;
<------>}
<------>/* We have no packets to actually measure against. This means
<------> * either one of the other queues on this vector is active or
<------> * we are a Tx queue doing TSO with too high of an interrupt rate.
<------> *
<------> * Between 4 and 56 we can assume that our current interrupt delay
<------> * is only slightly too low. As such we should increase it by a small
<------> * fixed amount.
<------> */
<------>if (packets < 56) {
<------><------>itr = rc->target_itr + ICE_ITR_ADAPTIVE_MIN_INC;
<------><------>if ((itr & ICE_ITR_MASK) > ICE_ITR_ADAPTIVE_MAX_USECS) {
<------><------><------>itr &= ICE_ITR_ADAPTIVE_LATENCY;
<------><------><------>itr += ICE_ITR_ADAPTIVE_MAX_USECS;
<------><------>}
<------><------>goto clear_counts;
<------>}
<------>if (packets <= 256) {
<------><------>itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
<------><------>itr &= ICE_ITR_MASK;
<------><------>/* Between 56 and 112 is our "goldilocks" zone where we are
<------><------> * working out "just right". Just report that our current
<------><------> * ITR is good for us.
<------><------> */
<------><------>if (packets <= 112)
<------><------><------>goto clear_counts;
<------><------>/* If packet count is 128 or greater we are likely looking
<------><------> * at a slight overrun of the delay we want. Try halving
<------><------> * our delay to see if that will cut the number of packets
<------><------> * in half per interrupt.
<------><------> */
<------><------>itr >>= 1;
<------><------>itr &= ICE_ITR_MASK;
<------><------>if (itr < ICE_ITR_ADAPTIVE_MIN_USECS)
<------><------><------>itr = ICE_ITR_ADAPTIVE_MIN_USECS;
<------><------>goto clear_counts;
<------>}
<------>/* The paths below assume we are dealing with a bulk ITR since
<------> * number of packets is greater than 256. We are just going to have
<------> * to compute a value and try to bring the count under control,
<------> * though for smaller packet sizes there isn't much we can do as
<------> * NAPI polling will likely be kicking in sooner rather than later.
<------> */
<------>itr = ICE_ITR_ADAPTIVE_BULK;
adjust_by_size_and_speed:
<------>/* based on checks above packets cannot be 0 so division is safe */
<------>itr = ice_adjust_itr_by_size_and_speed(q_vector->vsi->port_info,
<------><------><------><------><------> bytes / packets, itr);
clear_counts:
<------>/* write back value */
<------>rc->target_itr = itr;
<------>/* next update should occur within next jiffy */
<------>rc->next_update = next_update + 1;
<------>rc->total_bytes = 0;
<------>rc->total_pkts = 0;
}
/**
* ice_buildreg_itr - build value for writing to the GLINT_DYN_CTL register
* @itr_idx: interrupt throttling index
* @itr: interrupt throttling value in usecs
*/
static u32 ice_buildreg_itr(u16 itr_idx, u16 itr)
{
<------>/* The ITR value is reported in microseconds, and the register value is
<------> * recorded in 2 microsecond units. For this reason we only need to
<------> * shift by the GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S to apply this
<------> * granularity as a shift instead of division. The mask makes sure the
<------> * ITR value is never odd so we don't accidentally write into the field
<------> * prior to the ITR field.
<------> */
<------>itr &= ICE_ITR_MASK;
<------>return GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M |
<------><------>(itr_idx << GLINT_DYN_CTL_ITR_INDX_S) |
<------><------>(itr << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S));
}
/* The act of updating the ITR will cause it to immediately trigger. In order
* to prevent this from throwing off adaptive update statistics we defer the
* update so that it can only happen so often. So after either Tx or Rx are
* updated we make the adaptive scheme wait until either the ITR completely
* expires via the next_update expiration or we have been through at least
* 3 interrupts.
*/
#define ITR_COUNTDOWN_START 3
/**
* ice_update_ena_itr - Update ITR and re-enable MSIX interrupt
* @q_vector: q_vector for which ITR is being updated and interrupt enabled
*/
static void ice_update_ena_itr(struct ice_q_vector *q_vector)
{
<------>struct ice_ring_container *tx = &q_vector->tx;
<------>struct ice_ring_container *rx = &q_vector->rx;
<------>struct ice_vsi *vsi = q_vector->vsi;
<------>u32 itr_val;
<------>/* when exiting WB_ON_ITR lets set a low ITR value and trigger
<------> * interrupts to expire right away in case we have more work ready to go
<------> * already
<------> */
<------>if (q_vector->itr_countdown == ICE_IN_WB_ON_ITR_MODE) {
<------><------>itr_val = ice_buildreg_itr(rx->itr_idx, ICE_WB_ON_ITR_USECS);
<------><------>wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), itr_val);
<------><------>/* set target back to last user set value */
<------><------>rx->target_itr = rx->itr_setting;
<------><------>/* set current to what we just wrote and dynamic if needed */
<------><------>rx->current_itr = ICE_WB_ON_ITR_USECS |
<------><------><------>(rx->itr_setting & ICE_ITR_DYNAMIC);
<------><------>/* allow normal interrupt flow to start */
<------><------>q_vector->itr_countdown = 0;
<------><------>return;
<------>}
<------>/* This will do nothing if dynamic updates are not enabled */
<------>ice_update_itr(q_vector, tx);
<------>ice_update_itr(q_vector, rx);
<------>/* This block of logic allows us to get away with only updating
<------> * one ITR value with each interrupt. The idea is to perform a
<------> * pseudo-lazy update with the following criteria.
<------> *
<------> * 1. Rx is given higher priority than Tx if both are in same state
<------> * 2. If we must reduce an ITR that is given highest priority.
<------> * 3. We then give priority to increasing ITR based on amount.
<------> */
<------>if (rx->target_itr < rx->current_itr) {
<------><------>/* Rx ITR needs to be reduced, this is highest priority */
<------><------>itr_val = ice_buildreg_itr(rx->itr_idx, rx->target_itr);
<------><------>rx->current_itr = rx->target_itr;
<------><------>q_vector->itr_countdown = ITR_COUNTDOWN_START;
<------>} else if ((tx->target_itr < tx->current_itr) ||
<------><------> ((rx->target_itr - rx->current_itr) <
<------><------> (tx->target_itr - tx->current_itr))) {
<------><------>/* Tx ITR needs to be reduced, this is second priority
<------><------> * Tx ITR needs to be increased more than Rx, fourth priority
<------><------> */
<------><------>itr_val = ice_buildreg_itr(tx->itr_idx, tx->target_itr);
<------><------>tx->current_itr = tx->target_itr;
<------><------>q_vector->itr_countdown = ITR_COUNTDOWN_START;
<------>} else if (rx->current_itr != rx->target_itr) {
<------><------>/* Rx ITR needs to be increased, third priority */
<------><------>itr_val = ice_buildreg_itr(rx->itr_idx, rx->target_itr);
<------><------>rx->current_itr = rx->target_itr;
<------><------>q_vector->itr_countdown = ITR_COUNTDOWN_START;
<------>} else {
<------><------>/* Still have to re-enable the interrupts */
<------><------>itr_val = ice_buildreg_itr(ICE_ITR_NONE, 0);
<------><------>if (q_vector->itr_countdown)
<------><------><------>q_vector->itr_countdown--;
<------>}
<------>if (!test_bit(__ICE_DOWN, q_vector->vsi->state))
<------><------>wr32(&q_vector->vsi->back->hw,
<------><------> GLINT_DYN_CTL(q_vector->reg_idx),
<------><------> itr_val);
}
/**
* ice_set_wb_on_itr - set WB_ON_ITR for this q_vector
* @q_vector: q_vector to set WB_ON_ITR on
*
* We need to tell hardware to write-back completed descriptors even when
* interrupts are disabled. Descriptors will be written back on cache line
* boundaries without WB_ON_ITR enabled, but if we don't enable WB_ON_ITR
* descriptors may not be written back if they don't fill a cache line until the
* next interrupt.
*
* This sets the write-back frequency to 2 microseconds as that is the minimum
* value that's not 0 due to ITR granularity. Also, set the INTENA_MSK bit to
* make sure hardware knows we aren't meddling with the INTENA_M bit.
*/
static void ice_set_wb_on_itr(struct ice_q_vector *q_vector)
{
<------>struct ice_vsi *vsi = q_vector->vsi;
<------>/* already in WB_ON_ITR mode no need to change it */
<------>if (q_vector->itr_countdown == ICE_IN_WB_ON_ITR_MODE)
<------><------>return;
<------>if (q_vector->num_ring_rx)
<------><------>wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx),
<------><------> ICE_GLINT_DYN_CTL_WB_ON_ITR(ICE_WB_ON_ITR_USECS,
<------><------><------><------><------><------> ICE_RX_ITR));
<------>if (q_vector->num_ring_tx)
<------><------>wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx),
<------><------> ICE_GLINT_DYN_CTL_WB_ON_ITR(ICE_WB_ON_ITR_USECS,
<------><------><------><------><------><------> ICE_TX_ITR));
<------>q_vector->itr_countdown = ICE_IN_WB_ON_ITR_MODE;
}
/**
* ice_napi_poll - NAPI polling Rx/Tx cleanup routine
* @napi: napi struct with our devices info in it
* @budget: amount of work driver is allowed to do this pass, in packets
*
* This function will clean all queues associated with a q_vector.
*
* Returns the amount of work done
*/
int ice_napi_poll(struct napi_struct *napi, int budget)
{
<------>struct ice_q_vector *q_vector =
<------><------><------><------>container_of(napi, struct ice_q_vector, napi);
<------>bool clean_complete = true;
<------>struct ice_ring *ring;
<------>int budget_per_ring;
<------>int work_done = 0;
<------>/* Since the actual Tx work is minimal, we can give the Tx a larger
<------> * budget and be more aggressive about cleaning up the Tx descriptors.
<------> */
<------>ice_for_each_ring(ring, q_vector->tx) {
<------><------>bool wd = ring->xsk_pool ?
<------><------><------> ice_clean_tx_irq_zc(ring, budget) :
<------><------><------> ice_clean_tx_irq(ring, budget);
<------><------>if (!wd)
<------><------><------>clean_complete = false;
<------>}
<------>/* Handle case where we are called by netpoll with a budget of 0 */
<------>if (unlikely(budget <= 0))
<------><------>return budget;
<------>/* normally we have 1 Rx ring per q_vector */
<------>if (unlikely(q_vector->num_ring_rx > 1))
<------><------>/* We attempt to distribute budget to each Rx queue fairly, but
<------><------> * don't allow the budget to go below 1 because that would exit
<------><------> * polling early.
<------><------> */
<------><------>budget_per_ring = max_t(int, budget / q_vector->num_ring_rx, 1);
<------>else
<------><------>/* Max of 1 Rx ring in this q_vector so give it the budget */
<------><------>budget_per_ring = budget;
<------>ice_for_each_ring(ring, q_vector->rx) {
<------><------>int cleaned;
<------><------>/* A dedicated path for zero-copy allows making a single
<------><------> * comparison in the irq context instead of many inside the
<------><------> * ice_clean_rx_irq function and makes the codebase cleaner.
<------><------> */
<------><------>cleaned = ring->xsk_pool ?
<------><------><------> ice_clean_rx_irq_zc(ring, budget_per_ring) :
<------><------><------> ice_clean_rx_irq(ring, budget_per_ring);
<------><------>work_done += cleaned;
<------><------>/* if we clean as many as budgeted, we must not be done */
<------><------>if (cleaned >= budget_per_ring)
<------><------><------>clean_complete = false;
<------>}
<------>/* If work not completed, return budget and polling will return */
<------>if (!clean_complete)
<------><------>return budget;
<------>/* Exit the polling mode, but don't re-enable interrupts if stack might
<------> * poll us due to busy-polling
<------> */
<------>if (likely(napi_complete_done(napi, work_done)))
<------><------>ice_update_ena_itr(q_vector);
<------>else
<------><------>ice_set_wb_on_itr(q_vector);
<------>return min_t(int, work_done, budget - 1);
}
/**
* __ice_maybe_stop_tx - 2nd level check for Tx stop conditions
* @tx_ring: the ring to be checked
* @size: the size buffer we want to assure is available
*
* Returns -EBUSY if a stop is needed, else 0
*/
static int __ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size)
{
<------>netif_stop_subqueue(tx_ring->netdev, tx_ring->q_index);
<------>/* Memory barrier before checking head and tail */
<------>smp_mb();
<------>/* Check again in a case another CPU has just made room available. */
<------>if (likely(ICE_DESC_UNUSED(tx_ring) < size))
<------><------>return -EBUSY;
<------>/* A reprieve! - use start_subqueue because it doesn't call schedule */
<------>netif_start_subqueue(tx_ring->netdev, tx_ring->q_index);
<------>++tx_ring->tx_stats.restart_q;
<------>return 0;
}
/**
* ice_maybe_stop_tx - 1st level check for Tx stop conditions
* @tx_ring: the ring to be checked
* @size: the size buffer we want to assure is available
*
* Returns 0 if stop is not needed
*/
static int ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size)
{
<------>if (likely(ICE_DESC_UNUSED(tx_ring) >= size))
<------><------>return 0;
<------>return __ice_maybe_stop_tx(tx_ring, size);
}
/**
* ice_tx_map - Build the Tx descriptor
* @tx_ring: ring to send buffer on
* @first: first buffer info buffer to use
* @off: pointer to struct that holds offload parameters
*
* This function loops over the skb data pointed to by *first
* and gets a physical address for each memory location and programs
* it and the length into the transmit descriptor.
*/
static void
ice_tx_map(struct ice_ring *tx_ring, struct ice_tx_buf *first,
<------> struct ice_tx_offload_params *off)
{
<------>u64 td_offset, td_tag, td_cmd;
<------>u16 i = tx_ring->next_to_use;
<------>unsigned int data_len, size;
<------>struct ice_tx_desc *tx_desc;
<------>struct ice_tx_buf *tx_buf;
<------>struct sk_buff *skb;
<------>skb_frag_t *frag;
<------>dma_addr_t dma;
<------>td_tag = off->td_l2tag1;
<------>td_cmd = off->td_cmd;
<------>td_offset = off->td_offset;
<------>skb = first->skb;
<------>data_len = skb->data_len;
<------>size = skb_headlen(skb);
<------>tx_desc = ICE_TX_DESC(tx_ring, i);
<------>if (first->tx_flags & ICE_TX_FLAGS_HW_VLAN) {
<------><------>td_cmd |= (u64)ICE_TX_DESC_CMD_IL2TAG1;
<------><------>td_tag = (first->tx_flags & ICE_TX_FLAGS_VLAN_M) >>
<------><------><------> ICE_TX_FLAGS_VLAN_S;
<------>}
<------>dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
<------>tx_buf = first;
<------>for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
<------><------>unsigned int max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
<------><------>if (dma_mapping_error(tx_ring->dev, dma))
<------><------><------>goto dma_error;
<------><------>/* record length, and DMA address */
<------><------>dma_unmap_len_set(tx_buf, len, size);
<------><------>dma_unmap_addr_set(tx_buf, dma, dma);
<------><------>/* align size to end of page */
<------><------>max_data += -dma & (ICE_MAX_READ_REQ_SIZE - 1);
<------><------>tx_desc->buf_addr = cpu_to_le64(dma);
<------><------>/* account for data chunks larger than the hardware
<------><------> * can handle
<------><------> */
<------><------>while (unlikely(size > ICE_MAX_DATA_PER_TXD)) {
<------><------><------>tx_desc->cmd_type_offset_bsz =
<------><------><------><------>ice_build_ctob(td_cmd, td_offset, max_data,
<------><------><------><------><------> td_tag);
<------><------><------>tx_desc++;
<------><------><------>i++;
<------><------><------>if (i == tx_ring->count) {
<------><------><------><------>tx_desc = ICE_TX_DESC(tx_ring, 0);
<------><------><------><------>i = 0;
<------><------><------>}
<------><------><------>dma += max_data;
<------><------><------>size -= max_data;
<------><------><------>max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
<------><------><------>tx_desc->buf_addr = cpu_to_le64(dma);
<------><------>}
<------><------>if (likely(!data_len))
<------><------><------>break;
<------><------>tx_desc->cmd_type_offset_bsz = ice_build_ctob(td_cmd, td_offset,
<------><------><------><------><------><------><------> size, td_tag);
<------><------>tx_desc++;
<------><------>i++;
<------><------>if (i == tx_ring->count) {
<------><------><------>tx_desc = ICE_TX_DESC(tx_ring, 0);
<------><------><------>i = 0;
<------><------>}
<------><------>size = skb_frag_size(frag);
<------><------>data_len -= size;
<------><------>dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
<------><------><------><------> DMA_TO_DEVICE);
<------><------>tx_buf = &tx_ring->tx_buf[i];
<------>}
<------>/* record bytecount for BQL */
<------>netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
<------>/* record SW timestamp if HW timestamp is not available */
<------>skb_tx_timestamp(first->skb);
<------>i++;
<------>if (i == tx_ring->count)
<------><------>i = 0;
<------>/* write last descriptor with RS and EOP bits */
<------>td_cmd |= (u64)ICE_TXD_LAST_DESC_CMD;
<------>tx_desc->cmd_type_offset_bsz =
<------><------><------>ice_build_ctob(td_cmd, td_offset, size, td_tag);
<------>/* Force memory writes to complete before letting h/w know there
<------> * are new descriptors to fetch.
<------> *
<------> * We also use this memory barrier to make certain all of the
<------> * status bits have been updated before next_to_watch is written.
<------> */
<------>wmb();
<------>/* set next_to_watch value indicating a packet is present */
<------>first->next_to_watch = tx_desc;
<------>tx_ring->next_to_use = i;
<------>ice_maybe_stop_tx(tx_ring, DESC_NEEDED);
<------>/* notify HW of packet */
<------>if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more())
<------><------>writel(i, tx_ring->tail);
<------>return;
dma_error:
<------>/* clear DMA mappings for failed tx_buf map */
<------>for (;;) {
<------><------>tx_buf = &tx_ring->tx_buf[i];
<------><------>ice_unmap_and_free_tx_buf(tx_ring, tx_buf);
<------><------>if (tx_buf == first)
<------><------><------>break;
<------><------>if (i == 0)
<------><------><------>i = tx_ring->count;
<------><------>i--;
<------>}
<------>tx_ring->next_to_use = i;
}
/**
* ice_tx_csum - Enable Tx checksum offloads
* @first: pointer to the first descriptor
* @off: pointer to struct that holds offload parameters
*
* Returns 0 or error (negative) if checksum offload can't happen, 1 otherwise.
*/
static
int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
{
<------>u32 l4_len = 0, l3_len = 0, l2_len = 0;
<------>struct sk_buff *skb = first->skb;
<------>union {
<------><------>struct iphdr *v4;
<------><------>struct ipv6hdr *v6;
<------><------>unsigned char *hdr;
<------>} ip;
<------>union {
<------><------>struct tcphdr *tcp;
<------><------>unsigned char *hdr;
<------>} l4;
<------>__be16 frag_off, protocol;
<------>unsigned char *exthdr;
<------>u32 offset, cmd = 0;
<------>u8 l4_proto = 0;
<------>if (skb->ip_summed != CHECKSUM_PARTIAL)
<------><------>return 0;
<------>ip.hdr = skb_network_header(skb);
<------>l4.hdr = skb_transport_header(skb);
<------>/* compute outer L2 header size */
<------>l2_len = ip.hdr - skb->data;
<------>offset = (l2_len / 2) << ICE_TX_DESC_LEN_MACLEN_S;
<------>protocol = vlan_get_protocol(skb);
<------>if (protocol == htons(ETH_P_IP))
<------><------>first->tx_flags |= ICE_TX_FLAGS_IPV4;
<------>else if (protocol == htons(ETH_P_IPV6))
<------><------>first->tx_flags |= ICE_TX_FLAGS_IPV6;
<------>if (skb->encapsulation) {
<------><------>bool gso_ena = false;
<------><------>u32 tunnel = 0;
<------><------>/* define outer network header type */
<------><------>if (first->tx_flags & ICE_TX_FLAGS_IPV4) {
<------><------><------>tunnel |= (first->tx_flags & ICE_TX_FLAGS_TSO) ?
<------><------><------><------> ICE_TX_CTX_EIPT_IPV4 :
<------><------><------><------> ICE_TX_CTX_EIPT_IPV4_NO_CSUM;
<------><------><------>l4_proto = ip.v4->protocol;
<------><------>} else if (first->tx_flags & ICE_TX_FLAGS_IPV6) {
<------><------><------>int ret;
<------><------><------>tunnel |= ICE_TX_CTX_EIPT_IPV6;
<------><------><------>exthdr = ip.hdr + sizeof(*ip.v6);
<------><------><------>l4_proto = ip.v6->nexthdr;
<------><------><------>ret = ipv6_skip_exthdr(skb, exthdr - skb->data,
<------><------><------><------><------> &l4_proto, &frag_off);
<------><------><------>if (ret < 0)
<------><------><------><------>return -1;
<------><------>}
<------><------>/* define outer transport */
<------><------>switch (l4_proto) {
<------><------>case IPPROTO_UDP:
<------><------><------>tunnel |= ICE_TXD_CTX_UDP_TUNNELING;
<------><------><------>first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
<------><------><------>break;
<------><------>case IPPROTO_GRE:
<------><------><------>tunnel |= ICE_TXD_CTX_GRE_TUNNELING;
<------><------><------>first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
<------><------><------>break;
<------><------>case IPPROTO_IPIP:
<------><------>case IPPROTO_IPV6:
<------><------><------>first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
<------><------><------>l4.hdr = skb_inner_network_header(skb);
<------><------><------>break;
<------><------>default:
<------><------><------>if (first->tx_flags & ICE_TX_FLAGS_TSO)
<------><------><------><------>return -1;
<------><------><------>skb_checksum_help(skb);
<------><------><------>return 0;
<------><------>}
<------><------>/* compute outer L3 header size */
<------><------>tunnel |= ((l4.hdr - ip.hdr) / 4) <<
<------><------><------> ICE_TXD_CTX_QW0_EIPLEN_S;
<------><------>/* switch IP header pointer from outer to inner header */
<------><------>ip.hdr = skb_inner_network_header(skb);
<------><------>/* compute tunnel header size */
<------><------>tunnel |= ((ip.hdr - l4.hdr) / 2) <<
<------><------><------> ICE_TXD_CTX_QW0_NATLEN_S;
<------><------>gso_ena = skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL;
<------><------>/* indicate if we need to offload outer UDP header */
<------><------>if ((first->tx_flags & ICE_TX_FLAGS_TSO) && !gso_ena &&
<------><------> (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
<------><------><------>tunnel |= ICE_TXD_CTX_QW0_L4T_CS_M;
<------><------>/* record tunnel offload values */
<------><------>off->cd_tunnel_params |= tunnel;
<------><------>/* set DTYP=1 to indicate that it's an Tx context descriptor
<------><------> * in IPsec tunnel mode with Tx offloads in Quad word 1
<------><------> */
<------><------>off->cd_qw1 |= (u64)ICE_TX_DESC_DTYPE_CTX;
<------><------>/* switch L4 header pointer from outer to inner */
<------><------>l4.hdr = skb_inner_transport_header(skb);
<------><------>l4_proto = 0;
<------><------>/* reset type as we transition from outer to inner headers */
<------><------>first->tx_flags &= ~(ICE_TX_FLAGS_IPV4 | ICE_TX_FLAGS_IPV6);
<------><------>if (ip.v4->version == 4)
<------><------><------>first->tx_flags |= ICE_TX_FLAGS_IPV4;
<------><------>if (ip.v6->version == 6)
<------><------><------>first->tx_flags |= ICE_TX_FLAGS_IPV6;
<------>}
<------>/* Enable IP checksum offloads */
<------>if (first->tx_flags & ICE_TX_FLAGS_IPV4) {
<------><------>l4_proto = ip.v4->protocol;
<------><------>/* the stack computes the IP header already, the only time we
<------><------> * need the hardware to recompute it is in the case of TSO.
<------><------> */
<------><------>if (first->tx_flags & ICE_TX_FLAGS_TSO)
<------><------><------>cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM;
<------><------>else
<------><------><------>cmd |= ICE_TX_DESC_CMD_IIPT_IPV4;
<------>} else if (first->tx_flags & ICE_TX_FLAGS_IPV6) {
<------><------>cmd |= ICE_TX_DESC_CMD_IIPT_IPV6;
<------><------>exthdr = ip.hdr + sizeof(*ip.v6);
<------><------>l4_proto = ip.v6->nexthdr;
<------><------>if (l4.hdr != exthdr)
<------><------><------>ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto,
<------><------><------><------><------> &frag_off);
<------>} else {
<------><------>return -1;
<------>}
<------>/* compute inner L3 header size */
<------>l3_len = l4.hdr - ip.hdr;
<------>offset |= (l3_len / 4) << ICE_TX_DESC_LEN_IPLEN_S;
<------>/* Enable L4 checksum offloads */
<------>switch (l4_proto) {
<------>case IPPROTO_TCP:
<------><------>/* enable checksum offloads */
<------><------>cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
<------><------>l4_len = l4.tcp->doff;
<------><------>offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
<------><------>break;
<------>case IPPROTO_UDP:
<------><------>/* enable UDP checksum offload */
<------><------>cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP;
<------><------>l4_len = (sizeof(struct udphdr) >> 2);
<------><------>offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
<------><------>break;
<------>case IPPROTO_SCTP:
<------><------>/* enable SCTP checksum offload */
<------><------>cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP;
<------><------>l4_len = sizeof(struct sctphdr) >> 2;
<------><------>offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
<------><------>break;
<------>default:
<------><------>if (first->tx_flags & ICE_TX_FLAGS_TSO)
<------><------><------>return -1;
<------><------>skb_checksum_help(skb);
<------><------>return 0;
<------>}
<------>off->td_cmd |= cmd;
<------>off->td_offset |= offset;
<------>return 1;
}
/**
* ice_tx_prepare_vlan_flags - prepare generic Tx VLAN tagging flags for HW
* @tx_ring: ring to send buffer on
* @first: pointer to struct ice_tx_buf
*
* Checks the skb and set up correspondingly several generic transmit flags
* related to VLAN tagging for the HW, such as VLAN, DCB, etc.
*/
static void
ice_tx_prepare_vlan_flags(struct ice_ring *tx_ring, struct ice_tx_buf *first)
{
<------>struct sk_buff *skb = first->skb;
<------>/* nothing left to do, software offloaded VLAN */
<------>if (!skb_vlan_tag_present(skb) && eth_type_vlan(skb->protocol))
<------><------>return;
<------>/* currently, we always assume 802.1Q for VLAN insertion as VLAN
<------> * insertion for 802.1AD is not supported
<------> */
<------>if (skb_vlan_tag_present(skb)) {
<------><------>first->tx_flags |= skb_vlan_tag_get(skb) << ICE_TX_FLAGS_VLAN_S;
<------><------>first->tx_flags |= ICE_TX_FLAGS_HW_VLAN;
<------>}
<------>ice_tx_prepare_vlan_flags_dcb(tx_ring, first);
}
/**
* ice_tso - computes mss and TSO length to prepare for TSO
* @first: pointer to struct ice_tx_buf
* @off: pointer to struct that holds offload parameters
*
* Returns 0 or error (negative) if TSO can't happen, 1 otherwise.
*/
static
int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
{
<------>struct sk_buff *skb = first->skb;
<------>union {
<------><------>struct iphdr *v4;
<------><------>struct ipv6hdr *v6;
<------><------>unsigned char *hdr;
<------>} ip;
<------>union {
<------><------>struct tcphdr *tcp;
<------><------>struct udphdr *udp;
<------><------>unsigned char *hdr;
<------>} l4;
<------>u64 cd_mss, cd_tso_len;
<------>u32 paylen;
<------>u8 l4_start;
<------>int err;
<------>if (skb->ip_summed != CHECKSUM_PARTIAL)
<------><------>return 0;
<------>if (!skb_is_gso(skb))
<------><------>return 0;
<------>err = skb_cow_head(skb, 0);
<------>if (err < 0)
<------><------>return err;
<------>/* cppcheck-suppress unreadVariable */
<------>ip.hdr = skb_network_header(skb);
<------>l4.hdr = skb_transport_header(skb);
<------>/* initialize outer IP header fields */
<------>if (ip.v4->version == 4) {
<------><------>ip.v4->tot_len = 0;
<------><------>ip.v4->check = 0;
<------>} else {
<------><------>ip.v6->payload_len = 0;
<------>}
<------>if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
<------><------><------><------><------> SKB_GSO_GRE_CSUM |
<------><------><------><------><------> SKB_GSO_IPXIP4 |
<------><------><------><------><------> SKB_GSO_IPXIP6 |
<------><------><------><------><------> SKB_GSO_UDP_TUNNEL |
<------><------><------><------><------> SKB_GSO_UDP_TUNNEL_CSUM)) {
<------><------>if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
<------><------> (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
<------><------><------>l4.udp->len = 0;
<------><------><------>/* determine offset of outer transport header */
<------><------><------>l4_start = (u8)(l4.hdr - skb->data);
<------><------><------>/* remove payload length from outer checksum */
<------><------><------>paylen = skb->len - l4_start;
<------><------><------>csum_replace_by_diff(&l4.udp->check,
<------><------><------><------><------> (__force __wsum)htonl(paylen));
<------><------>}
<------><------>/* reset pointers to inner headers */
<------><------>/* cppcheck-suppress unreadVariable */
<------><------>ip.hdr = skb_inner_network_header(skb);
<------><------>l4.hdr = skb_inner_transport_header(skb);
<------><------>/* initialize inner IP header fields */
<------><------>if (ip.v4->version == 4) {
<------><------><------>ip.v4->tot_len = 0;
<------><------><------>ip.v4->check = 0;
<------><------>} else {
<------><------><------>ip.v6->payload_len = 0;
<------><------>}
<------>}
<------>/* determine offset of transport header */
<------>l4_start = (u8)(l4.hdr - skb->data);
<------>/* remove payload length from checksum */
<------>paylen = skb->len - l4_start;
<------>if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
<------><------>csum_replace_by_diff(&l4.udp->check,
<------><------><------><------> (__force __wsum)htonl(paylen));
<------><------>/* compute length of UDP segmentation header */
<------><------>off->header_len = (u8)sizeof(l4.udp) + l4_start;
<------>} else {
<------><------>csum_replace_by_diff(&l4.tcp->check,
<------><------><------><------> (__force __wsum)htonl(paylen));
<------><------>/* compute length of TCP segmentation header */
<------><------>off->header_len = (u8)((l4.tcp->doff * 4) + l4_start);
<------>}
<------>/* update gso_segs and bytecount */
<------>first->gso_segs = skb_shinfo(skb)->gso_segs;
<------>first->bytecount += (first->gso_segs - 1) * off->header_len;
<------>cd_tso_len = skb->len - off->header_len;
<------>cd_mss = skb_shinfo(skb)->gso_size;
<------>/* record cdesc_qw1 with TSO parameters */
<------>off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
<------><------><------> (ICE_TX_CTX_DESC_TSO << ICE_TXD_CTX_QW1_CMD_S) |
<------><------><------> (cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) |
<------><------><------> (cd_mss << ICE_TXD_CTX_QW1_MSS_S));
<------>first->tx_flags |= ICE_TX_FLAGS_TSO;
<------>return 1;
}
/**
* ice_txd_use_count - estimate the number of descriptors needed for Tx
* @size: transmit request size in bytes
*
* Due to hardware alignment restrictions (4K alignment), we need to
* assume that we can have no more than 12K of data per descriptor, even
* though each descriptor can take up to 16K - 1 bytes of aligned memory.
* Thus, we need to divide by 12K. But division is slow! Instead,
* we decompose the operation into shifts and one relatively cheap
* multiply operation.
*
* To divide by 12K, we first divide by 4K, then divide by 3:
* To divide by 4K, shift right by 12 bits
* To divide by 3, multiply by 85, then divide by 256
* (Divide by 256 is done by shifting right by 8 bits)
* Finally, we add one to round up. Because 256 isn't an exact multiple of
* 3, we'll underestimate near each multiple of 12K. This is actually more
* accurate as we have 4K - 1 of wiggle room that we can fit into the last
* segment. For our purposes this is accurate out to 1M which is orders of
* magnitude greater than our largest possible GSO size.
*
* This would then be implemented as:
* return (((size >> 12) * 85) >> 8) + ICE_DESCS_FOR_SKB_DATA_PTR;
*
* Since multiplication and division are commutative, we can reorder
* operations into:
* return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
*/
static unsigned int ice_txd_use_count(unsigned int size)
{
<------>return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
}
/**
* ice_xmit_desc_count - calculate number of Tx descriptors needed
* @skb: send buffer
*
* Returns number of data descriptors needed for this skb.
*/
static unsigned int ice_xmit_desc_count(struct sk_buff *skb)
{
<------>const skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
<------>unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
<------>unsigned int count = 0, size = skb_headlen(skb);
<------>for (;;) {
<------><------>count += ice_txd_use_count(size);
<------><------>if (!nr_frags--)
<------><------><------>break;
<------><------>size = skb_frag_size(frag++);
<------>}
<------>return count;
}
/**
* __ice_chk_linearize - Check if there are more than 8 buffers per packet
* @skb: send buffer
*
* Note: This HW can't DMA more than 8 buffers to build a packet on the wire
* and so we need to figure out the cases where we need to linearize the skb.
*
* For TSO we need to count the TSO header and segment payload separately.
* As such we need to check cases where we have 7 fragments or more as we
* can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
* the segment payload in the first descriptor, and another 7 for the
* fragments.
*/
static bool __ice_chk_linearize(struct sk_buff *skb)
{
<------>const skb_frag_t *frag, *stale;
<------>int nr_frags, sum;
<------>/* no need to check if number of frags is less than 7 */
<------>nr_frags = skb_shinfo(skb)->nr_frags;
<------>if (nr_frags < (ICE_MAX_BUF_TXD - 1))
<------><------>return false;
<------>/* We need to walk through the list and validate that each group
<------> * of 6 fragments totals at least gso_size.
<------> */
<------>nr_frags -= ICE_MAX_BUF_TXD - 2;
<------>frag = &skb_shinfo(skb)->frags[0];
<------>/* Initialize size to the negative value of gso_size minus 1. We
<------> * use this as the worst case scenario in which the frag ahead
<------> * of us only provides one byte which is why we are limited to 6
<------> * descriptors for a single transmit as the header and previous
<------> * fragment are already consuming 2 descriptors.
<------> */
<------>sum = 1 - skb_shinfo(skb)->gso_size;
<------>/* Add size of frags 0 through 4 to create our initial sum */
<------>sum += skb_frag_size(frag++);
<------>sum += skb_frag_size(frag++);
<------>sum += skb_frag_size(frag++);
<------>sum += skb_frag_size(frag++);
<------>sum += skb_frag_size(frag++);
<------>/* Walk through fragments adding latest fragment, testing it, and
<------> * then removing stale fragments from the sum.
<------> */
<------>for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
<------><------>int stale_size = skb_frag_size(stale);
<------><------>sum += skb_frag_size(frag++);
<------><------>/* The stale fragment may present us with a smaller
<------><------> * descriptor than the actual fragment size. To account
<------><------> * for that we need to remove all the data on the front and
<------><------> * figure out what the remainder would be in the last
<------><------> * descriptor associated with the fragment.
<------><------> */
<------><------>if (stale_size > ICE_MAX_DATA_PER_TXD) {
<------><------><------>int align_pad = -(skb_frag_off(stale)) &
<------><------><------><------><------>(ICE_MAX_READ_REQ_SIZE - 1);
<------><------><------>sum -= align_pad;
<------><------><------>stale_size -= align_pad;
<------><------><------>do {
<------><------><------><------>sum -= ICE_MAX_DATA_PER_TXD_ALIGNED;
<------><------><------><------>stale_size -= ICE_MAX_DATA_PER_TXD_ALIGNED;
<------><------><------>} while (stale_size > ICE_MAX_DATA_PER_TXD);
<------><------>}
<------><------>/* if sum is negative we failed to make sufficient progress */
<------><------>if (sum < 0)
<------><------><------>return true;
<------><------>if (!nr_frags--)
<------><------><------>break;
<------><------>sum -= stale_size;
<------>}
<------>return false;
}
/**
* ice_chk_linearize - Check if there are more than 8 fragments per packet
* @skb: send buffer
* @count: number of buffers used
*
* Note: Our HW can't scatter-gather more than 8 fragments to build
* a packet on the wire and so we need to figure out the cases where we
* need to linearize the skb.
*/
static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count)
{
<------>/* Both TSO and single send will work if count is less than 8 */
<------>if (likely(count < ICE_MAX_BUF_TXD))
<------><------>return false;
<------>if (skb_is_gso(skb))
<------><------>return __ice_chk_linearize(skb);
<------>/* we can support up to 8 data buffers for a single send */
<------>return count != ICE_MAX_BUF_TXD;
}
/**
* ice_xmit_frame_ring - Sends buffer on Tx ring
* @skb: send buffer
* @tx_ring: ring to send buffer on
*
* Returns NETDEV_TX_OK if sent, else an error code
*/
static netdev_tx_t
ice_xmit_frame_ring(struct sk_buff *skb, struct ice_ring *tx_ring)
{
<------>struct ice_tx_offload_params offload = { 0 };
<------>struct ice_vsi *vsi = tx_ring->vsi;
<------>struct ice_tx_buf *first;
<------>struct ethhdr *eth;
<------>unsigned int count;
<------>int tso, csum;
<------>count = ice_xmit_desc_count(skb);
<------>if (ice_chk_linearize(skb, count)) {
<------><------>if (__skb_linearize(skb))
<------><------><------>goto out_drop;
<------><------>count = ice_txd_use_count(skb->len);
<------><------>tx_ring->tx_stats.tx_linearize++;
<------>}
<------>/* need: 1 descriptor per page * PAGE_SIZE/ICE_MAX_DATA_PER_TXD,
<------> * + 1 desc for skb_head_len/ICE_MAX_DATA_PER_TXD,
<------> * + 4 desc gap to avoid the cache line where head is,
<------> * + 1 desc for context descriptor,
<------> * otherwise try next time
<------> */
<------>if (ice_maybe_stop_tx(tx_ring, count + ICE_DESCS_PER_CACHE_LINE +
<------><------><------> ICE_DESCS_FOR_CTX_DESC)) {
<------><------>tx_ring->tx_stats.tx_busy++;
<------><------>return NETDEV_TX_BUSY;
<------>}
<------>offload.tx_ring = tx_ring;
<------>/* record the location of the first descriptor for this packet */
<------>first = &tx_ring->tx_buf[tx_ring->next_to_use];
<------>first->skb = skb;
<------>first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
<------>first->gso_segs = 1;
<------>first->tx_flags = 0;
<------>/* prepare the VLAN tagging flags for Tx */
<------>ice_tx_prepare_vlan_flags(tx_ring, first);
<------>/* set up TSO offload */
<------>tso = ice_tso(first, &offload);
<------>if (tso < 0)
<------><------>goto out_drop;
<------>/* always set up Tx checksum offload */
<------>csum = ice_tx_csum(first, &offload);
<------>if (csum < 0)
<------><------>goto out_drop;
<------>/* allow CONTROL frames egress from main VSI if FW LLDP disabled */
<------>eth = (struct ethhdr *)skb_mac_header(skb);
<------>if (unlikely((skb->priority == TC_PRIO_CONTROL ||
<------><------> eth->h_proto == htons(ETH_P_LLDP)) &&
<------><------> vsi->type == ICE_VSI_PF &&
<------><------> vsi->port_info->qos_cfg.is_sw_lldp))
<------><------>offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
<------><------><------><------><------>ICE_TX_CTX_DESC_SWTCH_UPLINK <<
<------><------><------><------><------>ICE_TXD_CTX_QW1_CMD_S);
<------>if (offload.cd_qw1 & ICE_TX_DESC_DTYPE_CTX) {
<------><------>struct ice_tx_ctx_desc *cdesc;
<------><------>u16 i = tx_ring->next_to_use;
<------><------>/* grab the next descriptor */
<------><------>cdesc = ICE_TX_CTX_DESC(tx_ring, i);
<------><------>i++;
<------><------>tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
<------><------>/* setup context descriptor */
<------><------>cdesc->tunneling_params = cpu_to_le32(offload.cd_tunnel_params);
<------><------>cdesc->l2tag2 = cpu_to_le16(offload.cd_l2tag2);
<------><------>cdesc->rsvd = cpu_to_le16(0);
<------><------>cdesc->qw1 = cpu_to_le64(offload.cd_qw1);
<------>}
<------>ice_tx_map(tx_ring, first, &offload);
<------>return NETDEV_TX_OK;
out_drop:
<------>dev_kfree_skb_any(skb);
<------>return NETDEV_TX_OK;
}
/**
* ice_start_xmit - Selects the correct VSI and Tx queue to send buffer
* @skb: send buffer
* @netdev: network interface device structure
*
* Returns NETDEV_TX_OK if sent, else an error code
*/
netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev)
{
<------>struct ice_netdev_priv *np = netdev_priv(netdev);
<------>struct ice_vsi *vsi = np->vsi;
<------>struct ice_ring *tx_ring;
<------>tx_ring = vsi->tx_rings[skb->queue_mapping];
<------>/* hardware can't handle really short frames, hardware padding works
<------> * beyond this point
<------> */
<------>if (skb_put_padto(skb, ICE_MIN_TX_LEN))
<------><------>return NETDEV_TX_OK;
<------>return ice_xmit_frame_ring(skb, tx_ring);
}
/**
* ice_clean_ctrl_tx_irq - interrupt handler for flow director Tx queue
* @tx_ring: tx_ring to clean
*/
void ice_clean_ctrl_tx_irq(struct ice_ring *tx_ring)
{
<------>struct ice_vsi *vsi = tx_ring->vsi;
<------>s16 i = tx_ring->next_to_clean;
<------>int budget = ICE_DFLT_IRQ_WORK;
<------>struct ice_tx_desc *tx_desc;
<------>struct ice_tx_buf *tx_buf;
<------>tx_buf = &tx_ring->tx_buf[i];
<------>tx_desc = ICE_TX_DESC(tx_ring, i);
<------>i -= tx_ring->count;
<------>do {
<------><------>struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
<------><------>/* if next_to_watch is not set then there is no pending work */
<------><------>if (!eop_desc)
<------><------><------>break;
<------><------>/* prevent any other reads prior to eop_desc */
<------><------>smp_rmb();
<------><------>/* if the descriptor isn't done, no work to do */
<------><------>if (!(eop_desc->cmd_type_offset_bsz &
<------><------> cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
<------><------><------>break;
<------><------>/* clear next_to_watch to prevent false hangs */
<------><------>tx_buf->next_to_watch = NULL;
<------><------>tx_desc->buf_addr = 0;
<------><------>tx_desc->cmd_type_offset_bsz = 0;
<------><------>/* move past filter desc */
<------><------>tx_buf++;
<------><------>tx_desc++;
<------><------>i++;
<------><------>if (unlikely(!i)) {
<------><------><------>i -= tx_ring->count;
<------><------><------>tx_buf = tx_ring->tx_buf;
<------><------><------>tx_desc = ICE_TX_DESC(tx_ring, 0);
<------><------>}
<------><------>/* unmap the data header */
<------><------>if (dma_unmap_len(tx_buf, len))
<------><------><------>dma_unmap_single(tx_ring->dev,
<------><------><------><------><------> dma_unmap_addr(tx_buf, dma),
<------><------><------><------><------> dma_unmap_len(tx_buf, len),
<------><------><------><------><------> DMA_TO_DEVICE);
<------><------>if (tx_buf->tx_flags & ICE_TX_FLAGS_DUMMY_PKT)
<------><------><------>devm_kfree(tx_ring->dev, tx_buf->raw_buf);
<------><------>/* clear next_to_watch to prevent false hangs */
<------><------>tx_buf->raw_buf = NULL;
<------><------>tx_buf->tx_flags = 0;
<------><------>tx_buf->next_to_watch = NULL;
<------><------>dma_unmap_len_set(tx_buf, len, 0);
<------><------>tx_desc->buf_addr = 0;
<------><------>tx_desc->cmd_type_offset_bsz = 0;
<------><------>/* move past eop_desc for start of next FD desc */
<------><------>tx_buf++;
<------><------>tx_desc++;
<------><------>i++;
<------><------>if (unlikely(!i)) {
<------><------><------>i -= tx_ring->count;
<------><------><------>tx_buf = tx_ring->tx_buf;
<------><------><------>tx_desc = ICE_TX_DESC(tx_ring, 0);
<------><------>}
<------><------>budget--;
<------>} while (likely(budget));
<------>i += tx_ring->count;
<------>tx_ring->next_to_clean = i;
<------>/* re-enable interrupt if needed */
<------>ice_irq_dynamic_ena(&vsi->back->hw, vsi, vsi->q_vectors[0]);
}