Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags   |
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2019, Intel Corporation. */
#include <net/xdp_sock_drv.h>
#include "ice_base.h"
#include "ice_lib.h"
#include "ice_dcb_lib.h"
/**
* __ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI
* @qs_cfg: gathered variables needed for PF->VSI queues assignment
*
* Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
*/
static int __ice_vsi_get_qs_contig(struct ice_qs_cfg *qs_cfg)
{
<------>unsigned int offset, i;
<------>mutex_lock(qs_cfg->qs_mutex);
<------>offset = bitmap_find_next_zero_area(qs_cfg->pf_map, qs_cfg->pf_map_size,
<------><------><------><------><------> 0, qs_cfg->q_count, 0);
<------>if (offset >= qs_cfg->pf_map_size) {
<------><------>mutex_unlock(qs_cfg->qs_mutex);
<------><------>return -ENOMEM;
<------>}
<------>bitmap_set(qs_cfg->pf_map, offset, qs_cfg->q_count);
<------>for (i = 0; i < qs_cfg->q_count; i++)
<------><------>qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)(i + offset);
<------>mutex_unlock(qs_cfg->qs_mutex);
<------>return 0;
}
/**
* __ice_vsi_get_qs_sc - Assign a scattered queues from PF to VSI
* @qs_cfg: gathered variables needed for pf->vsi queues assignment
*
* Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
*/
static int __ice_vsi_get_qs_sc(struct ice_qs_cfg *qs_cfg)
{
<------>unsigned int i, index = 0;
<------>mutex_lock(qs_cfg->qs_mutex);
<------>for (i = 0; i < qs_cfg->q_count; i++) {
<------><------>index = find_next_zero_bit(qs_cfg->pf_map,
<------><------><------><------><------> qs_cfg->pf_map_size, index);
<------><------>if (index >= qs_cfg->pf_map_size)
<------><------><------>goto err_scatter;
<------><------>set_bit(index, qs_cfg->pf_map);
<------><------>qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)index;
<------>}
<------>mutex_unlock(qs_cfg->qs_mutex);
<------>return 0;
err_scatter:
<------>for (index = 0; index < i; index++) {
<------><------>clear_bit(qs_cfg->vsi_map[index], qs_cfg->pf_map);
<------><------>qs_cfg->vsi_map[index + qs_cfg->vsi_map_offset] = 0;
<------>}
<------>mutex_unlock(qs_cfg->qs_mutex);
<------>return -ENOMEM;
}
/**
* ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled
* @pf: the PF being configured
* @pf_q: the PF queue
* @ena: enable or disable state of the queue
*
* This routine will wait for the given Rx queue of the PF to reach the
* enabled or disabled state.
* Returns -ETIMEDOUT in case of failing to reach the requested state after
* multiple retries; else will return 0 in case of success.
*/
static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena)
{
<------>int i;
<------>for (i = 0; i < ICE_Q_WAIT_MAX_RETRY; i++) {
<------><------>if (ena == !!(rd32(&pf->hw, QRX_CTRL(pf_q)) &
<------><------><------> QRX_CTRL_QENA_STAT_M))
<------><------><------>return 0;
<------><------>usleep_range(20, 40);
<------>}
<------>return -ETIMEDOUT;
}
/**
* ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector
* @vsi: the VSI being configured
* @v_idx: index of the vector in the VSI struct
*
* We allocate one q_vector and set default value for ITR setting associated
* with this q_vector. If allocation fails we return -ENOMEM.
*/
static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, u16 v_idx)
{
<------>struct ice_pf *pf = vsi->back;
<------>struct ice_q_vector *q_vector;
<------>/* allocate q_vector */
<------>q_vector = devm_kzalloc(ice_pf_to_dev(pf), sizeof(*q_vector),
<------><------><------><------>GFP_KERNEL);
<------>if (!q_vector)
<------><------>return -ENOMEM;
<------>q_vector->vsi = vsi;
<------>q_vector->v_idx = v_idx;
<------>q_vector->tx.itr_setting = ICE_DFLT_TX_ITR;
<------>q_vector->rx.itr_setting = ICE_DFLT_RX_ITR;
<------>if (vsi->type == ICE_VSI_VF)
<------><------>goto out;
<------>/* only set affinity_mask if the CPU is online */
<------>if (cpu_online(v_idx))
<------><------>cpumask_set_cpu(v_idx, &q_vector->affinity_mask);
<------>/* This will not be called in the driver load path because the netdev
<------> * will not be created yet. All other cases with register the NAPI
<------> * handler here (i.e. resume, reset/rebuild, etc.)
<------> */
<------>if (vsi->netdev)
<------><------>netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll,
<------><------><------> NAPI_POLL_WEIGHT);
out:
<------>/* tie q_vector and VSI together */
<------>vsi->q_vectors[v_idx] = q_vector;
<------>return 0;
}
/**
* ice_free_q_vector - Free memory allocated for a specific interrupt vector
* @vsi: VSI having the memory freed
* @v_idx: index of the vector to be freed
*/
static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx)
{
<------>struct ice_q_vector *q_vector;
<------>struct ice_pf *pf = vsi->back;
<------>struct ice_ring *ring;
<------>struct device *dev;
<------>dev = ice_pf_to_dev(pf);
<------>if (!vsi->q_vectors[v_idx]) {
<------><------>dev_dbg(dev, "Queue vector at index %d not found\n", v_idx);
<------><------>return;
<------>}
<------>q_vector = vsi->q_vectors[v_idx];
<------>ice_for_each_ring(ring, q_vector->tx)
<------><------>ring->q_vector = NULL;
<------>ice_for_each_ring(ring, q_vector->rx)
<------><------>ring->q_vector = NULL;
<------>/* only VSI with an associated netdev is set up with NAPI */
<------>if (vsi->netdev)
<------><------>netif_napi_del(&q_vector->napi);
<------>devm_kfree(dev, q_vector);
<------>vsi->q_vectors[v_idx] = NULL;
}
/**
* ice_cfg_itr_gran - set the ITR granularity to 2 usecs if not already set
* @hw: board specific structure
*/
static void ice_cfg_itr_gran(struct ice_hw *hw)
{
<------>u32 regval = rd32(hw, GLINT_CTL);
<------>/* no need to update global register if ITR gran is already set */
<------>if (!(regval & GLINT_CTL_DIS_AUTOMASK_M) &&
<------> (((regval & GLINT_CTL_ITR_GRAN_200_M) >>
<------> GLINT_CTL_ITR_GRAN_200_S) == ICE_ITR_GRAN_US) &&
<------> (((regval & GLINT_CTL_ITR_GRAN_100_M) >>
<------> GLINT_CTL_ITR_GRAN_100_S) == ICE_ITR_GRAN_US) &&
<------> (((regval & GLINT_CTL_ITR_GRAN_50_M) >>
<------> GLINT_CTL_ITR_GRAN_50_S) == ICE_ITR_GRAN_US) &&
<------> (((regval & GLINT_CTL_ITR_GRAN_25_M) >>
<------> GLINT_CTL_ITR_GRAN_25_S) == ICE_ITR_GRAN_US))
<------><------>return;
<------>regval = ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_200_S) &
<------><------> GLINT_CTL_ITR_GRAN_200_M) |
<------><------> ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_100_S) &
<------><------> GLINT_CTL_ITR_GRAN_100_M) |
<------><------> ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_50_S) &
<------><------> GLINT_CTL_ITR_GRAN_50_M) |
<------><------> ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_25_S) &
<------><------> GLINT_CTL_ITR_GRAN_25_M);
<------>wr32(hw, GLINT_CTL, regval);
}
/**
* ice_calc_q_handle - calculate the queue handle
* @vsi: VSI that ring belongs to
* @ring: ring to get the absolute queue index
* @tc: traffic class number
*/
static u16 ice_calc_q_handle(struct ice_vsi *vsi, struct ice_ring *ring, u8 tc)
{
<------>WARN_ONCE(ice_ring_is_xdp(ring) && tc, "XDP ring can't belong to TC other than 0\n");
<------>/* Idea here for calculation is that we subtract the number of queue
<------> * count from TC that ring belongs to from it's absolute queue index
<------> * and as a result we get the queue's index within TC.
<------> */
<------>return ring->q_index - vsi->tc_cfg.tc_info[tc].qoffset;
}
/**
* ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance
* @ring: The Tx ring to configure
* @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized
* @pf_q: queue index in the PF space
*
* Configure the Tx descriptor ring in TLAN context.
*/
static void
ice_setup_tx_ctx(struct ice_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q)
{
<------>struct ice_vsi *vsi = ring->vsi;
<------>struct ice_hw *hw = &vsi->back->hw;
<------>tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S;
<------>tlan_ctx->port_num = vsi->port_info->lport;
<------>/* Transmit Queue Length */
<------>tlan_ctx->qlen = ring->count;
<------>ice_set_cgd_num(tlan_ctx, ring);
<------>/* PF number */
<------>tlan_ctx->pf_num = hw->pf_id;
<------>/* queue belongs to a specific VSI type
<------> * VF / VM index should be programmed per vmvf_type setting:
<------> * for vmvf_type = VF, it is VF number between 0-256
<------> * for vmvf_type = VM, it is VM number between 0-767
<------> * for PF or EMP this field should be set to zero
<------> */
<------>switch (vsi->type) {
<------>case ICE_VSI_LB:
<------>case ICE_VSI_CTRL:
<------>case ICE_VSI_PF:
<------><------>tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
<------><------>break;
<------>case ICE_VSI_VF:
<------><------>/* Firmware expects vmvf_num to be absolute VF ID */
<------><------>tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf_id;
<------><------>tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF;
<------><------>break;
<------>default:
<------><------>return;
<------>}
<------>/* make sure the context is associated with the right VSI */
<------>tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx);
<------>tlan_ctx->tso_ena = ICE_TX_LEGACY;
<------>tlan_ctx->tso_qnum = pf_q;
<------>/* Legacy or Advanced Host Interface:
<------> * 0: Advanced Host Interface
<------> * 1: Legacy Host Interface
<------> */
<------>tlan_ctx->legacy_int = ICE_TX_LEGACY;
}
/**
* ice_setup_rx_ctx - Configure a receive ring context
* @ring: The Rx ring to configure
*
* Configure the Rx descriptor ring in RLAN context.
*/
int ice_setup_rx_ctx(struct ice_ring *ring)
{
<------>struct device *dev = ice_pf_to_dev(ring->vsi->back);
<------>int chain_len = ICE_MAX_CHAINED_RX_BUFS;
<------>u16 num_bufs = ICE_DESC_UNUSED(ring);
<------>struct ice_vsi *vsi = ring->vsi;
<------>u32 rxdid = ICE_RXDID_FLEX_NIC;
<------>struct ice_rlan_ctx rlan_ctx;
<------>struct ice_hw *hw;
<------>u16 pf_q;
<------>int err;
<------>hw = &vsi->back->hw;
<------>/* what is Rx queue number in global space of 2K Rx queues */
<------>pf_q = vsi->rxq_map[ring->q_index];
<------>/* clear the context structure first */
<------>memset(&rlan_ctx, 0, sizeof(rlan_ctx));
<------>ring->rx_buf_len = vsi->rx_buf_len;
<------>if (ring->vsi->type == ICE_VSI_PF) {
<------><------>if (!xdp_rxq_info_is_reg(&ring->xdp_rxq))
<------><------><------>/* coverity[check_return] */
<------><------><------>xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
<------><------><------><------><------> ring->q_index);
<------><------>ring->xsk_pool = ice_xsk_pool(ring);
<------><------>if (ring->xsk_pool) {
<------><------><------>xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
<------><------><------>ring->rx_buf_len =
<------><------><------><------>xsk_pool_get_rx_frame_size(ring->xsk_pool);
<------><------><------>/* For AF_XDP ZC, we disallow packets to span on
<------><------><------> * multiple buffers, thus letting us skip that
<------><------><------> * handling in the fast-path.
<------><------><------> */
<------><------><------>chain_len = 1;
<------><------><------>err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
<------><------><------><------><------><------><------> MEM_TYPE_XSK_BUFF_POOL,
<------><------><------><------><------><------><------> NULL);
<------><------><------>if (err)
<------><------><------><------>return err;
<------><------><------>xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
<------><------><------>dev_info(dev, "Registered XDP mem model MEM_TYPE_XSK_BUFF_POOL on Rx ring %d\n",
<------><------><------><------> ring->q_index);
<------><------>} else {
<------><------><------>if (!xdp_rxq_info_is_reg(&ring->xdp_rxq))
<------><------><------><------>/* coverity[check_return] */
<------><------><------><------>xdp_rxq_info_reg(&ring->xdp_rxq,
<------><------><------><------><------><------> ring->netdev,
<------><------><------><------><------><------> ring->q_index);
<------><------><------>err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
<------><------><------><------><------><------><------> MEM_TYPE_PAGE_SHARED,
<------><------><------><------><------><------><------> NULL);
<------><------><------>if (err)
<------><------><------><------>return err;
<------><------>}
<------>}
<------>/* Receive Queue Base Address.
<------> * Indicates the starting address of the descriptor queue defined in
<------> * 128 Byte units.
<------> */
<------>rlan_ctx.base = ring->dma >> 7;
<------>rlan_ctx.qlen = ring->count;
<------>/* Receive Packet Data Buffer Size.
<------> * The Packet Data Buffer Size is defined in 128 byte units.
<------> */
<------>rlan_ctx.dbuf = ring->rx_buf_len >> ICE_RLAN_CTX_DBUF_S;
<------>/* use 32 byte descriptors */
<------>rlan_ctx.dsize = 1;
<------>/* Strip the Ethernet CRC bytes before the packet is posted to host
<------> * memory.
<------> */
<------>rlan_ctx.crcstrip = 1;
<------>/* L2TSEL flag defines the reported L2 Tags in the receive descriptor */
<------>rlan_ctx.l2tsel = 1;
<------>rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT;
<------>rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT;
<------>rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT;
<------>/* This controls whether VLAN is stripped from inner headers
<------> * The VLAN in the inner L2 header is stripped to the receive
<------> * descriptor if enabled by this flag.
<------> */
<------>rlan_ctx.showiv = 0;
<------>/* Max packet size for this queue - must not be set to a larger value
<------> * than 5 x DBUF
<------> */
<------>rlan_ctx.rxmax = min_t(u32, vsi->max_frame,
<------><------><------> chain_len * ring->rx_buf_len);
<------>/* Rx queue threshold in units of 64 */
<------>rlan_ctx.lrxqthresh = 1;
<------>/* Enable Flexible Descriptors in the queue context which
<------> * allows this driver to select a specific receive descriptor format
<------> * increasing context priority to pick up profile ID; default is 0x01;
<------> * setting to 0x03 to ensure profile is programming if prev context is
<------> * of same priority
<------> */
<------>if (vsi->type != ICE_VSI_VF)
<------><------>ice_write_qrxflxp_cntxt(hw, pf_q, rxdid, 0x3);
<------>else
<------><------>ice_write_qrxflxp_cntxt(hw, pf_q, ICE_RXDID_LEGACY_1, 0x3);
<------>/* Absolute queue number out of 2K needs to be passed */
<------>err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q);
<------>if (err) {
<------><------>dev_err(dev, "Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n",
<------><------><------>pf_q, err);
<------><------>return -EIO;
<------>}
<------>if (vsi->type == ICE_VSI_VF)
<------><------>return 0;
<------>/* configure Rx buffer alignment */
<------>if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
<------><------>ice_clear_ring_build_skb_ena(ring);
<------>else
<------><------>ice_set_ring_build_skb_ena(ring);
<------>/* init queue specific tail register */
<------>ring->tail = hw->hw_addr + QRX_TAIL(pf_q);
<------>writel(0, ring->tail);
<------>if (ring->xsk_pool) {
<------><------>if (!xsk_buff_can_alloc(ring->xsk_pool, num_bufs)) {
<------><------><------>dev_warn(dev, "XSK buffer pool does not provide enough addresses to fill %d buffers on Rx ring %d\n",
<------><------><------><------> num_bufs, ring->q_index);
<------><------><------>dev_warn(dev, "Change Rx ring/fill queue size to avoid performance issues\n");
<------><------><------>return 0;
<------><------>}
<------><------>err = ice_alloc_rx_bufs_zc(ring, num_bufs);
<------><------>if (err)
<------><------><------>dev_info(dev, "Failed to allocate some buffers on XSK buffer pool enabled Rx ring %d (pf_q %d)\n",
<------><------><------><------> ring->q_index, pf_q);
<------><------>return 0;
<------>}
<------>ice_alloc_rx_bufs(ring, num_bufs);
<------>return 0;
}
/**
* __ice_vsi_get_qs - helper function for assigning queues from PF to VSI
* @qs_cfg: gathered variables needed for pf->vsi queues assignment
*
* This function first tries to find contiguous space. If it is not successful,
* it tries with the scatter approach.
*
* Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
*/
int __ice_vsi_get_qs(struct ice_qs_cfg *qs_cfg)
{
<------>int ret = 0;
<------>ret = __ice_vsi_get_qs_contig(qs_cfg);
<------>if (ret) {
<------><------>/* contig failed, so try with scatter approach */
<------><------>qs_cfg->mapping_mode = ICE_VSI_MAP_SCATTER;
<------><------>qs_cfg->q_count = min_t(unsigned int, qs_cfg->q_count,
<------><------><------><------><------>qs_cfg->scatter_count);
<------><------>ret = __ice_vsi_get_qs_sc(qs_cfg);
<------>}
<------>return ret;
}
/**
* ice_vsi_ctrl_one_rx_ring - start/stop VSI's Rx ring with no busy wait
* @vsi: the VSI being configured
* @ena: start or stop the Rx ring
* @rxq_idx: 0-based Rx queue index for the VSI passed in
* @wait: wait or don't wait for configuration to finish in hardware
*
* Return 0 on success and negative on error.
*/
int
ice_vsi_ctrl_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx, bool wait)
{
<------>int pf_q = vsi->rxq_map[rxq_idx];
<------>struct ice_pf *pf = vsi->back;
<------>struct ice_hw *hw = &pf->hw;
<------>u32 rx_reg;
<------>rx_reg = rd32(hw, QRX_CTRL(pf_q));
<------>/* Skip if the queue is already in the requested state */
<------>if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M))
<------><------>return 0;
<------>/* turn on/off the queue */
<------>if (ena)
<------><------>rx_reg |= QRX_CTRL_QENA_REQ_M;
<------>else
<------><------>rx_reg &= ~QRX_CTRL_QENA_REQ_M;
<------>wr32(hw, QRX_CTRL(pf_q), rx_reg);
<------>if (!wait)
<------><------>return 0;
<------>ice_flush(hw);
<------>return ice_pf_rxq_wait(pf, pf_q, ena);
}
/**
* ice_vsi_wait_one_rx_ring - wait for a VSI's Rx ring to be stopped/started
* @vsi: the VSI being configured
* @ena: true/false to verify Rx ring has been enabled/disabled respectively
* @rxq_idx: 0-based Rx queue index for the VSI passed in
*
* This routine will wait for the given Rx queue of the VSI to reach the
* enabled or disabled state. Returns -ETIMEDOUT in case of failing to reach
* the requested state after multiple retries; else will return 0 in case of
* success.
*/
int ice_vsi_wait_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx)
{
<------>int pf_q = vsi->rxq_map[rxq_idx];
<------>struct ice_pf *pf = vsi->back;
<------>return ice_pf_rxq_wait(pf, pf_q, ena);
}
/**
* ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors
* @vsi: the VSI being configured
*
* We allocate one q_vector per queue interrupt. If allocation fails we
* return -ENOMEM.
*/
int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi)
{
<------>struct device *dev = ice_pf_to_dev(vsi->back);
<------>u16 v_idx;
<------>int err;
<------>if (vsi->q_vectors[0]) {
<------><------>dev_dbg(dev, "VSI %d has existing q_vectors\n", vsi->vsi_num);
<------><------>return -EEXIST;
<------>}
<------>for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) {
<------><------>err = ice_vsi_alloc_q_vector(vsi, v_idx);
<------><------>if (err)
<------><------><------>goto err_out;
<------>}
<------>return 0;
err_out:
<------>while (v_idx--)
<------><------>ice_free_q_vector(vsi, v_idx);
<------>dev_err(dev, "Failed to allocate %d q_vector for VSI %d, ret=%d\n",
<------><------>vsi->num_q_vectors, vsi->vsi_num, err);
<------>vsi->num_q_vectors = 0;
<------>return err;
}
/**
* ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors
* @vsi: the VSI being configured
*
* This function maps descriptor rings to the queue-specific vectors allotted
* through the MSI-X enabling code. On a constrained vector budget, we map Tx
* and Rx rings to the vector as "efficiently" as possible.
*/
void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi)
{
<------>int q_vectors = vsi->num_q_vectors;
<------>u16 tx_rings_rem, rx_rings_rem;
<------>int v_id;
<------>/* initially assigning remaining rings count to VSIs num queue value */
<------>tx_rings_rem = vsi->num_txq;
<------>rx_rings_rem = vsi->num_rxq;
<------>for (v_id = 0; v_id < q_vectors; v_id++) {
<------><------>struct ice_q_vector *q_vector = vsi->q_vectors[v_id];
<------><------>u8 tx_rings_per_v, rx_rings_per_v;
<------><------>u16 q_id, q_base;
<------><------>/* Tx rings mapping to vector */
<------><------>tx_rings_per_v = (u8)DIV_ROUND_UP(tx_rings_rem,
<------><------><------><------><------><------> q_vectors - v_id);
<------><------>q_vector->num_ring_tx = tx_rings_per_v;
<------><------>q_vector->tx.ring = NULL;
<------><------>q_vector->tx.itr_idx = ICE_TX_ITR;
<------><------>q_base = vsi->num_txq - tx_rings_rem;
<------><------>for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) {
<------><------><------>struct ice_ring *tx_ring = vsi->tx_rings[q_id];
<------><------><------>tx_ring->q_vector = q_vector;
<------><------><------>tx_ring->next = q_vector->tx.ring;
<------><------><------>q_vector->tx.ring = tx_ring;
<------><------>}
<------><------>tx_rings_rem -= tx_rings_per_v;
<------><------>/* Rx rings mapping to vector */
<------><------>rx_rings_per_v = (u8)DIV_ROUND_UP(rx_rings_rem,
<------><------><------><------><------><------> q_vectors - v_id);
<------><------>q_vector->num_ring_rx = rx_rings_per_v;
<------><------>q_vector->rx.ring = NULL;
<------><------>q_vector->rx.itr_idx = ICE_RX_ITR;
<------><------>q_base = vsi->num_rxq - rx_rings_rem;
<------><------>for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) {
<------><------><------>struct ice_ring *rx_ring = vsi->rx_rings[q_id];
<------><------><------>rx_ring->q_vector = q_vector;
<------><------><------>rx_ring->next = q_vector->rx.ring;
<------><------><------>q_vector->rx.ring = rx_ring;
<------><------>}
<------><------>rx_rings_rem -= rx_rings_per_v;
<------>}
}
/**
* ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors
* @vsi: the VSI having memory freed
*/
void ice_vsi_free_q_vectors(struct ice_vsi *vsi)
{
<------>int v_idx;
<------>ice_for_each_q_vector(vsi, v_idx)
<------><------>ice_free_q_vector(vsi, v_idx);
}
/**
* ice_vsi_cfg_txq - Configure single Tx queue
* @vsi: the VSI that queue belongs to
* @ring: Tx ring to be configured
* @qg_buf: queue group buffer
*/
int
ice_vsi_cfg_txq(struct ice_vsi *vsi, struct ice_ring *ring,
<------><------>struct ice_aqc_add_tx_qgrp *qg_buf)
{
<------>u8 buf_len = struct_size(qg_buf, txqs, 1);
<------>struct ice_tlan_ctx tlan_ctx = { 0 };
<------>struct ice_aqc_add_txqs_perq *txq;
<------>struct ice_pf *pf = vsi->back;
<------>struct ice_hw *hw = &pf->hw;
<------>enum ice_status status;
<------>u16 pf_q;
<------>u8 tc;
<------>pf_q = ring->reg_idx;
<------>ice_setup_tx_ctx(ring, &tlan_ctx, pf_q);
<------>/* copy context contents into the qg_buf */
<------>qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q);
<------>ice_set_ctx(hw, (u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx,
<------><------> ice_tlan_ctx_info);
<------>/* init queue specific tail reg. It is referred as
<------> * transmit comm scheduler queue doorbell.
<------> */
<------>ring->tail = hw->hw_addr + QTX_COMM_DBELL(pf_q);
<------>if (IS_ENABLED(CONFIG_DCB))
<------><------>tc = ring->dcb_tc;
<------>else
<------><------>tc = 0;
<------>/* Add unique software queue handle of the Tx queue per
<------> * TC into the VSI Tx ring
<------> */
<------>ring->q_handle = ice_calc_q_handle(vsi, ring, tc);
<------>status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc, ring->q_handle,
<------><------><------><------> 1, qg_buf, buf_len, NULL);
<------>if (status) {
<------><------>dev_err(ice_pf_to_dev(pf), "Failed to set LAN Tx queue context, error: %s\n",
<------><------><------>ice_stat_str(status));
<------><------>return -ENODEV;
<------>}
<------>/* Add Tx Queue TEID into the VSI Tx ring from the
<------> * response. This will complete configuring and
<------> * enabling the queue.
<------> */
<------>txq = &qg_buf->txqs[0];
<------>if (pf_q == le16_to_cpu(txq->txq_id))
<------><------>ring->txq_teid = le32_to_cpu(txq->q_teid);
<------>return 0;
}
/**
* ice_cfg_itr - configure the initial interrupt throttle values
* @hw: pointer to the HW structure
* @q_vector: interrupt vector that's being configured
*
* Configure interrupt throttling values for the ring containers that are
* associated with the interrupt vector passed in.
*/
void ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector)
{
<------>ice_cfg_itr_gran(hw);
<------>if (q_vector->num_ring_rx) {
<------><------>struct ice_ring_container *rc = &q_vector->rx;
<------><------>rc->target_itr = ITR_TO_REG(rc->itr_setting);
<------><------>rc->next_update = jiffies + 1;
<------><------>rc->current_itr = rc->target_itr;
<------><------>wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
<------><------> ITR_REG_ALIGN(rc->current_itr) >> ICE_ITR_GRAN_S);
<------>}
<------>if (q_vector->num_ring_tx) {
<------><------>struct ice_ring_container *rc = &q_vector->tx;
<------><------>rc->target_itr = ITR_TO_REG(rc->itr_setting);
<------><------>rc->next_update = jiffies + 1;
<------><------>rc->current_itr = rc->target_itr;
<------><------>wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
<------><------> ITR_REG_ALIGN(rc->current_itr) >> ICE_ITR_GRAN_S);
<------>}
}
/**
* ice_cfg_txq_interrupt - configure interrupt on Tx queue
* @vsi: the VSI being configured
* @txq: Tx queue being mapped to MSI-X vector
* @msix_idx: MSI-X vector index within the function
* @itr_idx: ITR index of the interrupt cause
*
* Configure interrupt on Tx queue by associating Tx queue to MSI-X vector
* within the function space.
*/
void
ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx)
{
<------>struct ice_pf *pf = vsi->back;
<------>struct ice_hw *hw = &pf->hw;
<------>u32 val;
<------>itr_idx = (itr_idx << QINT_TQCTL_ITR_INDX_S) & QINT_TQCTL_ITR_INDX_M;
<------>val = QINT_TQCTL_CAUSE_ENA_M | itr_idx |
<------> ((msix_idx << QINT_TQCTL_MSIX_INDX_S) & QINT_TQCTL_MSIX_INDX_M);
<------>wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val);
<------>if (ice_is_xdp_ena_vsi(vsi)) {
<------><------>u32 xdp_txq = txq + vsi->num_xdp_txq;
<------><------>wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]),
<------><------> val);
<------>}
<------>ice_flush(hw);
}
/**
* ice_cfg_rxq_interrupt - configure interrupt on Rx queue
* @vsi: the VSI being configured
* @rxq: Rx queue being mapped to MSI-X vector
* @msix_idx: MSI-X vector index within the function
* @itr_idx: ITR index of the interrupt cause
*
* Configure interrupt on Rx queue by associating Rx queue to MSI-X vector
* within the function space.
*/
void
ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx)
{
<------>struct ice_pf *pf = vsi->back;
<------>struct ice_hw *hw = &pf->hw;
<------>u32 val;
<------>itr_idx = (itr_idx << QINT_RQCTL_ITR_INDX_S) & QINT_RQCTL_ITR_INDX_M;
<------>val = QINT_RQCTL_CAUSE_ENA_M | itr_idx |
<------> ((msix_idx << QINT_RQCTL_MSIX_INDX_S) & QINT_RQCTL_MSIX_INDX_M);
<------>wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val);
<------>ice_flush(hw);
}
/**
* ice_trigger_sw_intr - trigger a software interrupt
* @hw: pointer to the HW structure
* @q_vector: interrupt vector to trigger the software interrupt for
*/
void ice_trigger_sw_intr(struct ice_hw *hw, struct ice_q_vector *q_vector)
{
<------>wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx),
<------> (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) |
<------> GLINT_DYN_CTL_SWINT_TRIG_M |
<------> GLINT_DYN_CTL_INTENA_M);
}
/**
* ice_vsi_stop_tx_ring - Disable single Tx ring
* @vsi: the VSI being configured
* @rst_src: reset source
* @rel_vmvf_num: Relative ID of VF/VM
* @ring: Tx ring to be stopped
* @txq_meta: Meta data of Tx ring to be stopped
*/
int
ice_vsi_stop_tx_ring(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
<------><------> u16 rel_vmvf_num, struct ice_ring *ring,
<------><------> struct ice_txq_meta *txq_meta)
{
<------>struct ice_pf *pf = vsi->back;
<------>struct ice_q_vector *q_vector;
<------>struct ice_hw *hw = &pf->hw;
<------>enum ice_status status;
<------>u32 val;
<------>/* clear cause_ena bit for disabled queues */
<------>val = rd32(hw, QINT_TQCTL(ring->reg_idx));
<------>val &= ~QINT_TQCTL_CAUSE_ENA_M;
<------>wr32(hw, QINT_TQCTL(ring->reg_idx), val);
<------>/* software is expected to wait for 100 ns */
<------>ndelay(100);
<------>/* trigger a software interrupt for the vector
<------> * associated to the queue to schedule NAPI handler
<------> */
<------>q_vector = ring->q_vector;
<------>if (q_vector)
<------><------>ice_trigger_sw_intr(hw, q_vector);
<------>status = ice_dis_vsi_txq(vsi->port_info, txq_meta->vsi_idx,
<------><------><------><------> txq_meta->tc, 1, &txq_meta->q_handle,
<------><------><------><------> &txq_meta->q_id, &txq_meta->q_teid, rst_src,
<------><------><------><------> rel_vmvf_num, NULL);
<------>/* if the disable queue command was exercised during an
<------> * active reset flow, ICE_ERR_RESET_ONGOING is returned.
<------> * This is not an error as the reset operation disables
<------> * queues at the hardware level anyway.
<------> */
<------>if (status == ICE_ERR_RESET_ONGOING) {
<------><------>dev_dbg(ice_pf_to_dev(vsi->back), "Reset in progress. LAN Tx queues already disabled\n");
<------>} else if (status == ICE_ERR_DOES_NOT_EXIST) {
<------><------>dev_dbg(ice_pf_to_dev(vsi->back), "LAN Tx queues do not exist, nothing to disable\n");
<------>} else if (status) {
<------><------>dev_dbg(ice_pf_to_dev(vsi->back), "Failed to disable LAN Tx queues, error: %s\n",
<------><------><------>ice_stat_str(status));
<------><------>return -ENODEV;
<------>}
<------>return 0;
}
/**
* ice_fill_txq_meta - Prepare the Tx queue's meta data
* @vsi: VSI that ring belongs to
* @ring: ring that txq_meta will be based on
* @txq_meta: a helper struct that wraps Tx queue's information
*
* Set up a helper struct that will contain all the necessary fields that
* are needed for stopping Tx queue
*/
void
ice_fill_txq_meta(struct ice_vsi *vsi, struct ice_ring *ring,
<------><------> struct ice_txq_meta *txq_meta)
{
<------>u8 tc;
<------>if (IS_ENABLED(CONFIG_DCB))
<------><------>tc = ring->dcb_tc;
<------>else
<------><------>tc = 0;
<------>txq_meta->q_id = ring->reg_idx;
<------>txq_meta->q_teid = ring->txq_teid;
<------>txq_meta->q_handle = ring->q_handle;
<------>txq_meta->vsi_idx = vsi->idx;
<------>txq_meta->tc = tc;
}