Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags   |
/*
* CAN bus driver for Bosch C_CAN controller
*
* Copyright (C) 2010 ST Microelectronics
* Bhupesh Sharma <bhupesh.sharma@st.com>
*
* Borrowed heavily from the C_CAN driver originally written by:
* Copyright (C) 2007
* - Sascha Hauer, Marc Kleine-Budde, Pengutronix <s.hauer@pengutronix.de>
* - Simon Kallweit, intefo AG <simon.kallweit@intefo.ch>
*
* TX and RX NAPI implementation has been borrowed from at91 CAN driver
* written by:
* Copyright
* (C) 2007 by Hans J. Koch <hjk@hansjkoch.de>
* (C) 2008, 2009 by Marc Kleine-Budde <kernel@pengutronix.de>
*
* Bosch C_CAN controller is compliant to CAN protocol version 2.0 part A and B.
* Bosch C_CAN user manual can be obtained from:
* http://www.semiconductors.bosch.de/media/en/pdf/ipmodules_1/c_can/
* users_manual_c_can.pdf
*
* This file is licensed under the terms of the GNU General Public
* License version 2. This program is licensed "as is" without any
* warranty of any kind, whether express or implied.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/if_arp.h>
#include <linux/if_ether.h>
#include <linux/list.h>
#include <linux/io.h>
#include <linux/pm_runtime.h>
#include <linux/pinctrl/consumer.h>
#include <linux/can.h>
#include <linux/can/dev.h>
#include <linux/can/error.h>
#include <linux/can/led.h>
#include "c_can.h"
/* Number of interface registers */
#define IF_ENUM_REG_LEN 11
#define C_CAN_IFACE(reg, iface) (C_CAN_IF1_##reg + (iface) * IF_ENUM_REG_LEN)
/* control extension register D_CAN specific */
#define CONTROL_EX_PDR BIT(8)
/* control register */
#define CONTROL_SWR BIT(15)
#define CONTROL_TEST BIT(7)
#define CONTROL_CCE BIT(6)
#define CONTROL_DISABLE_AR BIT(5)
#define CONTROL_ENABLE_AR (0 << 5)
#define CONTROL_EIE BIT(3)
#define CONTROL_SIE BIT(2)
#define CONTROL_IE BIT(1)
#define CONTROL_INIT BIT(0)
#define CONTROL_IRQMSK (CONTROL_EIE | CONTROL_IE | CONTROL_SIE)
/* test register */
#define TEST_RX BIT(7)
#define TEST_TX1 BIT(6)
#define TEST_TX2 BIT(5)
#define TEST_LBACK BIT(4)
#define TEST_SILENT BIT(3)
#define TEST_BASIC BIT(2)
/* status register */
#define STATUS_PDA BIT(10)
#define STATUS_BOFF BIT(7)
#define STATUS_EWARN BIT(6)
#define STATUS_EPASS BIT(5)
#define STATUS_RXOK BIT(4)
#define STATUS_TXOK BIT(3)
/* error counter register */
#define ERR_CNT_TEC_MASK 0xff
#define ERR_CNT_TEC_SHIFT 0
#define ERR_CNT_REC_SHIFT 8
#define ERR_CNT_REC_MASK (0x7f << ERR_CNT_REC_SHIFT)
#define ERR_CNT_RP_SHIFT 15
#define ERR_CNT_RP_MASK (0x1 << ERR_CNT_RP_SHIFT)
/* bit-timing register */
#define BTR_BRP_MASK 0x3f
#define BTR_BRP_SHIFT 0
#define BTR_SJW_SHIFT 6
#define BTR_SJW_MASK (0x3 << BTR_SJW_SHIFT)
#define BTR_TSEG1_SHIFT 8
#define BTR_TSEG1_MASK (0xf << BTR_TSEG1_SHIFT)
#define BTR_TSEG2_SHIFT 12
#define BTR_TSEG2_MASK (0x7 << BTR_TSEG2_SHIFT)
/* interrupt register */
#define INT_STS_PENDING 0x8000
/* brp extension register */
#define BRP_EXT_BRPE_MASK 0x0f
#define BRP_EXT_BRPE_SHIFT 0
/* IFx command request */
#define IF_COMR_BUSY BIT(15)
/* IFx command mask */
#define IF_COMM_WR BIT(7)
#define IF_COMM_MASK BIT(6)
#define IF_COMM_ARB BIT(5)
#define IF_COMM_CONTROL BIT(4)
#define IF_COMM_CLR_INT_PND BIT(3)
#define IF_COMM_TXRQST BIT(2)
#define IF_COMM_CLR_NEWDAT IF_COMM_TXRQST
#define IF_COMM_DATAA BIT(1)
#define IF_COMM_DATAB BIT(0)
/* TX buffer setup */
#define IF_COMM_TX (IF_COMM_ARB | IF_COMM_CONTROL | \
<------><------><------><------> IF_COMM_TXRQST | \
<------><------><------><------> IF_COMM_DATAA | IF_COMM_DATAB)
/* For the low buffers we clear the interrupt bit, but keep newdat */
#define IF_COMM_RCV_LOW (IF_COMM_MASK | IF_COMM_ARB | \
<------><------><------><------> IF_COMM_CONTROL | IF_COMM_CLR_INT_PND | \
<------><------><------><------> IF_COMM_DATAA | IF_COMM_DATAB)
/* For the high buffers we clear the interrupt bit and newdat */
#define IF_COMM_RCV_HIGH (IF_COMM_RCV_LOW | IF_COMM_CLR_NEWDAT)
/* Receive setup of message objects */
#define IF_COMM_RCV_SETUP (IF_COMM_MASK | IF_COMM_ARB | IF_COMM_CONTROL)
/* Invalidation of message objects */
#define IF_COMM_INVAL (IF_COMM_ARB | IF_COMM_CONTROL)
/* IFx arbitration */
#define IF_ARB_MSGVAL BIT(31)
#define IF_ARB_MSGXTD BIT(30)
#define IF_ARB_TRANSMIT BIT(29)
/* IFx message control */
#define IF_MCONT_NEWDAT BIT(15)
#define IF_MCONT_MSGLST BIT(14)
#define IF_MCONT_INTPND BIT(13)
#define IF_MCONT_UMASK BIT(12)
#define IF_MCONT_TXIE BIT(11)
#define IF_MCONT_RXIE BIT(10)
#define IF_MCONT_RMTEN BIT(9)
#define IF_MCONT_TXRQST BIT(8)
#define IF_MCONT_EOB BIT(7)
#define IF_MCONT_DLC_MASK 0xf
#define IF_MCONT_RCV (IF_MCONT_RXIE | IF_MCONT_UMASK)
#define IF_MCONT_RCV_EOB (IF_MCONT_RCV | IF_MCONT_EOB)
#define IF_MCONT_TX (IF_MCONT_TXIE | IF_MCONT_EOB)
/*
* Use IF1 for RX and IF2 for TX
*/
#define IF_RX 0
#define IF_TX 1
/* minimum timeout for checking BUSY status */
#define MIN_TIMEOUT_VALUE 6
/* Wait for ~1 sec for INIT bit */
#define INIT_WAIT_MS 1000
/* napi related */
#define C_CAN_NAPI_WEIGHT C_CAN_MSG_OBJ_RX_NUM
/* c_can lec values */
enum c_can_lec_type {
<------>LEC_NO_ERROR = 0,
<------>LEC_STUFF_ERROR,
<------>LEC_FORM_ERROR,
<------>LEC_ACK_ERROR,
<------>LEC_BIT1_ERROR,
<------>LEC_BIT0_ERROR,
<------>LEC_CRC_ERROR,
<------>LEC_UNUSED,
<------>LEC_MASK = LEC_UNUSED,
};
/*
* c_can error types:
* Bus errors (BUS_OFF, ERROR_WARNING, ERROR_PASSIVE) are supported
*/
enum c_can_bus_error_types {
<------>C_CAN_NO_ERROR = 0,
<------>C_CAN_BUS_OFF,
<------>C_CAN_ERROR_WARNING,
<------>C_CAN_ERROR_PASSIVE,
};
static const struct can_bittiming_const c_can_bittiming_const = {
<------>.name = KBUILD_MODNAME,
<------>.tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */
<------>.tseg1_max = 16,
<------>.tseg2_min = 1, /* Time segment 2 = phase_seg2 */
<------>.tseg2_max = 8,
<------>.sjw_max = 4,
<------>.brp_min = 1,
<------>.brp_max = 1024, /* 6-bit BRP field + 4-bit BRPE field*/
<------>.brp_inc = 1,
};
static inline void c_can_pm_runtime_get_sync(const struct c_can_priv *priv)
{
<------>if (priv->device)
<------><------>pm_runtime_get_sync(priv->device);
}
static inline void c_can_pm_runtime_put_sync(const struct c_can_priv *priv)
{
<------>if (priv->device)
<------><------>pm_runtime_put_sync(priv->device);
}
static inline void c_can_reset_ram(const struct c_can_priv *priv, bool enable)
{
<------>if (priv->raminit)
<------><------>priv->raminit(priv, enable);
}
static void c_can_irq_control(struct c_can_priv *priv, bool enable)
{
<------>u32 ctrl = priv->read_reg(priv, C_CAN_CTRL_REG) & ~CONTROL_IRQMSK;
<------>if (enable)
<------><------>ctrl |= CONTROL_IRQMSK;
<------>priv->write_reg(priv, C_CAN_CTRL_REG, ctrl);
}
static void c_can_obj_update(struct net_device *dev, int iface, u32 cmd, u32 obj)
{
<------>struct c_can_priv *priv = netdev_priv(dev);
<------>int cnt, reg = C_CAN_IFACE(COMREQ_REG, iface);
<------>priv->write_reg32(priv, reg, (cmd << 16) | obj);
<------>for (cnt = MIN_TIMEOUT_VALUE; cnt; cnt--) {
<------><------>if (!(priv->read_reg(priv, reg) & IF_COMR_BUSY))
<------><------><------>return;
<------><------>udelay(1);
<------>}
<------>netdev_err(dev, "Updating object timed out\n");
}
static inline void c_can_object_get(struct net_device *dev, int iface,
<------><------><------><------> u32 obj, u32 cmd)
{
<------>c_can_obj_update(dev, iface, cmd, obj);
}
static inline void c_can_object_put(struct net_device *dev, int iface,
<------><------><------><------> u32 obj, u32 cmd)
{
<------>c_can_obj_update(dev, iface, cmd | IF_COMM_WR, obj);
}
/*
* Note: According to documentation clearing TXIE while MSGVAL is set
* is not allowed, but works nicely on C/DCAN. And that lowers the I/O
* load significantly.
*/
static void c_can_inval_tx_object(struct net_device *dev, int iface, int obj)
{
<------>struct c_can_priv *priv = netdev_priv(dev);
<------>priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), 0);
<------>c_can_object_put(dev, iface, obj, IF_COMM_INVAL);
}
static void c_can_inval_msg_object(struct net_device *dev, int iface, int obj)
{
<------>struct c_can_priv *priv = netdev_priv(dev);
<------>priv->write_reg(priv, C_CAN_IFACE(ARB1_REG, iface), 0);
<------>priv->write_reg(priv, C_CAN_IFACE(ARB2_REG, iface), 0);
<------>c_can_inval_tx_object(dev, iface, obj);
}
static void c_can_setup_tx_object(struct net_device *dev, int iface,
<------><------><------><------> struct can_frame *frame, int idx)
{
<------>struct c_can_priv *priv = netdev_priv(dev);
<------>u16 ctrl = IF_MCONT_TX | frame->can_dlc;
<------>bool rtr = frame->can_id & CAN_RTR_FLAG;
<------>u32 arb = IF_ARB_MSGVAL;
<------>int i;
<------>if (frame->can_id & CAN_EFF_FLAG) {
<------><------>arb |= frame->can_id & CAN_EFF_MASK;
<------><------>arb |= IF_ARB_MSGXTD;
<------>} else {
<------><------>arb |= (frame->can_id & CAN_SFF_MASK) << 18;
<------>}
<------>if (!rtr)
<------><------>arb |= IF_ARB_TRANSMIT;
<------>/*
<------> * If we change the DIR bit, we need to invalidate the buffer
<------> * first, i.e. clear the MSGVAL flag in the arbiter.
<------> */
<------>if (rtr != (bool)test_bit(idx, &priv->tx_dir)) {
<------><------>u32 obj = idx + C_CAN_MSG_OBJ_TX_FIRST;
<------><------>c_can_inval_msg_object(dev, iface, obj);
<------><------>change_bit(idx, &priv->tx_dir);
<------>}
<------>priv->write_reg32(priv, C_CAN_IFACE(ARB1_REG, iface), arb);
<------>priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl);
<------>if (priv->type == BOSCH_D_CAN) {
<------><------>u32 data = 0, dreg = C_CAN_IFACE(DATA1_REG, iface);
<------><------>for (i = 0; i < frame->can_dlc; i += 4, dreg += 2) {
<------><------><------>data = (u32)frame->data[i];
<------><------><------>data |= (u32)frame->data[i + 1] << 8;
<------><------><------>data |= (u32)frame->data[i + 2] << 16;
<------><------><------>data |= (u32)frame->data[i + 3] << 24;
<------><------><------>priv->write_reg32(priv, dreg, data);
<------><------>}
<------>} else {
<------><------>for (i = 0; i < frame->can_dlc; i += 2) {
<------><------><------>priv->write_reg(priv,
<------><------><------><------><------>C_CAN_IFACE(DATA1_REG, iface) + i / 2,
<------><------><------><------><------>frame->data[i] |
<------><------><------><------><------>(frame->data[i + 1] << 8));
<------><------>}
<------>}
}
static int c_can_handle_lost_msg_obj(struct net_device *dev,
<------><------><------><------> int iface, int objno, u32 ctrl)
{
<------>struct net_device_stats *stats = &dev->stats;
<------>struct c_can_priv *priv = netdev_priv(dev);
<------>struct can_frame *frame;
<------>struct sk_buff *skb;
<------>ctrl &= ~(IF_MCONT_MSGLST | IF_MCONT_INTPND | IF_MCONT_NEWDAT);
<------>priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), ctrl);
<------>c_can_object_put(dev, iface, objno, IF_COMM_CONTROL);
<------>stats->rx_errors++;
<------>stats->rx_over_errors++;
<------>/* create an error msg */
<------>skb = alloc_can_err_skb(dev, &frame);
<------>if (unlikely(!skb))
<------><------>return 0;
<------>frame->can_id |= CAN_ERR_CRTL;
<------>frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
<------>netif_receive_skb(skb);
<------>return 1;
}
static int c_can_read_msg_object(struct net_device *dev, int iface, u32 ctrl)
{
<------>struct net_device_stats *stats = &dev->stats;
<------>struct c_can_priv *priv = netdev_priv(dev);
<------>struct can_frame *frame;
<------>struct sk_buff *skb;
<------>u32 arb, data;
<------>skb = alloc_can_skb(dev, &frame);
<------>if (!skb) {
<------><------>stats->rx_dropped++;
<------><------>return -ENOMEM;
<------>}
<------>frame->can_dlc = get_can_dlc(ctrl & 0x0F);
<------>arb = priv->read_reg32(priv, C_CAN_IFACE(ARB1_REG, iface));
<------>if (arb & IF_ARB_MSGXTD)
<------><------>frame->can_id = (arb & CAN_EFF_MASK) | CAN_EFF_FLAG;
<------>else
<------><------>frame->can_id = (arb >> 18) & CAN_SFF_MASK;
<------>if (arb & IF_ARB_TRANSMIT) {
<------><------>frame->can_id |= CAN_RTR_FLAG;
<------>} else {
<------><------>int i, dreg = C_CAN_IFACE(DATA1_REG, iface);
<------><------>if (priv->type == BOSCH_D_CAN) {
<------><------><------>for (i = 0; i < frame->can_dlc; i += 4, dreg += 2) {
<------><------><------><------>data = priv->read_reg32(priv, dreg);
<------><------><------><------>frame->data[i] = data;
<------><------><------><------>frame->data[i + 1] = data >> 8;
<------><------><------><------>frame->data[i + 2] = data >> 16;
<------><------><------><------>frame->data[i + 3] = data >> 24;
<------><------><------>}
<------><------>} else {
<------><------><------>for (i = 0; i < frame->can_dlc; i += 2, dreg++) {
<------><------><------><------>data = priv->read_reg(priv, dreg);
<------><------><------><------>frame->data[i] = data;
<------><------><------><------>frame->data[i + 1] = data >> 8;
<------><------><------>}
<------><------>}
<------>}
<------>stats->rx_packets++;
<------>stats->rx_bytes += frame->can_dlc;
<------>netif_receive_skb(skb);
<------>return 0;
}
static void c_can_setup_receive_object(struct net_device *dev, int iface,
<------><------><------><------> u32 obj, u32 mask, u32 id, u32 mcont)
{
<------>struct c_can_priv *priv = netdev_priv(dev);
<------>mask |= BIT(29);
<------>priv->write_reg32(priv, C_CAN_IFACE(MASK1_REG, iface), mask);
<------>id |= IF_ARB_MSGVAL;
<------>priv->write_reg32(priv, C_CAN_IFACE(ARB1_REG, iface), id);
<------>priv->write_reg(priv, C_CAN_IFACE(MSGCTRL_REG, iface), mcont);
<------>c_can_object_put(dev, iface, obj, IF_COMM_RCV_SETUP);
}
static netdev_tx_t c_can_start_xmit(struct sk_buff *skb,
<------><------><------><------> struct net_device *dev)
{
<------>struct can_frame *frame = (struct can_frame *)skb->data;
<------>struct c_can_priv *priv = netdev_priv(dev);
<------>u32 idx, obj;
<------>if (can_dropped_invalid_skb(dev, skb))
<------><------>return NETDEV_TX_OK;
<------>/*
<------> * This is not a FIFO. C/D_CAN sends out the buffers
<------> * prioritized. The lowest buffer number wins.
<------> */
<------>idx = fls(atomic_read(&priv->tx_active));
<------>obj = idx + C_CAN_MSG_OBJ_TX_FIRST;
<------>/* If this is the last buffer, stop the xmit queue */
<------>if (idx == C_CAN_MSG_OBJ_TX_NUM - 1)
<------><------>netif_stop_queue(dev);
<------>/*
<------> * Store the message in the interface so we can call
<------> * can_put_echo_skb(). We must do this before we enable
<------> * transmit as we might race against do_tx().
<------> */
<------>c_can_setup_tx_object(dev, IF_TX, frame, idx);
<------>priv->dlc[idx] = frame->can_dlc;
<------>can_put_echo_skb(skb, dev, idx);
<------>/* Update the active bits */
<------>atomic_add((1 << idx), &priv->tx_active);
<------>/* Start transmission */
<------>c_can_object_put(dev, IF_TX, obj, IF_COMM_TX);
<------>return NETDEV_TX_OK;
}
static int c_can_wait_for_ctrl_init(struct net_device *dev,
<------><------><------><------> struct c_can_priv *priv, u32 init)
{
<------>int retry = 0;
<------>while (init != (priv->read_reg(priv, C_CAN_CTRL_REG) & CONTROL_INIT)) {
<------><------>udelay(10);
<------><------>if (retry++ > 1000) {
<------><------><------>netdev_err(dev, "CCTRL: set CONTROL_INIT failed\n");
<------><------><------>return -EIO;
<------><------>}
<------>}
<------>return 0;
}
static int c_can_set_bittiming(struct net_device *dev)
{
<------>unsigned int reg_btr, reg_brpe, ctrl_save;
<------>u8 brp, brpe, sjw, tseg1, tseg2;
<------>u32 ten_bit_brp;
<------>struct c_can_priv *priv = netdev_priv(dev);
<------>const struct can_bittiming *bt = &priv->can.bittiming;
<------>int res;
<------>/* c_can provides a 6-bit brp and 4-bit brpe fields */
<------>ten_bit_brp = bt->brp - 1;
<------>brp = ten_bit_brp & BTR_BRP_MASK;
<------>brpe = ten_bit_brp >> 6;
<------>sjw = bt->sjw - 1;
<------>tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
<------>tseg2 = bt->phase_seg2 - 1;
<------>reg_btr = brp | (sjw << BTR_SJW_SHIFT) | (tseg1 << BTR_TSEG1_SHIFT) |
<------><------><------>(tseg2 << BTR_TSEG2_SHIFT);
<------>reg_brpe = brpe & BRP_EXT_BRPE_MASK;
<------>netdev_info(dev,
<------><------>"setting BTR=%04x BRPE=%04x\n", reg_btr, reg_brpe);
<------>ctrl_save = priv->read_reg(priv, C_CAN_CTRL_REG);
<------>ctrl_save &= ~CONTROL_INIT;
<------>priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_CCE | CONTROL_INIT);
<------>res = c_can_wait_for_ctrl_init(dev, priv, CONTROL_INIT);
<------>if (res)
<------><------>return res;
<------>priv->write_reg(priv, C_CAN_BTR_REG, reg_btr);
<------>priv->write_reg(priv, C_CAN_BRPEXT_REG, reg_brpe);
<------>priv->write_reg(priv, C_CAN_CTRL_REG, ctrl_save);
<------>return c_can_wait_for_ctrl_init(dev, priv, 0);
}
/*
* Configure C_CAN message objects for Tx and Rx purposes:
* C_CAN provides a total of 32 message objects that can be configured
* either for Tx or Rx purposes. Here the first 16 message objects are used as
* a reception FIFO. The end of reception FIFO is signified by the EoB bit
* being SET. The remaining 16 message objects are kept aside for Tx purposes.
* See user guide document for further details on configuring message
* objects.
*/
static void c_can_configure_msg_objects(struct net_device *dev)
{
<------>int i;
<------>/* first invalidate all message objects */
<------>for (i = C_CAN_MSG_OBJ_RX_FIRST; i <= C_CAN_NO_OF_OBJECTS; i++)
<------><------>c_can_inval_msg_object(dev, IF_RX, i);
<------>/* setup receive message objects */
<------>for (i = C_CAN_MSG_OBJ_RX_FIRST; i < C_CAN_MSG_OBJ_RX_LAST; i++)
<------><------>c_can_setup_receive_object(dev, IF_RX, i, 0, 0, IF_MCONT_RCV);
<------>c_can_setup_receive_object(dev, IF_RX, C_CAN_MSG_OBJ_RX_LAST, 0, 0,
<------><------><------><------> IF_MCONT_RCV_EOB);
}
static int c_can_software_reset(struct net_device *dev)
{
<------>struct c_can_priv *priv = netdev_priv(dev);
<------>int retry = 0;
<------>if (priv->type != BOSCH_D_CAN)
<------><------>return 0;
<------>priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_SWR | CONTROL_INIT);
<------>while (priv->read_reg(priv, C_CAN_CTRL_REG) & CONTROL_SWR) {
<------><------>msleep(20);
<------><------>if (retry++ > 100) {
<------><------><------>netdev_err(dev, "CCTRL: software reset failed\n");
<------><------><------>return -EIO;
<------><------>}
<------>}
<------>return 0;
}
/*
* Configure C_CAN chip:
* - enable/disable auto-retransmission
* - set operating mode
* - configure message objects
*/
static int c_can_chip_config(struct net_device *dev)
{
<------>struct c_can_priv *priv = netdev_priv(dev);
<------>int err;
<------>err = c_can_software_reset(dev);
<------>if (err)
<------><------>return err;
<------>/* enable automatic retransmission */
<------>priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_ENABLE_AR);
<------>if ((priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) &&
<------> (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)) {
<------><------>/* loopback + silent mode : useful for hot self-test */
<------><------>priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
<------><------>priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK | TEST_SILENT);
<------>} else if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
<------><------>/* loopback mode : useful for self-test function */
<------><------>priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
<------><------>priv->write_reg(priv, C_CAN_TEST_REG, TEST_LBACK);
<------>} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
<------><------>/* silent mode : bus-monitoring mode */
<------><------>priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_TEST);
<------><------>priv->write_reg(priv, C_CAN_TEST_REG, TEST_SILENT);
<------>}
<------>/* configure message objects */
<------>c_can_configure_msg_objects(dev);
<------>/* set a `lec` value so that we can check for updates later */
<------>priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
<------>/* Clear all internal status */
<------>atomic_set(&priv->tx_active, 0);
<------>priv->rxmasked = 0;
<------>priv->tx_dir = 0;
<------>/* set bittiming params */
<------>return c_can_set_bittiming(dev);
}
static int c_can_start(struct net_device *dev)
{
<------>struct c_can_priv *priv = netdev_priv(dev);
<------>int err;
<------>struct pinctrl *p;
<------>/* basic c_can configuration */
<------>err = c_can_chip_config(dev);
<------>if (err)
<------><------>return err;
<------>/* Setup the command for new messages */
<------>priv->comm_rcv_high = priv->type != BOSCH_D_CAN ?
<------><------>IF_COMM_RCV_LOW : IF_COMM_RCV_HIGH;
<------>priv->can.state = CAN_STATE_ERROR_ACTIVE;
<------>/* Attempt to use "active" if available else use "default" */
<------>p = pinctrl_get_select(priv->device, "active");
<------>if (!IS_ERR(p))
<------><------>pinctrl_put(p);
<------>else
<------><------>pinctrl_pm_select_default_state(priv->device);
<------>return 0;
}
static void c_can_stop(struct net_device *dev)
{
<------>struct c_can_priv *priv = netdev_priv(dev);
<------>c_can_irq_control(priv, false);
<------>/* put ctrl to init on stop to end ongoing transmission */
<------>priv->write_reg(priv, C_CAN_CTRL_REG, CONTROL_INIT);
<------>/* deactivate pins */
<------>pinctrl_pm_select_sleep_state(dev->dev.parent);
<------>priv->can.state = CAN_STATE_STOPPED;
}
static int c_can_set_mode(struct net_device *dev, enum can_mode mode)
{
<------>struct c_can_priv *priv = netdev_priv(dev);
<------>int err;
<------>switch (mode) {
<------>case CAN_MODE_START:
<------><------>err = c_can_start(dev);
<------><------>if (err)
<------><------><------>return err;
<------><------>netif_wake_queue(dev);
<------><------>c_can_irq_control(priv, true);
<------><------>break;
<------>default:
<------><------>return -EOPNOTSUPP;
<------>}
<------>return 0;
}
static int __c_can_get_berr_counter(const struct net_device *dev,
<------><------><------><------> struct can_berr_counter *bec)
{
<------>unsigned int reg_err_counter;
<------>struct c_can_priv *priv = netdev_priv(dev);
<------>reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
<------>bec->rxerr = (reg_err_counter & ERR_CNT_REC_MASK) >>
<------><------><------><------>ERR_CNT_REC_SHIFT;
<------>bec->txerr = reg_err_counter & ERR_CNT_TEC_MASK;
<------>return 0;
}
static int c_can_get_berr_counter(const struct net_device *dev,
<------><------><------><------> struct can_berr_counter *bec)
{
<------>struct c_can_priv *priv = netdev_priv(dev);
<------>int err;
<------>c_can_pm_runtime_get_sync(priv);
<------>err = __c_can_get_berr_counter(dev, bec);
<------>c_can_pm_runtime_put_sync(priv);
<------>return err;
}
static void c_can_do_tx(struct net_device *dev)
{
<------>struct c_can_priv *priv = netdev_priv(dev);
<------>struct net_device_stats *stats = &dev->stats;
<------>u32 idx, obj, pkts = 0, bytes = 0, pend, clr;
<------>clr = pend = priv->read_reg(priv, C_CAN_INTPND2_REG);
<------>while ((idx = ffs(pend))) {
<------><------>idx--;
<------><------>pend &= ~(1 << idx);
<------><------>obj = idx + C_CAN_MSG_OBJ_TX_FIRST;
<------><------>c_can_inval_tx_object(dev, IF_RX, obj);
<------><------>can_get_echo_skb(dev, idx);
<------><------>bytes += priv->dlc[idx];
<------><------>pkts++;
<------>}
<------>/* Clear the bits in the tx_active mask */
<------>atomic_sub(clr, &priv->tx_active);
<------>if (clr & (1 << (C_CAN_MSG_OBJ_TX_NUM - 1)))
<------><------>netif_wake_queue(dev);
<------>if (pkts) {
<------><------>stats->tx_bytes += bytes;
<------><------>stats->tx_packets += pkts;
<------><------>can_led_event(dev, CAN_LED_EVENT_TX);
<------>}
}
/*
* If we have a gap in the pending bits, that means we either
* raced with the hardware or failed to readout all upper
* objects in the last run due to quota limit.
*/
static u32 c_can_adjust_pending(u32 pend)
{
<------>u32 weight, lasts;
<------>if (pend == RECEIVE_OBJECT_BITS)
<------><------>return pend;
<------>/*
<------> * If the last set bit is larger than the number of pending
<------> * bits we have a gap.
<------> */
<------>weight = hweight32(pend);
<------>lasts = fls(pend);
<------>/* If the bits are linear, nothing to do */
<------>if (lasts == weight)
<------><------>return pend;
<------>/*
<------> * Find the first set bit after the gap. We walk backwards
<------> * from the last set bit.
<------> */
<------>for (lasts--; pend & (1 << (lasts - 1)); lasts--);
<------>return pend & ~((1 << lasts) - 1);
}
static inline void c_can_rx_object_get(struct net_device *dev,
<------><------><------><------> struct c_can_priv *priv, u32 obj)
{
<------><------>c_can_object_get(dev, IF_RX, obj, priv->comm_rcv_high);
}
static inline void c_can_rx_finalize(struct net_device *dev,
<------><------><------><------> struct c_can_priv *priv, u32 obj)
{
<------>if (priv->type != BOSCH_D_CAN)
<------><------>c_can_object_get(dev, IF_RX, obj, IF_COMM_CLR_NEWDAT);
}
static int c_can_read_objects(struct net_device *dev, struct c_can_priv *priv,
<------><------><------> u32 pend, int quota)
{
<------>u32 pkts = 0, ctrl, obj;
<------>while ((obj = ffs(pend)) && quota > 0) {
<------><------>pend &= ~BIT(obj - 1);
<------><------>c_can_rx_object_get(dev, priv, obj);
<------><------>ctrl = priv->read_reg(priv, C_CAN_IFACE(MSGCTRL_REG, IF_RX));
<------><------>if (ctrl & IF_MCONT_MSGLST) {
<------><------><------>int n = c_can_handle_lost_msg_obj(dev, IF_RX, obj, ctrl);
<------><------><------>pkts += n;
<------><------><------>quota -= n;
<------><------><------>continue;
<------><------>}
<------><------>/*
<------><------> * This really should not happen, but this covers some
<------><------> * odd HW behaviour. Do not remove that unless you
<------><------> * want to brick your machine.
<------><------> */
<------><------>if (!(ctrl & IF_MCONT_NEWDAT))
<------><------><------>continue;
<------><------>/* read the data from the message object */
<------><------>c_can_read_msg_object(dev, IF_RX, ctrl);
<------><------>c_can_rx_finalize(dev, priv, obj);
<------><------>pkts++;
<------><------>quota--;
<------>}
<------>return pkts;
}
static inline u32 c_can_get_pending(struct c_can_priv *priv)
{
<------>u32 pend = priv->read_reg(priv, C_CAN_NEWDAT1_REG);
<------>return pend;
}
/*
* theory of operation:
*
* c_can core saves a received CAN message into the first free message
* object it finds free (starting with the lowest). Bits NEWDAT and
* INTPND are set for this message object indicating that a new message
* has arrived. To work-around this issue, we keep two groups of message
* objects whose partitioning is defined by C_CAN_MSG_OBJ_RX_SPLIT.
*
* We clear the newdat bit right away.
*
* This can result in packet reordering when the readout is slow.
*/
static int c_can_do_rx_poll(struct net_device *dev, int quota)
{
<------>struct c_can_priv *priv = netdev_priv(dev);
<------>u32 pkts = 0, pend = 0, toread, n;
<------>/*
<------> * It is faster to read only one 16bit register. This is only possible
<------> * for a maximum number of 16 objects.
<------> */
<------>BUILD_BUG_ON_MSG(C_CAN_MSG_OBJ_RX_LAST > 16,
<------><------><------>"Implementation does not support more message objects than 16");
<------>while (quota > 0) {
<------><------>if (!pend) {
<------><------><------>pend = c_can_get_pending(priv);
<------><------><------>if (!pend)
<------><------><------><------>break;
<------><------><------>/*
<------><------><------> * If the pending field has a gap, handle the
<------><------><------> * bits above the gap first.
<------><------><------> */
<------><------><------>toread = c_can_adjust_pending(pend);
<------><------>} else {
<------><------><------>toread = pend;
<------><------>}
<------><------>/* Remove the bits from pend */
<------><------>pend &= ~toread;
<------><------>/* Read the objects */
<------><------>n = c_can_read_objects(dev, priv, toread, quota);
<------><------>pkts += n;
<------><------>quota -= n;
<------>}
<------>if (pkts)
<------><------>can_led_event(dev, CAN_LED_EVENT_RX);
<------>return pkts;
}
static int c_can_handle_state_change(struct net_device *dev,
<------><------><------><------>enum c_can_bus_error_types error_type)
{
<------>unsigned int reg_err_counter;
<------>unsigned int rx_err_passive;
<------>struct c_can_priv *priv = netdev_priv(dev);
<------>struct net_device_stats *stats = &dev->stats;
<------>struct can_frame *cf;
<------>struct sk_buff *skb;
<------>struct can_berr_counter bec;
<------>switch (error_type) {
<------>case C_CAN_NO_ERROR:
<------><------>priv->can.state = CAN_STATE_ERROR_ACTIVE;
<------><------>break;
<------>case C_CAN_ERROR_WARNING:
<------><------>/* error warning state */
<------><------>priv->can.can_stats.error_warning++;
<------><------>priv->can.state = CAN_STATE_ERROR_WARNING;
<------><------>break;
<------>case C_CAN_ERROR_PASSIVE:
<------><------>/* error passive state */
<------><------>priv->can.can_stats.error_passive++;
<------><------>priv->can.state = CAN_STATE_ERROR_PASSIVE;
<------><------>break;
<------>case C_CAN_BUS_OFF:
<------><------>/* bus-off state */
<------><------>priv->can.state = CAN_STATE_BUS_OFF;
<------><------>priv->can.can_stats.bus_off++;
<------><------>break;
<------>default:
<------><------>break;
<------>}
<------>/* propagate the error condition to the CAN stack */
<------>skb = alloc_can_err_skb(dev, &cf);
<------>if (unlikely(!skb))
<------><------>return 0;
<------>__c_can_get_berr_counter(dev, &bec);
<------>reg_err_counter = priv->read_reg(priv, C_CAN_ERR_CNT_REG);
<------>rx_err_passive = (reg_err_counter & ERR_CNT_RP_MASK) >>
<------><------><------><------>ERR_CNT_RP_SHIFT;
<------>switch (error_type) {
<------>case C_CAN_NO_ERROR:
<------><------>/* error warning state */
<------><------>cf->can_id |= CAN_ERR_CRTL;
<------><------>cf->data[1] = CAN_ERR_CRTL_ACTIVE;
<------><------>cf->data[6] = bec.txerr;
<------><------>cf->data[7] = bec.rxerr;
<------><------>break;
<------>case C_CAN_ERROR_WARNING:
<------><------>/* error warning state */
<------><------>cf->can_id |= CAN_ERR_CRTL;
<------><------>cf->data[1] = (bec.txerr > bec.rxerr) ?
<------><------><------>CAN_ERR_CRTL_TX_WARNING :
<------><------><------>CAN_ERR_CRTL_RX_WARNING;
<------><------>cf->data[6] = bec.txerr;
<------><------>cf->data[7] = bec.rxerr;
<------><------>break;
<------>case C_CAN_ERROR_PASSIVE:
<------><------>/* error passive state */
<------><------>cf->can_id |= CAN_ERR_CRTL;
<------><------>if (rx_err_passive)
<------><------><------>cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
<------><------>if (bec.txerr > 127)
<------><------><------>cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
<------><------>cf->data[6] = bec.txerr;
<------><------>cf->data[7] = bec.rxerr;
<------><------>break;
<------>case C_CAN_BUS_OFF:
<------><------>/* bus-off state */
<------><------>cf->can_id |= CAN_ERR_BUSOFF;
<------><------>can_bus_off(dev);
<------><------>break;
<------>default:
<------><------>break;
<------>}
<------>stats->rx_packets++;
<------>stats->rx_bytes += cf->can_dlc;
<------>netif_receive_skb(skb);
<------>return 1;
}
static int c_can_handle_bus_err(struct net_device *dev,
<------><------><------><------>enum c_can_lec_type lec_type)
{
<------>struct c_can_priv *priv = netdev_priv(dev);
<------>struct net_device_stats *stats = &dev->stats;
<------>struct can_frame *cf;
<------>struct sk_buff *skb;
<------>/*
<------> * early exit if no lec update or no error.
<------> * no lec update means that no CAN bus event has been detected
<------> * since CPU wrote 0x7 value to status reg.
<------> */
<------>if (lec_type == LEC_UNUSED || lec_type == LEC_NO_ERROR)
<------><------>return 0;
<------>if (!(priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
<------><------>return 0;
<------>/* common for all type of bus errors */
<------>priv->can.can_stats.bus_error++;
<------>stats->rx_errors++;
<------>/* propagate the error condition to the CAN stack */
<------>skb = alloc_can_err_skb(dev, &cf);
<------>if (unlikely(!skb))
<------><------>return 0;
<------>/*
<------> * check for 'last error code' which tells us the
<------> * type of the last error to occur on the CAN bus
<------> */
<------>cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
<------>switch (lec_type) {
<------>case LEC_STUFF_ERROR:
<------><------>netdev_dbg(dev, "stuff error\n");
<------><------>cf->data[2] |= CAN_ERR_PROT_STUFF;
<------><------>break;
<------>case LEC_FORM_ERROR:
<------><------>netdev_dbg(dev, "form error\n");
<------><------>cf->data[2] |= CAN_ERR_PROT_FORM;
<------><------>break;
<------>case LEC_ACK_ERROR:
<------><------>netdev_dbg(dev, "ack error\n");
<------><------>cf->data[3] = CAN_ERR_PROT_LOC_ACK;
<------><------>break;
<------>case LEC_BIT1_ERROR:
<------><------>netdev_dbg(dev, "bit1 error\n");
<------><------>cf->data[2] |= CAN_ERR_PROT_BIT1;
<------><------>break;
<------>case LEC_BIT0_ERROR:
<------><------>netdev_dbg(dev, "bit0 error\n");
<------><------>cf->data[2] |= CAN_ERR_PROT_BIT0;
<------><------>break;
<------>case LEC_CRC_ERROR:
<------><------>netdev_dbg(dev, "CRC error\n");
<------><------>cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
<------><------>break;
<------>default:
<------><------>break;
<------>}
<------>stats->rx_packets++;
<------>stats->rx_bytes += cf->can_dlc;
<------>netif_receive_skb(skb);
<------>return 1;
}
static int c_can_poll(struct napi_struct *napi, int quota)
{
<------>struct net_device *dev = napi->dev;
<------>struct c_can_priv *priv = netdev_priv(dev);
<------>u16 curr, last = priv->last_status;
<------>int work_done = 0;
<------>/* Only read the status register if a status interrupt was pending */
<------>if (atomic_xchg(&priv->sie_pending, 0)) {
<------><------>priv->last_status = curr = priv->read_reg(priv, C_CAN_STS_REG);
<------><------>/* Ack status on C_CAN. D_CAN is self clearing */
<------><------>if (priv->type != BOSCH_D_CAN)
<------><------><------>priv->write_reg(priv, C_CAN_STS_REG, LEC_UNUSED);
<------>} else {
<------><------>/* no change detected ... */
<------><------>curr = last;
<------>}
<------>/* handle state changes */
<------>if ((curr & STATUS_EWARN) && (!(last & STATUS_EWARN))) {
<------><------>netdev_dbg(dev, "entered error warning state\n");
<------><------>work_done += c_can_handle_state_change(dev, C_CAN_ERROR_WARNING);
<------>}
<------>if ((curr & STATUS_EPASS) && (!(last & STATUS_EPASS))) {
<------><------>netdev_dbg(dev, "entered error passive state\n");
<------><------>work_done += c_can_handle_state_change(dev, C_CAN_ERROR_PASSIVE);
<------>}
<------>if ((curr & STATUS_BOFF) && (!(last & STATUS_BOFF))) {
<------><------>netdev_dbg(dev, "entered bus off state\n");
<------><------>work_done += c_can_handle_state_change(dev, C_CAN_BUS_OFF);
<------><------>goto end;
<------>}
<------>/* handle bus recovery events */
<------>if ((!(curr & STATUS_BOFF)) && (last & STATUS_BOFF)) {
<------><------>netdev_dbg(dev, "left bus off state\n");
<------><------>work_done += c_can_handle_state_change(dev, C_CAN_ERROR_PASSIVE);
<------>}
<------>if ((!(curr & STATUS_EPASS)) && (last & STATUS_EPASS)) {
<------><------>netdev_dbg(dev, "left error passive state\n");
<------><------>work_done += c_can_handle_state_change(dev, C_CAN_ERROR_WARNING);
<------>}
<------>if ((!(curr & STATUS_EWARN)) && (last & STATUS_EWARN)) {
<------><------>netdev_dbg(dev, "left error warning state\n");
<------><------>work_done += c_can_handle_state_change(dev, C_CAN_NO_ERROR);
<------>}
<------>/* handle lec errors on the bus */
<------>work_done += c_can_handle_bus_err(dev, curr & LEC_MASK);
<------>/* Handle Tx/Rx events. We do this unconditionally */
<------>work_done += c_can_do_rx_poll(dev, (quota - work_done));
<------>c_can_do_tx(dev);
end:
<------>if (work_done < quota) {
<------><------>napi_complete_done(napi, work_done);
<------><------>/* enable all IRQs if we are not in bus off state */
<------><------>if (priv->can.state != CAN_STATE_BUS_OFF)
<------><------><------>c_can_irq_control(priv, true);
<------>}
<------>return work_done;
}
static irqreturn_t c_can_isr(int irq, void *dev_id)
{
<------>struct net_device *dev = (struct net_device *)dev_id;
<------>struct c_can_priv *priv = netdev_priv(dev);
<------>int reg_int;
<------>reg_int = priv->read_reg(priv, C_CAN_INT_REG);
<------>if (!reg_int)
<------><------>return IRQ_NONE;
<------>/* save for later use */
<------>if (reg_int & INT_STS_PENDING)
<------><------>atomic_set(&priv->sie_pending, 1);
<------>/* disable all interrupts and schedule the NAPI */
<------>c_can_irq_control(priv, false);
<------>napi_schedule(&priv->napi);
<------>return IRQ_HANDLED;
}
static int c_can_open(struct net_device *dev)
{
<------>int err;
<------>struct c_can_priv *priv = netdev_priv(dev);
<------>c_can_pm_runtime_get_sync(priv);
<------>c_can_reset_ram(priv, true);
<------>/* open the can device */
<------>err = open_candev(dev);
<------>if (err) {
<------><------>netdev_err(dev, "failed to open can device\n");
<------><------>goto exit_open_fail;
<------>}
<------>/* register interrupt handler */
<------>err = request_irq(dev->irq, &c_can_isr, IRQF_SHARED, dev->name,
<------><------><------><------>dev);
<------>if (err < 0) {
<------><------>netdev_err(dev, "failed to request interrupt\n");
<------><------>goto exit_irq_fail;
<------>}
<------>/* start the c_can controller */
<------>err = c_can_start(dev);
<------>if (err)
<------><------>goto exit_start_fail;
<------>can_led_event(dev, CAN_LED_EVENT_OPEN);
<------>napi_enable(&priv->napi);
<------>/* enable status change, error and module interrupts */
<------>c_can_irq_control(priv, true);
<------>netif_start_queue(dev);
<------>return 0;
exit_start_fail:
<------>free_irq(dev->irq, dev);
exit_irq_fail:
<------>close_candev(dev);
exit_open_fail:
<------>c_can_reset_ram(priv, false);
<------>c_can_pm_runtime_put_sync(priv);
<------>return err;
}
static int c_can_close(struct net_device *dev)
{
<------>struct c_can_priv *priv = netdev_priv(dev);
<------>netif_stop_queue(dev);
<------>napi_disable(&priv->napi);
<------>c_can_stop(dev);
<------>free_irq(dev->irq, dev);
<------>close_candev(dev);
<------>c_can_reset_ram(priv, false);
<------>c_can_pm_runtime_put_sync(priv);
<------>can_led_event(dev, CAN_LED_EVENT_STOP);
<------>return 0;
}
struct net_device *alloc_c_can_dev(void)
{
<------>struct net_device *dev;
<------>struct c_can_priv *priv;
<------>dev = alloc_candev(sizeof(struct c_can_priv), C_CAN_MSG_OBJ_TX_NUM);
<------>if (!dev)
<------><------>return NULL;
<------>priv = netdev_priv(dev);
<------>netif_napi_add(dev, &priv->napi, c_can_poll, C_CAN_NAPI_WEIGHT);
<------>priv->dev = dev;
<------>priv->can.bittiming_const = &c_can_bittiming_const;
<------>priv->can.do_set_mode = c_can_set_mode;
<------>priv->can.do_get_berr_counter = c_can_get_berr_counter;
<------>priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
<------><------><------><------><------>CAN_CTRLMODE_LISTENONLY |
<------><------><------><------><------>CAN_CTRLMODE_BERR_REPORTING;
<------>return dev;
}
EXPORT_SYMBOL_GPL(alloc_c_can_dev);
#ifdef CONFIG_PM
int c_can_power_down(struct net_device *dev)
{
<------>u32 val;
<------>unsigned long time_out;
<------>struct c_can_priv *priv = netdev_priv(dev);
<------>if (!(dev->flags & IFF_UP))
<------><------>return 0;
<------>WARN_ON(priv->type != BOSCH_D_CAN);
<------>/* set PDR value so the device goes to power down mode */
<------>val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
<------>val |= CONTROL_EX_PDR;
<------>priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
<------>/* Wait for the PDA bit to get set */
<------>time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
<------>while (!(priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
<------><------><------><------>time_after(time_out, jiffies))
<------><------>cpu_relax();
<------>if (time_after(jiffies, time_out))
<------><------>return -ETIMEDOUT;
<------>c_can_stop(dev);
<------>c_can_reset_ram(priv, false);
<------>c_can_pm_runtime_put_sync(priv);
<------>return 0;
}
EXPORT_SYMBOL_GPL(c_can_power_down);
int c_can_power_up(struct net_device *dev)
{
<------>u32 val;
<------>unsigned long time_out;
<------>struct c_can_priv *priv = netdev_priv(dev);
<------>int ret;
<------>if (!(dev->flags & IFF_UP))
<------><------>return 0;
<------>WARN_ON(priv->type != BOSCH_D_CAN);
<------>c_can_pm_runtime_get_sync(priv);
<------>c_can_reset_ram(priv, true);
<------>/* Clear PDR and INIT bits */
<------>val = priv->read_reg(priv, C_CAN_CTRL_EX_REG);
<------>val &= ~CONTROL_EX_PDR;
<------>priv->write_reg(priv, C_CAN_CTRL_EX_REG, val);
<------>val = priv->read_reg(priv, C_CAN_CTRL_REG);
<------>val &= ~CONTROL_INIT;
<------>priv->write_reg(priv, C_CAN_CTRL_REG, val);
<------>/* Wait for the PDA bit to get clear */
<------>time_out = jiffies + msecs_to_jiffies(INIT_WAIT_MS);
<------>while ((priv->read_reg(priv, C_CAN_STS_REG) & STATUS_PDA) &&
<------><------><------><------>time_after(time_out, jiffies))
<------><------>cpu_relax();
<------>if (time_after(jiffies, time_out)) {
<------><------>ret = -ETIMEDOUT;
<------><------>goto err_out;
<------>}
<------>ret = c_can_start(dev);
<------>if (ret)
<------><------>goto err_out;
<------>c_can_irq_control(priv, true);
<------>return 0;
err_out:
<------>c_can_reset_ram(priv, false);
<------>c_can_pm_runtime_put_sync(priv);
<------>return ret;
}
EXPORT_SYMBOL_GPL(c_can_power_up);
#endif
void free_c_can_dev(struct net_device *dev)
{
<------>struct c_can_priv *priv = netdev_priv(dev);
<------>netif_napi_del(&priv->napi);
<------>free_candev(dev);
}
EXPORT_SYMBOL_GPL(free_c_can_dev);
static const struct net_device_ops c_can_netdev_ops = {
<------>.ndo_open = c_can_open,
<------>.ndo_stop = c_can_close,
<------>.ndo_start_xmit = c_can_start_xmit,
<------>.ndo_change_mtu = can_change_mtu,
};
int register_c_can_dev(struct net_device *dev)
{
<------>int err;
<------>/* Deactivate pins to prevent DRA7 DCAN IP from being
<------> * stuck in transition when module is disabled.
<------> * Pins are activated in c_can_start() and deactivated
<------> * in c_can_stop()
<------> */
<------>pinctrl_pm_select_sleep_state(dev->dev.parent);
<------>dev->flags |= IFF_ECHO; /* we support local echo */
<------>dev->netdev_ops = &c_can_netdev_ops;
<------>err = register_candev(dev);
<------>if (!err)
<------><------>devm_can_led_init(dev);
<------>return err;
}
EXPORT_SYMBOL_GPL(register_c_can_dev);
void unregister_c_can_dev(struct net_device *dev)
{
<------>unregister_candev(dev);
}
EXPORT_SYMBOL_GPL(unregister_c_can_dev);
MODULE_AUTHOR("Bhupesh Sharma <bhupesh.sharma@st.com>");
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("CAN bus driver for Bosch C_CAN controller");