^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1) // SPDX-License-Identifier: GPL-2.0-or-later
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3) * Copyright (c) International Business Machines Corp., 2006
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5) * Author: Artem Bityutskiy (Битюцкий Артём)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 8) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 9) * The UBI Eraseblock Association (EBA) sub-system.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 10) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 11) * This sub-system is responsible for I/O to/from logical eraseblock.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 12) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 13) * Although in this implementation the EBA table is fully kept and managed in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 14) * RAM, which assumes poor scalability, it might be (partially) maintained on
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 15) * flash in future implementations.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 16) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 17) * The EBA sub-system implements per-logical eraseblock locking. Before
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 18) * accessing a logical eraseblock it is locked for reading or writing. The
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 19) * per-logical eraseblock locking is implemented by means of the lock tree. The
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 20) * lock tree is an RB-tree which refers all the currently locked logical
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 21) * eraseblocks. The lock tree elements are &struct ubi_ltree_entry objects.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 22) * They are indexed by (@vol_id, @lnum) pairs.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 23) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 24) * EBA also maintains the global sequence counter which is incremented each
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 25) * time a logical eraseblock is mapped to a physical eraseblock and it is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 26) * stored in the volume identifier header. This means that each VID header has
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 27) * a unique sequence number. The sequence number is only increased an we assume
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 28) * 64 bits is enough to never overflow.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 29) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 30)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 31) #include <linux/slab.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 32) #include <linux/crc32.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 33) #include <linux/err.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 34) #include "ubi.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 35)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 36) /* Number of physical eraseblocks reserved for atomic LEB change operation */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 37) #define EBA_RESERVED_PEBS 1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 38)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 39) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 40) * struct ubi_eba_entry - structure encoding a single LEB -> PEB association
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 41) * @pnum: the physical eraseblock number attached to the LEB
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 42) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 43) * This structure is encoding a LEB -> PEB association. Note that the LEB
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 44) * number is not stored here, because it is the index used to access the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 45) * entries table.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 46) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 47) struct ubi_eba_entry {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 48) int pnum;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 49) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 50)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 51) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 52) * struct ubi_eba_table - LEB -> PEB association information
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 53) * @entries: the LEB to PEB mapping (one entry per LEB).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 54) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 55) * This structure is private to the EBA logic and should be kept here.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 56) * It is encoding the LEB to PEB association table, and is subject to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 57) * changes.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 58) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 59) struct ubi_eba_table {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 60) struct ubi_eba_entry *entries;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 61) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 62)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 63) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 64) * next_sqnum - get next sequence number.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 65) * @ubi: UBI device description object
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 66) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 67) * This function returns next sequence number to use, which is just the current
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 68) * global sequence counter value. It also increases the global sequence
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 69) * counter.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 70) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 71) unsigned long long ubi_next_sqnum(struct ubi_device *ubi)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 72) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 73) unsigned long long sqnum;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 74)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 75) spin_lock(&ubi->ltree_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 76) sqnum = ubi->global_sqnum++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 77) spin_unlock(&ubi->ltree_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 78)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 79) return sqnum;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 80) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 81)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 82) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 83) * ubi_get_compat - get compatibility flags of a volume.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 84) * @ubi: UBI device description object
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 85) * @vol_id: volume ID
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 86) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 87) * This function returns compatibility flags for an internal volume. User
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 88) * volumes have no compatibility flags, so %0 is returned.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 89) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 90) static int ubi_get_compat(const struct ubi_device *ubi, int vol_id)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 91) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 92) if (vol_id == UBI_LAYOUT_VOLUME_ID)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 93) return UBI_LAYOUT_VOLUME_COMPAT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 94) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 95) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 96)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 97) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 98) * ubi_eba_get_ldesc - get information about a LEB
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 99) * @vol: volume description object
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) * @lnum: logical eraseblock number
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) * @ldesc: the LEB descriptor to fill
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) * Used to query information about a specific LEB.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) * It is currently only returning the physical position of the LEB, but will be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) * extended to provide more information.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) void ubi_eba_get_ldesc(struct ubi_volume *vol, int lnum,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) struct ubi_eba_leb_desc *ldesc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) ldesc->lnum = lnum;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) ldesc->pnum = vol->eba_tbl->entries[lnum].pnum;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) * ubi_eba_create_table - allocate a new EBA table and initialize it with all
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) * LEBs unmapped
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) * @vol: volume containing the EBA table to copy
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) * @nentries: number of entries in the table
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) * Allocate a new EBA table and initialize it with all LEBs unmapped.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) * Returns a valid pointer if it succeed, an ERR_PTR() otherwise.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) struct ubi_eba_table *ubi_eba_create_table(struct ubi_volume *vol,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) int nentries)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) struct ubi_eba_table *tbl;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) int err = -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) tbl = kzalloc(sizeof(*tbl), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) if (!tbl)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) return ERR_PTR(-ENOMEM);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) tbl->entries = kmalloc_array(nentries, sizeof(*tbl->entries),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) if (!tbl->entries)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) goto err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) for (i = 0; i < nentries; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) tbl->entries[i].pnum = UBI_LEB_UNMAPPED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) return tbl;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) err:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) kfree(tbl->entries);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) kfree(tbl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) return ERR_PTR(err);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) * ubi_eba_destroy_table - destroy an EBA table
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) * @tbl: the table to destroy
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) * Destroy an EBA table.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) void ubi_eba_destroy_table(struct ubi_eba_table *tbl)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) if (!tbl)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) kfree(tbl->entries);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) kfree(tbl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) * ubi_eba_copy_table - copy the EBA table attached to vol into another table
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) * @vol: volume containing the EBA table to copy
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) * @dst: destination
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) * @nentries: number of entries to copy
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) * Copy the EBA table stored in vol into the one pointed by dst.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) void ubi_eba_copy_table(struct ubi_volume *vol, struct ubi_eba_table *dst,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) int nentries)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) struct ubi_eba_table *src;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) ubi_assert(dst && vol && vol->eba_tbl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) src = vol->eba_tbl;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) for (i = 0; i < nentries; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) dst->entries[i].pnum = src->entries[i].pnum;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) * ubi_eba_replace_table - assign a new EBA table to a volume
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) * @vol: volume containing the EBA table to copy
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) * @tbl: new EBA table
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) * Assign a new EBA table to the volume and release the old one.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) void ubi_eba_replace_table(struct ubi_volume *vol, struct ubi_eba_table *tbl)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) ubi_eba_destroy_table(vol->eba_tbl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) vol->eba_tbl = tbl;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) * ltree_lookup - look up the lock tree.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) * @ubi: UBI device description object
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) * @vol_id: volume ID
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) * @lnum: logical eraseblock number
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) * This function returns a pointer to the corresponding &struct ubi_ltree_entry
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) * object if the logical eraseblock is locked and %NULL if it is not.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) * @ubi->ltree_lock has to be locked.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) static struct ubi_ltree_entry *ltree_lookup(struct ubi_device *ubi, int vol_id,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) int lnum)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) struct rb_node *p;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) p = ubi->ltree.rb_node;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) while (p) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) struct ubi_ltree_entry *le;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) le = rb_entry(p, struct ubi_ltree_entry, rb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) if (vol_id < le->vol_id)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) p = p->rb_left;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) else if (vol_id > le->vol_id)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) p = p->rb_right;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) if (lnum < le->lnum)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) p = p->rb_left;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) else if (lnum > le->lnum)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) p = p->rb_right;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) return le;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) * ltree_add_entry - add new entry to the lock tree.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) * @ubi: UBI device description object
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) * @vol_id: volume ID
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) * @lnum: logical eraseblock number
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) * This function adds new entry for logical eraseblock (@vol_id, @lnum) to the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) * lock tree. If such entry is already there, its usage counter is increased.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) * Returns pointer to the lock tree entry or %-ENOMEM if memory allocation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) * failed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) static struct ubi_ltree_entry *ltree_add_entry(struct ubi_device *ubi,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) int vol_id, int lnum)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) struct ubi_ltree_entry *le, *le1, *le_free;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) le = kmalloc(sizeof(struct ubi_ltree_entry), GFP_NOFS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) if (!le)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) return ERR_PTR(-ENOMEM);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) le->users = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) init_rwsem(&le->mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) le->vol_id = vol_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) le->lnum = lnum;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) spin_lock(&ubi->ltree_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) le1 = ltree_lookup(ubi, vol_id, lnum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) if (le1) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) * This logical eraseblock is already locked. The newly
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) * allocated lock entry is not needed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) le_free = le;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) le = le1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) struct rb_node **p, *parent = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) * No lock entry, add the newly allocated one to the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) * @ubi->ltree RB-tree.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) le_free = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) p = &ubi->ltree.rb_node;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) while (*p) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) parent = *p;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) le1 = rb_entry(parent, struct ubi_ltree_entry, rb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) if (vol_id < le1->vol_id)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) p = &(*p)->rb_left;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) else if (vol_id > le1->vol_id)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) p = &(*p)->rb_right;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) ubi_assert(lnum != le1->lnum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) if (lnum < le1->lnum)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) p = &(*p)->rb_left;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) p = &(*p)->rb_right;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) rb_link_node(&le->rb, parent, p);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) rb_insert_color(&le->rb, &ubi->ltree);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) le->users += 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) spin_unlock(&ubi->ltree_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) kfree(le_free);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) return le;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) * leb_read_lock - lock logical eraseblock for reading.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) * @ubi: UBI device description object
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) * @vol_id: volume ID
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) * @lnum: logical eraseblock number
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) * This function locks a logical eraseblock for reading. Returns zero in case
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) * of success and a negative error code in case of failure.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) static int leb_read_lock(struct ubi_device *ubi, int vol_id, int lnum)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) struct ubi_ltree_entry *le;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) le = ltree_add_entry(ubi, vol_id, lnum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) if (IS_ERR(le))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) return PTR_ERR(le);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) down_read(&le->mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) * leb_read_unlock - unlock logical eraseblock.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) * @ubi: UBI device description object
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) * @vol_id: volume ID
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) * @lnum: logical eraseblock number
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) static void leb_read_unlock(struct ubi_device *ubi, int vol_id, int lnum)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) struct ubi_ltree_entry *le;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) spin_lock(&ubi->ltree_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) le = ltree_lookup(ubi, vol_id, lnum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) le->users -= 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) ubi_assert(le->users >= 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) up_read(&le->mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) if (le->users == 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) rb_erase(&le->rb, &ubi->ltree);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) kfree(le);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350) spin_unlock(&ubi->ltree_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) * leb_write_lock - lock logical eraseblock for writing.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) * @ubi: UBI device description object
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) * @vol_id: volume ID
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) * @lnum: logical eraseblock number
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) * This function locks a logical eraseblock for writing. Returns zero in case
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) * of success and a negative error code in case of failure.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) static int leb_write_lock(struct ubi_device *ubi, int vol_id, int lnum)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) struct ubi_ltree_entry *le;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) le = ltree_add_entry(ubi, vol_id, lnum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) if (IS_ERR(le))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) return PTR_ERR(le);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) down_write(&le->mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374) * leb_write_trylock - try to lock logical eraseblock for writing.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) * @ubi: UBI device description object
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376) * @vol_id: volume ID
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) * @lnum: logical eraseblock number
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379) * This function locks a logical eraseblock for writing if there is no
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) * contention and does nothing if there is contention. Returns %0 in case of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381) * success, %1 in case of contention, and and a negative error code in case of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382) * failure.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384) static int leb_write_trylock(struct ubi_device *ubi, int vol_id, int lnum)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) struct ubi_ltree_entry *le;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388) le = ltree_add_entry(ubi, vol_id, lnum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) if (IS_ERR(le))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390) return PTR_ERR(le);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391) if (down_write_trylock(&le->mutex))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394) /* Contention, cancel */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395) spin_lock(&ubi->ltree_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396) le->users -= 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397) ubi_assert(le->users >= 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398) if (le->users == 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399) rb_erase(&le->rb, &ubi->ltree);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400) kfree(le);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402) spin_unlock(&ubi->ltree_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404) return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408) * leb_write_unlock - unlock logical eraseblock.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409) * @ubi: UBI device description object
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410) * @vol_id: volume ID
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411) * @lnum: logical eraseblock number
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413) static void leb_write_unlock(struct ubi_device *ubi, int vol_id, int lnum)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415) struct ubi_ltree_entry *le;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417) spin_lock(&ubi->ltree_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418) le = ltree_lookup(ubi, vol_id, lnum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419) le->users -= 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420) ubi_assert(le->users >= 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421) up_write(&le->mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422) if (le->users == 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423) rb_erase(&le->rb, &ubi->ltree);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424) kfree(le);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 426) spin_unlock(&ubi->ltree_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 427) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 428)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 429) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 430) * ubi_eba_is_mapped - check if a LEB is mapped.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 431) * @vol: volume description object
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 432) * @lnum: logical eraseblock number
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 433) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 434) * This function returns true if the LEB is mapped, false otherwise.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 435) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 436) bool ubi_eba_is_mapped(struct ubi_volume *vol, int lnum)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 437) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 438) return vol->eba_tbl->entries[lnum].pnum >= 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 439) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 440)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 441) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 442) * ubi_eba_unmap_leb - un-map logical eraseblock.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 443) * @ubi: UBI device description object
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 444) * @vol: volume description object
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 445) * @lnum: logical eraseblock number
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 446) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 447) * This function un-maps logical eraseblock @lnum and schedules corresponding
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 448) * physical eraseblock for erasure. Returns zero in case of success and a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 449) * negative error code in case of failure.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 450) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 451) int ubi_eba_unmap_leb(struct ubi_device *ubi, struct ubi_volume *vol,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 452) int lnum)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 453) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 454) int err, pnum, vol_id = vol->vol_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 455)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 456) if (ubi->ro_mode)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 457) return -EROFS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 458)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 459) err = leb_write_lock(ubi, vol_id, lnum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 460) if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 461) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 462)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 463) pnum = vol->eba_tbl->entries[lnum].pnum;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 464) if (pnum < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 465) /* This logical eraseblock is already unmapped */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 466) goto out_unlock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 467)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 468) dbg_eba("erase LEB %d:%d, PEB %d", vol_id, lnum, pnum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 469)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 470) down_read(&ubi->fm_eba_sem);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 471) vol->eba_tbl->entries[lnum].pnum = UBI_LEB_UNMAPPED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 472) up_read(&ubi->fm_eba_sem);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 473) err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 474)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 475) out_unlock:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 476) leb_write_unlock(ubi, vol_id, lnum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 477) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 478) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 479)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 480) #ifdef CONFIG_MTD_UBI_FASTMAP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 481) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 482) * check_mapping - check and fixup a mapping
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 483) * @ubi: UBI device description object
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 484) * @vol: volume description object
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 485) * @lnum: logical eraseblock number
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 486) * @pnum: physical eraseblock number
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 487) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 488) * Checks whether a given mapping is valid. Fastmap cannot track LEB unmap
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 489) * operations, if such an operation is interrupted the mapping still looks
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 490) * good, but upon first read an ECC is reported to the upper layer.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 491) * Normaly during the full-scan at attach time this is fixed, for Fastmap
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 492) * we have to deal with it while reading.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 493) * If the PEB behind a LEB shows this symthom we change the mapping to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 494) * %UBI_LEB_UNMAPPED and schedule the PEB for erasure.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 495) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 496) * Returns 0 on success, negative error code in case of failure.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 497) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 498) static int check_mapping(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 499) int *pnum)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 500) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 501) int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 502) struct ubi_vid_io_buf *vidb;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 503) struct ubi_vid_hdr *vid_hdr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 504)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 505) if (!ubi->fast_attach)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 506) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 507)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 508) if (!vol->checkmap || test_bit(lnum, vol->checkmap))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 509) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 510)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 511) vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 512) if (!vidb)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 513) return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 514)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 515) err = ubi_io_read_vid_hdr(ubi, *pnum, vidb, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 516) if (err > 0 && err != UBI_IO_BITFLIPS) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 517) int torture = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 518)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 519) switch (err) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 520) case UBI_IO_FF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 521) case UBI_IO_FF_BITFLIPS:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 522) case UBI_IO_BAD_HDR:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 523) case UBI_IO_BAD_HDR_EBADMSG:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 524) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 525) default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 526) ubi_assert(0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 527) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 528)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 529) if (err == UBI_IO_BAD_HDR_EBADMSG || err == UBI_IO_FF_BITFLIPS)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 530) torture = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 531)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 532) down_read(&ubi->fm_eba_sem);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 533) vol->eba_tbl->entries[lnum].pnum = UBI_LEB_UNMAPPED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 534) up_read(&ubi->fm_eba_sem);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 535) ubi_wl_put_peb(ubi, vol->vol_id, lnum, *pnum, torture);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 536)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 537) *pnum = UBI_LEB_UNMAPPED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 538) } else if (err < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 539) ubi_err(ubi, "unable to read VID header back from PEB %i: %i",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 540) *pnum, err);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 541)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 542) goto out_free;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 543) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 544) int found_vol_id, found_lnum;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 545)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 546) ubi_assert(err == 0 || err == UBI_IO_BITFLIPS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 547)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 548) vid_hdr = ubi_get_vid_hdr(vidb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 549) found_vol_id = be32_to_cpu(vid_hdr->vol_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 550) found_lnum = be32_to_cpu(vid_hdr->lnum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 551)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 552) if (found_lnum != lnum || found_vol_id != vol->vol_id) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 553) ubi_err(ubi, "EBA mismatch! PEB %i is LEB %i:%i instead of LEB %i:%i",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 554) *pnum, found_vol_id, found_lnum, vol->vol_id, lnum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 555) ubi_ro_mode(ubi);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 556) err = -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 557) goto out_free;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 558) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 559) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 560)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 561) set_bit(lnum, vol->checkmap);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 562) err = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 563)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 564) out_free:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 565) ubi_free_vid_buf(vidb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 566)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 567) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 568) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 569) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 570) static int check_mapping(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 571) int *pnum)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 572) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 573) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 574) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 575) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 576)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 577) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 578) * ubi_eba_read_leb - read data.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 579) * @ubi: UBI device description object
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 580) * @vol: volume description object
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 581) * @lnum: logical eraseblock number
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 582) * @buf: buffer to store the read data
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 583) * @offset: offset from where to read
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 584) * @len: how many bytes to read
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 585) * @check: data CRC check flag
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 586) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 587) * If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 588) * bytes. The @check flag only makes sense for static volumes and forces
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 589) * eraseblock data CRC checking.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 590) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 591) * In case of success this function returns zero. In case of a static volume,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 592) * if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 593) * returned for any volume type if an ECC error was detected by the MTD device
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 594) * driver. Other negative error cored may be returned in case of other errors.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 595) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 596) int ubi_eba_read_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 597) void *buf, int offset, int len, int check)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 598) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 599) int err, pnum, scrub = 0, vol_id = vol->vol_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 600) struct ubi_vid_io_buf *vidb;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 601) struct ubi_vid_hdr *vid_hdr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 602) uint32_t crc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 603)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 604) err = leb_read_lock(ubi, vol_id, lnum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 605) if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 606) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 607)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 608) pnum = vol->eba_tbl->entries[lnum].pnum;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 609) if (pnum >= 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 610) err = check_mapping(ubi, vol, lnum, &pnum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 611) if (err < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 612) goto out_unlock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 613) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 614)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 615) if (pnum == UBI_LEB_UNMAPPED) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 616) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 617) * The logical eraseblock is not mapped, fill the whole buffer
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 618) * with 0xFF bytes. The exception is static volumes for which
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 619) * it is an error to read unmapped logical eraseblocks.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 620) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 621) dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 622) len, offset, vol_id, lnum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 623) leb_read_unlock(ubi, vol_id, lnum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 624) ubi_assert(vol->vol_type != UBI_STATIC_VOLUME);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 625) memset(buf, 0xFF, len);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 626) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 627) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 628)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 629) dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 630) len, offset, vol_id, lnum, pnum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 631)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 632) if (vol->vol_type == UBI_DYNAMIC_VOLUME)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 633) check = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 634)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 635) retry:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 636) if (check) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 637) vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 638) if (!vidb) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 639) err = -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 640) goto out_unlock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 641) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 642)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 643) vid_hdr = ubi_get_vid_hdr(vidb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 644)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 645) err = ubi_io_read_vid_hdr(ubi, pnum, vidb, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 646) if (err && err != UBI_IO_BITFLIPS) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 647) if (err > 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 648) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 649) * The header is either absent or corrupted.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 650) * The former case means there is a bug -
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 651) * switch to read-only mode just in case.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 652) * The latter case means a real corruption - we
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 653) * may try to recover data. FIXME: but this is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 654) * not implemented.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 655) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 656) if (err == UBI_IO_BAD_HDR_EBADMSG ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 657) err == UBI_IO_BAD_HDR) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 658) ubi_warn(ubi, "corrupted VID header at PEB %d, LEB %d:%d",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 659) pnum, vol_id, lnum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 660) err = -EBADMSG;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 661) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 662) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 663) * Ending up here in the non-Fastmap case
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 664) * is a clear bug as the VID header had to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 665) * be present at scan time to have it referenced.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 666) * With fastmap the story is more complicated.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 667) * Fastmap has the mapping info without the need
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 668) * of a full scan. So the LEB could have been
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 669) * unmapped, Fastmap cannot know this and keeps
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 670) * the LEB referenced.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 671) * This is valid and works as the layer above UBI
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 672) * has to do bookkeeping about used/referenced
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 673) * LEBs in any case.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 674) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 675) if (ubi->fast_attach) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 676) err = -EBADMSG;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 677) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 678) err = -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 679) ubi_ro_mode(ubi);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 680) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 681) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 682) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 683) goto out_free;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 684) } else if (err == UBI_IO_BITFLIPS)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 685) scrub = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 686)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 687) ubi_assert(lnum < be32_to_cpu(vid_hdr->used_ebs));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 688) ubi_assert(len == be32_to_cpu(vid_hdr->data_size));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 689)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 690) crc = be32_to_cpu(vid_hdr->data_crc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 691) ubi_free_vid_buf(vidb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 692) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 693)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 694) err = ubi_io_read_data(ubi, buf, pnum, offset, len);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 695) if (err) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 696) if (err == UBI_IO_BITFLIPS)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 697) scrub = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 698) else if (mtd_is_eccerr(err)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 699) if (vol->vol_type == UBI_DYNAMIC_VOLUME)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 700) goto out_unlock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 701) scrub = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 702) if (!check) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 703) ubi_msg(ubi, "force data checking");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 704) check = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 705) goto retry;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 706) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 707) } else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 708) goto out_unlock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 709) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 710)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 711) if (check) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 712) uint32_t crc1 = crc32(UBI_CRC32_INIT, buf, len);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 713) if (crc1 != crc) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 714) ubi_warn(ubi, "CRC error: calculated %#08x, must be %#08x",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 715) crc1, crc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 716) err = -EBADMSG;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 717) goto out_unlock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 718) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 719) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 720)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 721) if (scrub)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 722) err = ubi_wl_scrub_peb(ubi, pnum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 723)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 724) leb_read_unlock(ubi, vol_id, lnum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 725) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 726)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 727) out_free:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 728) ubi_free_vid_buf(vidb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 729) out_unlock:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 730) leb_read_unlock(ubi, vol_id, lnum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 731) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 732) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 733)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 734) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 735) * ubi_eba_read_leb_sg - read data into a scatter gather list.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 736) * @ubi: UBI device description object
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 737) * @vol: volume description object
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 738) * @lnum: logical eraseblock number
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 739) * @sgl: UBI scatter gather list to store the read data
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 740) * @offset: offset from where to read
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 741) * @len: how many bytes to read
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 742) * @check: data CRC check flag
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 743) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 744) * This function works exactly like ubi_eba_read_leb(). But instead of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 745) * storing the read data into a buffer it writes to an UBI scatter gather
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 746) * list.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 747) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 748) int ubi_eba_read_leb_sg(struct ubi_device *ubi, struct ubi_volume *vol,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 749) struct ubi_sgl *sgl, int lnum, int offset, int len,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 750) int check)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 751) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 752) int to_read;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 753) int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 754) struct scatterlist *sg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 755)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 756) for (;;) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 757) ubi_assert(sgl->list_pos < UBI_MAX_SG_COUNT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 758) sg = &sgl->sg[sgl->list_pos];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 759) if (len < sg->length - sgl->page_pos)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 760) to_read = len;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 761) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 762) to_read = sg->length - sgl->page_pos;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 763)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 764) ret = ubi_eba_read_leb(ubi, vol, lnum,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 765) sg_virt(sg) + sgl->page_pos, offset,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 766) to_read, check);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 767) if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 768) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 769)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 770) offset += to_read;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 771) len -= to_read;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 772) if (!len) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 773) sgl->page_pos += to_read;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 774) if (sgl->page_pos == sg->length) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 775) sgl->list_pos++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 776) sgl->page_pos = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 777) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 778)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 779) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 780) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 781)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 782) sgl->list_pos++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 783) sgl->page_pos = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 784) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 785)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 786) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 787) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 788)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 789) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 790) * try_recover_peb - try to recover from write failure.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 791) * @vol: volume description object
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 792) * @pnum: the physical eraseblock to recover
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 793) * @lnum: logical eraseblock number
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 794) * @buf: data which was not written because of the write failure
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 795) * @offset: offset of the failed write
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 796) * @len: how many bytes should have been written
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 797) * @vidb: VID buffer
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 798) * @retry: whether the caller should retry in case of failure
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 799) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 800) * This function is called in case of a write failure and moves all good data
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 801) * from the potentially bad physical eraseblock to a good physical eraseblock.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 802) * This function also writes the data which was not written due to the failure.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 803) * Returns 0 in case of success, and a negative error code in case of failure.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 804) * In case of failure, the %retry parameter is set to false if this is a fatal
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 805) * error (retrying won't help), and true otherwise.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 806) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 807) static int try_recover_peb(struct ubi_volume *vol, int pnum, int lnum,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 808) const void *buf, int offset, int len,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 809) struct ubi_vid_io_buf *vidb, bool *retry)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 810) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 811) struct ubi_device *ubi = vol->ubi;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 812) struct ubi_vid_hdr *vid_hdr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 813) int new_pnum, err, vol_id = vol->vol_id, data_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 814) uint32_t crc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 815)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 816) *retry = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 817)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 818) new_pnum = ubi_wl_get_peb(ubi);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 819) if (new_pnum < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 820) err = new_pnum;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 821) goto out_put;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 822) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 823)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 824) ubi_msg(ubi, "recover PEB %d, move data to PEB %d",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 825) pnum, new_pnum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 826)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 827) err = ubi_io_read_vid_hdr(ubi, pnum, vidb, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 828) if (err && err != UBI_IO_BITFLIPS) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 829) if (err > 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 830) err = -EIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 831) goto out_put;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 832) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 833)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 834) vid_hdr = ubi_get_vid_hdr(vidb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 835) ubi_assert(vid_hdr->vol_type == UBI_VID_DYNAMIC);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 836)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 837) mutex_lock(&ubi->buf_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 838) memset(ubi->peb_buf + offset, 0xFF, len);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 839)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 840) /* Read everything before the area where the write failure happened */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 841) if (offset > 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 842) err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, offset);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 843) if (err && err != UBI_IO_BITFLIPS)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 844) goto out_unlock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 845) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 846)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 847) *retry = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 848)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 849) memcpy(ubi->peb_buf + offset, buf, len);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 850)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 851) data_size = offset + len;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 852) crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 853) vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 854) vid_hdr->copy_flag = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 855) vid_hdr->data_size = cpu_to_be32(data_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 856) vid_hdr->data_crc = cpu_to_be32(crc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 857) err = ubi_io_write_vid_hdr(ubi, new_pnum, vidb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 858) if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 859) goto out_unlock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 860)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 861) err = ubi_io_write_data(ubi, ubi->peb_buf, new_pnum, 0, data_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 862)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 863) out_unlock:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 864) mutex_unlock(&ubi->buf_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 865)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 866) if (!err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 867) vol->eba_tbl->entries[lnum].pnum = new_pnum;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 868)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 869) out_put:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 870) up_read(&ubi->fm_eba_sem);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 871)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 872) if (!err) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 873) ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 874) ubi_msg(ubi, "data was successfully recovered");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 875) } else if (new_pnum >= 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 876) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 877) * Bad luck? This physical eraseblock is bad too? Crud. Let's
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 878) * try to get another one.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 879) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 880) ubi_wl_put_peb(ubi, vol_id, lnum, new_pnum, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 881) ubi_warn(ubi, "failed to write to PEB %d", new_pnum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 882) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 883)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 884) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 885) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 886)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 887) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 888) * recover_peb - recover from write failure.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 889) * @ubi: UBI device description object
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 890) * @pnum: the physical eraseblock to recover
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 891) * @vol_id: volume ID
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 892) * @lnum: logical eraseblock number
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 893) * @buf: data which was not written because of the write failure
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 894) * @offset: offset of the failed write
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 895) * @len: how many bytes should have been written
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 896) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 897) * This function is called in case of a write failure and moves all good data
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 898) * from the potentially bad physical eraseblock to a good physical eraseblock.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 899) * This function also writes the data which was not written due to the failure.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 900) * Returns 0 in case of success, and a negative error code in case of failure.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 901) * This function tries %UBI_IO_RETRIES before giving up.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 902) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 903) static int recover_peb(struct ubi_device *ubi, int pnum, int vol_id, int lnum,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 904) const void *buf, int offset, int len)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 905) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 906) int err, idx = vol_id2idx(ubi, vol_id), tries;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 907) struct ubi_volume *vol = ubi->volumes[idx];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 908) struct ubi_vid_io_buf *vidb;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 909)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 910) vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 911) if (!vidb)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 912) return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 913)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 914) for (tries = 0; tries <= UBI_IO_RETRIES; tries++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 915) bool retry;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 916)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 917) err = try_recover_peb(vol, pnum, lnum, buf, offset, len, vidb,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 918) &retry);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 919) if (!err || !retry)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 920) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 921)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 922) ubi_msg(ubi, "try again");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 923) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 924)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 925) ubi_free_vid_buf(vidb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 926)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 927) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 928) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 929)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 930) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 931) * try_write_vid_and_data - try to write VID header and data to a new PEB.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 932) * @vol: volume description object
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 933) * @lnum: logical eraseblock number
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 934) * @vidb: the VID buffer to write
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 935) * @buf: buffer containing the data
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 936) * @offset: where to start writing data
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 937) * @len: how many bytes should be written
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 938) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 939) * This function tries to write VID header and data belonging to logical
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 940) * eraseblock @lnum of volume @vol to a new physical eraseblock. Returns zero
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 941) * in case of success and a negative error code in case of failure.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 942) * In case of error, it is possible that something was still written to the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 943) * flash media, but may be some garbage.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 944) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 945) static int try_write_vid_and_data(struct ubi_volume *vol, int lnum,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 946) struct ubi_vid_io_buf *vidb, const void *buf,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 947) int offset, int len)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 948) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 949) struct ubi_device *ubi = vol->ubi;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 950) int pnum, opnum, err, vol_id = vol->vol_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 951)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 952) pnum = ubi_wl_get_peb(ubi);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 953) if (pnum < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 954) err = pnum;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 955) goto out_put;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 956) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 957)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 958) opnum = vol->eba_tbl->entries[lnum].pnum;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 959)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 960) dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 961) len, offset, vol_id, lnum, pnum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 962)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 963) err = ubi_io_write_vid_hdr(ubi, pnum, vidb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 964) if (err) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 965) ubi_warn(ubi, "failed to write VID header to LEB %d:%d, PEB %d",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 966) vol_id, lnum, pnum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 967) goto out_put;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 968) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 969)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 970) if (len) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 971) err = ubi_io_write_data(ubi, buf, pnum, offset, len);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 972) if (err) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 973) ubi_warn(ubi,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 974) "failed to write %d bytes at offset %d of LEB %d:%d, PEB %d",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 975) len, offset, vol_id, lnum, pnum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 976) goto out_put;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 977) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 978) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 979)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 980) vol->eba_tbl->entries[lnum].pnum = pnum;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 981)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 982) out_put:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 983) up_read(&ubi->fm_eba_sem);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 984)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 985) if (err && pnum >= 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 986) err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 987) else if (!err && opnum >= 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 988) err = ubi_wl_put_peb(ubi, vol_id, lnum, opnum, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 989)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 990) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 991) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 992)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 993) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 994) * ubi_eba_write_leb - write data to dynamic volume.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 995) * @ubi: UBI device description object
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 996) * @vol: volume description object
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 997) * @lnum: logical eraseblock number
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 998) * @buf: the data to write
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 999) * @offset: offset within the logical eraseblock where to write
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1000) * @len: how many bytes to write
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1001) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1002) * This function writes data to logical eraseblock @lnum of a dynamic volume
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1003) * @vol. Returns zero in case of success and a negative error code in case
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1004) * of failure. In case of error, it is possible that something was still
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1005) * written to the flash media, but may be some garbage.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1006) * This function retries %UBI_IO_RETRIES times before giving up.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1007) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1008) int ubi_eba_write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1009) const void *buf, int offset, int len)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1010) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1011) int err, pnum, tries, vol_id = vol->vol_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1012) struct ubi_vid_io_buf *vidb;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1013) struct ubi_vid_hdr *vid_hdr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1014)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1015) if (ubi->ro_mode)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1016) return -EROFS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1017)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1018) err = leb_write_lock(ubi, vol_id, lnum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1019) if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1020) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1021)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1022) pnum = vol->eba_tbl->entries[lnum].pnum;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1023) if (pnum >= 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1024) err = check_mapping(ubi, vol, lnum, &pnum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1025) if (err < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1026) goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1027) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1028)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1029) if (pnum >= 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1030) dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1031) len, offset, vol_id, lnum, pnum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1032)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1033) err = ubi_io_write_data(ubi, buf, pnum, offset, len);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1034) if (err) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1035) ubi_warn(ubi, "failed to write data to PEB %d", pnum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1036) if (err == -EIO && ubi->bad_allowed)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1037) err = recover_peb(ubi, pnum, vol_id, lnum, buf,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1038) offset, len);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1039) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1040)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1041) goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1042) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1043)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1044) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1045) * The logical eraseblock is not mapped. We have to get a free physical
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1046) * eraseblock and write the volume identifier header there first.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1047) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1048) vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1049) if (!vidb) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1050) leb_write_unlock(ubi, vol_id, lnum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1051) return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1052) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1053)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1054) vid_hdr = ubi_get_vid_hdr(vidb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1055)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1056) vid_hdr->vol_type = UBI_VID_DYNAMIC;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1057) vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1058) vid_hdr->vol_id = cpu_to_be32(vol_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1059) vid_hdr->lnum = cpu_to_be32(lnum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1060) vid_hdr->compat = ubi_get_compat(ubi, vol_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1061) vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1062)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1063) for (tries = 0; tries <= UBI_IO_RETRIES; tries++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1064) err = try_write_vid_and_data(vol, lnum, vidb, buf, offset, len);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1065) if (err != -EIO || !ubi->bad_allowed)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1066) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1067)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1068) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1069) * Fortunately, this is the first write operation to this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1070) * physical eraseblock, so just put it and request a new one.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1071) * We assume that if this physical eraseblock went bad, the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1072) * erase code will handle that.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1073) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1074) vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1075) ubi_msg(ubi, "try another PEB");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1076) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1077)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1078) ubi_free_vid_buf(vidb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1079)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1080) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1081) if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1082) ubi_ro_mode(ubi);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1083)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1084) leb_write_unlock(ubi, vol_id, lnum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1085)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1086) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1087) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1088)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1089) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1090) * ubi_eba_write_leb_st - write data to static volume.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1091) * @ubi: UBI device description object
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1092) * @vol: volume description object
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1093) * @lnum: logical eraseblock number
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1094) * @buf: data to write
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1095) * @len: how many bytes to write
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1096) * @used_ebs: how many logical eraseblocks will this volume contain
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1097) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1098) * This function writes data to logical eraseblock @lnum of static volume
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1099) * @vol. The @used_ebs argument should contain total number of logical
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1100) * eraseblock in this static volume.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1101) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1102) * When writing to the last logical eraseblock, the @len argument doesn't have
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1103) * to be aligned to the minimal I/O unit size. Instead, it has to be equivalent
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1104) * to the real data size, although the @buf buffer has to contain the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1105) * alignment. In all other cases, @len has to be aligned.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1106) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1107) * It is prohibited to write more than once to logical eraseblocks of static
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1108) * volumes. This function returns zero in case of success and a negative error
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1109) * code in case of failure.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1110) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1111) int ubi_eba_write_leb_st(struct ubi_device *ubi, struct ubi_volume *vol,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1112) int lnum, const void *buf, int len, int used_ebs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1113) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1114) int err, tries, data_size = len, vol_id = vol->vol_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1115) struct ubi_vid_io_buf *vidb;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1116) struct ubi_vid_hdr *vid_hdr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1117) uint32_t crc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1118)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1119) if (ubi->ro_mode)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1120) return -EROFS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1121)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1122) if (lnum == used_ebs - 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1123) /* If this is the last LEB @len may be unaligned */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1124) len = ALIGN(data_size, ubi->min_io_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1125) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1126) ubi_assert(!(len & (ubi->min_io_size - 1)));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1127)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1128) vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1129) if (!vidb)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1130) return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1131)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1132) vid_hdr = ubi_get_vid_hdr(vidb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1133)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1134) err = leb_write_lock(ubi, vol_id, lnum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1135) if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1136) goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1137)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1138) vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1139) vid_hdr->vol_id = cpu_to_be32(vol_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1140) vid_hdr->lnum = cpu_to_be32(lnum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1141) vid_hdr->compat = ubi_get_compat(ubi, vol_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1142) vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1143)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1144) crc = crc32(UBI_CRC32_INIT, buf, data_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1145) vid_hdr->vol_type = UBI_VID_STATIC;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1146) vid_hdr->data_size = cpu_to_be32(data_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1147) vid_hdr->used_ebs = cpu_to_be32(used_ebs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1148) vid_hdr->data_crc = cpu_to_be32(crc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1149)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1150) ubi_assert(vol->eba_tbl->entries[lnum].pnum < 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1151)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1152) for (tries = 0; tries <= UBI_IO_RETRIES; tries++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1153) err = try_write_vid_and_data(vol, lnum, vidb, buf, 0, len);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1154) if (err != -EIO || !ubi->bad_allowed)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1155) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1156)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1157) vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1158) ubi_msg(ubi, "try another PEB");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1159) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1160)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1161) if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1162) ubi_ro_mode(ubi);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1163)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1164) leb_write_unlock(ubi, vol_id, lnum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1165)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1166) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1167) ubi_free_vid_buf(vidb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1168)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1169) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1170) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1171)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1172) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1173) * ubi_eba_atomic_leb_change - change logical eraseblock atomically.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1174) * @ubi: UBI device description object
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1175) * @vol: volume description object
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1176) * @lnum: logical eraseblock number
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1177) * @buf: data to write
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1178) * @len: how many bytes to write
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1179) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1180) * This function changes the contents of a logical eraseblock atomically. @buf
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1181) * has to contain new logical eraseblock data, and @len - the length of the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1182) * data, which has to be aligned. This function guarantees that in case of an
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1183) * unclean reboot the old contents is preserved. Returns zero in case of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1184) * success and a negative error code in case of failure.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1185) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1186) * UBI reserves one LEB for the "atomic LEB change" operation, so only one
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1187) * LEB change may be done at a time. This is ensured by @ubi->alc_mutex.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1188) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1189) int ubi_eba_atomic_leb_change(struct ubi_device *ubi, struct ubi_volume *vol,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1190) int lnum, const void *buf, int len)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1191) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1192) int err, tries, vol_id = vol->vol_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1193) struct ubi_vid_io_buf *vidb;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1194) struct ubi_vid_hdr *vid_hdr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1195) uint32_t crc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1196)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1197) if (ubi->ro_mode)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1198) return -EROFS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1199)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1200) if (len == 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1201) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1202) * Special case when data length is zero. In this case the LEB
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1203) * has to be unmapped and mapped somewhere else.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1204) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1205) err = ubi_eba_unmap_leb(ubi, vol, lnum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1206) if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1207) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1208) return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1209) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1210)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1211) vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1212) if (!vidb)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1213) return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1214)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1215) vid_hdr = ubi_get_vid_hdr(vidb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1216)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1217) mutex_lock(&ubi->alc_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1218) err = leb_write_lock(ubi, vol_id, lnum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1219) if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1220) goto out_mutex;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1221)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1222) vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1223) vid_hdr->vol_id = cpu_to_be32(vol_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1224) vid_hdr->lnum = cpu_to_be32(lnum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1225) vid_hdr->compat = ubi_get_compat(ubi, vol_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1226) vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1227)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1228) crc = crc32(UBI_CRC32_INIT, buf, len);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1229) vid_hdr->vol_type = UBI_VID_DYNAMIC;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1230) vid_hdr->data_size = cpu_to_be32(len);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1231) vid_hdr->copy_flag = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1232) vid_hdr->data_crc = cpu_to_be32(crc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1233)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1234) dbg_eba("change LEB %d:%d", vol_id, lnum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1235)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1236) for (tries = 0; tries <= UBI_IO_RETRIES; tries++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1237) err = try_write_vid_and_data(vol, lnum, vidb, buf, 0, len);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1238) if (err != -EIO || !ubi->bad_allowed)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1239) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1240)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1241) vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1242) ubi_msg(ubi, "try another PEB");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1243) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1244)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1245) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1246) * This flash device does not admit of bad eraseblocks or
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1247) * something nasty and unexpected happened. Switch to read-only
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1248) * mode just in case.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1249) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1250) if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1251) ubi_ro_mode(ubi);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1252)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1253) leb_write_unlock(ubi, vol_id, lnum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1254)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1255) out_mutex:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1256) mutex_unlock(&ubi->alc_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1257) ubi_free_vid_buf(vidb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1258) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1259) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1260)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1261) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1262) * is_error_sane - check whether a read error is sane.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1263) * @err: code of the error happened during reading
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1264) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1265) * This is a helper function for 'ubi_eba_copy_leb()' which is called when we
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1266) * cannot read data from the target PEB (an error @err happened). If the error
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1267) * code is sane, then we treat this error as non-fatal. Otherwise the error is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1268) * fatal and UBI will be switched to R/O mode later.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1269) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1270) * The idea is that we try not to switch to R/O mode if the read error is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1271) * something which suggests there was a real read problem. E.g., %-EIO. Or a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1272) * memory allocation failed (-%ENOMEM). Otherwise, it is safer to switch to R/O
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1273) * mode, simply because we do not know what happened at the MTD level, and we
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1274) * cannot handle this. E.g., the underlying driver may have become crazy, and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1275) * it is safer to switch to R/O mode to preserve the data.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1276) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1277) * And bear in mind, this is about reading from the target PEB, i.e. the PEB
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1278) * which we have just written.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1279) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1280) static int is_error_sane(int err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1281) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1282) if (err == -EIO || err == -ENOMEM || err == UBI_IO_BAD_HDR ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1283) err == UBI_IO_BAD_HDR_EBADMSG || err == -ETIMEDOUT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1284) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1285) return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1286) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1287)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1288) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1289) * ubi_eba_copy_leb - copy logical eraseblock.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1290) * @ubi: UBI device description object
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1291) * @from: physical eraseblock number from where to copy
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1292) * @to: physical eraseblock number where to copy
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1293) * @vid_hdr: VID header of the @from physical eraseblock
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1294) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1295) * This function copies logical eraseblock from physical eraseblock @from to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1296) * physical eraseblock @to. The @vid_hdr buffer may be changed by this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1297) * function. Returns:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1298) * o %0 in case of success;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1299) * o %MOVE_CANCEL_RACE, %MOVE_TARGET_WR_ERR, %MOVE_TARGET_BITFLIPS, etc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1300) * o a negative error code in case of failure.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1301) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1302) int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1303) struct ubi_vid_io_buf *vidb)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1304) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1305) int err, vol_id, lnum, data_size, aldata_size, idx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1306) struct ubi_vid_hdr *vid_hdr = ubi_get_vid_hdr(vidb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1307) struct ubi_volume *vol;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1308) uint32_t crc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1309)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1310) ubi_assert(rwsem_is_locked(&ubi->fm_eba_sem));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1311)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1312) vol_id = be32_to_cpu(vid_hdr->vol_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1313) lnum = be32_to_cpu(vid_hdr->lnum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1314)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1315) dbg_wl("copy LEB %d:%d, PEB %d to PEB %d", vol_id, lnum, from, to);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1316)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1317) if (vid_hdr->vol_type == UBI_VID_STATIC) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1318) data_size = be32_to_cpu(vid_hdr->data_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1319) aldata_size = ALIGN(data_size, ubi->min_io_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1320) } else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1321) data_size = aldata_size =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1322) ubi->leb_size - be32_to_cpu(vid_hdr->data_pad);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1323)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1324) idx = vol_id2idx(ubi, vol_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1325) spin_lock(&ubi->volumes_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1326) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1327) * Note, we may race with volume deletion, which means that the volume
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1328) * this logical eraseblock belongs to might be being deleted. Since the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1329) * volume deletion un-maps all the volume's logical eraseblocks, it will
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1330) * be locked in 'ubi_wl_put_peb()' and wait for the WL worker to finish.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1331) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1332) vol = ubi->volumes[idx];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1333) spin_unlock(&ubi->volumes_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1334) if (!vol) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1335) /* No need to do further work, cancel */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1336) dbg_wl("volume %d is being removed, cancel", vol_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1337) return MOVE_CANCEL_RACE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1338) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1339)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1340) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1341) * We do not want anybody to write to this logical eraseblock while we
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1342) * are moving it, so lock it.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1343) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1344) * Note, we are using non-waiting locking here, because we cannot sleep
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1345) * on the LEB, since it may cause deadlocks. Indeed, imagine a task is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1346) * unmapping the LEB which is mapped to the PEB we are going to move
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1347) * (@from). This task locks the LEB and goes sleep in the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1348) * 'ubi_wl_put_peb()' function on the @ubi->move_mutex. In turn, we are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1349) * holding @ubi->move_mutex and go sleep on the LEB lock. So, if the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1350) * LEB is already locked, we just do not move it and return
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1351) * %MOVE_RETRY. Note, we do not return %MOVE_CANCEL_RACE here because
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1352) * we do not know the reasons of the contention - it may be just a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1353) * normal I/O on this LEB, so we want to re-try.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1354) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1355) err = leb_write_trylock(ubi, vol_id, lnum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1356) if (err) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1357) dbg_wl("contention on LEB %d:%d, cancel", vol_id, lnum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1358) return MOVE_RETRY;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1359) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1360)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1361) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1362) * The LEB might have been put meanwhile, and the task which put it is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1363) * probably waiting on @ubi->move_mutex. No need to continue the work,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1364) * cancel it.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1365) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1366) if (vol->eba_tbl->entries[lnum].pnum != from) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1367) dbg_wl("LEB %d:%d is no longer mapped to PEB %d, mapped to PEB %d, cancel",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1368) vol_id, lnum, from, vol->eba_tbl->entries[lnum].pnum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1369) err = MOVE_CANCEL_RACE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1370) goto out_unlock_leb;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1371) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1372)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1373) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1374) * OK, now the LEB is locked and we can safely start moving it. Since
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1375) * this function utilizes the @ubi->peb_buf buffer which is shared
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1376) * with some other functions - we lock the buffer by taking the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1377) * @ubi->buf_mutex.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1378) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1379) mutex_lock(&ubi->buf_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1380) dbg_wl("read %d bytes of data", aldata_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1381) err = ubi_io_read_data(ubi, ubi->peb_buf, from, 0, aldata_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1382) if (err && err != UBI_IO_BITFLIPS) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1383) ubi_warn(ubi, "error %d while reading data from PEB %d",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1384) err, from);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1385) err = MOVE_SOURCE_RD_ERR;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1386) goto out_unlock_buf;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1387) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1388)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1389) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1390) * Now we have got to calculate how much data we have to copy. In
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1391) * case of a static volume it is fairly easy - the VID header contains
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1392) * the data size. In case of a dynamic volume it is more difficult - we
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1393) * have to read the contents, cut 0xFF bytes from the end and copy only
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1394) * the first part. We must do this to avoid writing 0xFF bytes as it
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1395) * may have some side-effects. And not only this. It is important not
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1396) * to include those 0xFFs to CRC because later the they may be filled
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1397) * by data.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1398) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1399) if (vid_hdr->vol_type == UBI_VID_DYNAMIC)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1400) aldata_size = data_size =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1401) ubi_calc_data_len(ubi, ubi->peb_buf, data_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1402)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1403) cond_resched();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1404) crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1405) cond_resched();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1406)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1407) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1408) * It may turn out to be that the whole @from physical eraseblock
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1409) * contains only 0xFF bytes. Then we have to only write the VID header
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1410) * and do not write any data. This also means we should not set
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1411) * @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1412) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1413) if (data_size > 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1414) vid_hdr->copy_flag = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1415) vid_hdr->data_size = cpu_to_be32(data_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1416) vid_hdr->data_crc = cpu_to_be32(crc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1417) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1418) vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1419)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1420) err = ubi_io_write_vid_hdr(ubi, to, vidb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1421) if (err) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1422) if (err == -EIO)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1423) err = MOVE_TARGET_WR_ERR;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1424) goto out_unlock_buf;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1425) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1426)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1427) cond_resched();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1428)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1429) /* Read the VID header back and check if it was written correctly */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1430) err = ubi_io_read_vid_hdr(ubi, to, vidb, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1431) if (err) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1432) if (err != UBI_IO_BITFLIPS) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1433) ubi_warn(ubi, "error %d while reading VID header back from PEB %d",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1434) err, to);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1435) if (is_error_sane(err))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1436) err = MOVE_TARGET_RD_ERR;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1437) } else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1438) err = MOVE_TARGET_BITFLIPS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1439) goto out_unlock_buf;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1440) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1441)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1442) if (data_size > 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1443) err = ubi_io_write_data(ubi, ubi->peb_buf, to, 0, aldata_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1444) if (err) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1445) if (err == -EIO)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1446) err = MOVE_TARGET_WR_ERR;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1447) goto out_unlock_buf;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1448) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1449)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1450) cond_resched();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1451) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1452)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1453) ubi_assert(vol->eba_tbl->entries[lnum].pnum == from);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1454) vol->eba_tbl->entries[lnum].pnum = to;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1455)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1456) out_unlock_buf:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1457) mutex_unlock(&ubi->buf_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1458) out_unlock_leb:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1459) leb_write_unlock(ubi, vol_id, lnum);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1460) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1461) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1462)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1463) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1464) * print_rsvd_warning - warn about not having enough reserved PEBs.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1465) * @ubi: UBI device description object
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1466) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1467) * This is a helper function for 'ubi_eba_init()' which is called when UBI
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1468) * cannot reserve enough PEBs for bad block handling. This function makes a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1469) * decision whether we have to print a warning or not. The algorithm is as
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1470) * follows:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1471) * o if this is a new UBI image, then just print the warning
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1472) * o if this is an UBI image which has already been used for some time, print
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1473) * a warning only if we can reserve less than 10% of the expected amount of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1474) * the reserved PEB.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1475) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1476) * The idea is that when UBI is used, PEBs become bad, and the reserved pool
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1477) * of PEBs becomes smaller, which is normal and we do not want to scare users
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1478) * with a warning every time they attach the MTD device. This was an issue
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1479) * reported by real users.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1480) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1481) static void print_rsvd_warning(struct ubi_device *ubi,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1482) struct ubi_attach_info *ai)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1483) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1484) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1485) * The 1 << 18 (256KiB) number is picked randomly, just a reasonably
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1486) * large number to distinguish between newly flashed and used images.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1487) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1488) if (ai->max_sqnum > (1 << 18)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1489) int min = ubi->beb_rsvd_level / 10;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1490)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1491) if (!min)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1492) min = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1493) if (ubi->beb_rsvd_pebs > min)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1494) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1495) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1496)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1497) ubi_warn(ubi, "cannot reserve enough PEBs for bad PEB handling, reserved %d, need %d",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1498) ubi->beb_rsvd_pebs, ubi->beb_rsvd_level);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1499) if (ubi->corr_peb_count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1500) ubi_warn(ubi, "%d PEBs are corrupted and not used",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1501) ubi->corr_peb_count);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1502) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1503)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1504) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1505) * self_check_eba - run a self check on the EBA table constructed by fastmap.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1506) * @ubi: UBI device description object
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1507) * @ai_fastmap: UBI attach info object created by fastmap
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1508) * @ai_scan: UBI attach info object created by scanning
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1509) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1510) * Returns < 0 in case of an internal error, 0 otherwise.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1511) * If a bad EBA table entry was found it will be printed out and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1512) * ubi_assert() triggers.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1513) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1514) int self_check_eba(struct ubi_device *ubi, struct ubi_attach_info *ai_fastmap,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1515) struct ubi_attach_info *ai_scan)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1516) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1517) int i, j, num_volumes, ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1518) int **scan_eba, **fm_eba;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1519) struct ubi_ainf_volume *av;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1520) struct ubi_volume *vol;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1521) struct ubi_ainf_peb *aeb;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1522) struct rb_node *rb;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1523)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1524) num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1525)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1526) scan_eba = kmalloc_array(num_volumes, sizeof(*scan_eba), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1527) if (!scan_eba)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1528) return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1529)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1530) fm_eba = kmalloc_array(num_volumes, sizeof(*fm_eba), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1531) if (!fm_eba) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1532) kfree(scan_eba);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1533) return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1534) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1535)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1536) for (i = 0; i < num_volumes; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1537) vol = ubi->volumes[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1538) if (!vol)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1539) continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1540)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1541) scan_eba[i] = kmalloc_array(vol->reserved_pebs,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1542) sizeof(**scan_eba),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1543) GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1544) if (!scan_eba[i]) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1545) ret = -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1546) goto out_free;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1547) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1548)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1549) fm_eba[i] = kmalloc_array(vol->reserved_pebs,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1550) sizeof(**fm_eba),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1551) GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1552) if (!fm_eba[i]) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1553) ret = -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1554) goto out_free;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1555) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1556)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1557) for (j = 0; j < vol->reserved_pebs; j++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1558) scan_eba[i][j] = fm_eba[i][j] = UBI_LEB_UNMAPPED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1559)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1560) av = ubi_find_av(ai_scan, idx2vol_id(ubi, i));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1561) if (!av)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1562) continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1563)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1564) ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1565) scan_eba[i][aeb->lnum] = aeb->pnum;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1566)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1567) av = ubi_find_av(ai_fastmap, idx2vol_id(ubi, i));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1568) if (!av)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1569) continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1570)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1571) ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1572) fm_eba[i][aeb->lnum] = aeb->pnum;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1573)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1574) for (j = 0; j < vol->reserved_pebs; j++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1575) if (scan_eba[i][j] != fm_eba[i][j]) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1576) if (scan_eba[i][j] == UBI_LEB_UNMAPPED ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1577) fm_eba[i][j] == UBI_LEB_UNMAPPED)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1578) continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1579)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1580) ubi_err(ubi, "LEB:%i:%i is PEB:%i instead of %i!",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1581) vol->vol_id, j, fm_eba[i][j],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1582) scan_eba[i][j]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1583) ubi_assert(0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1584) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1585) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1586) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1587)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1588) out_free:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1589) for (i = 0; i < num_volumes; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1590) if (!ubi->volumes[i])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1591) continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1592)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1593) kfree(scan_eba[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1594) kfree(fm_eba[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1595) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1596)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1597) kfree(scan_eba);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1598) kfree(fm_eba);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1599) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1600) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1601)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1602) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1603) * ubi_eba_init - initialize the EBA sub-system using attaching information.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1604) * @ubi: UBI device description object
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1605) * @ai: attaching information
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1606) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1607) * This function returns zero in case of success and a negative error code in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1608) * case of failure.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1609) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1610) int ubi_eba_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1611) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1612) int i, err, num_volumes;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1613) struct ubi_ainf_volume *av;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1614) struct ubi_volume *vol;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1615) struct ubi_ainf_peb *aeb;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1616) struct rb_node *rb;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1617)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1618) dbg_eba("initialize EBA sub-system");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1619)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1620) spin_lock_init(&ubi->ltree_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1621) mutex_init(&ubi->alc_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1622) ubi->ltree = RB_ROOT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1623)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1624) ubi->global_sqnum = ai->max_sqnum + 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1625) num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1626)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1627) for (i = 0; i < num_volumes; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1628) struct ubi_eba_table *tbl;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1629)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1630) vol = ubi->volumes[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1631) if (!vol)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1632) continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1633)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1634) cond_resched();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1635)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1636) tbl = ubi_eba_create_table(vol, vol->reserved_pebs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1637) if (IS_ERR(tbl)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1638) err = PTR_ERR(tbl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1639) goto out_free;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1640) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1641)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1642) ubi_eba_replace_table(vol, tbl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1643)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1644) av = ubi_find_av(ai, idx2vol_id(ubi, i));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1645) if (!av)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1646) continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1647)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1648) ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1649) if (aeb->lnum >= vol->reserved_pebs) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1650) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1651) * This may happen in case of an unclean reboot
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1652) * during re-size.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1653) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1654) ubi_move_aeb_to_list(av, aeb, &ai->erase);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1655) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1656) struct ubi_eba_entry *entry;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1657)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1658) entry = &vol->eba_tbl->entries[aeb->lnum];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1659) entry->pnum = aeb->pnum;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1660) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1661) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1662) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1663)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1664) if (ubi->avail_pebs < EBA_RESERVED_PEBS) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1665) ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1666) ubi->avail_pebs, EBA_RESERVED_PEBS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1667) if (ubi->corr_peb_count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1668) ubi_err(ubi, "%d PEBs are corrupted and not used",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1669) ubi->corr_peb_count);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1670) err = -ENOSPC;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1671) goto out_free;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1672) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1673) ubi->avail_pebs -= EBA_RESERVED_PEBS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1674) ubi->rsvd_pebs += EBA_RESERVED_PEBS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1675)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1676) if (ubi->bad_allowed) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1677) ubi_calculate_reserved(ubi);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1678)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1679) if (ubi->avail_pebs < ubi->beb_rsvd_level) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1680) /* No enough free physical eraseblocks */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1681) ubi->beb_rsvd_pebs = ubi->avail_pebs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1682) print_rsvd_warning(ubi, ai);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1683) } else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1684) ubi->beb_rsvd_pebs = ubi->beb_rsvd_level;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1685)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1686) ubi->avail_pebs -= ubi->beb_rsvd_pebs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1687) ubi->rsvd_pebs += ubi->beb_rsvd_pebs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1688) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1689)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1690) dbg_eba("EBA sub-system is initialized");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1691) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1692)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1693) out_free:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1694) for (i = 0; i < num_volumes; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1695) if (!ubi->volumes[i])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1696) continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1697) ubi_eba_replace_table(ubi->volumes[i], NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1698) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1699) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1700) }