Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags   |
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2005, Intec Automation Inc.
* Copyright (C) 2014, Freescale Semiconductor, Inc.
*/
#include <linux/slab.h>
#include <linux/sort.h>
#include <linux/mtd/spi-nor.h>
#include "core.h"
#define SFDP_PARAM_HEADER_ID(p) (((p)->id_msb << 8) | (p)->id_lsb)
#define SFDP_PARAM_HEADER_PTP(p) \
<------>(((p)->parameter_table_pointer[2] << 16) | \
<------> ((p)->parameter_table_pointer[1] << 8) | \
<------> ((p)->parameter_table_pointer[0] << 0))
#define SFDP_BFPT_ID 0xff00 /* Basic Flash Parameter Table */
#define SFDP_SECTOR_MAP_ID 0xff81 /* Sector Map Table */
#define SFDP_4BAIT_ID 0xff84 /* 4-byte Address Instruction Table */
#define SFDP_SIGNATURE 0x50444653U
struct sfdp_header {
<------>u32 signature; /* Ox50444653U <=> "SFDP" */
<------>u8 minor;
<------>u8 major;
<------>u8 nph; /* 0-base number of parameter headers */
<------>u8 unused;
<------>/* Basic Flash Parameter Table. */
<------>struct sfdp_parameter_header bfpt_header;
};
/* Fast Read settings. */
struct sfdp_bfpt_read {
<------>/* The Fast Read x-y-z hardware capability in params->hwcaps.mask. */
<------>u32 hwcaps;
<------>/*
<------> * The <supported_bit> bit in <supported_dword> BFPT DWORD tells us
<------> * whether the Fast Read x-y-z command is supported.
<------> */
<------>u32 supported_dword;
<------>u32 supported_bit;
<------>/*
<------> * The half-word at offset <setting_shift> in <setting_dword> BFPT DWORD
<------> * encodes the op code, the number of mode clocks and the number of wait
<------> * states to be used by Fast Read x-y-z command.
<------> */
<------>u32 settings_dword;
<------>u32 settings_shift;
<------>/* The SPI protocol for this Fast Read x-y-z command. */
<------>enum spi_nor_protocol proto;
};
struct sfdp_bfpt_erase {
<------>/*
<------> * The half-word at offset <shift> in DWORD <dwoard> encodes the
<------> * op code and erase sector size to be used by Sector Erase commands.
<------> */
<------>u32 dword;
<------>u32 shift;
};
#define SMPT_CMD_ADDRESS_LEN_MASK GENMASK(23, 22)
#define SMPT_CMD_ADDRESS_LEN_0 (0x0UL << 22)
#define SMPT_CMD_ADDRESS_LEN_3 (0x1UL << 22)
#define SMPT_CMD_ADDRESS_LEN_4 (0x2UL << 22)
#define SMPT_CMD_ADDRESS_LEN_USE_CURRENT (0x3UL << 22)
#define SMPT_CMD_READ_DUMMY_MASK GENMASK(19, 16)
#define SMPT_CMD_READ_DUMMY_SHIFT 16
#define SMPT_CMD_READ_DUMMY(_cmd) \
<------>(((_cmd) & SMPT_CMD_READ_DUMMY_MASK) >> SMPT_CMD_READ_DUMMY_SHIFT)
#define SMPT_CMD_READ_DUMMY_IS_VARIABLE 0xfUL
#define SMPT_CMD_READ_DATA_MASK GENMASK(31, 24)
#define SMPT_CMD_READ_DATA_SHIFT 24
#define SMPT_CMD_READ_DATA(_cmd) \
<------>(((_cmd) & SMPT_CMD_READ_DATA_MASK) >> SMPT_CMD_READ_DATA_SHIFT)
#define SMPT_CMD_OPCODE_MASK GENMASK(15, 8)
#define SMPT_CMD_OPCODE_SHIFT 8
#define SMPT_CMD_OPCODE(_cmd) \
<------>(((_cmd) & SMPT_CMD_OPCODE_MASK) >> SMPT_CMD_OPCODE_SHIFT)
#define SMPT_MAP_REGION_COUNT_MASK GENMASK(23, 16)
#define SMPT_MAP_REGION_COUNT_SHIFT 16
#define SMPT_MAP_REGION_COUNT(_header) \
<------>((((_header) & SMPT_MAP_REGION_COUNT_MASK) >> \
<------> SMPT_MAP_REGION_COUNT_SHIFT) + 1)
#define SMPT_MAP_ID_MASK GENMASK(15, 8)
#define SMPT_MAP_ID_SHIFT 8
#define SMPT_MAP_ID(_header) \
<------>(((_header) & SMPT_MAP_ID_MASK) >> SMPT_MAP_ID_SHIFT)
#define SMPT_MAP_REGION_SIZE_MASK GENMASK(31, 8)
#define SMPT_MAP_REGION_SIZE_SHIFT 8
#define SMPT_MAP_REGION_SIZE(_region) \
<------>(((((_region) & SMPT_MAP_REGION_SIZE_MASK) >> \
<------> SMPT_MAP_REGION_SIZE_SHIFT) + 1) * 256)
#define SMPT_MAP_REGION_ERASE_TYPE_MASK GENMASK(3, 0)
#define SMPT_MAP_REGION_ERASE_TYPE(_region) \
<------>((_region) & SMPT_MAP_REGION_ERASE_TYPE_MASK)
#define SMPT_DESC_TYPE_MAP BIT(1)
#define SMPT_DESC_END BIT(0)
#define SFDP_4BAIT_DWORD_MAX 2
struct sfdp_4bait {
<------>/* The hardware capability. */
<------>u32 hwcaps;
<------>/*
<------> * The <supported_bit> bit in DWORD1 of the 4BAIT tells us whether
<------> * the associated 4-byte address op code is supported.
<------> */
<------>u32 supported_bit;
};
/**
* spi_nor_read_raw() - raw read of serial flash memory. read_opcode,
* addr_width and read_dummy members of the struct spi_nor
* should be previously
* set.
* @nor: pointer to a 'struct spi_nor'
* @addr: offset in the serial flash memory
* @len: number of bytes to read
* @buf: buffer where the data is copied into (dma-safe memory)
*
* Return: 0 on success, -errno otherwise.
*/
static int spi_nor_read_raw(struct spi_nor *nor, u32 addr, size_t len, u8 *buf)
{
<------>ssize_t ret;
<------>while (len) {
<------><------>ret = spi_nor_read_data(nor, addr, len, buf);
<------><------>if (ret < 0)
<------><------><------>return ret;
<------><------>if (!ret || ret > len)
<------><------><------>return -EIO;
<------><------>buf += ret;
<------><------>addr += ret;
<------><------>len -= ret;
<------>}
<------>return 0;
}
/**
* spi_nor_read_sfdp() - read Serial Flash Discoverable Parameters.
* @nor: pointer to a 'struct spi_nor'
* @addr: offset in the SFDP area to start reading data from
* @len: number of bytes to read
* @buf: buffer where the SFDP data are copied into (dma-safe memory)
*
* Whatever the actual numbers of bytes for address and dummy cycles are
* for (Fast) Read commands, the Read SFDP (5Ah) instruction is always
* followed by a 3-byte address and 8 dummy clock cycles.
*
* Return: 0 on success, -errno otherwise.
*/
static int spi_nor_read_sfdp(struct spi_nor *nor, u32 addr,
<------><------><------> size_t len, void *buf)
{
<------>u8 addr_width, read_opcode, read_dummy;
<------>int ret;
<------>read_opcode = nor->read_opcode;
<------>addr_width = nor->addr_width;
<------>read_dummy = nor->read_dummy;
<------>nor->read_opcode = SPINOR_OP_RDSFDP;
<------>nor->addr_width = 3;
<------>nor->read_dummy = 8;
<------>ret = spi_nor_read_raw(nor, addr, len, buf);
<------>nor->read_opcode = read_opcode;
<------>nor->addr_width = addr_width;
<------>nor->read_dummy = read_dummy;
<------>return ret;
}
/**
* spi_nor_read_sfdp_dma_unsafe() - read Serial Flash Discoverable Parameters.
* @nor: pointer to a 'struct spi_nor'
* @addr: offset in the SFDP area to start reading data from
* @len: number of bytes to read
* @buf: buffer where the SFDP data are copied into
*
* Wrap spi_nor_read_sfdp() using a kmalloc'ed bounce buffer as @buf is now not
* guaranteed to be dma-safe.
*
* Return: -ENOMEM if kmalloc() fails, the return code of spi_nor_read_sfdp()
* otherwise.
*/
static int spi_nor_read_sfdp_dma_unsafe(struct spi_nor *nor, u32 addr,
<------><------><------><------><------>size_t len, void *buf)
{
<------>void *dma_safe_buf;
<------>int ret;
<------>dma_safe_buf = kmalloc(len, GFP_KERNEL);
<------>if (!dma_safe_buf)
<------><------>return -ENOMEM;
<------>ret = spi_nor_read_sfdp(nor, addr, len, dma_safe_buf);
<------>memcpy(buf, dma_safe_buf, len);
<------>kfree(dma_safe_buf);
<------>return ret;
}
static void
spi_nor_set_read_settings_from_bfpt(struct spi_nor_read_command *read,
<------><------><------><------> u16 half,
<------><------><------><------> enum spi_nor_protocol proto)
{
<------>read->num_mode_clocks = (half >> 5) & 0x07;
<------>read->num_wait_states = (half >> 0) & 0x1f;
<------>read->opcode = (half >> 8) & 0xff;
<------>read->proto = proto;
}
static const struct sfdp_bfpt_read sfdp_bfpt_reads[] = {
<------>/* Fast Read 1-1-2 */
<------>{
<------><------>SNOR_HWCAPS_READ_1_1_2,
<------><------>BFPT_DWORD(1), BIT(16), /* Supported bit */
<------><------>BFPT_DWORD(4), 0, /* Settings */
<------><------>SNOR_PROTO_1_1_2,
<------>},
<------>/* Fast Read 1-2-2 */
<------>{
<------><------>SNOR_HWCAPS_READ_1_2_2,
<------><------>BFPT_DWORD(1), BIT(20), /* Supported bit */
<------><------>BFPT_DWORD(4), 16, /* Settings */
<------><------>SNOR_PROTO_1_2_2,
<------>},
<------>/* Fast Read 2-2-2 */
<------>{
<------><------>SNOR_HWCAPS_READ_2_2_2,
<------><------>BFPT_DWORD(5), BIT(0), /* Supported bit */
<------><------>BFPT_DWORD(6), 16, /* Settings */
<------><------>SNOR_PROTO_2_2_2,
<------>},
<------>/* Fast Read 1-1-4 */
<------>{
<------><------>SNOR_HWCAPS_READ_1_1_4,
<------><------>BFPT_DWORD(1), BIT(22), /* Supported bit */
<------><------>BFPT_DWORD(3), 16, /* Settings */
<------><------>SNOR_PROTO_1_1_4,
<------>},
<------>/* Fast Read 1-4-4 */
<------>{
<------><------>SNOR_HWCAPS_READ_1_4_4,
<------><------>BFPT_DWORD(1), BIT(21), /* Supported bit */
<------><------>BFPT_DWORD(3), 0, /* Settings */
<------><------>SNOR_PROTO_1_4_4,
<------>},
<------>/* Fast Read 4-4-4 */
<------>{
<------><------>SNOR_HWCAPS_READ_4_4_4,
<------><------>BFPT_DWORD(5), BIT(4), /* Supported bit */
<------><------>BFPT_DWORD(7), 16, /* Settings */
<------><------>SNOR_PROTO_4_4_4,
<------>},
};
static const struct sfdp_bfpt_erase sfdp_bfpt_erases[] = {
<------>/* Erase Type 1 in DWORD8 bits[15:0] */
<------>{BFPT_DWORD(8), 0},
<------>/* Erase Type 2 in DWORD8 bits[31:16] */
<------>{BFPT_DWORD(8), 16},
<------>/* Erase Type 3 in DWORD9 bits[15:0] */
<------>{BFPT_DWORD(9), 0},
<------>/* Erase Type 4 in DWORD9 bits[31:16] */
<------>{BFPT_DWORD(9), 16},
};
/**
* spi_nor_set_erase_settings_from_bfpt() - set erase type settings from BFPT
* @erase: pointer to a structure that describes a SPI NOR erase type
* @size: the size of the sector/block erased by the erase type
* @opcode: the SPI command op code to erase the sector/block
* @i: erase type index as sorted in the Basic Flash Parameter Table
*
* The supported Erase Types will be sorted at init in ascending order, with
* the smallest Erase Type size being the first member in the erase_type array
* of the spi_nor_erase_map structure. Save the Erase Type index as sorted in
* the Basic Flash Parameter Table since it will be used later on to
* synchronize with the supported Erase Types defined in SFDP optional tables.
*/
static void
spi_nor_set_erase_settings_from_bfpt(struct spi_nor_erase_type *erase,
<------><------><------><------> u32 size, u8 opcode, u8 i)
{
<------>erase->idx = i;
<------>spi_nor_set_erase_type(erase, size, opcode);
}
/**
* spi_nor_map_cmp_erase_type() - compare the map's erase types by size
* @l: member in the left half of the map's erase_type array
* @r: member in the right half of the map's erase_type array
*
* Comparison function used in the sort() call to sort in ascending order the
* map's erase types, the smallest erase type size being the first member in the
* sorted erase_type array.
*
* Return: the result of @l->size - @r->size
*/
static int spi_nor_map_cmp_erase_type(const void *l, const void *r)
{
<------>const struct spi_nor_erase_type *left = l, *right = r;
<------>return left->size - right->size;
}
/**
* spi_nor_sort_erase_mask() - sort erase mask
* @map: the erase map of the SPI NOR
* @erase_mask: the erase type mask to be sorted
*
* Replicate the sort done for the map's erase types in BFPT: sort the erase
* mask in ascending order with the smallest erase type size starting from
* BIT(0) in the sorted erase mask.
*
* Return: sorted erase mask.
*/
static u8 spi_nor_sort_erase_mask(struct spi_nor_erase_map *map, u8 erase_mask)
{
<------>struct spi_nor_erase_type *erase_type = map->erase_type;
<------>int i;
<------>u8 sorted_erase_mask = 0;
<------>if (!erase_mask)
<------><------>return 0;
<------>/* Replicate the sort done for the map's erase types. */
<------>for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++)
<------><------>if (erase_type[i].size && erase_mask & BIT(erase_type[i].idx))
<------><------><------>sorted_erase_mask |= BIT(i);
<------>return sorted_erase_mask;
}
/**
* spi_nor_regions_sort_erase_types() - sort erase types in each region
* @map: the erase map of the SPI NOR
*
* Function assumes that the erase types defined in the erase map are already
* sorted in ascending order, with the smallest erase type size being the first
* member in the erase_type array. It replicates the sort done for the map's
* erase types. Each region's erase bitmask will indicate which erase types are
* supported from the sorted erase types defined in the erase map.
* Sort the all region's erase type at init in order to speed up the process of
* finding the best erase command at runtime.
*/
static void spi_nor_regions_sort_erase_types(struct spi_nor_erase_map *map)
{
<------>struct spi_nor_erase_region *region = map->regions;
<------>u8 region_erase_mask, sorted_erase_mask;
<------>while (region) {
<------><------>region_erase_mask = region->offset & SNOR_ERASE_TYPE_MASK;
<------><------>sorted_erase_mask = spi_nor_sort_erase_mask(map,
<------><------><------><------><------><------><------> region_erase_mask);
<------><------>/* Overwrite erase mask. */
<------><------>region->offset = (region->offset & ~SNOR_ERASE_TYPE_MASK) |
<------><------><------><------> sorted_erase_mask;
<------><------>region = spi_nor_region_next(region);
<------>}
}
/**
* spi_nor_parse_bfpt() - read and parse the Basic Flash Parameter Table.
* @nor: pointer to a 'struct spi_nor'
* @bfpt_header: pointer to the 'struct sfdp_parameter_header' describing
* the Basic Flash Parameter Table length and version
* @params: pointer to the 'struct spi_nor_flash_parameter' to be
* filled
*
* The Basic Flash Parameter Table is the main and only mandatory table as
* defined by the SFDP (JESD216) specification.
* It provides us with the total size (memory density) of the data array and
* the number of address bytes for Fast Read, Page Program and Sector Erase
* commands.
* For Fast READ commands, it also gives the number of mode clock cycles and
* wait states (regrouped in the number of dummy clock cycles) for each
* supported instruction op code.
* For Page Program, the page size is now available since JESD216 rev A, however
* the supported instruction op codes are still not provided.
* For Sector Erase commands, this table stores the supported instruction op
* codes and the associated sector sizes.
* Finally, the Quad Enable Requirements (QER) are also available since JESD216
* rev A. The QER bits encode the manufacturer dependent procedure to be
* executed to set the Quad Enable (QE) bit in some internal register of the
* Quad SPI memory. Indeed the QE bit, when it exists, must be set before
* sending any Quad SPI command to the memory. Actually, setting the QE bit
* tells the memory to reassign its WP# and HOLD#/RESET# pins to functions IO2
* and IO3 hence enabling 4 (Quad) I/O lines.
*
* Return: 0 on success, -errno otherwise.
*/
static int spi_nor_parse_bfpt(struct spi_nor *nor,
<------><------><------> const struct sfdp_parameter_header *bfpt_header,
<------><------><------> struct spi_nor_flash_parameter *params)
{
<------>struct spi_nor_erase_map *map = &params->erase_map;
<------>struct spi_nor_erase_type *erase_type = map->erase_type;
<------>struct sfdp_bfpt bfpt;
<------>size_t len;
<------>int i, cmd, err;
<------>u32 addr, val;
<------>u16 half;
<------>u8 erase_mask;
<------>/* JESD216 Basic Flash Parameter Table length is at least 9 DWORDs. */
<------>if (bfpt_header->length < BFPT_DWORD_MAX_JESD216)
<------><------>return -EINVAL;
<------>/* Read the Basic Flash Parameter Table. */
<------>len = min_t(size_t, sizeof(bfpt),
<------><------> bfpt_header->length * sizeof(u32));
<------>addr = SFDP_PARAM_HEADER_PTP(bfpt_header);
<------>memset(&bfpt, 0, sizeof(bfpt));
<------>err = spi_nor_read_sfdp_dma_unsafe(nor, addr, len, &bfpt);
<------>if (err < 0)
<------><------>return err;
<------>/* Fix endianness of the BFPT DWORDs. */
<------>le32_to_cpu_array(bfpt.dwords, BFPT_DWORD_MAX);
<------>/* Number of address bytes. */
<------>switch (bfpt.dwords[BFPT_DWORD(1)] & BFPT_DWORD1_ADDRESS_BYTES_MASK) {
<------>case BFPT_DWORD1_ADDRESS_BYTES_3_ONLY:
<------>case BFPT_DWORD1_ADDRESS_BYTES_3_OR_4:
<------><------>nor->addr_width = 3;
<------><------>break;
<------>case BFPT_DWORD1_ADDRESS_BYTES_4_ONLY:
<------><------>nor->addr_width = 4;
<------><------>break;
<------>default:
<------><------>break;
<------>}
<------>/* Flash Memory Density (in bits). */
<------>val = bfpt.dwords[BFPT_DWORD(2)];
<------>if (val & BIT(31)) {
<------><------>val &= ~BIT(31);
<------><------>/*
<------><------> * Prevent overflows on params->size. Anyway, a NOR of 2^64
<------><------> * bits is unlikely to exist so this error probably means
<------><------> * the BFPT we are reading is corrupted/wrong.
<------><------> */
<------><------>if (val > 63)
<------><------><------>return -EINVAL;
<------><------>params->size = 1ULL << val;
<------>} else {
<------><------>params->size = val + 1;
<------>}
<------>params->size >>= 3; /* Convert to bytes. */
<------>/* Fast Read settings. */
<------>for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_reads); i++) {
<------><------>const struct sfdp_bfpt_read *rd = &sfdp_bfpt_reads[i];
<------><------>struct spi_nor_read_command *read;
<------><------>if (!(bfpt.dwords[rd->supported_dword] & rd->supported_bit)) {
<------><------><------>params->hwcaps.mask &= ~rd->hwcaps;
<------><------><------>continue;
<------><------>}
<------><------>params->hwcaps.mask |= rd->hwcaps;
<------><------>cmd = spi_nor_hwcaps_read2cmd(rd->hwcaps);
<------><------>read = &params->reads[cmd];
<------><------>half = bfpt.dwords[rd->settings_dword] >> rd->settings_shift;
<------><------>spi_nor_set_read_settings_from_bfpt(read, half, rd->proto);
<------>}
<------>/*
<------> * Sector Erase settings. Reinitialize the uniform erase map using the
<------> * Erase Types defined in the bfpt table.
<------> */
<------>erase_mask = 0;
<------>memset(&params->erase_map, 0, sizeof(params->erase_map));
<------>for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_erases); i++) {
<------><------>const struct sfdp_bfpt_erase *er = &sfdp_bfpt_erases[i];
<------><------>u32 erasesize;
<------><------>u8 opcode;
<------><------>half = bfpt.dwords[er->dword] >> er->shift;
<------><------>erasesize = half & 0xff;
<------><------>/* erasesize == 0 means this Erase Type is not supported. */
<------><------>if (!erasesize)
<------><------><------>continue;
<------><------>erasesize = 1U << erasesize;
<------><------>opcode = (half >> 8) & 0xff;
<------><------>erase_mask |= BIT(i);
<------><------>spi_nor_set_erase_settings_from_bfpt(&erase_type[i], erasesize,
<------><------><------><------><------><------> opcode, i);
<------>}
<------>spi_nor_init_uniform_erase_map(map, erase_mask, params->size);
<------>/*
<------> * Sort all the map's Erase Types in ascending order with the smallest
<------> * erase size being the first member in the erase_type array.
<------> */
<------>sort(erase_type, SNOR_ERASE_TYPE_MAX, sizeof(erase_type[0]),
<------> spi_nor_map_cmp_erase_type, NULL);
<------>/*
<------> * Sort the erase types in the uniform region in order to update the
<------> * uniform_erase_type bitmask. The bitmask will be used later on when
<------> * selecting the uniform erase.
<------> */
<------>spi_nor_regions_sort_erase_types(map);
<------>map->uniform_erase_type = map->uniform_region.offset &
<------><------><------><------> SNOR_ERASE_TYPE_MASK;
<------>/* Stop here if not JESD216 rev A or later. */
<------>if (bfpt_header->length == BFPT_DWORD_MAX_JESD216)
<------><------>return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt,
<------><------><------><------><------><------>params);
<------>/* Page size: this field specifies 'N' so the page size = 2^N bytes. */
<------>val = bfpt.dwords[BFPT_DWORD(11)];
<------>val &= BFPT_DWORD11_PAGE_SIZE_MASK;
<------>val >>= BFPT_DWORD11_PAGE_SIZE_SHIFT;
<------>params->page_size = 1U << val;
<------>/* Quad Enable Requirements. */
<------>switch (bfpt.dwords[BFPT_DWORD(15)] & BFPT_DWORD15_QER_MASK) {
<------>case BFPT_DWORD15_QER_NONE:
<------><------>params->quad_enable = NULL;
<------><------>break;
<------>case BFPT_DWORD15_QER_SR2_BIT1_BUGGY:
<------><------>/*
<------><------> * Writing only one byte to the Status Register has the
<------><------> * side-effect of clearing Status Register 2.
<------><------> */
<------>case BFPT_DWORD15_QER_SR2_BIT1_NO_RD:
<------><------>/*
<------><------> * Read Configuration Register (35h) instruction is not
<------><------> * supported.
<------><------> */
<------><------>nor->flags |= SNOR_F_HAS_16BIT_SR | SNOR_F_NO_READ_CR;
<------><------>params->quad_enable = spi_nor_sr2_bit1_quad_enable;
<------><------>break;
<------>case BFPT_DWORD15_QER_SR1_BIT6:
<------><------>nor->flags &= ~SNOR_F_HAS_16BIT_SR;
<------><------>params->quad_enable = spi_nor_sr1_bit6_quad_enable;
<------><------>break;
<------>case BFPT_DWORD15_QER_SR2_BIT7:
<------><------>nor->flags &= ~SNOR_F_HAS_16BIT_SR;
<------><------>params->quad_enable = spi_nor_sr2_bit7_quad_enable;
<------><------>break;
<------>case BFPT_DWORD15_QER_SR2_BIT1:
<------><------>/*
<------><------> * JESD216 rev B or later does not specify if writing only one
<------><------> * byte to the Status Register clears or not the Status
<------><------> * Register 2, so let's be cautious and keep the default
<------><------> * assumption of a 16-bit Write Status (01h) command.
<------><------> */
<------><------>nor->flags |= SNOR_F_HAS_16BIT_SR;
<------><------>params->quad_enable = spi_nor_sr2_bit1_quad_enable;
<------><------>break;
<------>default:
<------><------>dev_dbg(nor->dev, "BFPT QER reserved value used\n");
<------><------>break;
<------>}
<------>/* Stop here if not JESD216 rev C or later. */
<------>if (bfpt_header->length == BFPT_DWORD_MAX_JESD216B)
<------><------>return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt,
<------><------><------><------><------><------>params);
<------>return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt, params);
}
/**
* spi_nor_smpt_addr_width() - return the address width used in the
* configuration detection command.
* @nor: pointer to a 'struct spi_nor'
* @settings: configuration detection command descriptor, dword1
*/
static u8 spi_nor_smpt_addr_width(const struct spi_nor *nor, const u32 settings)
{
<------>switch (settings & SMPT_CMD_ADDRESS_LEN_MASK) {
<------>case SMPT_CMD_ADDRESS_LEN_0:
<------><------>return 0;
<------>case SMPT_CMD_ADDRESS_LEN_3:
<------><------>return 3;
<------>case SMPT_CMD_ADDRESS_LEN_4:
<------><------>return 4;
<------>case SMPT_CMD_ADDRESS_LEN_USE_CURRENT:
<------>default:
<------><------>return nor->addr_width;
<------>}
}
/**
* spi_nor_smpt_read_dummy() - return the configuration detection command read
* latency, in clock cycles.
* @nor: pointer to a 'struct spi_nor'
* @settings: configuration detection command descriptor, dword1
*
* Return: the number of dummy cycles for an SMPT read
*/
static u8 spi_nor_smpt_read_dummy(const struct spi_nor *nor, const u32 settings)
{
<------>u8 read_dummy = SMPT_CMD_READ_DUMMY(settings);
<------>if (read_dummy == SMPT_CMD_READ_DUMMY_IS_VARIABLE)
<------><------>return nor->read_dummy;
<------>return read_dummy;
}
/**
* spi_nor_get_map_in_use() - get the configuration map in use
* @nor: pointer to a 'struct spi_nor'
* @smpt: pointer to the sector map parameter table
* @smpt_len: sector map parameter table length
*
* Return: pointer to the map in use, ERR_PTR(-errno) otherwise.
*/
static const u32 *spi_nor_get_map_in_use(struct spi_nor *nor, const u32 *smpt,
<------><------><------><------><------> u8 smpt_len)
{
<------>const u32 *ret;
<------>u8 *buf;
<------>u32 addr;
<------>int err;
<------>u8 i;
<------>u8 addr_width, read_opcode, read_dummy;
<------>u8 read_data_mask, map_id;
<------>/* Use a kmalloc'ed bounce buffer to guarantee it is DMA-able. */
<------>buf = kmalloc(sizeof(*buf), GFP_KERNEL);
<------>if (!buf)
<------><------>return ERR_PTR(-ENOMEM);
<------>addr_width = nor->addr_width;
<------>read_dummy = nor->read_dummy;
<------>read_opcode = nor->read_opcode;
<------>map_id = 0;
<------>/* Determine if there are any optional Detection Command Descriptors */
<------>for (i = 0; i < smpt_len; i += 2) {
<------><------>if (smpt[i] & SMPT_DESC_TYPE_MAP)
<------><------><------>break;
<------><------>read_data_mask = SMPT_CMD_READ_DATA(smpt[i]);
<------><------>nor->addr_width = spi_nor_smpt_addr_width(nor, smpt[i]);
<------><------>nor->read_dummy = spi_nor_smpt_read_dummy(nor, smpt[i]);
<------><------>nor->read_opcode = SMPT_CMD_OPCODE(smpt[i]);
<------><------>addr = smpt[i + 1];
<------><------>err = spi_nor_read_raw(nor, addr, 1, buf);
<------><------>if (err) {
<------><------><------>ret = ERR_PTR(err);
<------><------><------>goto out;
<------><------>}
<------><------>/*
<------><------> * Build an index value that is used to select the Sector Map
<------><------> * Configuration that is currently in use.
<------><------> */
<------><------>map_id = map_id << 1 | !!(*buf & read_data_mask);
<------>}
<------>/*
<------> * If command descriptors are provided, they always precede map
<------> * descriptors in the table. There is no need to start the iteration
<------> * over smpt array all over again.
<------> *
<------> * Find the matching configuration map.
<------> */
<------>ret = ERR_PTR(-EINVAL);
<------>while (i < smpt_len) {
<------><------>if (SMPT_MAP_ID(smpt[i]) == map_id) {
<------><------><------>ret = smpt + i;
<------><------><------>break;
<------><------>}
<------><------>/*
<------><------> * If there are no more configuration map descriptors and no
<------><------> * configuration ID matched the configuration identifier, the
<------><------> * sector address map is unknown.
<------><------> */
<------><------>if (smpt[i] & SMPT_DESC_END)
<------><------><------>break;
<------><------>/* increment the table index to the next map */
<------><------>i += SMPT_MAP_REGION_COUNT(smpt[i]) + 1;
<------>}
<------>/* fall through */
out:
<------>kfree(buf);
<------>nor->addr_width = addr_width;
<------>nor->read_dummy = read_dummy;
<------>nor->read_opcode = read_opcode;
<------>return ret;
}
static void spi_nor_region_mark_end(struct spi_nor_erase_region *region)
{
<------>region->offset |= SNOR_LAST_REGION;
}
static void spi_nor_region_mark_overlay(struct spi_nor_erase_region *region)
{
<------>region->offset |= SNOR_OVERLAID_REGION;
}
/**
* spi_nor_region_check_overlay() - set overlay bit when the region is overlaid
* @region: pointer to a structure that describes a SPI NOR erase region
* @erase: pointer to a structure that describes a SPI NOR erase type
* @erase_type: erase type bitmask
*/
static void
spi_nor_region_check_overlay(struct spi_nor_erase_region *region,
<------><------><------> const struct spi_nor_erase_type *erase,
<------><------><------> const u8 erase_type)
{
<------>int i;
<------>for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
<------><------>if (!(erase[i].size && erase_type & BIT(erase[i].idx)))
<------><------><------>continue;
<------><------>if (region->size & erase[i].size_mask) {
<------><------><------>spi_nor_region_mark_overlay(region);
<------><------><------>return;
<------><------>}
<------>}
}
/**
* spi_nor_init_non_uniform_erase_map() - initialize the non-uniform erase map
* @nor: pointer to a 'struct spi_nor'
* @params: pointer to a duplicate 'struct spi_nor_flash_parameter' that is
* used for storing SFDP parsed data
* @smpt: pointer to the sector map parameter table
*
* Return: 0 on success, -errno otherwise.
*/
static int
spi_nor_init_non_uniform_erase_map(struct spi_nor *nor,
<------><------><------><------> struct spi_nor_flash_parameter *params,
<------><------><------><------> const u32 *smpt)
{
<------>struct spi_nor_erase_map *map = &params->erase_map;
<------>struct spi_nor_erase_type *erase = map->erase_type;
<------>struct spi_nor_erase_region *region;
<------>u64 offset;
<------>u32 region_count;
<------>int i, j;
<------>u8 uniform_erase_type, save_uniform_erase_type;
<------>u8 erase_type, regions_erase_type;
<------>region_count = SMPT_MAP_REGION_COUNT(*smpt);
<------>/*
<------> * The regions will be freed when the driver detaches from the
<------> * device.
<------> */
<------>region = devm_kcalloc(nor->dev, region_count, sizeof(*region),
<------><------><------> GFP_KERNEL);
<------>if (!region)
<------><------>return -ENOMEM;
<------>map->regions = region;
<------>uniform_erase_type = 0xff;
<------>regions_erase_type = 0;
<------>offset = 0;
<------>/* Populate regions. */
<------>for (i = 0; i < region_count; i++) {
<------><------>j = i + 1; /* index for the region dword */
<------><------>region[i].size = SMPT_MAP_REGION_SIZE(smpt[j]);
<------><------>erase_type = SMPT_MAP_REGION_ERASE_TYPE(smpt[j]);
<------><------>region[i].offset = offset | erase_type;
<------><------>spi_nor_region_check_overlay(&region[i], erase, erase_type);
<------><------>/*
<------><------> * Save the erase types that are supported in all regions and
<------><------> * can erase the entire flash memory.
<------><------> */
<------><------>uniform_erase_type &= erase_type;
<------><------>/*
<------><------> * regions_erase_type mask will indicate all the erase types
<------><------> * supported in this configuration map.
<------><------> */
<------><------>regions_erase_type |= erase_type;
<------><------>offset = (region[i].offset & ~SNOR_ERASE_FLAGS_MASK) +
<------><------><------> region[i].size;
<------>}
<------>spi_nor_region_mark_end(&region[i - 1]);
<------>save_uniform_erase_type = map->uniform_erase_type;
<------>map->uniform_erase_type = spi_nor_sort_erase_mask(map,
<------><------><------><------><------><------><------> uniform_erase_type);
<------>if (!regions_erase_type) {
<------><------>/*
<------><------> * Roll back to the previous uniform_erase_type mask, SMPT is
<------><------> * broken.
<------><------> */
<------><------>map->uniform_erase_type = save_uniform_erase_type;
<------><------>return -EINVAL;
<------>}
<------>/*
<------> * BFPT advertises all the erase types supported by all the possible
<------> * map configurations. Mask out the erase types that are not supported
<------> * by the current map configuration.
<------> */
<------>for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++)
<------><------>if (!(regions_erase_type & BIT(erase[i].idx)))
<------><------><------>spi_nor_set_erase_type(&erase[i], 0, 0xFF);
<------>return 0;
}
/**
* spi_nor_parse_smpt() - parse Sector Map Parameter Table
* @nor: pointer to a 'struct spi_nor'
* @smpt_header: sector map parameter table header
* @params: pointer to a duplicate 'struct spi_nor_flash_parameter'
* that is used for storing SFDP parsed data
*
* This table is optional, but when available, we parse it to identify the
* location and size of sectors within the main data array of the flash memory
* device and to identify which Erase Types are supported by each sector.
*
* Return: 0 on success, -errno otherwise.
*/
static int spi_nor_parse_smpt(struct spi_nor *nor,
<------><------><------> const struct sfdp_parameter_header *smpt_header,
<------><------><------> struct spi_nor_flash_parameter *params)
{
<------>const u32 *sector_map;
<------>u32 *smpt;
<------>size_t len;
<------>u32 addr;
<------>int ret;
<------>/* Read the Sector Map Parameter Table. */
<------>len = smpt_header->length * sizeof(*smpt);
<------>smpt = kmalloc(len, GFP_KERNEL);
<------>if (!smpt)
<------><------>return -ENOMEM;
<------>addr = SFDP_PARAM_HEADER_PTP(smpt_header);
<------>ret = spi_nor_read_sfdp(nor, addr, len, smpt);
<------>if (ret)
<------><------>goto out;
<------>/* Fix endianness of the SMPT DWORDs. */
<------>le32_to_cpu_array(smpt, smpt_header->length);
<------>sector_map = spi_nor_get_map_in_use(nor, smpt, smpt_header->length);
<------>if (IS_ERR(sector_map)) {
<------><------>ret = PTR_ERR(sector_map);
<------><------>goto out;
<------>}
<------>ret = spi_nor_init_non_uniform_erase_map(nor, params, sector_map);
<------>if (ret)
<------><------>goto out;
<------>spi_nor_regions_sort_erase_types(&params->erase_map);
<------>/* fall through */
out:
<------>kfree(smpt);
<------>return ret;
}
/**
* spi_nor_parse_4bait() - parse the 4-Byte Address Instruction Table
* @nor: pointer to a 'struct spi_nor'.
* @param_header: pointer to the 'struct sfdp_parameter_header' describing
* the 4-Byte Address Instruction Table length and version.
* @params: pointer to the 'struct spi_nor_flash_parameter' to be.
*
* Return: 0 on success, -errno otherwise.
*/
static int spi_nor_parse_4bait(struct spi_nor *nor,
<------><------><------> const struct sfdp_parameter_header *param_header,
<------><------><------> struct spi_nor_flash_parameter *params)
{
<------>static const struct sfdp_4bait reads[] = {
<------><------>{ SNOR_HWCAPS_READ, BIT(0) },
<------><------>{ SNOR_HWCAPS_READ_FAST, BIT(1) },
<------><------>{ SNOR_HWCAPS_READ_1_1_2, BIT(2) },
<------><------>{ SNOR_HWCAPS_READ_1_2_2, BIT(3) },
<------><------>{ SNOR_HWCAPS_READ_1_1_4, BIT(4) },
<------><------>{ SNOR_HWCAPS_READ_1_4_4, BIT(5) },
<------><------>{ SNOR_HWCAPS_READ_1_1_1_DTR, BIT(13) },
<------><------>{ SNOR_HWCAPS_READ_1_2_2_DTR, BIT(14) },
<------><------>{ SNOR_HWCAPS_READ_1_4_4_DTR, BIT(15) },
<------>};
<------>static const struct sfdp_4bait programs[] = {
<------><------>{ SNOR_HWCAPS_PP, BIT(6) },
<------><------>{ SNOR_HWCAPS_PP_1_1_4, BIT(7) },
<------><------>{ SNOR_HWCAPS_PP_1_4_4, BIT(8) },
<------>};
<------>static const struct sfdp_4bait erases[SNOR_ERASE_TYPE_MAX] = {
<------><------>{ 0u /* not used */, BIT(9) },
<------><------>{ 0u /* not used */, BIT(10) },
<------><------>{ 0u /* not used */, BIT(11) },
<------><------>{ 0u /* not used */, BIT(12) },
<------>};
<------>struct spi_nor_pp_command *params_pp = params->page_programs;
<------>struct spi_nor_erase_map *map = &params->erase_map;
<------>struct spi_nor_erase_type *erase_type = map->erase_type;
<------>u32 *dwords;
<------>size_t len;
<------>u32 addr, discard_hwcaps, read_hwcaps, pp_hwcaps, erase_mask;
<------>int i, ret;
<------>if (param_header->major != SFDP_JESD216_MAJOR ||
<------> param_header->length < SFDP_4BAIT_DWORD_MAX)
<------><------>return -EINVAL;
<------>/* Read the 4-byte Address Instruction Table. */
<------>len = sizeof(*dwords) * SFDP_4BAIT_DWORD_MAX;
<------>/* Use a kmalloc'ed bounce buffer to guarantee it is DMA-able. */
<------>dwords = kmalloc(len, GFP_KERNEL);
<------>if (!dwords)
<------><------>return -ENOMEM;
<------>addr = SFDP_PARAM_HEADER_PTP(param_header);
<------>ret = spi_nor_read_sfdp(nor, addr, len, dwords);
<------>if (ret)
<------><------>goto out;
<------>/* Fix endianness of the 4BAIT DWORDs. */
<------>le32_to_cpu_array(dwords, SFDP_4BAIT_DWORD_MAX);
<------>/*
<------> * Compute the subset of (Fast) Read commands for which the 4-byte
<------> * version is supported.
<------> */
<------>discard_hwcaps = 0;
<------>read_hwcaps = 0;
<------>for (i = 0; i < ARRAY_SIZE(reads); i++) {
<------><------>const struct sfdp_4bait *read = &reads[i];
<------><------>discard_hwcaps |= read->hwcaps;
<------><------>if ((params->hwcaps.mask & read->hwcaps) &&
<------><------> (dwords[0] & read->supported_bit))
<------><------><------>read_hwcaps |= read->hwcaps;
<------>}
<------>/*
<------> * Compute the subset of Page Program commands for which the 4-byte
<------> * version is supported.
<------> */
<------>pp_hwcaps = 0;
<------>for (i = 0; i < ARRAY_SIZE(programs); i++) {
<------><------>const struct sfdp_4bait *program = &programs[i];
<------><------>/*
<------><------> * The 4 Byte Address Instruction (Optional) Table is the only
<------><------> * SFDP table that indicates support for Page Program Commands.
<------><------> * Bypass the params->hwcaps.mask and consider 4BAIT the biggest
<------><------> * authority for specifying Page Program support.
<------><------> */
<------><------>discard_hwcaps |= program->hwcaps;
<------><------>if (dwords[0] & program->supported_bit)
<------><------><------>pp_hwcaps |= program->hwcaps;
<------>}
<------>/*
<------> * Compute the subset of Sector Erase commands for which the 4-byte
<------> * version is supported.
<------> */
<------>erase_mask = 0;
<------>for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
<------><------>const struct sfdp_4bait *erase = &erases[i];
<------><------>if (dwords[0] & erase->supported_bit)
<------><------><------>erase_mask |= BIT(i);
<------>}
<------>/* Replicate the sort done for the map's erase types in BFPT. */
<------>erase_mask = spi_nor_sort_erase_mask(map, erase_mask);
<------>/*
<------> * We need at least one 4-byte op code per read, program and erase
<------> * operation; the .read(), .write() and .erase() hooks share the
<------> * nor->addr_width value.
<------> */
<------>if (!read_hwcaps || !pp_hwcaps || !erase_mask)
<------><------>goto out;
<------>/*
<------> * Discard all operations from the 4-byte instruction set which are
<------> * not supported by this memory.
<------> */
<------>params->hwcaps.mask &= ~discard_hwcaps;
<------>params->hwcaps.mask |= (read_hwcaps | pp_hwcaps);
<------>/* Use the 4-byte address instruction set. */
<------>for (i = 0; i < SNOR_CMD_READ_MAX; i++) {
<------><------>struct spi_nor_read_command *read_cmd = &params->reads[i];
<------><------>read_cmd->opcode = spi_nor_convert_3to4_read(read_cmd->opcode);
<------>}
<------>/* 4BAIT is the only SFDP table that indicates page program support. */
<------>if (pp_hwcaps & SNOR_HWCAPS_PP)
<------><------>spi_nor_set_pp_settings(&params_pp[SNOR_CMD_PP],
<------><------><------><------><------>SPINOR_OP_PP_4B, SNOR_PROTO_1_1_1);
<------>if (pp_hwcaps & SNOR_HWCAPS_PP_1_1_4)
<------><------>spi_nor_set_pp_settings(&params_pp[SNOR_CMD_PP_1_1_4],
<------><------><------><------><------>SPINOR_OP_PP_1_1_4_4B,
<------><------><------><------><------>SNOR_PROTO_1_1_4);
<------>if (pp_hwcaps & SNOR_HWCAPS_PP_1_4_4)
<------><------>spi_nor_set_pp_settings(&params_pp[SNOR_CMD_PP_1_4_4],
<------><------><------><------><------>SPINOR_OP_PP_1_4_4_4B,
<------><------><------><------><------>SNOR_PROTO_1_4_4);
<------>for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
<------><------>if (erase_mask & BIT(i))
<------><------><------>erase_type[i].opcode = (dwords[1] >>
<------><------><------><------><------><------>erase_type[i].idx * 8) & 0xFF;
<------><------>else
<------><------><------>spi_nor_set_erase_type(&erase_type[i], 0u, 0xFF);
<------>}
<------>/*
<------> * We set SNOR_F_HAS_4BAIT in order to skip spi_nor_set_4byte_opcodes()
<------> * later because we already did the conversion to 4byte opcodes. Also,
<------> * this latest function implements a legacy quirk for the erase size of
<------> * Spansion memory. However this quirk is no longer needed with new
<------> * SFDP compliant memories.
<------> */
<------>nor->addr_width = 4;
<------>nor->flags |= SNOR_F_4B_OPCODES | SNOR_F_HAS_4BAIT;
<------>/* fall through */
out:
<------>kfree(dwords);
<------>return ret;
}
/**
* spi_nor_parse_sfdp() - parse the Serial Flash Discoverable Parameters.
* @nor: pointer to a 'struct spi_nor'
* @params: pointer to the 'struct spi_nor_flash_parameter' to be
* filled
*
* The Serial Flash Discoverable Parameters are described by the JEDEC JESD216
* specification. This is a standard which tends to supported by almost all
* (Q)SPI memory manufacturers. Those hard-coded tables allow us to learn at
* runtime the main parameters needed to perform basic SPI flash operations such
* as Fast Read, Page Program or Sector Erase commands.
*
* Return: 0 on success, -errno otherwise.
*/
int spi_nor_parse_sfdp(struct spi_nor *nor,
<------><------> struct spi_nor_flash_parameter *params)
{
<------>const struct sfdp_parameter_header *param_header, *bfpt_header;
<------>struct sfdp_parameter_header *param_headers = NULL;
<------>struct sfdp_header header;
<------>struct device *dev = nor->dev;
<------>size_t psize;
<------>int i, err;
<------>/* Get the SFDP header. */
<------>err = spi_nor_read_sfdp_dma_unsafe(nor, 0, sizeof(header), &header);
<------>if (err < 0)
<------><------>return err;
<------>/* Check the SFDP header version. */
<------>if (le32_to_cpu(header.signature) != SFDP_SIGNATURE ||
<------> header.major != SFDP_JESD216_MAJOR)
<------><------>return -EINVAL;
<------>/*
<------> * Verify that the first and only mandatory parameter header is a
<------> * Basic Flash Parameter Table header as specified in JESD216.
<------> */
<------>bfpt_header = &header.bfpt_header;
<------>if (SFDP_PARAM_HEADER_ID(bfpt_header) != SFDP_BFPT_ID ||
<------> bfpt_header->major != SFDP_JESD216_MAJOR)
<------><------>return -EINVAL;
<------>/*
<------> * Allocate memory then read all parameter headers with a single
<------> * Read SFDP command. These parameter headers will actually be parsed
<------> * twice: a first time to get the latest revision of the basic flash
<------> * parameter table, then a second time to handle the supported optional
<------> * tables.
<------> * Hence we read the parameter headers once for all to reduce the
<------> * processing time. Also we use kmalloc() instead of devm_kmalloc()
<------> * because we don't need to keep these parameter headers: the allocated
<------> * memory is always released with kfree() before exiting this function.
<------> */
<------>if (header.nph) {
<------><------>psize = header.nph * sizeof(*param_headers);
<------><------>param_headers = kmalloc(psize, GFP_KERNEL);
<------><------>if (!param_headers)
<------><------><------>return -ENOMEM;
<------><------>err = spi_nor_read_sfdp(nor, sizeof(header),
<------><------><------><------><------>psize, param_headers);
<------><------>if (err < 0) {
<------><------><------>dev_dbg(dev, "failed to read SFDP parameter headers\n");
<------><------><------>goto exit;
<------><------>}
<------>}
<------>/*
<------> * Check other parameter headers to get the latest revision of
<------> * the basic flash parameter table.
<------> */
<------>for (i = 0; i < header.nph; i++) {
<------><------>param_header = &param_headers[i];
<------><------>if (SFDP_PARAM_HEADER_ID(param_header) == SFDP_BFPT_ID &&
<------><------> param_header->major == SFDP_JESD216_MAJOR &&
<------><------> (param_header->minor > bfpt_header->minor ||
<------><------> (param_header->minor == bfpt_header->minor &&
<------><------> param_header->length > bfpt_header->length)))
<------><------><------>bfpt_header = param_header;
<------>}
<------>err = spi_nor_parse_bfpt(nor, bfpt_header, params);
<------>if (err)
<------><------>goto exit;
<------>/* Parse optional parameter tables. */
<------>for (i = 0; i < header.nph; i++) {
<------><------>param_header = &param_headers[i];
<------><------>switch (SFDP_PARAM_HEADER_ID(param_header)) {
<------><------>case SFDP_SECTOR_MAP_ID:
<------><------><------>err = spi_nor_parse_smpt(nor, param_header, params);
<------><------><------>break;
<------><------>case SFDP_4BAIT_ID:
<------><------><------>err = spi_nor_parse_4bait(nor, param_header, params);
<------><------><------>break;
<------><------>default:
<------><------><------>break;
<------><------>}
<------><------>if (err) {
<------><------><------>dev_warn(dev, "Failed to parse optional parameter table: %04x\n",
<------><------><------><------> SFDP_PARAM_HEADER_ID(param_header));
<------><------><------>/*
<------><------><------> * Let's not drop all information we extracted so far
<------><------><------> * if optional table parsers fail. In case of failing,
<------><------><------> * each optional parser is responsible to roll back to
<------><------><------> * the previously known spi_nor data.
<------><------><------> */
<------><------><------>err = 0;
<------><------>}
<------>}
exit:
<------>kfree(param_headers);
<------>return err;
}