^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1) // SPDX-License-Identifier: GPL-2.0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3) * This is for all the tests related to logic bugs (e.g. bad dereferences,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4) * bad alignment, bad loops, bad locking, bad scheduling, deep stacks, and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5) * lockups) along with other things that don't fit well into existing LKDTM
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6) * test source files.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 8) #include "lkdtm.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 9) #include <linux/list.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 10) #include <linux/sched.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 11) #include <linux/sched/signal.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 12) #include <linux/sched/task_stack.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 13) #include <linux/uaccess.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 14) #include <linux/slab.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 15)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 16) #if IS_ENABLED(CONFIG_X86_32) && !IS_ENABLED(CONFIG_UML)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 17) #include <asm/desc.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 18) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 19)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 20) struct lkdtm_list {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 21) struct list_head node;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 22) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 23)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 24) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 25) * Make sure our attempts to over run the kernel stack doesn't trigger
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 26) * a compiler warning when CONFIG_FRAME_WARN is set. Then make sure we
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 27) * recurse past the end of THREAD_SIZE by default.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 28) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 29) #if defined(CONFIG_FRAME_WARN) && (CONFIG_FRAME_WARN > 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 30) #define REC_STACK_SIZE (_AC(CONFIG_FRAME_WARN, UL) / 2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 31) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 32) #define REC_STACK_SIZE (THREAD_SIZE / 8)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 33) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 34) #define REC_NUM_DEFAULT ((THREAD_SIZE / REC_STACK_SIZE) * 2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 35)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 36) static int recur_count = REC_NUM_DEFAULT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 37)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 38) static DEFINE_SPINLOCK(lock_me_up);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 39)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 40) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 41) * Make sure compiler does not optimize this function or stack frame away:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 42) * - function marked noinline
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 43) * - stack variables are marked volatile
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 44) * - stack variables are written (memset()) and read (pr_info())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 45) * - function has external effects (pr_info())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 46) * */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 47) static int noinline recursive_loop(int remaining)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 48) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 49) volatile char buf[REC_STACK_SIZE];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 50)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 51) memset((void *)buf, remaining & 0xFF, sizeof(buf));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 52) pr_info("loop %d/%d ...\n", (int)buf[remaining % sizeof(buf)],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 53) recur_count);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 54) if (!remaining)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 55) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 56) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 57) return recursive_loop(remaining - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 58) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 59)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 60) /* If the depth is negative, use the default, otherwise keep parameter. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 61) void __init lkdtm_bugs_init(int *recur_param)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 62) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 63) if (*recur_param < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 64) *recur_param = recur_count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 65) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 66) recur_count = *recur_param;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 67) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 68)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 69) void lkdtm_PANIC(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 70) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 71) panic("dumptest");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 72) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 73)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 74) void lkdtm_BUG(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 75) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 76) BUG();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 77) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 78)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 79) static int warn_counter;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 80)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 81) void lkdtm_WARNING(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 82) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 83) WARN_ON(++warn_counter);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 84) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 85)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 86) void lkdtm_WARNING_MESSAGE(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 87) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 88) WARN(1, "Warning message trigger count: %d\n", ++warn_counter);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 89) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 90)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 91) void lkdtm_EXCEPTION(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 92) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 93) *((volatile int *) 0) = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 94) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 95)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 96) void lkdtm_LOOP(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 97) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 98) for (;;)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 99) ;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) void lkdtm_EXHAUST_STACK(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) pr_info("Calling function with %lu frame size to depth %d ...\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) REC_STACK_SIZE, recur_count);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) recursive_loop(recur_count);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) pr_info("FAIL: survived without exhausting stack?!\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) static noinline void __lkdtm_CORRUPT_STACK(void *stack)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) memset(stack, '\xff', 64);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) /* This should trip the stack canary, not corrupt the return address. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) noinline void lkdtm_CORRUPT_STACK(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) /* Use default char array length that triggers stack protection. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) char data[8] __aligned(sizeof(void *));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) pr_info("Corrupting stack containing char array ...\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) __lkdtm_CORRUPT_STACK((void *)&data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) /* Same as above but will only get a canary with -fstack-protector-strong */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) noinline void lkdtm_CORRUPT_STACK_STRONG(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) union {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) unsigned short shorts[4];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) unsigned long *ptr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) } data __aligned(sizeof(void *));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) pr_info("Corrupting stack containing union ...\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) __lkdtm_CORRUPT_STACK((void *)&data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) void lkdtm_UNALIGNED_LOAD_STORE_WRITE(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) static u8 data[5] __attribute__((aligned(4))) = {1, 2, 3, 4, 5};
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) u32 *p;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) u32 val = 0x12345678;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) p = (u32 *)(data + 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) if (*p == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) val = 0x87654321;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) *p = val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) pr_err("XFAIL: arch has CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) void lkdtm_SOFTLOCKUP(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) preempt_disable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) for (;;)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) cpu_relax();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) void lkdtm_HARDLOCKUP(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) local_irq_disable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) for (;;)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) cpu_relax();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) void lkdtm_SPINLOCKUP(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) /* Must be called twice to trigger. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) spin_lock(&lock_me_up);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) /* Let sparse know we intended to exit holding the lock. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) __release(&lock_me_up);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) void lkdtm_HUNG_TASK(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) set_current_state(TASK_UNINTERRUPTIBLE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) schedule();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) volatile unsigned int huge = INT_MAX - 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) volatile unsigned int ignored;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) void lkdtm_OVERFLOW_SIGNED(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) int value;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) value = huge;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) pr_info("Normal signed addition ...\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) value += 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) ignored = value;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) pr_info("Overflowing signed addition ...\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) value += 4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) ignored = value;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) void lkdtm_OVERFLOW_UNSIGNED(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) unsigned int value;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) value = huge;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) pr_info("Normal unsigned addition ...\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) value += 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) ignored = value;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) pr_info("Overflowing unsigned addition ...\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) value += 4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) ignored = value;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) /* Intentionally using old-style flex array definition of 1 byte. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) struct array_bounds_flex_array {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) int one;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) int two;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) char data[1];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) struct array_bounds {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) int one;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) int two;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) char data[8];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) int three;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) void lkdtm_ARRAY_BOUNDS(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) struct array_bounds_flex_array *not_checked;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) struct array_bounds *checked;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) volatile int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) not_checked = kmalloc(sizeof(*not_checked) * 2, GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) checked = kmalloc(sizeof(*checked) * 2, GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) pr_info("Array access within bounds ...\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) /* For both, touch all bytes in the actual member size. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) for (i = 0; i < sizeof(checked->data); i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) checked->data[i] = 'A';
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) * For the uninstrumented flex array member, also touch 1 byte
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) * beyond to verify it is correctly uninstrumented.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) for (i = 0; i < sizeof(not_checked->data) + 1; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) not_checked->data[i] = 'A';
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) pr_info("Array access beyond bounds ...\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) for (i = 0; i < sizeof(checked->data) + 1; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) checked->data[i] = 'B';
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) kfree(not_checked);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) kfree(checked);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) pr_err("FAIL: survived array bounds overflow!\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) void lkdtm_CORRUPT_LIST_ADD(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) * Initially, an empty list via LIST_HEAD:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) * test_head.next = &test_head
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) * test_head.prev = &test_head
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) LIST_HEAD(test_head);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) struct lkdtm_list good, bad;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) void *target[2] = { };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) void *redirection = ⌖
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) pr_info("attempting good list addition\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) * Adding to the list performs these actions:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) * test_head.next->prev = &good.node
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) * good.node.next = test_head.next
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) * good.node.prev = test_head
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) * test_head.next = good.node
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) list_add(&good.node, &test_head);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) pr_info("attempting corrupted list addition\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) * In simulating this "write what where" primitive, the "what" is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) * the address of &bad.node, and the "where" is the address held
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) * by "redirection".
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) test_head.next = redirection;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) list_add(&bad.node, &test_head);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) if (target[0] == NULL && target[1] == NULL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) pr_err("Overwrite did not happen, but no BUG?!\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) pr_err("list_add() corruption not detected!\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) void lkdtm_CORRUPT_LIST_DEL(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) LIST_HEAD(test_head);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) struct lkdtm_list item;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) void *target[2] = { };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) void *redirection = ⌖
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) list_add(&item.node, &test_head);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) pr_info("attempting good list removal\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) list_del(&item.node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) pr_info("attempting corrupted list removal\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) list_add(&item.node, &test_head);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) /* As with the list_add() test above, this corrupts "next". */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) item.node.next = redirection;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) list_del(&item.node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) if (target[0] == NULL && target[1] == NULL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) pr_err("Overwrite did not happen, but no BUG?!\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) pr_err("list_del() corruption not detected!\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) /* Test that VMAP_STACK is actually allocating with a leading guard page */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) void lkdtm_STACK_GUARD_PAGE_LEADING(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) const unsigned char *stack = task_stack_page(current);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) const unsigned char *ptr = stack - 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) volatile unsigned char byte;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) pr_info("attempting bad read from page below current stack\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) byte = *ptr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) pr_err("FAIL: accessed page before stack! (byte: %x)\n", byte);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) /* Test that VMAP_STACK is actually allocating with a trailing guard page */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) void lkdtm_STACK_GUARD_PAGE_TRAILING(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) const unsigned char *stack = task_stack_page(current);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) const unsigned char *ptr = stack + THREAD_SIZE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) volatile unsigned char byte;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) pr_info("attempting bad read from page above current stack\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) byte = *ptr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) pr_err("FAIL: accessed page after stack! (byte: %x)\n", byte);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) void lkdtm_UNSET_SMEP(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) #if IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_UML)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) #define MOV_CR4_DEPTH 64
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350) void (*direct_write_cr4)(unsigned long val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) unsigned char *insn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) unsigned long cr4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) cr4 = native_read_cr4();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) if ((cr4 & X86_CR4_SMEP) != X86_CR4_SMEP) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358) pr_err("FAIL: SMEP not in use\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) cr4 &= ~(X86_CR4_SMEP);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) pr_info("trying to clear SMEP normally\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) native_write_cr4(cr4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) if (cr4 == native_read_cr4()) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) pr_err("FAIL: pinning SMEP failed!\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) cr4 |= X86_CR4_SMEP;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) pr_info("restoring SMEP\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) native_write_cr4(cr4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) pr_info("ok: SMEP did not get cleared\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) * To test the post-write pinning verification we need to call
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376) * directly into the middle of native_write_cr4() where the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) * cr4 write happens, skipping any pinning. This searches for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378) * the cr4 writing instruction.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) insn = (unsigned char *)native_write_cr4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381) for (i = 0; i < MOV_CR4_DEPTH; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382) /* mov %rdi, %cr4 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383) if (insn[i] == 0x0f && insn[i+1] == 0x22 && insn[i+2] == 0xe7)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) /* mov %rdi,%rax; mov %rax, %cr4 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) if (insn[i] == 0x48 && insn[i+1] == 0x89 &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387) insn[i+2] == 0xf8 && insn[i+3] == 0x0f &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388) insn[i+4] == 0x22 && insn[i+5] == 0xe0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391) if (i >= MOV_CR4_DEPTH) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392) pr_info("ok: cannot locate cr4 writing call gadget\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395) direct_write_cr4 = (void *)(insn + i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397) pr_info("trying to clear SMEP with call gadget\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398) direct_write_cr4(cr4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399) if (native_read_cr4() & X86_CR4_SMEP) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400) pr_info("ok: SMEP removal was reverted\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402) pr_err("FAIL: cleared SMEP not detected!\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403) cr4 |= X86_CR4_SMEP;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404) pr_info("restoring SMEP\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405) native_write_cr4(cr4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408) pr_err("XFAIL: this test is x86_64-only\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412) void lkdtm_DOUBLE_FAULT(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414) #if IS_ENABLED(CONFIG_X86_32) && !IS_ENABLED(CONFIG_UML)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416) * Trigger #DF by setting the stack limit to zero. This clobbers
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417) * a GDT TLS slot, which is okay because the current task will die
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418) * anyway due to the double fault.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420) struct desc_struct d = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421) .type = 3, /* expand-up, writable, accessed data */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422) .p = 1, /* present */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423) .d = 1, /* 32-bit */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424) .g = 0, /* limit in bytes */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425) .s = 1, /* not system */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 426) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 427)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 428) local_irq_disable();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 429) write_gdt_entry(get_cpu_gdt_rw(smp_processor_id()),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 430) GDT_ENTRY_TLS_MIN, &d, DESCTYPE_S);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 431)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 432) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 433) * Put our zero-limit segment in SS and then trigger a fault. The
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 434) * 4-byte access to (%esp) will fault with #SS, and the attempt to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 435) * deliver the fault will recursively cause #SS and result in #DF.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 436) * This whole process happens while NMIs and MCEs are blocked by the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 437) * MOV SS window. This is nice because an NMI with an invalid SS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 438) * would also double-fault, resulting in the NMI or MCE being lost.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 439) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 440) asm volatile ("movw %0, %%ss; addl $0, (%%esp)" ::
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 441) "r" ((unsigned short)(GDT_ENTRY_TLS_MIN << 3)));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 442)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 443) pr_err("FAIL: tried to double fault but didn't die\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 444) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 445) pr_err("XFAIL: this test is ia32-only\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 446) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 447) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 448)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 449) #ifdef CONFIG_ARM64
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 450) static noinline void change_pac_parameters(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 451) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 452) if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 453) /* Reset the keys of current task */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 454) ptrauth_thread_init_kernel(current);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 455) ptrauth_thread_switch_kernel(current);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 456) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 457) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 458) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 459)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 460) noinline void lkdtm_CORRUPT_PAC(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 461) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 462) #ifdef CONFIG_ARM64
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 463) #define CORRUPT_PAC_ITERATE 10
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 464) int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 465)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 466) if (!IS_ENABLED(CONFIG_ARM64_PTR_AUTH))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 467) pr_err("FAIL: kernel not built with CONFIG_ARM64_PTR_AUTH\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 468)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 469) if (!system_supports_address_auth()) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 470) pr_err("FAIL: CPU lacks pointer authentication feature\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 471) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 472) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 473)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 474) pr_info("changing PAC parameters to force function return failure...\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 475) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 476) * PAC is a hash value computed from input keys, return address and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 477) * stack pointer. As pac has fewer bits so there is a chance of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 478) * collision, so iterate few times to reduce the collision probability.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 479) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 480) for (i = 0; i < CORRUPT_PAC_ITERATE; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 481) change_pac_parameters();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 482)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 483) pr_err("FAIL: survived PAC changes! Kernel may be unstable from here\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 484) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 485) pr_err("XFAIL: this test is arm64-only\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 486) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 487) }