Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags   |
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright 2016-2019 HabanaLabs, Ltd.
* All Rights Reserved.
*/
#include <uapi/misc/habanalabs.h>
#include "habanalabs.h"
#include "../include/hw_ip/mmu/mmu_general.h"
#include <linux/uaccess.h>
#include <linux/slab.h>
#include <linux/genalloc.h>
#define HL_MMU_DEBUG 0
/*
* The va ranges in context object contain a list with the available chunks of
* device virtual memory.
* There is one range for host allocations and one for DRAM allocations.
*
* On initialization each range contains one chunk of all of its available
* virtual range which is a half of the total device virtual range.
*
* On each mapping of physical pages, a suitable virtual range chunk (with a
* minimum size) is selected from the list. If the chunk size equals the
* requested size, the chunk is returned. Otherwise, the chunk is split into
* two chunks - one to return as result and a remainder to stay in the list.
*
* On each Unmapping of a virtual address, the relevant virtual chunk is
* returned to the list. The chunk is added to the list and if its edges match
* the edges of the adjacent chunks (means a contiguous chunk can be created),
* the chunks are merged.
*
* On finish, the list is checked to have only one chunk of all the relevant
* virtual range (which is a half of the device total virtual range).
* If not (means not all mappings were unmapped), a warning is printed.
*/
/*
* alloc_device_memory - allocate device memory
*
* @ctx : current context
* @args : host parameters containing the requested size
* @ret_handle : result handle
*
* This function does the following:
* - Allocate the requested size rounded up to 2MB pages
* - Return unique handle
*/
static int alloc_device_memory(struct hl_ctx *ctx, struct hl_mem_in *args,
<------><------><------><------>u32 *ret_handle)
{
<------>struct hl_device *hdev = ctx->hdev;
<------>struct hl_vm *vm = &hdev->vm;
<------>struct hl_vm_phys_pg_pack *phys_pg_pack;
<------>u64 paddr = 0, total_size, num_pgs, i;
<------>u32 num_curr_pgs, page_size, page_shift;
<------>int handle, rc;
<------>bool contiguous;
<------>num_curr_pgs = 0;
<------>page_size = hdev->asic_prop.dram_page_size;
<------>page_shift = __ffs(page_size);
<------>num_pgs = (args->alloc.mem_size + (page_size - 1)) >> page_shift;
<------>total_size = num_pgs << page_shift;
<------>if (!total_size) {
<------><------>dev_err(hdev->dev, "Cannot allocate 0 bytes\n");
<------><------>return -EINVAL;
<------>}
<------>contiguous = args->flags & HL_MEM_CONTIGUOUS;
<------>if (contiguous) {
<------><------>paddr = (u64) gen_pool_alloc(vm->dram_pg_pool, total_size);
<------><------>if (!paddr) {
<------><------><------>dev_err(hdev->dev,
<------><------><------><------>"failed to allocate %llu contiguous pages with total size of %llu\n",
<------><------><------><------>num_pgs, total_size);
<------><------><------>return -ENOMEM;
<------><------>}
<------>}
<------>phys_pg_pack = kzalloc(sizeof(*phys_pg_pack), GFP_KERNEL);
<------>if (!phys_pg_pack) {
<------><------>rc = -ENOMEM;
<------><------>goto pages_pack_err;
<------>}
<------>phys_pg_pack->vm_type = VM_TYPE_PHYS_PACK;
<------>phys_pg_pack->asid = ctx->asid;
<------>phys_pg_pack->npages = num_pgs;
<------>phys_pg_pack->page_size = page_size;
<------>phys_pg_pack->total_size = total_size;
<------>phys_pg_pack->flags = args->flags;
<------>phys_pg_pack->contiguous = contiguous;
<------>phys_pg_pack->pages = kvmalloc_array(num_pgs, sizeof(u64), GFP_KERNEL);
<------>if (ZERO_OR_NULL_PTR(phys_pg_pack->pages)) {
<------><------>rc = -ENOMEM;
<------><------>goto pages_arr_err;
<------>}
<------>if (phys_pg_pack->contiguous) {
<------><------>for (i = 0 ; i < num_pgs ; i++)
<------><------><------>phys_pg_pack->pages[i] = paddr + i * page_size;
<------>} else {
<------><------>for (i = 0 ; i < num_pgs ; i++) {
<------><------><------>phys_pg_pack->pages[i] = (u64) gen_pool_alloc(
<------><------><------><------><------><------><------>vm->dram_pg_pool,
<------><------><------><------><------><------><------>page_size);
<------><------><------>if (!phys_pg_pack->pages[i]) {
<------><------><------><------>dev_err(hdev->dev,
<------><------><------><------><------>"Failed to allocate device memory (out of memory)\n");
<------><------><------><------>rc = -ENOMEM;
<------><------><------><------>goto page_err;
<------><------><------>}
<------><------><------>num_curr_pgs++;
<------><------>}
<------>}
<------>spin_lock(&vm->idr_lock);
<------>handle = idr_alloc(&vm->phys_pg_pack_handles, phys_pg_pack, 1, 0,
<------><------><------><------>GFP_ATOMIC);
<------>spin_unlock(&vm->idr_lock);
<------>if (handle < 0) {
<------><------>dev_err(hdev->dev, "Failed to get handle for page\n");
<------><------>rc = -EFAULT;
<------><------>goto idr_err;
<------>}
<------>for (i = 0 ; i < num_pgs ; i++)
<------><------>kref_get(&vm->dram_pg_pool_refcount);
<------>phys_pg_pack->handle = handle;
<------>atomic64_add(phys_pg_pack->total_size, &ctx->dram_phys_mem);
<------>atomic64_add(phys_pg_pack->total_size, &hdev->dram_used_mem);
<------>*ret_handle = handle;
<------>return 0;
idr_err:
page_err:
<------>if (!phys_pg_pack->contiguous)
<------><------>for (i = 0 ; i < num_curr_pgs ; i++)
<------><------><------>gen_pool_free(vm->dram_pg_pool, phys_pg_pack->pages[i],
<------><------><------><------><------>page_size);
<------>kvfree(phys_pg_pack->pages);
pages_arr_err:
<------>kfree(phys_pg_pack);
pages_pack_err:
<------>if (contiguous)
<------><------>gen_pool_free(vm->dram_pg_pool, paddr, total_size);
<------>return rc;
}
/*
* dma_map_host_va - DMA mapping of the given host virtual address.
* @hdev: habanalabs device structure
* @addr: the host virtual address of the memory area
* @size: the size of the memory area
* @p_userptr: pointer to result userptr structure
*
* This function does the following:
* - Allocate userptr structure
* - Pin the given host memory using the userptr structure
* - Perform DMA mapping to have the DMA addresses of the pages
*/
static int dma_map_host_va(struct hl_device *hdev, u64 addr, u64 size,
<------><------><------><------>struct hl_userptr **p_userptr)
{
<------>struct hl_userptr *userptr;
<------>int rc;
<------>userptr = kzalloc(sizeof(*userptr), GFP_KERNEL);
<------>if (!userptr) {
<------><------>rc = -ENOMEM;
<------><------>goto userptr_err;
<------>}
<------>rc = hl_pin_host_memory(hdev, addr, size, userptr);
<------>if (rc) {
<------><------>dev_err(hdev->dev, "Failed to pin host memory\n");
<------><------>goto pin_err;
<------>}
<------>rc = hdev->asic_funcs->asic_dma_map_sg(hdev, userptr->sgt->sgl,
<------><------><------><------><------>userptr->sgt->nents, DMA_BIDIRECTIONAL);
<------>if (rc) {
<------><------>dev_err(hdev->dev, "failed to map sgt with DMA region\n");
<------><------>goto dma_map_err;
<------>}
<------>userptr->dma_mapped = true;
<------>userptr->dir = DMA_BIDIRECTIONAL;
<------>userptr->vm_type = VM_TYPE_USERPTR;
<------>*p_userptr = userptr;
<------>return 0;
dma_map_err:
<------>hl_unpin_host_memory(hdev, userptr);
pin_err:
<------>kfree(userptr);
userptr_err:
<------>return rc;
}
/*
* dma_unmap_host_va - DMA unmapping of the given host virtual address.
* @hdev: habanalabs device structure
* @userptr: userptr to free
*
* This function does the following:
* - Unpins the physical pages
* - Frees the userptr structure
*/
static void dma_unmap_host_va(struct hl_device *hdev,
<------><------><------><------>struct hl_userptr *userptr)
{
<------>hl_unpin_host_memory(hdev, userptr);
<------>kfree(userptr);
}
/*
* dram_pg_pool_do_release - free DRAM pages pool
*
* @ref : pointer to reference object
*
* This function does the following:
* - Frees the idr structure of physical pages handles
* - Frees the generic pool of DRAM physical pages
*/
static void dram_pg_pool_do_release(struct kref *ref)
{
<------>struct hl_vm *vm = container_of(ref, struct hl_vm,
<------><------><------>dram_pg_pool_refcount);
<------>/*
<------> * free the idr here as only here we know for sure that there are no
<------> * allocated physical pages and hence there are no handles in use
<------> */
<------>idr_destroy(&vm->phys_pg_pack_handles);
<------>gen_pool_destroy(vm->dram_pg_pool);
}
/*
* free_phys_pg_pack - free physical page pack
* @hdev: habanalabs device structure
* @phys_pg_pack: physical page pack to free
*
* This function does the following:
* - For DRAM memory only, iterate over the pack and free each physical block
* structure by returning it to the general pool
* - Free the hl_vm_phys_pg_pack structure
*/
static void free_phys_pg_pack(struct hl_device *hdev,
<------><------><------><------>struct hl_vm_phys_pg_pack *phys_pg_pack)
{
<------>struct hl_vm *vm = &hdev->vm;
<------>u64 i;
<------>if (!phys_pg_pack->created_from_userptr) {
<------><------>if (phys_pg_pack->contiguous) {
<------><------><------>gen_pool_free(vm->dram_pg_pool, phys_pg_pack->pages[0],
<------><------><------><------><------>phys_pg_pack->total_size);
<------><------><------>for (i = 0; i < phys_pg_pack->npages ; i++)
<------><------><------><------>kref_put(&vm->dram_pg_pool_refcount,
<------><------><------><------><------>dram_pg_pool_do_release);
<------><------>} else {
<------><------><------>for (i = 0 ; i < phys_pg_pack->npages ; i++) {
<------><------><------><------>gen_pool_free(vm->dram_pg_pool,
<------><------><------><------><------><------>phys_pg_pack->pages[i],
<------><------><------><------><------><------>phys_pg_pack->page_size);
<------><------><------><------>kref_put(&vm->dram_pg_pool_refcount,
<------><------><------><------><------>dram_pg_pool_do_release);
<------><------><------>}
<------><------>}
<------>}
<------>kvfree(phys_pg_pack->pages);
<------>kfree(phys_pg_pack);
}
/*
* free_device_memory - free device memory
*
* @ctx : current context
* @handle : handle of the memory chunk to free
*
* This function does the following:
* - Free the device memory related to the given handle
*/
static int free_device_memory(struct hl_ctx *ctx, u32 handle)
{
<------>struct hl_device *hdev = ctx->hdev;
<------>struct hl_vm *vm = &hdev->vm;
<------>struct hl_vm_phys_pg_pack *phys_pg_pack;
<------>spin_lock(&vm->idr_lock);
<------>phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle);
<------>if (phys_pg_pack) {
<------><------>if (atomic_read(&phys_pg_pack->mapping_cnt) > 0) {
<------><------><------>dev_err(hdev->dev, "handle %u is mapped, cannot free\n",
<------><------><------><------>handle);
<------><------><------>spin_unlock(&vm->idr_lock);
<------><------><------>return -EINVAL;
<------><------>}
<------><------>/*
<------><------> * must remove from idr before the freeing of the physical
<------><------> * pages as the refcount of the pool is also the trigger of the
<------><------> * idr destroy
<------><------> */
<------><------>idr_remove(&vm->phys_pg_pack_handles, handle);
<------><------>spin_unlock(&vm->idr_lock);
<------><------>atomic64_sub(phys_pg_pack->total_size, &ctx->dram_phys_mem);
<------><------>atomic64_sub(phys_pg_pack->total_size, &hdev->dram_used_mem);
<------><------>free_phys_pg_pack(hdev, phys_pg_pack);
<------>} else {
<------><------>spin_unlock(&vm->idr_lock);
<------><------>dev_err(hdev->dev,
<------><------><------>"free device memory failed, no match for handle %u\n",
<------><------><------>handle);
<------><------>return -EINVAL;
<------>}
<------>return 0;
}
/*
* clear_va_list_locked - free virtual addresses list
*
* @hdev : habanalabs device structure
* @va_list : list of virtual addresses to free
*
* This function does the following:
* - Iterate over the list and free each virtual addresses block
*
* This function should be called only when va_list lock is taken
*/
static void clear_va_list_locked(struct hl_device *hdev,
<------><------>struct list_head *va_list)
{
<------>struct hl_vm_va_block *va_block, *tmp;
<------>list_for_each_entry_safe(va_block, tmp, va_list, node) {
<------><------>list_del(&va_block->node);
<------><------>kfree(va_block);
<------>}
}
/*
* print_va_list_locked - print virtual addresses list
*
* @hdev : habanalabs device structure
* @va_list : list of virtual addresses to print
*
* This function does the following:
* - Iterate over the list and print each virtual addresses block
*
* This function should be called only when va_list lock is taken
*/
static void print_va_list_locked(struct hl_device *hdev,
<------><------>struct list_head *va_list)
{
#if HL_MMU_DEBUG
<------>struct hl_vm_va_block *va_block;
<------>dev_dbg(hdev->dev, "print va list:\n");
<------>list_for_each_entry(va_block, va_list, node)
<------><------>dev_dbg(hdev->dev,
<------><------><------>"va block, start: 0x%llx, end: 0x%llx, size: %llu\n",
<------><------><------>va_block->start, va_block->end, va_block->size);
#endif
}
/*
* merge_va_blocks_locked - merge a virtual block if possible
*
* @hdev : pointer to the habanalabs device structure
* @va_list : pointer to the virtual addresses block list
* @va_block : virtual block to merge with adjacent blocks
*
* This function does the following:
* - Merge the given blocks with the adjacent blocks if their virtual ranges
* create a contiguous virtual range
*
* This Function should be called only when va_list lock is taken
*/
static void merge_va_blocks_locked(struct hl_device *hdev,
<------><------>struct list_head *va_list, struct hl_vm_va_block *va_block)
{
<------>struct hl_vm_va_block *prev, *next;
<------>prev = list_prev_entry(va_block, node);
<------>if (&prev->node != va_list && prev->end + 1 == va_block->start) {
<------><------>prev->end = va_block->end;
<------><------>prev->size = prev->end - prev->start;
<------><------>list_del(&va_block->node);
<------><------>kfree(va_block);
<------><------>va_block = prev;
<------>}
<------>next = list_next_entry(va_block, node);
<------>if (&next->node != va_list && va_block->end + 1 == next->start) {
<------><------>next->start = va_block->start;
<------><------>next->size = next->end - next->start;
<------><------>list_del(&va_block->node);
<------><------>kfree(va_block);
<------>}
}
/*
* add_va_block_locked - add a virtual block to the virtual addresses list
*
* @hdev : pointer to the habanalabs device structure
* @va_list : pointer to the virtual addresses block list
* @start : start virtual address
* @end : end virtual address
*
* This function does the following:
* - Add the given block to the virtual blocks list and merge with other
* blocks if a contiguous virtual block can be created
*
* This Function should be called only when va_list lock is taken
*/
static int add_va_block_locked(struct hl_device *hdev,
<------><------>struct list_head *va_list, u64 start, u64 end)
{
<------>struct hl_vm_va_block *va_block, *res = NULL;
<------>u64 size = end - start;
<------>print_va_list_locked(hdev, va_list);
<------>list_for_each_entry(va_block, va_list, node) {
<------><------>/* TODO: remove upon matureness */
<------><------>if (hl_mem_area_crosses_range(start, size, va_block->start,
<------><------><------><------>va_block->end)) {
<------><------><------>dev_err(hdev->dev,
<------><------><------><------>"block crossing ranges at start 0x%llx, end 0x%llx\n",
<------><------><------><------>va_block->start, va_block->end);
<------><------><------>return -EINVAL;
<------><------>}
<------><------>if (va_block->end < start)
<------><------><------>res = va_block;
<------>}
<------>va_block = kmalloc(sizeof(*va_block), GFP_KERNEL);
<------>if (!va_block)
<------><------>return -ENOMEM;
<------>va_block->start = start;
<------>va_block->end = end;
<------>va_block->size = size;
<------>if (!res)
<------><------>list_add(&va_block->node, va_list);
<------>else
<------><------>list_add(&va_block->node, &res->node);
<------>merge_va_blocks_locked(hdev, va_list, va_block);
<------>print_va_list_locked(hdev, va_list);
<------>return 0;
}
/*
* add_va_block - wrapper for add_va_block_locked
*
* @hdev : pointer to the habanalabs device structure
* @va_list : pointer to the virtual addresses block list
* @start : start virtual address
* @end : end virtual address
*
* This function does the following:
* - Takes the list lock and calls add_va_block_locked
*/
static inline int add_va_block(struct hl_device *hdev,
<------><------>struct hl_va_range *va_range, u64 start, u64 end)
{
<------>int rc;
<------>mutex_lock(&va_range->lock);
<------>rc = add_va_block_locked(hdev, &va_range->list, start, end);
<------>mutex_unlock(&va_range->lock);
<------>return rc;
}
/*
* get_va_block() - get a virtual block for the given size and alignment.
* @hdev: pointer to the habanalabs device structure.
* @va_range: pointer to the virtual addresses range.
* @size: requested block size.
* @hint_addr: hint for requested address by the user.
* @va_block_align: required alignment of the virtual block start address.
*
* This function does the following:
* - Iterate on the virtual block list to find a suitable virtual block for the
* given size and alignment.
* - Reserve the requested block and update the list.
* - Return the start address of the virtual block.
*/
static u64 get_va_block(struct hl_device *hdev, struct hl_va_range *va_range,
<------><------><------>u64 size, u64 hint_addr, u32 va_block_align)
{
<------>struct hl_vm_va_block *va_block, *new_va_block = NULL;
<------>u64 valid_start, valid_size, prev_start, prev_end, align_mask,
<------><------>res_valid_start = 0, res_valid_size = 0;
<------>bool add_prev = false;
<------>align_mask = ~((u64)va_block_align - 1);
<------>/* check if hint_addr is aligned */
<------>if (hint_addr & (va_block_align - 1))
<------><------>hint_addr = 0;
<------>mutex_lock(&va_range->lock);
<------>print_va_list_locked(hdev, &va_range->list);
<------>list_for_each_entry(va_block, &va_range->list, node) {
<------><------>/* calc the first possible aligned addr */
<------><------>valid_start = va_block->start;
<------><------>if (valid_start & (va_block_align - 1)) {
<------><------><------>valid_start &= align_mask;
<------><------><------>valid_start += va_block_align;
<------><------><------>if (valid_start > va_block->end)
<------><------><------><------>continue;
<------><------>}
<------><------>valid_size = va_block->end - valid_start;
<------><------>if (valid_size >= size &&
<------><------><------>(!new_va_block || valid_size < res_valid_size)) {
<------><------><------>new_va_block = va_block;
<------><------><------>res_valid_start = valid_start;
<------><------><------>res_valid_size = valid_size;
<------><------>}
<------><------>if (hint_addr && hint_addr >= valid_start &&
<------><------><------><------>((hint_addr + size) <= va_block->end)) {
<------><------><------>new_va_block = va_block;
<------><------><------>res_valid_start = hint_addr;
<------><------><------>res_valid_size = valid_size;
<------><------><------>break;
<------><------>}
<------>}
<------>if (!new_va_block) {
<------><------>dev_err(hdev->dev, "no available va block for size %llu\n",
<------><------><------><------>size);
<------><------>goto out;
<------>}
<------>if (res_valid_start > new_va_block->start) {
<------><------>prev_start = new_va_block->start;
<------><------>prev_end = res_valid_start - 1;
<------><------>new_va_block->start = res_valid_start;
<------><------>new_va_block->size = res_valid_size;
<------><------>add_prev = true;
<------>}
<------>if (new_va_block->size > size) {
<------><------>new_va_block->start += size;
<------><------>new_va_block->size = new_va_block->end - new_va_block->start;
<------>} else {
<------><------>list_del(&new_va_block->node);
<------><------>kfree(new_va_block);
<------>}
<------>if (add_prev)
<------><------>add_va_block_locked(hdev, &va_range->list, prev_start,
<------><------><------><------>prev_end);
<------>print_va_list_locked(hdev, &va_range->list);
out:
<------>mutex_unlock(&va_range->lock);
<------>return res_valid_start;
}
/*
* get_sg_info - get number of pages and the DMA address from SG list
*
* @sg : the SG list
* @dma_addr : pointer to DMA address to return
*
* Calculate the number of consecutive pages described by the SG list. Take the
* offset of the address in the first page, add to it the length and round it up
* to the number of needed pages.
*/
static u32 get_sg_info(struct scatterlist *sg, dma_addr_t *dma_addr)
{
<------>*dma_addr = sg_dma_address(sg);
<------>return ((((*dma_addr) & (PAGE_SIZE - 1)) + sg_dma_len(sg)) +
<------><------><------>(PAGE_SIZE - 1)) >> PAGE_SHIFT;
}
/*
* init_phys_pg_pack_from_userptr - initialize physical page pack from host
* memory
* @ctx: current context
* @userptr: userptr to initialize from
* @pphys_pg_pack: result pointer
*
* This function does the following:
* - Pin the physical pages related to the given virtual block
* - Create a physical page pack from the physical pages related to the given
* virtual block
*/
static int init_phys_pg_pack_from_userptr(struct hl_ctx *ctx,
<------><------><------><------>struct hl_userptr *userptr,
<------><------><------><------>struct hl_vm_phys_pg_pack **pphys_pg_pack)
{
<------>struct hl_vm_phys_pg_pack *phys_pg_pack;
<------>struct scatterlist *sg;
<------>dma_addr_t dma_addr;
<------>u64 page_mask, total_npages;
<------>u32 npages, page_size = PAGE_SIZE,
<------><------>huge_page_size = ctx->hdev->asic_prop.pmmu_huge.page_size;
<------>bool first = true, is_huge_page_opt = true;
<------>int rc, i, j;
<------>u32 pgs_in_huge_page = huge_page_size >> __ffs(page_size);
<------>phys_pg_pack = kzalloc(sizeof(*phys_pg_pack), GFP_KERNEL);
<------>if (!phys_pg_pack)
<------><------>return -ENOMEM;
<------>phys_pg_pack->vm_type = userptr->vm_type;
<------>phys_pg_pack->created_from_userptr = true;
<------>phys_pg_pack->asid = ctx->asid;
<------>atomic_set(&phys_pg_pack->mapping_cnt, 1);
<------>/* Only if all dma_addrs are aligned to 2MB and their
<------> * sizes is at least 2MB, we can use huge page mapping.
<------> * We limit the 2MB optimization to this condition,
<------> * since later on we acquire the related VA range as one
<------> * consecutive block.
<------> */
<------>total_npages = 0;
<------>for_each_sg(userptr->sgt->sgl, sg, userptr->sgt->nents, i) {
<------><------>npages = get_sg_info(sg, &dma_addr);
<------><------>total_npages += npages;
<------><------>if ((npages % pgs_in_huge_page) ||
<------><------><------><------><------>(dma_addr & (huge_page_size - 1)))
<------><------><------>is_huge_page_opt = false;
<------>}
<------>if (is_huge_page_opt) {
<------><------>page_size = huge_page_size;
<------><------>do_div(total_npages, pgs_in_huge_page);
<------>}
<------>page_mask = ~(((u64) page_size) - 1);
<------>phys_pg_pack->pages = kvmalloc_array(total_npages, sizeof(u64),
<------><------><------><------><------><------>GFP_KERNEL);
<------>if (ZERO_OR_NULL_PTR(phys_pg_pack->pages)) {
<------><------>rc = -ENOMEM;
<------><------>goto page_pack_arr_mem_err;
<------>}
<------>phys_pg_pack->npages = total_npages;
<------>phys_pg_pack->page_size = page_size;
<------>phys_pg_pack->total_size = total_npages * page_size;
<------>j = 0;
<------>for_each_sg(userptr->sgt->sgl, sg, userptr->sgt->nents, i) {
<------><------>npages = get_sg_info(sg, &dma_addr);
<------><------>/* align down to physical page size and save the offset */
<------><------>if (first) {
<------><------><------>first = false;
<------><------><------>phys_pg_pack->offset = dma_addr & (page_size - 1);
<------><------><------>dma_addr &= page_mask;
<------><------>}
<------><------>while (npages) {
<------><------><------>phys_pg_pack->pages[j++] = dma_addr;
<------><------><------>dma_addr += page_size;
<------><------><------>if (is_huge_page_opt)
<------><------><------><------>npages -= pgs_in_huge_page;
<------><------><------>else
<------><------><------><------>npages--;
<------><------>}
<------>}
<------>*pphys_pg_pack = phys_pg_pack;
<------>return 0;
page_pack_arr_mem_err:
<------>kfree(phys_pg_pack);
<------>return rc;
}
/*
* map_phys_pg_pack - maps the physical page pack.
* @ctx: current context
* @vaddr: start address of the virtual area to map from
* @phys_pg_pack: the pack of physical pages to map to
*
* This function does the following:
* - Maps each chunk of virtual memory to matching physical chunk
* - Stores number of successful mappings in the given argument
* - Returns 0 on success, error code otherwise
*/
static int map_phys_pg_pack(struct hl_ctx *ctx, u64 vaddr,
<------><------><------><------>struct hl_vm_phys_pg_pack *phys_pg_pack)
{
<------>struct hl_device *hdev = ctx->hdev;
<------>u64 next_vaddr = vaddr, paddr, mapped_pg_cnt = 0, i;
<------>u32 page_size = phys_pg_pack->page_size;
<------>int rc = 0;
<------>for (i = 0 ; i < phys_pg_pack->npages ; i++) {
<------><------>paddr = phys_pg_pack->pages[i];
<------><------>rc = hl_mmu_map(ctx, next_vaddr, paddr, page_size,
<------><------><------><------>(i + 1) == phys_pg_pack->npages);
<------><------>if (rc) {
<------><------><------>dev_err(hdev->dev,
<------><------><------><------>"map failed for handle %u, npages: %llu, mapped: %llu",
<------><------><------><------>phys_pg_pack->handle, phys_pg_pack->npages,
<------><------><------><------>mapped_pg_cnt);
<------><------><------>goto err;
<------><------>}
<------><------>mapped_pg_cnt++;
<------><------>next_vaddr += page_size;
<------>}
<------>return 0;
err:
<------>next_vaddr = vaddr;
<------>for (i = 0 ; i < mapped_pg_cnt ; i++) {
<------><------>if (hl_mmu_unmap(ctx, next_vaddr, page_size,
<------><------><------><------><------>(i + 1) == mapped_pg_cnt))
<------><------><------>dev_warn_ratelimited(hdev->dev,
<------><------><------><------>"failed to unmap handle %u, va: 0x%llx, pa: 0x%llx, page size: %u\n",
<------><------><------><------><------>phys_pg_pack->handle, next_vaddr,
<------><------><------><------><------>phys_pg_pack->pages[i], page_size);
<------><------>next_vaddr += page_size;
<------>}
<------>return rc;
}
/*
* unmap_phys_pg_pack - unmaps the physical page pack
* @ctx: current context
* @vaddr: start address of the virtual area to unmap
* @phys_pg_pack: the pack of physical pages to unmap
*/
static void unmap_phys_pg_pack(struct hl_ctx *ctx, u64 vaddr,
<------><------><------><------>struct hl_vm_phys_pg_pack *phys_pg_pack)
{
<------>struct hl_device *hdev = ctx->hdev;
<------>u64 next_vaddr, i;
<------>u32 page_size;
<------>page_size = phys_pg_pack->page_size;
<------>next_vaddr = vaddr;
<------>for (i = 0 ; i < phys_pg_pack->npages ; i++, next_vaddr += page_size) {
<------><------>if (hl_mmu_unmap(ctx, next_vaddr, page_size,
<------><------><------><------> (i + 1) == phys_pg_pack->npages))
<------><------><------>dev_warn_ratelimited(hdev->dev,
<------><------><------>"unmap failed for vaddr: 0x%llx\n", next_vaddr);
<------><------>/*
<------><------> * unmapping on Palladium can be really long, so avoid a CPU
<------><------> * soft lockup bug by sleeping a little between unmapping pages
<------><------> */
<------><------>if (hdev->pldm)
<------><------><------>usleep_range(500, 1000);
<------>}
}
static int get_paddr_from_handle(struct hl_ctx *ctx, struct hl_mem_in *args,
<------><------><------><------>u64 *paddr)
{
<------>struct hl_device *hdev = ctx->hdev;
<------>struct hl_vm *vm = &hdev->vm;
<------>struct hl_vm_phys_pg_pack *phys_pg_pack;
<------>u32 handle;
<------>handle = lower_32_bits(args->map_device.handle);
<------>spin_lock(&vm->idr_lock);
<------>phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle);
<------>if (!phys_pg_pack) {
<------><------>spin_unlock(&vm->idr_lock);
<------><------>dev_err(hdev->dev, "no match for handle %u\n", handle);
<------><------>return -EINVAL;
<------>}
<------>*paddr = phys_pg_pack->pages[0];
<------>spin_unlock(&vm->idr_lock);
<------>return 0;
}
/*
* map_device_va - map the given memory
*
* @ctx : current context
* @args : host parameters with handle/host virtual address
* @device_addr : pointer to result device virtual address
*
* This function does the following:
* - If given a physical device memory handle, map to a device virtual block
* and return the start address of this block
* - If given a host virtual address and size, find the related physical pages,
* map a device virtual block to this pages and return the start address of
* this block
*/
static int map_device_va(struct hl_ctx *ctx, struct hl_mem_in *args,
<------><------>u64 *device_addr)
{
<------>struct hl_device *hdev = ctx->hdev;
<------>struct hl_vm *vm = &hdev->vm;
<------>struct hl_vm_phys_pg_pack *phys_pg_pack;
<------>struct hl_userptr *userptr = NULL;
<------>struct hl_vm_hash_node *hnode;
<------>struct hl_va_range *va_range;
<------>enum vm_type_t *vm_type;
<------>u64 ret_vaddr, hint_addr;
<------>u32 handle = 0, va_block_align;
<------>int rc;
<------>bool is_userptr = args->flags & HL_MEM_USERPTR;
<------>/* Assume failure */
<------>*device_addr = 0;
<------>if (is_userptr) {
<------><------>u64 addr = args->map_host.host_virt_addr,
<------><------><------>size = args->map_host.mem_size;
<------><------>u32 page_size = hdev->asic_prop.pmmu.page_size,
<------><------><------>huge_page_size = hdev->asic_prop.pmmu_huge.page_size;
<------><------>rc = dma_map_host_va(hdev, addr, size, &userptr);
<------><------>if (rc) {
<------><------><------>dev_err(hdev->dev, "failed to get userptr from va\n");
<------><------><------>return rc;
<------><------>}
<------><------>rc = init_phys_pg_pack_from_userptr(ctx, userptr,
<------><------><------><------>&phys_pg_pack);
<------><------>if (rc) {
<------><------><------>dev_err(hdev->dev,
<------><------><------><------>"unable to init page pack for vaddr 0x%llx\n",
<------><------><------><------>addr);
<------><------><------>goto init_page_pack_err;
<------><------>}
<------><------>vm_type = (enum vm_type_t *) userptr;
<------><------>hint_addr = args->map_host.hint_addr;
<------><------>handle = phys_pg_pack->handle;
<------><------>/* get required alignment */
<------><------>if (phys_pg_pack->page_size == page_size) {
<------><------><------>va_range = ctx->host_va_range;
<------><------><------>/*
<------><------><------> * huge page alignment may be needed in case of regular
<------><------><------> * page mapping, depending on the host VA alignment
<------><------><------> */
<------><------><------>if (addr & (huge_page_size - 1))
<------><------><------><------>va_block_align = page_size;
<------><------><------>else
<------><------><------><------>va_block_align = huge_page_size;
<------><------>} else {
<------><------><------>/*
<------><------><------> * huge page alignment is needed in case of huge page
<------><------><------> * mapping
<------><------><------> */
<------><------><------>va_range = ctx->host_huge_va_range;
<------><------><------>va_block_align = huge_page_size;
<------><------>}
<------>} else {
<------><------>handle = lower_32_bits(args->map_device.handle);
<------><------>spin_lock(&vm->idr_lock);
<------><------>phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle);
<------><------>if (!phys_pg_pack) {
<------><------><------>spin_unlock(&vm->idr_lock);
<------><------><------>dev_err(hdev->dev,
<------><------><------><------>"no match for handle %u\n", handle);
<------><------><------>return -EINVAL;
<------><------>}
<------><------>/* increment now to avoid freeing device memory while mapping */
<------><------>atomic_inc(&phys_pg_pack->mapping_cnt);
<------><------>spin_unlock(&vm->idr_lock);
<------><------>vm_type = (enum vm_type_t *) phys_pg_pack;
<------><------>hint_addr = args->map_device.hint_addr;
<------><------>/* DRAM VA alignment is the same as the DRAM page size */
<------><------>va_range = ctx->dram_va_range;
<------><------>va_block_align = hdev->asic_prop.dmmu.page_size;
<------>}
<------>/*
<------> * relevant for mapping device physical memory only, as host memory is
<------> * implicitly shared
<------> */
<------>if (!is_userptr && !(phys_pg_pack->flags & HL_MEM_SHARED) &&
<------><------><------>phys_pg_pack->asid != ctx->asid) {
<------><------>dev_err(hdev->dev,
<------><------><------>"Failed to map memory, handle %u is not shared\n",
<------><------><------>handle);
<------><------>rc = -EPERM;
<------><------>goto shared_err;
<------>}
<------>hnode = kzalloc(sizeof(*hnode), GFP_KERNEL);
<------>if (!hnode) {
<------><------>rc = -ENOMEM;
<------><------>goto hnode_err;
<------>}
<------>ret_vaddr = get_va_block(hdev, va_range, phys_pg_pack->total_size,
<------><------><------><------><------>hint_addr, va_block_align);
<------>if (!ret_vaddr) {
<------><------>dev_err(hdev->dev, "no available va block for handle %u\n",
<------><------><------><------>handle);
<------><------>rc = -ENOMEM;
<------><------>goto va_block_err;
<------>}
<------>mutex_lock(&ctx->mmu_lock);
<------>rc = map_phys_pg_pack(ctx, ret_vaddr, phys_pg_pack);
<------>if (rc) {
<------><------>mutex_unlock(&ctx->mmu_lock);
<------><------>dev_err(hdev->dev, "mapping page pack failed for handle %u\n",
<------><------><------><------>handle);
<------><------>goto map_err;
<------>}
<------>rc = hdev->asic_funcs->mmu_invalidate_cache(hdev, false, *vm_type);
<------>mutex_unlock(&ctx->mmu_lock);
<------>if (rc) {
<------><------>dev_err(hdev->dev,
<------><------><------>"mapping handle %u failed due to MMU cache invalidation\n",
<------><------><------>handle);
<------><------>goto map_err;
<------>}
<------>ret_vaddr += phys_pg_pack->offset;
<------>hnode->ptr = vm_type;
<------>hnode->vaddr = ret_vaddr;
<------>mutex_lock(&ctx->mem_hash_lock);
<------>hash_add(ctx->mem_hash, &hnode->node, ret_vaddr);
<------>mutex_unlock(&ctx->mem_hash_lock);
<------>*device_addr = ret_vaddr;
<------>if (is_userptr)
<------><------>free_phys_pg_pack(hdev, phys_pg_pack);
<------>return 0;
map_err:
<------>if (add_va_block(hdev, va_range, ret_vaddr,
<------><------><------><------>ret_vaddr + phys_pg_pack->total_size - 1))
<------><------>dev_warn(hdev->dev,
<------><------><------>"release va block failed for handle 0x%x, vaddr: 0x%llx\n",
<------><------><------><------>handle, ret_vaddr);
va_block_err:
<------>kfree(hnode);
hnode_err:
shared_err:
<------>atomic_dec(&phys_pg_pack->mapping_cnt);
<------>if (is_userptr)
<------><------>free_phys_pg_pack(hdev, phys_pg_pack);
init_page_pack_err:
<------>if (is_userptr)
<------><------>dma_unmap_host_va(hdev, userptr);
<------>return rc;
}
/*
* unmap_device_va - unmap the given device virtual address
*
* @ctx : current context
* @vaddr : device virtual address to unmap
* @ctx_free : true if in context free flow, false otherwise.
*
* This function does the following:
* - Unmap the physical pages related to the given virtual address
* - return the device virtual block to the virtual block list
*/
static int unmap_device_va(struct hl_ctx *ctx, u64 vaddr, bool ctx_free)
{
<------>struct hl_device *hdev = ctx->hdev;
<------>struct hl_vm_phys_pg_pack *phys_pg_pack = NULL;
<------>struct hl_vm_hash_node *hnode = NULL;
<------>struct hl_userptr *userptr = NULL;
<------>struct hl_va_range *va_range;
<------>enum vm_type_t *vm_type;
<------>bool is_userptr;
<------>int rc = 0;
<------>/* protect from double entrance */
<------>mutex_lock(&ctx->mem_hash_lock);
<------>hash_for_each_possible(ctx->mem_hash, hnode, node, (unsigned long)vaddr)
<------><------>if (vaddr == hnode->vaddr)
<------><------><------>break;
<------>if (!hnode) {
<------><------>mutex_unlock(&ctx->mem_hash_lock);
<------><------>dev_err(hdev->dev,
<------><------><------>"unmap failed, no mem hnode for vaddr 0x%llx\n",
<------><------><------>vaddr);
<------><------>return -EINVAL;
<------>}
<------>hash_del(&hnode->node);
<------>mutex_unlock(&ctx->mem_hash_lock);
<------>vm_type = hnode->ptr;
<------>if (*vm_type == VM_TYPE_USERPTR) {
<------><------>is_userptr = true;
<------><------>userptr = hnode->ptr;
<------><------>rc = init_phys_pg_pack_from_userptr(ctx, userptr,
<------><------><------><------><------><------><------>&phys_pg_pack);
<------><------>if (rc) {
<------><------><------>dev_err(hdev->dev,
<------><------><------><------>"unable to init page pack for vaddr 0x%llx\n",
<------><------><------><------>vaddr);
<------><------><------>goto vm_type_err;
<------><------>}
<------><------>if (phys_pg_pack->page_size ==
<------><------><------><------><------>hdev->asic_prop.pmmu.page_size)
<------><------><------>va_range = ctx->host_va_range;
<------><------>else
<------><------><------>va_range = ctx->host_huge_va_range;
<------>} else if (*vm_type == VM_TYPE_PHYS_PACK) {
<------><------>is_userptr = false;
<------><------>va_range = ctx->dram_va_range;
<------><------>phys_pg_pack = hnode->ptr;
<------>} else {
<------><------>dev_warn(hdev->dev,
<------><------><------>"unmap failed, unknown vm desc for vaddr 0x%llx\n",
<------><------><------><------>vaddr);
<------><------>rc = -EFAULT;
<------><------>goto vm_type_err;
<------>}
<------>if (atomic_read(&phys_pg_pack->mapping_cnt) == 0) {
<------><------>dev_err(hdev->dev, "vaddr 0x%llx is not mapped\n", vaddr);
<------><------>rc = -EINVAL;
<------><------>goto mapping_cnt_err;
<------>}
<------>vaddr &= ~(((u64) phys_pg_pack->page_size) - 1);
<------>mutex_lock(&ctx->mmu_lock);
<------>unmap_phys_pg_pack(ctx, vaddr, phys_pg_pack);
<------>/*
<------> * During context free this function is called in a loop to clean all
<------> * the context mappings. Hence the cache invalidation can be called once
<------> * at the loop end rather than for each iteration
<------> */
<------>if (!ctx_free)
<------><------>rc = hdev->asic_funcs->mmu_invalidate_cache(hdev, true,
<------><------><------><------><------><------><------><------>*vm_type);
<------>mutex_unlock(&ctx->mmu_lock);
<------>/*
<------> * If the context is closing we don't need to check for the MMU cache
<------> * invalidation return code and update the VA free list as in this flow
<------> * we invalidate the MMU cache outside of this unmap function and the VA
<------> * free list will be freed anyway.
<------> */
<------>if (!ctx_free) {
<------><------>int tmp_rc;
<------><------>if (rc)
<------><------><------>dev_err(hdev->dev,
<------><------><------><------>"unmapping vaddr 0x%llx failed due to MMU cache invalidation\n",
<------><------><------><------>vaddr);
<------><------>tmp_rc = add_va_block(hdev, va_range, vaddr,
<------><------><------><------><------>vaddr + phys_pg_pack->total_size - 1);
<------><------>if (tmp_rc) {
<------><------><------>dev_warn(hdev->dev,
<------><------><------><------><------>"add va block failed for vaddr: 0x%llx\n",
<------><------><------><------><------>vaddr);
<------><------><------>if (!rc)
<------><------><------><------>rc = tmp_rc;
<------><------>}
<------>}
<------>atomic_dec(&phys_pg_pack->mapping_cnt);
<------>kfree(hnode);
<------>if (is_userptr) {
<------><------>free_phys_pg_pack(hdev, phys_pg_pack);
<------><------>dma_unmap_host_va(hdev, userptr);
<------>}
<------>return rc;
mapping_cnt_err:
<------>if (is_userptr)
<------><------>free_phys_pg_pack(hdev, phys_pg_pack);
vm_type_err:
<------>mutex_lock(&ctx->mem_hash_lock);
<------>hash_add(ctx->mem_hash, &hnode->node, vaddr);
<------>mutex_unlock(&ctx->mem_hash_lock);
<------>return rc;
}
static int mem_ioctl_no_mmu(struct hl_fpriv *hpriv, union hl_mem_args *args)
{
<------>struct hl_device *hdev = hpriv->hdev;
<------>struct hl_ctx *ctx = hpriv->ctx;
<------>u64 device_addr = 0;
<------>u32 handle = 0;
<------>int rc;
<------>switch (args->in.op) {
<------>case HL_MEM_OP_ALLOC:
<------><------>if (args->in.alloc.mem_size == 0) {
<------><------><------>dev_err(hdev->dev,
<------><------><------><------>"alloc size must be larger than 0\n");
<------><------><------>rc = -EINVAL;
<------><------><------>goto out;
<------><------>}
<------><------>/* Force contiguous as there are no real MMU
<------><------> * translations to overcome physical memory gaps
<------><------> */
<------><------>args->in.flags |= HL_MEM_CONTIGUOUS;
<------><------>rc = alloc_device_memory(ctx, &args->in, &handle);
<------><------>memset(args, 0, sizeof(*args));
<------><------>args->out.handle = (__u64) handle;
<------><------>break;
<------>case HL_MEM_OP_FREE:
<------><------>rc = free_device_memory(ctx, args->in.free.handle);
<------><------>break;
<------>case HL_MEM_OP_MAP:
<------><------>if (args->in.flags & HL_MEM_USERPTR) {
<------><------><------>device_addr = args->in.map_host.host_virt_addr;
<------><------><------>rc = 0;
<------><------>} else {
<------><------><------>rc = get_paddr_from_handle(ctx, &args->in,
<------><------><------><------><------>&device_addr);
<------><------>}
<------><------>memset(args, 0, sizeof(*args));
<------><------>args->out.device_virt_addr = device_addr;
<------><------>break;
<------>case HL_MEM_OP_UNMAP:
<------><------>rc = 0;
<------><------>break;
<------>default:
<------><------>dev_err(hdev->dev, "Unknown opcode for memory IOCTL\n");
<------><------>rc = -ENOTTY;
<------><------>break;
<------>}
out:
<------>return rc;
}
int hl_mem_ioctl(struct hl_fpriv *hpriv, void *data)
{
<------>union hl_mem_args *args = data;
<------>struct hl_device *hdev = hpriv->hdev;
<------>struct hl_ctx *ctx = hpriv->ctx;
<------>u64 device_addr = 0;
<------>u32 handle = 0;
<------>int rc;
<------>if (hl_device_disabled_or_in_reset(hdev)) {
<------><------>dev_warn_ratelimited(hdev->dev,
<------><------><------>"Device is %s. Can't execute MEMORY IOCTL\n",
<------><------><------>atomic_read(&hdev->in_reset) ? "in_reset" : "disabled");
<------><------>return -EBUSY;
<------>}
<------>if (!hdev->mmu_enable)
<------><------>return mem_ioctl_no_mmu(hpriv, args);
<------>switch (args->in.op) {
<------>case HL_MEM_OP_ALLOC:
<------><------>if (!hdev->dram_supports_virtual_memory) {
<------><------><------>dev_err(hdev->dev, "DRAM alloc is not supported\n");
<------><------><------>rc = -EINVAL;
<------><------><------>goto out;
<------><------>}
<------><------>if (args->in.alloc.mem_size == 0) {
<------><------><------>dev_err(hdev->dev,
<------><------><------><------>"alloc size must be larger than 0\n");
<------><------><------>rc = -EINVAL;
<------><------><------>goto out;
<------><------>}
<------><------>rc = alloc_device_memory(ctx, &args->in, &handle);
<------><------>memset(args, 0, sizeof(*args));
<------><------>args->out.handle = (__u64) handle;
<------><------>break;
<------>case HL_MEM_OP_FREE:
<------><------>rc = free_device_memory(ctx, args->in.free.handle);
<------><------>break;
<------>case HL_MEM_OP_MAP:
<------><------>rc = map_device_va(ctx, &args->in, &device_addr);
<------><------>memset(args, 0, sizeof(*args));
<------><------>args->out.device_virt_addr = device_addr;
<------><------>break;
<------>case HL_MEM_OP_UNMAP:
<------><------>rc = unmap_device_va(ctx, args->in.unmap.device_virt_addr,
<------><------><------><------><------>false);
<------><------>break;
<------>default:
<------><------>dev_err(hdev->dev, "Unknown opcode for memory IOCTL\n");
<------><------>rc = -ENOTTY;
<------><------>break;
<------>}
out:
<------>return rc;
}
static int get_user_memory(struct hl_device *hdev, u64 addr, u64 size,
<------><------><------><------>u32 npages, u64 start, u32 offset,
<------><------><------><------>struct hl_userptr *userptr)
{
<------>int rc;
<------>if (!access_ok((void __user *) (uintptr_t) addr, size)) {
<------><------>dev_err(hdev->dev, "user pointer is invalid - 0x%llx\n", addr);
<------><------>return -EFAULT;
<------>}
<------>userptr->vec = frame_vector_create(npages);
<------>if (!userptr->vec) {
<------><------>dev_err(hdev->dev, "Failed to create frame vector\n");
<------><------>return -ENOMEM;
<------>}
<------>rc = get_vaddr_frames(start, npages, FOLL_FORCE | FOLL_WRITE,
<------><------><------><------>userptr->vec);
<------>if (rc != npages) {
<------><------>dev_err(hdev->dev,
<------><------><------>"Failed to map host memory, user ptr probably wrong\n");
<------><------>if (rc < 0)
<------><------><------>goto destroy_framevec;
<------><------>rc = -EFAULT;
<------><------>goto put_framevec;
<------>}
<------>if (frame_vector_to_pages(userptr->vec) < 0) {
<------><------>dev_err(hdev->dev,
<------><------><------>"Failed to translate frame vector to pages\n");
<------><------>rc = -EFAULT;
<------><------>goto put_framevec;
<------>}
<------>rc = sg_alloc_table_from_pages(userptr->sgt,
<------><------><------><------><------>frame_vector_pages(userptr->vec),
<------><------><------><------><------>npages, offset, size, GFP_ATOMIC);
<------>if (rc < 0) {
<------><------>dev_err(hdev->dev, "failed to create SG table from pages\n");
<------><------>goto put_framevec;
<------>}
<------>return 0;
put_framevec:
<------>put_vaddr_frames(userptr->vec);
destroy_framevec:
<------>frame_vector_destroy(userptr->vec);
<------>return rc;
}
/*
* hl_pin_host_memory - pins a chunk of host memory.
* @hdev: pointer to the habanalabs device structure
* @addr: the host virtual address of the memory area
* @size: the size of the memory area
* @userptr: pointer to hl_userptr structure
*
* This function does the following:
* - Pins the physical pages
* - Create an SG list from those pages
*/
int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u64 size,
<------><------><------><------><------>struct hl_userptr *userptr)
{
<------>u64 start, end;
<------>u32 npages, offset;
<------>int rc;
<------>if (!size) {
<------><------>dev_err(hdev->dev, "size to pin is invalid - %llu\n", size);
<------><------>return -EINVAL;
<------>}
<------>/*
<------> * If the combination of the address and size requested for this memory
<------> * region causes an integer overflow, return error.
<------> */
<------>if (((addr + size) < addr) ||
<------><------><------>PAGE_ALIGN(addr + size) < (addr + size)) {
<------><------>dev_err(hdev->dev,
<------><------><------>"user pointer 0x%llx + %llu causes integer overflow\n",
<------><------><------>addr, size);
<------><------>return -EINVAL;
<------>}
<------>/*
<------> * This function can be called also from data path, hence use atomic
<------> * always as it is not a big allocation.
<------> */
<------>userptr->sgt = kzalloc(sizeof(*userptr->sgt), GFP_ATOMIC);
<------>if (!userptr->sgt)
<------><------>return -ENOMEM;
<------>start = addr & PAGE_MASK;
<------>offset = addr & ~PAGE_MASK;
<------>end = PAGE_ALIGN(addr + size);
<------>npages = (end - start) >> PAGE_SHIFT;
<------>userptr->size = size;
<------>userptr->addr = addr;
<------>userptr->dma_mapped = false;
<------>INIT_LIST_HEAD(&userptr->job_node);
<------>rc = get_user_memory(hdev, addr, size, npages, start, offset,
<------><------><------><------>userptr);
<------>if (rc) {
<------><------>dev_err(hdev->dev,
<------><------><------>"failed to get user memory for address 0x%llx\n",
<------><------><------>addr);
<------><------>goto free_sgt;
<------>}
<------>hl_debugfs_add_userptr(hdev, userptr);
<------>return 0;
free_sgt:
<------>kfree(userptr->sgt);
<------>return rc;
}
/*
* hl_unpin_host_memory - unpins a chunk of host memory.
* @hdev: pointer to the habanalabs device structure
* @userptr: pointer to hl_userptr structure
*
* This function does the following:
* - Unpins the physical pages related to the host memory
* - Free the SG list
*/
void hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr)
{
<------>struct page **pages;
<------>hl_debugfs_remove_userptr(hdev, userptr);
<------>if (userptr->dma_mapped)
<------><------>hdev->asic_funcs->hl_dma_unmap_sg(hdev, userptr->sgt->sgl,
<------><------><------><------><------><------><------>userptr->sgt->nents,
<------><------><------><------><------><------><------>userptr->dir);
<------>pages = frame_vector_pages(userptr->vec);
<------>if (!IS_ERR(pages)) {
<------><------>int i;
<------><------>for (i = 0; i < frame_vector_count(userptr->vec); i++)
<------><------><------>set_page_dirty_lock(pages[i]);
<------>}
<------>put_vaddr_frames(userptr->vec);
<------>frame_vector_destroy(userptr->vec);
<------>list_del(&userptr->job_node);
<------>sg_free_table(userptr->sgt);
<------>kfree(userptr->sgt);
}
/*
* hl_userptr_delete_list - clear userptr list
*
* @hdev : pointer to the habanalabs device structure
* @userptr_list : pointer to the list to clear
*
* This function does the following:
* - Iterates over the list and unpins the host memory and frees the userptr
* structure.
*/
void hl_userptr_delete_list(struct hl_device *hdev,
<------><------><------><------>struct list_head *userptr_list)
{
<------>struct hl_userptr *userptr, *tmp;
<------>list_for_each_entry_safe(userptr, tmp, userptr_list, job_node) {
<------><------>hl_unpin_host_memory(hdev, userptr);
<------><------>kfree(userptr);
<------>}
<------>INIT_LIST_HEAD(userptr_list);
}
/*
* hl_userptr_is_pinned - returns whether the given userptr is pinned
*
* @hdev : pointer to the habanalabs device structure
* @userptr_list : pointer to the list to clear
* @userptr : pointer to userptr to check
*
* This function does the following:
* - Iterates over the list and checks if the given userptr is in it, means is
* pinned. If so, returns true, otherwise returns false.
*/
bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr,
<------><------><------><------>u32 size, struct list_head *userptr_list,
<------><------><------><------>struct hl_userptr **userptr)
{
<------>list_for_each_entry((*userptr), userptr_list, job_node) {
<------><------>if ((addr == (*userptr)->addr) && (size == (*userptr)->size))
<------><------><------>return true;
<------>}
<------>return false;
}
/*
* va_range_init - initialize virtual addresses range
* @hdev: pointer to the habanalabs device structure
* @va_range: pointer to the range to initialize
* @start: range start address
* @end: range end address
*
* This function does the following:
* - Initializes the virtual addresses list of the given range with the given
* addresses.
*/
static int va_range_init(struct hl_device *hdev, struct hl_va_range *va_range,
<------><------><------><------>u64 start, u64 end)
{
<------>int rc;
<------>INIT_LIST_HEAD(&va_range->list);
<------>/* PAGE_SIZE alignment */
<------>if (start & (PAGE_SIZE - 1)) {
<------><------>start &= PAGE_MASK;
<------><------>start += PAGE_SIZE;
<------>}
<------>if (end & (PAGE_SIZE - 1))
<------><------>end &= PAGE_MASK;
<------>if (start >= end) {
<------><------>dev_err(hdev->dev, "too small vm range for va list\n");
<------><------>return -EFAULT;
<------>}
<------>rc = add_va_block(hdev, va_range, start, end);
<------>if (rc) {
<------><------>dev_err(hdev->dev, "Failed to init host va list\n");
<------><------>return rc;
<------>}
<------>va_range->start_addr = start;
<------>va_range->end_addr = end;
<------>return 0;
}
/*
* va_range_fini() - clear a virtual addresses range
* @hdev: pointer to the habanalabs structure
* va_range: pointer to virtual addresses range
*
* This function does the following:
* - Frees the virtual addresses block list and its lock
*/
static void va_range_fini(struct hl_device *hdev,
<------><------>struct hl_va_range *va_range)
{
<------>mutex_lock(&va_range->lock);
<------>clear_va_list_locked(hdev, &va_range->list);
<------>mutex_unlock(&va_range->lock);
<------>mutex_destroy(&va_range->lock);
<------>kfree(va_range);
}
/*
* vm_ctx_init_with_ranges() - initialize virtual memory for context
* @ctx: pointer to the habanalabs context structure
* @host_range_start: host virtual addresses range start.
* @host_range_end: host virtual addresses range end.
* @host_huge_range_start: host virtual addresses range start for memory
* allocated with huge pages.
* @host_huge_range_end: host virtual addresses range end for memory allocated
* with huge pages.
* @dram_range_start: dram virtual addresses range start.
* @dram_range_end: dram virtual addresses range end.
*
* This function initializes the following:
* - MMU for context
* - Virtual address to area descriptor hashtable
* - Virtual block list of available virtual memory
*/
static int vm_ctx_init_with_ranges(struct hl_ctx *ctx,
<------><------><------><------><------>u64 host_range_start,
<------><------><------><------><------>u64 host_range_end,
<------><------><------><------><------>u64 host_huge_range_start,
<------><------><------><------><------>u64 host_huge_range_end,
<------><------><------><------><------>u64 dram_range_start,
<------><------><------><------><------>u64 dram_range_end)
{
<------>struct hl_device *hdev = ctx->hdev;
<------>int rc;
<------>ctx->host_va_range = kzalloc(sizeof(*ctx->host_va_range), GFP_KERNEL);
<------>if (!ctx->host_va_range)
<------><------>return -ENOMEM;
<------>ctx->host_huge_va_range = kzalloc(sizeof(*ctx->host_huge_va_range),
<------><------><------><------><------><------>GFP_KERNEL);
<------>if (!ctx->host_huge_va_range) {
<------><------>rc = -ENOMEM;
<------><------>goto host_huge_va_range_err;
<------>}
<------>ctx->dram_va_range = kzalloc(sizeof(*ctx->dram_va_range), GFP_KERNEL);
<------>if (!ctx->dram_va_range) {
<------><------>rc = -ENOMEM;
<------><------>goto dram_va_range_err;
<------>}
<------>rc = hl_mmu_ctx_init(ctx);
<------>if (rc) {
<------><------>dev_err(hdev->dev, "failed to init context %d\n", ctx->asid);
<------><------>goto mmu_ctx_err;
<------>}
<------>mutex_init(&ctx->mem_hash_lock);
<------>hash_init(ctx->mem_hash);
<------>mutex_init(&ctx->host_va_range->lock);
<------>rc = va_range_init(hdev, ctx->host_va_range, host_range_start,
<------><------><------><------>host_range_end);
<------>if (rc) {
<------><------>dev_err(hdev->dev, "failed to init host vm range\n");
<------><------>goto host_page_range_err;
<------>}
<------>if (hdev->pmmu_huge_range) {
<------><------>mutex_init(&ctx->host_huge_va_range->lock);
<------><------>rc = va_range_init(hdev, ctx->host_huge_va_range,
<------><------><------><------><------>host_huge_range_start,
<------><------><------><------><------>host_huge_range_end);
<------><------>if (rc) {
<------><------><------>dev_err(hdev->dev,
<------><------><------><------>"failed to init host huge vm range\n");
<------><------><------>goto host_hpage_range_err;
<------><------>}
<------>} else {
<------><------>kfree(ctx->host_huge_va_range);
<------><------>ctx->host_huge_va_range = ctx->host_va_range;
<------>}
<------>mutex_init(&ctx->dram_va_range->lock);
<------>rc = va_range_init(hdev, ctx->dram_va_range, dram_range_start,
<------><------><------>dram_range_end);
<------>if (rc) {
<------><------>dev_err(hdev->dev, "failed to init dram vm range\n");
<------><------>goto dram_vm_err;
<------>}
<------>hl_debugfs_add_ctx_mem_hash(hdev, ctx);
<------>return 0;
dram_vm_err:
<------>mutex_destroy(&ctx->dram_va_range->lock);
<------>if (hdev->pmmu_huge_range) {
<------><------>mutex_lock(&ctx->host_huge_va_range->lock);
<------><------>clear_va_list_locked(hdev, &ctx->host_huge_va_range->list);
<------><------>mutex_unlock(&ctx->host_huge_va_range->lock);
<------>}
host_hpage_range_err:
<------>if (hdev->pmmu_huge_range)
<------><------>mutex_destroy(&ctx->host_huge_va_range->lock);
<------>mutex_lock(&ctx->host_va_range->lock);
<------>clear_va_list_locked(hdev, &ctx->host_va_range->list);
<------>mutex_unlock(&ctx->host_va_range->lock);
host_page_range_err:
<------>mutex_destroy(&ctx->host_va_range->lock);
<------>mutex_destroy(&ctx->mem_hash_lock);
<------>hl_mmu_ctx_fini(ctx);
mmu_ctx_err:
<------>kfree(ctx->dram_va_range);
dram_va_range_err:
<------>kfree(ctx->host_huge_va_range);
host_huge_va_range_err:
<------>kfree(ctx->host_va_range);
<------>return rc;
}
int hl_vm_ctx_init(struct hl_ctx *ctx)
{
<------>struct asic_fixed_properties *prop = &ctx->hdev->asic_prop;
<------>u64 host_range_start, host_range_end, host_huge_range_start,
<------><------>host_huge_range_end, dram_range_start, dram_range_end;
<------>atomic64_set(&ctx->dram_phys_mem, 0);
<------>/*
<------> * - If MMU is enabled, init the ranges as usual.
<------> * - If MMU is disabled, in case of host mapping, the returned address
<------> * is the given one.
<------> * In case of DRAM mapping, the returned address is the physical
<------> * address of the memory related to the given handle.
<------> */
<------>if (ctx->hdev->mmu_enable) {
<------><------>dram_range_start = prop->dmmu.start_addr;
<------><------>dram_range_end = prop->dmmu.end_addr;
<------><------>host_range_start = prop->pmmu.start_addr;
<------><------>host_range_end = prop->pmmu.end_addr;
<------><------>host_huge_range_start = prop->pmmu_huge.start_addr;
<------><------>host_huge_range_end = prop->pmmu_huge.end_addr;
<------>} else {
<------><------>dram_range_start = prop->dram_user_base_address;
<------><------>dram_range_end = prop->dram_end_address;
<------><------>host_range_start = prop->dram_user_base_address;
<------><------>host_range_end = prop->dram_end_address;
<------><------>host_huge_range_start = prop->dram_user_base_address;
<------><------>host_huge_range_end = prop->dram_end_address;
<------>}
<------>return vm_ctx_init_with_ranges(ctx, host_range_start, host_range_end,
<------><------><------><------><------>host_huge_range_start,
<------><------><------><------><------>host_huge_range_end,
<------><------><------><------><------>dram_range_start,
<------><------><------><------><------>dram_range_end);
}
/*
* hl_vm_ctx_fini - virtual memory teardown of context
*
* @ctx : pointer to the habanalabs context structure
*
* This function perform teardown the following:
* - Virtual block list of available virtual memory
* - Virtual address to area descriptor hashtable
* - MMU for context
*
* In addition this function does the following:
* - Unmaps the existing hashtable nodes if the hashtable is not empty. The
* hashtable should be empty as no valid mappings should exist at this
* point.
* - Frees any existing physical page list from the idr which relates to the
* current context asid.
* - This function checks the virtual block list for correctness. At this point
* the list should contain one element which describes the whole virtual
* memory range of the context. Otherwise, a warning is printed.
*/
void hl_vm_ctx_fini(struct hl_ctx *ctx)
{
<------>struct hl_device *hdev = ctx->hdev;
<------>struct hl_vm *vm = &hdev->vm;
<------>struct hl_vm_phys_pg_pack *phys_pg_list;
<------>struct hl_vm_hash_node *hnode;
<------>struct hlist_node *tmp_node;
<------>int i;
<------>hl_debugfs_remove_ctx_mem_hash(hdev, ctx);
<------>/*
<------> * Clearly something went wrong on hard reset so no point in printing
<------> * another side effect error
<------> */
<------>if (!hdev->hard_reset_pending && !hash_empty(ctx->mem_hash))
<------><------>dev_notice(hdev->dev,
<------><------><------>"user released device without removing its memory mappings\n");
<------>hash_for_each_safe(ctx->mem_hash, i, tmp_node, hnode, node) {
<------><------>dev_dbg(hdev->dev,
<------><------><------>"hl_mem_hash_node of vaddr 0x%llx of asid %d is still alive\n",
<------><------><------>hnode->vaddr, ctx->asid);
<------><------>unmap_device_va(ctx, hnode->vaddr, true);
<------>}
<------>/* invalidate the cache once after the unmapping loop */
<------>hdev->asic_funcs->mmu_invalidate_cache(hdev, true, VM_TYPE_USERPTR);
<------>hdev->asic_funcs->mmu_invalidate_cache(hdev, true, VM_TYPE_PHYS_PACK);
<------>spin_lock(&vm->idr_lock);
<------>idr_for_each_entry(&vm->phys_pg_pack_handles, phys_pg_list, i)
<------><------>if (phys_pg_list->asid == ctx->asid) {
<------><------><------>dev_dbg(hdev->dev,
<------><------><------><------>"page list 0x%px of asid %d is still alive\n",
<------><------><------><------>phys_pg_list, ctx->asid);
<------><------><------>atomic64_sub(phys_pg_list->total_size,
<------><------><------><------><------>&hdev->dram_used_mem);
<------><------><------>free_phys_pg_pack(hdev, phys_pg_list);
<------><------><------>idr_remove(&vm->phys_pg_pack_handles, i);
<------><------>}
<------>spin_unlock(&vm->idr_lock);
<------>va_range_fini(hdev, ctx->dram_va_range);
<------>if (hdev->pmmu_huge_range)
<------><------>va_range_fini(hdev, ctx->host_huge_va_range);
<------>va_range_fini(hdev, ctx->host_va_range);
<------>mutex_destroy(&ctx->mem_hash_lock);
<------>hl_mmu_ctx_fini(ctx);
}
/*
* hl_vm_init - initialize virtual memory module
*
* @hdev : pointer to the habanalabs device structure
*
* This function initializes the following:
* - MMU module
* - DRAM physical pages pool of 2MB
* - Idr for device memory allocation handles
*/
int hl_vm_init(struct hl_device *hdev)
{
<------>struct asic_fixed_properties *prop = &hdev->asic_prop;
<------>struct hl_vm *vm = &hdev->vm;
<------>int rc;
<------>vm->dram_pg_pool = gen_pool_create(__ffs(prop->dram_page_size), -1);
<------>if (!vm->dram_pg_pool) {
<------><------>dev_err(hdev->dev, "Failed to create dram page pool\n");
<------><------>return -ENOMEM;
<------>}
<------>kref_init(&vm->dram_pg_pool_refcount);
<------>rc = gen_pool_add(vm->dram_pg_pool, prop->dram_user_base_address,
<------><------><------>prop->dram_end_address - prop->dram_user_base_address,
<------><------><------>-1);
<------>if (rc) {
<------><------>dev_err(hdev->dev,
<------><------><------>"Failed to add memory to dram page pool %d\n", rc);
<------><------>goto pool_add_err;
<------>}
<------>spin_lock_init(&vm->idr_lock);
<------>idr_init(&vm->phys_pg_pack_handles);
<------>atomic64_set(&hdev->dram_used_mem, 0);
<------>vm->init_done = true;
<------>return 0;
pool_add_err:
<------>gen_pool_destroy(vm->dram_pg_pool);
<------>return rc;
}
/*
* hl_vm_fini - virtual memory module teardown
*
* @hdev : pointer to the habanalabs device structure
*
* This function perform teardown to the following:
* - Idr for device memory allocation handles
* - DRAM physical pages pool of 2MB
* - MMU module
*/
void hl_vm_fini(struct hl_device *hdev)
{
<------>struct hl_vm *vm = &hdev->vm;
<------>if (!vm->init_done)
<------><------>return;
<------>/*
<------> * At this point all the contexts should be freed and hence no DRAM
<------> * memory should be in use. Hence the DRAM pool should be freed here.
<------> */
<------>if (kref_put(&vm->dram_pg_pool_refcount, dram_pg_pool_do_release) != 1)
<------><------>dev_warn(hdev->dev, "dram_pg_pool was not destroyed on %s\n",
<------><------><------><------>__func__);
<------>vm->init_done = false;
}